Digital Systems Section 2

Chapter (2)

STUDENTS-HUB.com

Boolean Algebra \rightarrow Mathematics of Logic

	Regular	Boolean
Values	Real numbers (e.g., 1, 2, 3,)	Binary values (0, 1)
Operations	Addition (+), Multiplication (×) Subtraction (-), Division (\div)	AND (•), OR (+), NOT (['])
Purpose	Solving numerical equations	Simplifying logic circuits
Deal with	Formulas	Truth Tables & Gates

• Boolean <u>expressions</u> are made up of **Variables**, **Constants** and **Operators**

- Operators: AND, OR and NOT
- **Literals** each <u>instance</u> of a variable or constant

 $(x+y)'_{\bullet}(x'+y')$

Boolean Algebra: Algebraic structure defined by a set of elements, B={0,1}, with two binary operators (+ and •) and a **unary** operator (') satisfying the following **Postulates**:

- Θ There exit at least two elements x , y \in B such that $x \neq y$
- Θ For $x \in B$ there is $x' \in B$. (**Complement or Inverse**)
- The structure is closed with respect to (+ and •). (**Closure**)
- **○ 0** is the **identity** element for (+), and **1** is the identity element for (•).
- Θ The structure is **commutative** with respect to (+ and •).
- Θ (•) is **distributive** over +, and + is distributive over (•).

- ⊖ Logical **operators** operate on binary values and binary variables
- Θ Three basic logical operations; AND (•), OR (+), NOT (').

AND				0	R	N	от
x	y	$x \cdot y$	x	у	x + y	x	x'
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		
1	1	1	1	1	1		

1.1. mar. 1.1.

Sometimes, the dot symbol (•) is **not written** when the meaning is clear

NOT Operator Notation: (A) (~A) (A')

4STUDENTS-HUB.com

O The **Postulates** are <u>basic axioms</u> of the algebraic structure and need no proof O The **Theorems** must be proven from the <u>postulates</u>

					Dual
Postulate 2	Identity	(a)	x + 0 = x	(b)	$x \cdot 1 = x$
Postulate 5	Complement	(a)	x + x' = 1	(b)	$x \cdot x' = 0$
Theorem 1	Idempotence	(a)	x + x = x	(b)	$x \cdot x = x$
Theorem 2	Null	(a)	x + 1 = 1	(b)	$x \cdot 0 = 0$
Theorem 3	Involution		(x')' = x		
Postulate 3	Commutative	(a)	x + y = y + x	(b)	xy = yx
Theorem 4	Associative	(a)	x + (y + z) = (x + y) + z	(b)	x(yz) = (xy)z
Postulate 4	Distributive	(a)	x(y+z) = xy + xz	(b)	x + yz = (x + y)(x + z)
Theorem 5	Demorgan	(a)	(x + y)' = x'y'	(b)	(xy)' = x' + y'
Theorem 6	Absorption	(a)	x + xy = x	(b)	x(x + y) = x

⁵STUDENTS-HUB.com

- The dual of an algebraic expression is obtained by **interchanging** + and Θ and **interchanging** 0's and 1's
- Every algebraic expression <u>deducible</u> from the <u>postulates</u> of Boolean algebra Θ remains **valid** if the operators and identity elements are **interchanged**

If two Boolean Expressions are equal, the duals are equal Θ

Examples:

Dual of $(x + y + z) \rightarrow (x \cdot y \cdot z)$ Dual of $(x + 0 = x) \rightarrow (x \cdot 1 = x)$ Dual of $(x + 1 = 1) \rightarrow (x \bullet 0 = 0)$

7STUDENTS-HUB.com

8STUDENTS-HUB.com

Proof Using **Postulates** & Other Proven Theorems Proof Using **Truth Tables**

THEOREM 1(a):	x + x = x.	
	Statement	Justification
	$x + x = (x + x) \cdot 1$	postulate 2(b)
	= (x + x)(x + x')) 5(a)
	= x + xx'	4(b)
	= x + 0	5(b)
	= x	2(a)
THEOREM 1(b):	$x \cdot x = x.$ Statement	Justification
	$x \cdot x = xx + 0$	postulate 2(a)
	= xx + xx'	5(b)
	= x(x + x')	4(a)
	$= x \cdot 1$	5(a)
	= x	2(b)
		Uploaded By: 1230

THEOREM 2(a): x + 1 = 1. Justification Statement postulate 2(b) $x + 1 = 1 \cdot (x + 1)$ = (x + x')(x + 1) $= x + x' \cdot 1$ = x + x'= 1**THEOREM 2(b):** $x \cdot 0 = 0$ by duality. Statement Justification $x + xy = x \cdot 1 + xy$ postulate 2(b) = x(1 + y)= x(y + 1) $= x \cdot 1$ = x

THEOREM 6(a): x + xy = x.

9STUDENTS-HUB. COM**OREM 6(b):** x(x + y) = x by duality.

Uploaded By: 1230358@student.birzeit.eduli

5(a)

4(b)

2(b)

5(a)

4(a)

3(a)

2(a)

2(b)

C

20 24

	AB + AC + BC = AB + AC	sensus Theorem
	$=AB + \overline{A}C + BC$	
Identity element	$= AB + \overline{A}C + 1 \cdot BC$,	
Complement	$= AB + \overline{A}C + (A + \overline{A}) \cdot BC$,	
Distributive	$= AB + \overline{A}C + ABC + \overline{A}BC$,	
Commutative	$= AB + ABC + \overline{A}C + \overline{A}BC$,	
Distributive	$=AB(1+C)+\overline{A}C(1+B),$	
Null	$= AB \cdot 1 + \overline{A}C \cdot 1,$	
Identity element	$=AB+\overline{A}C$,	

Minimization Theorem $xy + \overline{x}y = y$ $(x + y)(\overline{x} + y) = y$ Simplification Theorem $x + \overline{x}y = x + y$ $x(\overline{x} + y) = xy$

¹⁰STUDENTS-HUB.com

- ⊖ Boolean algebra deals with binary variables and logic operations
- ⊖ A Boolean Function is an algebraic expression consisting of binary variables, the constants (0, and 1), and logic operation symbols
- ⊖ A Boolean Function always <u>equals/evaluated to</u> either **0 or 1**
- ⊖ A Boolean Function is <u>uniquely</u> represented by a truth table that maps <u>each</u> <u>possible combination of the input variables</u> to the <u>corresponding output literal</u>
- ⊖ Boolean Function <u>can be implemented</u> (NOT Uniquely) by a Boolean Equation and the corresponding logic diagram
- Simplest Functions use the <u>smallest number of the</u> <u>smallest gates</u> and therefore give the <u>most economical</u> and <u>efficient</u> circuit implementations

Examples:

$$F_{1} = x + y'z \qquad F_{5} = xy + x(wz + wz')$$

$$F_{2} = x'y'z + xyz + x'yz + xy'z \qquad F_{6} = (yz' + x'w)(xy' + zw')$$

$$F_{3} = x'yz + xz \qquad F_{7} = (x' + z')(x + y' + z')$$

$$F_{7} = (x' + z')(x + y' + z')$$

$$F_{8} = x + xz \quad \text{Uploaded By: 1230358@student.bitzer}$$

ENCS 2340

Several such implementations map to the **same** function

Requires: Optimization/Minimization/ Manipulations Techniques Truth Table Representation

20 24

12S

- Any Boolean **Function** can be represented in a **Truth Table**
 - The number of <u>rows</u> in a truth table is **2**ⁿ where
 n is the number of <u>variables</u> in the function/expression
 - The binary combinations of the variables are obtained by counting from 0 to 2ⁿ - 1

$F_1 = xyz'$		1	$F_2 = x + y'z$		$F_3 = x'_1$	$F_4 = xy' + x'z$		
	Input	Variables	<mark>(n=3)</mark>	(
•	x	у	z	F ₁	F ₂	F ₃	F_4	
0		0	0	0	0	0	0	
	0	0	1	0	1	1	1	
	0	1	0	0	0	0	0	
	0	1	1	0	0	1	1	
	1	0	0	0	1	1	1	
	1	0	1	0	1	1	1	
7 n - 1	1	1	0	1	1	0	0	
DENTS-FIL	B.com	1	1	0	1 Up	load e d By	: 12300358	@student.birze

- The complement of a Boolean function may be obtained by either one of two methods:
 - 1) <u>Repetitive</u> application of **DeMorgan's** theorem.
 - 2) Taking the dual of the function and **complementing** each **literal**.

Examples:

20 24

$$\mathsf{F}{=}\overline{x} \cdot \mathsf{y} \cdot \overline{z} + \overline{x} \cdot \overline{y} \cdot \mathsf{z}$$

Method 1

$$\frac{\overline{F}}{\overline{F}} = \frac{\overline{(\overline{x} \cdot y \cdot \overline{z} + \overline{x} \cdot \overline{y} \cdot z)}}{(\overline{x} \cdot y \cdot \overline{z}) \cdot (\overline{x} \cdot \overline{y} \cdot z)} \\
\overline{F} = (x + \overline{y} + z) \cdot (x + y + \overline{z})$$

Method 2

13STUDENTS-HUB.com

$$F^{D} = (\overline{x} + y + \overline{z}) \cdot (\overline{x} + \overline{y} + z)$$

$$\overline{F} = (x + \overline{y} + z) \cdot (x + y + \overline{z})$$

 $F_1 = x'yz' + x'y'z.$ The dual of F_1 is (x' + y + z')(x' + y' + z).Complement each literal: $(x + y' + z)(x + y + z') = F'_1.$

 $F_2 = x(y'z' + yz).$ The dual of F_2 is x + (y' + z')(y + z).Complement each literal: $x' + (y + z)(y' + z') = F'_2.$

Be Careful: (XY)' ≠ X'Y'

- Θ Reducing the number of terms, the number of literals, or **both** \rightarrow a simpler logic circuit can be used to implement the Boolean function (Less Gates & Less Inputs)
- ⊖ Reduction of the number of terms and/or number of literals is done by algebraic **manipulation**.
- Basic <u>theorems</u> and <u>postulates</u> of Boolean algebra are applied to perform the **manipulation**.

Examples:

 $\mathbf{x} \cdot (\overline{\mathbf{x}} + \mathbf{y}) =$ xy $x + \overline{x} \cdot y =$ x+y $(x + y)(x + \overline{y}) =$ Х $\mathbf{x} \cdot \mathbf{y} + \overline{\mathbf{x}} \cdot \mathbf{z} + \mathbf{y} \cdot \mathbf{z} =$

$$F_{2} = x'y'z + xyz + x'yz + xy'z$$

= $x'z(y + y') + xz(y + y')$
= $x'z + xz$
= $(x' + x)z$
= z

Factoring Out Common Terms

$$F_3 = x'yz + xz$$

= $(x'y + x)z$
= $(x + x')(x + y)z$
= $(x + y)z$

$$xy + x'z + yz = xy + x'z + yz(x + x')^{*}$$

$$= xy + x'z + xyz + x'yz$$

$$= xy(1+z) + x'z(1+y)$$

$$= xy + x'z$$
Multiply (AND) By 1
Similarly, we could Add (OR) By 0 $x \cdot x'$

15STUDENTS-HUB.com

20 24

$$F_{4} = (x + y)'(x' + y')$$

= $x'y'(x' + y')$
= $x'y'x' + x'y'y'$
= $x'y' + x'y'$
= $x'y'$

Remember, A Boolean Function may have **multiple** expression/logical forms, but can have **only** one **Truth Table representation**.

x

0

0

1

16STUDENTS-HUB.com

 $\overline{\overline{A\overline{BC}}} + C + \overline{D} = A(\overline{C} + \overline{D})$

- $\text{L.H.S.} = \overline{A\overline{BC}} + C + D$
 - $= A\overline{BC} \overline{C} \overline{D}$ DeMorgan's theorem
 - $= A(\overline{B} + \overline{C}) \overline{C} \overline{D}$ DeMorgan's theorem
 - $= A\overline{B}\,\overline{C}\,\,\overline{D} + A\,\overline{C}\,\,\overline{D}$
 - $= A \, \overline{C} \, \overline{D} (\overline{B} + 1)$
 - $= A \, \overline{C} \, \overline{D}$
 - $= A \left(\overline{C + D} \right)$ DeMorgan's theorem = R.H.S.

17STUDENTS-HUB.com

Consensus

a'c' + ad + bc'd = a'c' + ad

a'c' + ad + bc'd = a'c' + a d + bc'd + c'd	(by consensus between a'c' + ad)
= a'c' + ad + c'd	(by absorption of bc'd in c'd)
= a'c' + a d	(by consensus between a'c' + ad)

(a' [c' + d] + c [b' + d'] + c'd')' = ad (b + c')

```
= (a + c d') (c' + b d) (c + d)(by DeMrogan's Law)= (a c' + a b d) (c + d)(by distributive law)= (a c' d + a b c d + a b d)(by distributive law)= a c' d + a b d(by absorption of abcd in abd)= a d (c' + b)(by distributive law)
```


Using Truth Table, Prove that $F_2 \& F_3$ are equivalent.

$$F_2(A,B) = A + \overline{A}B$$
 and $F_3(A,B) = A + B$

A	B	\overline{A}	$\overline{A}B$	$F_2 = A + \overline{A}B$	$F_3 = A + B$
0	0	1	0	0	0
0	1	1	1	1	1
1	0	0	0	1	1
1	1	0	0	1	1

The last two columns are **identical**. This proves that F2 = F3

II. This proves

19STUDENTS-HUB.com

⊖ A Boolean function can be transformed into a circuit diagram consisting of logic gates connected in a particular structure.

Original Expression

- ⊖ If we have a Boolean function, then there is only one way for it to be represented as a truth table
- ⊖ A Boolean function can be simplified or even modified to **another** expression
- O The particular expression used to represent a Boolean function dictates the structure of its equivalent logic circuit – and, therefore, the number of gates in it
- Conversely, the interconnection of logic gates will determine the logic expression
- We can use the rules of Boolean **algebra** to **simplify** expressions and thus save cost!

ENCS 2340

Standard forms: Θ

- **Two** Level Implementation (least amount of delay, but may result of too many gate inputs)
- **Terms** of a function may contain one, two, or **any** number of literals/variables

Two **Types**:

- Sum of Products (SOP)
- Product of Sums (POS) 2)

Nonstandard form: $F_3 = AB + C (D + E)$

22STUDENTS-HUB.com

Can be converted to Standard Form Uploaded By: 1230358@studentabirzeit.e

 $F_2 = x(y'+z)(x'+y+z')$

- ⊖ A binary variable may appear either in its
 - 1) Normal (Unprimed) form (x)
 - **Complement** (**Primed**) form (x') 2)
- For **n** variables, there are: Θ
 - 1) 2ⁿ combinations of (AND).
 - \bigcirc Example: for variables x and y, we have x y, x'y, x y', and x'y' (n=2)
 - 2) 2ⁿ combinations of (OR).
 - \bigcirc Example: for variables x and y, we have x+y, x'+y, x+y', and x'+y' (n=2)

Each of the AND terms is called minterm or standard product. Notation: mi Θ

Each of the <u>OR</u> terms is called maxterm or standard sum Notation: M_i Θ

Each **maxterm** is the **complement** of its corresponding **minterm** (vise versa) Θ

Uploaded By: 1230358@student.birzeit.e

FNCS 2340

						1-57
			M	interms	Maxte	erms
x	y	z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_{1}
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	xyz	m_7	x' + y' + z'	M_7

N 41 I \mathbf{a} ****/ 1 S 1 S 1 . **D**¹

Each variable \rightarrow **primed** if the corresponding bit is a **0**, **unprimed** if the corresponding bit is a **1**

20 24

24STUDENTS-HUB.com

Θ Canonical form:

- Expressing a Boolean function using sum of minterms or product of maxterms
- All variables should be present and should be listed in the same order
- ⊖ **Minterms** whose <u>sum defines</u> the Boolean function are those which give 1's in the truth table
- ⊖ **Maxterms** whose <u>product defines</u> the Boolean function are those which give 0's in the truth table
- Θ Maxterm **M**_j is the **complement** of minterm **m**_j

CANONICAL FORM

20 24

$$F = xy + x'z$$

$$F(x, y, z) = x'y'z + x'yz + xyz' + xyz = \Sigma(1, 3, 6, 7)$$

$$F(x, y, z) = (x + y + z)(x + y' + z)(x' + y + z)(x' + y + z') = \Pi(0, 2, 4, 5)$$

26STUDENTS-HUB.com

20 24

$f_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7$	x	y	z	Function f ₁	Function f ₂
	0	0	0	0	0
$f_2 = x'yz + xy'z + xyz' + xyz = m_3 + m_5 + m_6 + m_7$	0	0	1	1	0
	0	1	0	0	0
$f_1 = (x + y + z)(x + y' + z)(x' + y + z')(x' + y' + z)$	0	1	1	0	1
$= M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6$	1	0	0	1	0
	1	0	1	0	1
$f_2 = (x + y + z)(x + y + z')(x + y' + z)(x' + y + z)$	1	1	0	0	1
$= M_0 M_1 M_2 M_4$	1	1	1	1	1

 $f_1 = \sum(1,4,7) \rightarrow f_1' = \sum(0,2,3,5,6) \rightarrow f_1 = \prod(0,2,3,5,6) \rightarrow f_1' = \prod(1,4,7)$

From any one, we can directly derive the other three

Remember

27STUDENTS-HUB.com

 $m'_i = M_i$

Hence (e.g.)

$$(m_0 + m_2 + m_3)' = m'_0 \cdot m'_2 \cdot m'_3 = M_0 M_2 M_3$$

20 24

Represent F₄ as
(a) sum-of-minterms (canonical) form
(b) sum-of-product (standard) form with minimum number of literals

 $F_4(x, y, z) = \Pi(2, 3, 6, 7)$

28 TUDENTS-HUB.com

⇒ each term should have all variables.

- 1st term missing B & C.
 - = A(B+B') = AB+AB'
 - = AB(C+C') + AB'(C+C')
 - = ABC + ABC' + AB'C + AB'C'
- ^o 2nd term missing A.

$$= B'C(A + A') = AB'C + A'B'C$$

$$F = ABC + ABC' + AB'C + AB'C' + AB'C + A'B'C$$

$$= m_1 + m_4 + m_5 + m_6 + m_7 = \sum(1, 4, 5, 6, 7)$$

Multiply (AND) By 1

295 TUDENTS-HUB.com

 \implies convert to OR terms (A + B')(A + C).

•
$$1^{st}$$
 term missing C, \Rightarrow add CC'.

$$A + B' = A + B' + CC'$$

$$= (A + B' + C)(A + B' + C')$$

2nd term missing B, ⇒ add BB'.

$$A + C = A + C + BB' = (A + B + C)(A + B' + C)$$

 $F = (A + B' + C)(A + B' + C')(A + B + C)(A + B' + C)$
 $= m_2 + m_3 + m_0 = \prod(0, 2, 3)$

Add (OR) By 0

³CTUDENTS-HUB.com

Express the following Boolean expressions in both **canonical** forms

 $F_1(A, B, C, D) = (B + D) (A + C)$

- $F_1 = (AA' + B + CC' + D) (A + BB' + C + DD')$
 - = (A+B+C+D) (A+B+C'+D) (A'+B+C+D) (A'+B+C'+D) (A+B'+C+D) (A+B+C+D') (A+B'+C+D')
 - = ∏ (0,1,2,4,5,8,10)
 - $= \sum (3,6,7,9,11,12,13,14,15)$

$F_2(A, B, C, D) = A'C(B' + D)$

- $F_2 = A'B'C + A'CD$
 - = A'B'C(D+D') + A'(B+B')CD
 - = A'B'CD' + A'B'CD + A'BCD
 - $= \Sigma (2,3,7)$
 - $= \prod (0,1, 4,5,6,8,9,10,11,12,13,14,15)$

Multiply (AND) By 1

³¹STUDENTS-HUB.com

Uploaded By: 1230358@student.birzeit.eduli

Add (OR) By 0

FNCS 2340

- An alternative procedure for converting to **Canonical Form**:
 - Obtain the **Truth Table** of the function **directly** from the **algebraic expression** 1)
 - Read the minterms/maxterms from the Truth Table 2)

Example: F = A + B'C

Derive the Truth Table **directly** from the algebraic expression by: 1) Listing the eight binary combinations under variables A, B, and C 2) **Inserting 1's** under F for those combinations for which A=1 and BC=01.

• From the truth table, we can **read** the <u>five minterms</u> of the function to be 1, 4, 5, 6, and 7.

A	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

⊖ For 2 binary inputs we considered so far only the AND & OR functions
 ⊖ How many different functions can we have for 2 binary inputs (x, y)? 16
 ⊖ In general, for n variables → 2²ⁿ Functions (2n is the Number of Rows)

Truth Tables for the 16 Functions of Two Binary Variables																	
x	y	Fo	F ₁	F ₂	F ₃	F 4	F ₅	F ₆	F 7	F 8	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Two functions that produce a **constant** 0 or 1.

- Four functions with unary operations: complement and transfer.
- Ten functions with binary operators that define eight different operations: AND, OR, NAND, NOR, exclusive-OR, equivalence, inhibition, and implication.

33STUDENTS-HUB.com

Boolean Expressions for the 16 Functions of Two Variables

Boolean Functions	Operator Symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	<i>x/y</i>	Inhibition	<i>x</i> , but not <i>y</i>
$F_3 = x$		Transfer	x
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$		Transfer	у
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	<i>x</i> or <i>y</i> , but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	<i>y'</i>	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y, then x
$F_{12} = x'$	<i>x'</i>	Complement	Not x
$F_{13} = x' + y$	$x \supset y$	Implication	If x, then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$		Identity	Binary constant 1

34STUDENTS-HUB.com

Digital LOGIC Gates

20 24

355TUDENTS-HUB.com

ENCS 2340

- ⊖ **NOR** function is the complement of **OR** function (**not-OR**)
- ⊖ **NAND** function is the complement of **AND** function (**not-AND**)
- Θ **XOR** (exclusive OR) is similar to **OR** but excludes the combination of (x=1 and y=1)
- ⊖ **Equivalence** is 1 when x and y are **equal**
- ⊖ Equivalence is complement of XOR, therefore also called <u>exclusive NOR</u> (XNOR)

ENCS 2340

- ⊖ **NOR** function is the complement of **OR** function (**not-OR**)
- ⊖ **NAND** function is the complement of **AND** function (**not-AND**)
- Θ **XOR** (exclusive OR) is similar to **OR** but excludes the combination of (x=1 and y=1)
- ⊖ **Equivalence** is 1 when x and y are **equal**
- ⊖ Equivalence is complement of XOR, therefore also called <u>exclusive NOR</u> (XNOR)

Example:

38STUDENTS-HUB.com

ENCS 2340

Extra Example:

$$Z = [[(A' + B)' + C](C'D)']' + [(C'D)'.B]'$$

= [[(A' + B)'+ C]' + (C'D)] + [(C'D)+B']
= [(A' + B).C'] + [(C'D) + (C'D)+B']
= A'C' + BC' + C'D + B'
= A'C' + C'D + BC' + B'
= A'C' + C'D + C' + B'
= C' (A'+D+1) + B'
= C' + B' Uploaded By: 1230354

³⁹STUDENTS-HUB.com

Uploaded By: 1230358@student.bitzeitechuit

- All gates except inverter and buffer can be extended to have more than two inputs Θ
- **NAND** and **NOR** are **commutative** but **not associative** Θ
- We define the **multiple** NOR / NAND gate as a **complemented** OR / AND gate. Θ

 $(x \downarrow y) \downarrow z \neq x \downarrow (y \downarrow z)$

Positive and Negative Logic

Choosing the high-level H to represent logic 1 defines a *positive logic* system
 Choosing the low-level L to represent logic 1 defines a *negative logic* system

