

کلُّ محاولاتك عند الله أجور استعن بالله ولا تعجز

STUDENTS-HUB.com

Uploaded By: Rawan Fares

L Let

$$A = \begin{bmatrix} \frac{1}{2} & -\frac{2}{3} & \frac{4}{3} \\ 0 & Find the values of det(M_{2}), and A_{2}. \\ (0) Find the values of A_{2}. A_{2}, and A_{2}. \\ (1) Use your assess from part (b) to compute det(A_{1}) = \frac{1}{2} & \frac{4}{2} = \frac{4}$$

5. Evaluate the following determinant. Write your answer as a polynomial in *x*: $\begin{vmatrix} a - x & b & c \\ 1 & -x & 0 \\ 0 & 1 & -x \end{vmatrix}$ $\begin{array}{||c||} A = Q_{11} A_{11} + Q_{21} A_{21} + Q_{31} A_{3} \\ = (Q - X)(-1)^{2} X - X + (U)(-1)^{3} | b | c | + 0 \\ | 1 - X | | 1 - X | | 1 - X | \\ | 1 - X | \\ \end{array}$ $= (a_{-}x)(x^{2}) - (-xb_{-}c)$ = $ax^{2} - x^{3} + xb_{-}c$ = $-x^{3} + ax^{2} + xb_{-}c$ 6. Find all values of λ for which the following determinant will equal 0: $\begin{vmatrix} 2-\lambda & 4\\ 3 & 3-\lambda \end{vmatrix}$ del(A) = 0 - means that A is singular. $(2-\lambda)(3-\lambda) - 12 = 0$ $6 - 2h - 3h + h^{2} - 12 = a$ $h^{2} - 5h - 6 = 0$ (h - 6)(h + 1) = 0 h=6, h=-1 **9.** Prove that if a row or a column of an $n \times n$ matrix A consists entirely of zeros, then det(A) = 0. to evaluate the determinant of amatrix, IAI = ain Ain + ain Ain + + ain Ain Where ain, an ... ain are the elements of the row that it zero. Then, any thing multiple by zero going be zero. STUDENTS-HUB.com Uploaded By: Rawan Fares

11. Let A and B be 2×2 matrices. (a) Does det(A + B) = det(A) + det(B)? (**b**) Does det(AB) = det(A) det(B)? (c) Does det(AB) = det(BA)? Justify your answers. a) No, by counter example 2- $\begin{array}{c|c} A = \left| 1 & 0 \right| , \quad B = \left| 1 & 1 \right| \\ 0 & 1 & 1 \end{array}$ dot(A) = 1 , det(B) = 1 (b)det(AB) = det(A) dit(B) Case 1 * = 1f B is singular, then def (B) =0 AB = 0, by taking det for both sides. ① det(AB) = 0
② det(A). det(B) so they are equal.
= det(A). 0 = 0 Case 2 \$ 8- if B is non Singular, then det (B) #0. and Since Bis nonsingular, then B is row equivilant to I. B = EK EK1 ... EZEI I = EK EK-1 ... EZEI det(AB) = det(AELELI...ELI) = det(AELELI...ELI) det(AELELI...ELE) det(I) = def ($A \in E_{E_1} \dots \in E_2$) def (E_1) = def ($A \in E_{E_1} \dots \in E_3$) def (E_2) def (E_3) = det(A)det (EL) det (EL-1) det (EL) $= def(A). def(E_{E_{E_{I-1}}} E_{E_{I}})$ = def(A). def(B)STUDENTS-HUB.com Uploaded By: Rawan Fares

det (AB) = det (A). det (B), det (A) = K, det (B) = d ____ they are (C)k. d d. k Jef(B). def(A) def (BA) Constant ch.2.3 2. Let $A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 \\ -2 & -2 & 3 & 3 \\ 1 & 2 & 2 & 2 \end{bmatrix}$ (a) Use the elimination method to evaluate det(*A*). (**b**) Use the value of det(*A*) to evaluate $\begin{vmatrix} 0 & 1 & 2 & 3 \\ -2 & -2 & 3 & 3 \\ 1 & 2 & -2 & -3 \\ 1 & 1 & 1 & 1 \end{vmatrix} + \begin{vmatrix} 0 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 \\ -1 & -1 & 4 & 4 \\ 2 & 3 & -1 & -2 \end{vmatrix} -$ (2)A = <u>-2 -</u>3 -2 -3 1 1 1 3 1 6 ч 3 З -1 -2 -RI+R2 ٥ 2 -2 З 3 -3 З -2 2R1+R3 -3 З 1 2 -2 -3 0 -1 3 4 0 0 5 5 0 0 5 7 2R2+R2 -2 -3 ર = (1)(-1)(5)(2)3 ч R2 +Ry -Rz+Ry 5 5 0 0 າ 3. For each of the following, compute the determinant and state whether the matrix is singular or nonsingular: (e) $\begin{pmatrix} 2 & -1 & 3 \\ -1 & 2 & -2 \\ 1 & 4 & 0 \end{pmatrix}$ (e) $\begin{pmatrix} 0 & 1 & R_1 + R_2 & -1 & 3 \\ -1^2 & R_1 + R_3 & 0 & 3 & -1 \\ 2 & 0 & 9 & -3 \\ 2 & 0 & 9 & -3 \\ 2 & 2 & 2 \end{pmatrix}$ ຊ 0 (f) $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & -1 & 3 & 2 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 7 & 3 \end{pmatrix}$ $\begin{pmatrix} Y & 0 & 0 \\ y & 2 \\ y & 0 \\ y &$ -2R1+R2 J) $= \frac{1}{3}R_2 + R_3$ 0 -3 в 2 ſ 3 7 0 0 ploaded By: Rawan Fares STUDENTS-HUB.com

-3 RatRy <u>\</u>1 def(A)=0 so its singular 10 o -3 7-1-33 4. Find all possible choices of *c* that would make the following matrix singular: $\left(\begin{array}{rrrrr}
1 & 1 & 1 \\
1 & 9 & c \\
1 & c & 3
\end{array}\right)$ -RI+R2 -R1+R3 $= \frac{16 - (-1+c)^{2}}{-16 - (1 - 2c + c^{2})}$ $= -c^{2} + 2c + 15$ 0 = 2 - 2 - 15 $\frac{(C+3)(C-5)}{C=5} = 0$ 5. Let A be an $n \times n$ matrix and α a scalar. Show that $\det(\alpha A) = \alpha^n \det(A)$ XI is a matrix wich all the diagonal equals X. So $= \alpha \cdot \alpha \cdot \alpha \cdots \alpha_{n} = \alpha$ lat) $\propto IA = (\propto I)(A)$ $\frac{def(\alpha A) = def(\alpha I B)}{= def(\alpha I) \cdot def(A)}$ $= \alpha^{n} \cdot def(A)$ 6. Let A be a nonsingular matrix. Show that $\det(A^{-1}) = \frac{1}{\det(A)}$ A.A' = Idel (I) (A⁻) = 1, del (A) to, Since it's non Singular Uploaded By: Rawan Fares det (A.A. STUDENTS-HUB.com def (A-') de (A)

7. Let A and B be 3×3 matrices with det(A) = 4 and det(B) = 5. Find the value of (a) det(AB)(**b**) det(3A)(**d**) det($A^{-1}B$) (c) det(2AB)(C)= 2 × del (A) × del (B) $(\alpha) = del(A) del(B)$ 4×5 = 20 = 160 (b) = 3 x def(A) = 27x 4 $(d) = det(A^{-1}) det(B)$ $= _ _ det(B)$ det(A) $= _ _ \times 5 = \frac{5}{4}$ 8. Show that if E is an elementary matrix, then E^T is an elementary matrix of the same type as E. if E is from type I or II then it's Symmetric So $E^{T} = E$ of the same type. and if E is an elemantary matrix from IIE, the formal form of the identity matrix by adding a row to a row times by number then E^{T} will be an elementary matrix of type III from the identity. 9. Let E_1, E_2 , and E_3 be 3×3 elementary matrices of types I, II, and III, respectively, and let A be a 3×3 matrix with det(A) = 6. Assume, additionally, that E_2 was formed from I by multiplying its second row by 3. Find the values of each of the following: (a) $det(E_1A)$ (**b**) det(E_2A) (c) $det(E_3A)$ (d) $det(AE_1)$ (e) $det(E_1^2)$ (f) $det(E_1E_2E_3)$ a) _def(Ei) def(A) (b) ~def(Ez).def(A) = 3.6 = 18 (c) = det(E3) det(A) (d) = det(A). det (E1) = 1.6=6 = 6 - 1 = -6 $\begin{array}{l} (e) &= def(E_1) \cdot def(E_1) & (f) = def(E_1) \cdot def(E_2) \cdot def(E_3) \\ &= (-1) \cdot (-1) = 1 & = -1 \cdot 3 \cdot 1 = -3 \end{array}$ STUDENTS-HUB.com Uploaded By: Rawan Fares

14. Let A and B be $n \times n$ matrices. Prove that the product AB is nonsingular if and only if A and B are both nonsingular. if def(AB) = 0, then $def(A) \cdot def(B) = 0$ either def(A) = 0, or def (B) = 0 or def(A) and def(B) are both QWhich is Contradiction. A or Borboth are Singular. 16. A matrix A is said to be skew symmetric if $A^T = -A$. For example, $A = \left(\begin{array}{cc} 0 & 1\\ -1 & 0 \end{array}\right)$ is skew symmetric, since $A^{T} = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right] = -A$ If A is an $n \times n$ skew-symmetric matrix and n is odd, show that A must be singular. $A^{T} = -A$ $def(A^{T}) = def(-A)$ $def(A^{T}) = (-)^{n} def(A) , \text{ since } n \text{ is odd } and \quad def(A^{T}) = def(A).$ def(A) = - def (A) 2 def(A) = 0def(A) = 0 \rightarrow So A is singular. **1.** For each of the following, compute (i) det(A), (ii) adj A, and (iii) A^{-1} : (C) |A| = a 13 A13 + a 23 A23 + a 23 A33 (a) $A = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}$ (b) $A = \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}$ - 6 + (-)8+ 5 (c) $A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 1 & 1 \\ -2 & 2 & -1 \end{bmatrix} \begin{bmatrix} 13 \\ 23 \\ 33 \end{bmatrix}$ Adj (A) = $(\mathbf{d}) \ A = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right]$ (b) + 1A1 = 12-2=10 + adjA=[4 -2] $\varphi A^{-1} = 1 \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right] \left[\begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right]$ STUDENTS-HUB.com Uploaded By: Rawan Fares

2. Up Camer's rule to solve each of the following
systems:
(i)
$$x_1 + 5x_2 = 3$$
 (ii) $x_1 + 5x_2 = 3$
(i) $x_1 + 5x_2 = 3$ (iii) $x_1 + 5x_2 = 3$
(i) $x_1 + 5x_2 = 3$ (ii) $x_1 + 5x_2 = 3$
(i) $x_1 + 5x_1 + 5x_2 = 3$
(i) $x_1 + 5x_1 + 5x_2 = 3$
(ii) $x_1 + 5x_1 + 5x_2 = 3$
(iii) $x_1 + 5x_1 + 5x_2 = 3$
(iv) $x_2 - x_1 - 5x_2 = 3$
(iv) $x_1 - 5x_2 = 3$
(iv) $x_1 - 5x_2 = 3$
(iv) $x_1 - 5x_2 = 3$

6. If A is singular, what can you say about the product A adjA?

if A is non singular, A. adj(A) = det(A). Z and then A. adj(A) = I det(A) if A is Singular Then $h \cdot \frac{adj(A)}{def(A)} \neq I$, Since Jd(A) = 050 adj (A) = 0 8. Let A be a nonsingular $n \times n$ matrix with n > 1. Show that $\det(\operatorname{adj} A) = (\det(A))^{n-1}$ Since A. Adj(A) = def(A). I $\frac{\det(A. Adj^{r}(A)) = \det(\det(A) I)}{\det(A). \det(adj(A) = \det(A)^{n}. \det(I)}$ $\frac{\det(A)(A)(A) = \det(A)^{n}. I}{\det(A)(A)} = \det(A)^{n-1}$ **10.** Show that if A is nonsingular, then adj A is nonsingular and $(adj A)^{-1} = det(A^{-1})A = adj A^{-1}$ **11.** Show that if *A* is singular, then adj *A* is also singular. **12.** Show that if det(A) = 1, then $\operatorname{adj}(\operatorname{adj} A) = A$ $A \cdot adj(A) = def(A) \cdot I$ nce, $A^{-1} = \underline{adj(A)}, \quad def(A^{-1}) = \underline{1}$ $def(A) \quad def(A)$ Since. A = adj(A). def(A``) (adj(A) = [A] . A-1]-1 $a d \overline{b}(A) = A |A|^{2}$ $a d \overline{b}(A) = A$ $A |A|^{2}$ I = adj(A). def(I')A. adj(A) adj(A) (add:(A)) = def(A-1) A ad;(A) = 1A].A-1 $adi(A^{-1}) = |A^{-1}|$ Uploaded By: Rawan Fares STUDENTS-HUB.com

11 adj(A) = \A|.A⁻¹, if A is singular, then \Al=0 adj(A) = 0 def(adj(A)) = def(0) det (adj(A)) = 0 _> so adj(A) is also singular, since the determinate equals zors. B Uploaded By: Rawan Fares STUDENTS-HUB.com