Digital Systems and Binary Numbers

What you will I Learn in this Course?

- ❖ Towards the end of this course, you should be able to:
	- \Diamond Carry out arithmetic computation in various number systems
	- \Diamond Apply rules of Boolean algebra to simplify Boolean expressions
	- \Diamond Translate truth tables into equivalent Boolean expressions and logic gate implementations and vice versa
	- \Diamond Design efficient combinational and sequential logic circuit implementations from functional description of digital systems
	- \Diamond Use software tools to simulate and verify the operation of logic circuits

1.1 Digital Systems

❖ Digital Computer

❖ Handheld Calculator

❖ Digital Watch

Is it Worth the Effort?

- ❖ Absolutely!
- ❖ Digital circuits are employed in the design of:
	- \Diamond Digital computers
	- Data communication
	- \Diamond Digital phones
	- \Diamond Digital cameras
	- \Diamond Digital TVs, etc.
- ❖ This course provides the fundamental concepts and the basic tools for the design of digital circuits and systems

How do Computers Represent Digits?

- ❖ Binary digits (0 and 1) are the simplest to represent
- ❖ Using electric voltage
	- \Leftrightarrow Used in processors and digital circuits
	- \div High voltage = 1, Low voltage = 0
- ❖ Using electric charge
	- \Leftrightarrow Used in memory cells
	- \Diamond Charged memory cell = 1, discharged memory cell = 0
- ❖ Using magnetic field
	- \Diamond Used in magnetic disks, magnetic polarity indicates 1 or 0
- ❖ Using light
	- \Diamond Used in optical disks, optical lens can sense the light or not

Binary Numbers

- ❖ Each binary digit (called a bit) is either 1 or 0
- **❖ Bits have no inherent meaning, they can represent ...**
	- \Diamond Unsigned and signed integers
	- \Leftrightarrow Fractions
	- \Diamond Characters \Diamond Images, sound, etc. Significant Bit
- **1 0 0 1 1 1 0 1 2 ⁷ 2 ⁶ 2 ⁵ 2 ⁴ 2 ³ 2 ² 2 ¹ 2 0 7 6 5 4 3 2 1 0** Most Least Significant Bit
- ❖ Bit Numbering
	- Least significant bit (LSB) is rightmost (bit 0)
	- \Diamond Most significant bit (MSB) is leftmost (bit 7 in an 8-bit number)

Decimal Value of Binary Numbers

- ❖ Each bit represents a power of 2
- ❖ Every binary number is a sum of powers of 2
- ❖ Decimal Value = $(d_{n-1} \times 2^{n-1}) + ... + (d_1 \times 2^1) + (d_0 \times 2^0)$
- ❖ Binary $(10011101)_2 = 2^7 + 2^4 + 2^3 + 2^2 + 1 = 157$

Some common powers of 2

Positional Number Systems

Different Representations of Natural Numbers

XXVII Roman numerals (not positional) 27 Radix-10 or decimal number (positional) 11011, Radix-2 or binary number (also positional)

Fixed-radix positional representation with *n* **digits**

Number *N* in radix
$$
r = (d_{n-1}d_{n-2} \dots d_1d_0)_r
$$

\n N_r Value = $d_{n-1} \times r^{n-1} + d_{n-2} \times r^{n-2} + \dots + d_1 \times r + d_0$
\nExamples: $(11011)_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2 + 1 = 27$
\n $(2107)_8 = 2 \times 8^3 + 1 \times 8^2 + 0 \times 8 + 7 = 1095$

Convert Decimal to Binary

- ❖ Repeatedly divide the decimal integer by 2
- ❖ Each remainder is a binary digit in the translated value
- ❖ Example: Convert 37₁₀ to Binary

Decimal to Binary Conversion

$$
∴ N = (d_{n-1} × 2^{n-1}) + ... + (d_1 × 2^1) + (d_0 × 2^0)
$$

❖ Dividing *N* by 2 we first obtain

- \diamond Quotient₁ = $(d_{n-1} \times 2^{n-2}) + ... + (d_2 \times 2) + d_1$
- \Leftrightarrow Remainder₁ = d_0
- \Leftrightarrow Therefore, first remainder is least significant bit of binary number
- ❖ Dividing first quotient by 2 we first obtain
	- \diamond Quotient₂ = $(d_{n-1} \times 2^{n-3}) + ... + (d_3 \times 2) + d_2$
	- \Leftrightarrow Remainder₂ = d_1
- ❖ Repeat dividing quotient by 2
	- \Diamond Stop when new quotient is equal to zero
	- \Leftrightarrow Remainders are the bits from least to most significant bit

Popular Number Systems

- ❖ Binary Number System: Radix = 2
	- \Diamond Only two digit values: 0 and 1
	- \Diamond Numbers are represented as 0s and 1s
- ❖ Octal Number System: Radix = 8
	- \Leftrightarrow Eight digit values: 0, 1, 2, ..., 7
- ❖ Decimal Number System: Radix = 10
	- \div Ten digit values: 0, 1, 2, ..., 9
- ❖ Hexadecimal Number Systems: Radix = 16
	- \diamond Sixteen digit values: 0, 1, 2, ..., 9, A, B, ..., F
	- \triangle A = 10, B = 11, ..., F = 15
- ❖ Octal and Hexadecimal numbers can be converted easily to Binary and vice versa

Octal and Hexadecimal Numbers

- ❖ Octal = Radix 8
- ❖ Only eight digits: 0 to 7
- ❖ Digits 8 and 9 not used
- ❖ Hexadecimal = Radix 16
- ❖ 16 digits: 0 to 9, A to F
- ❖ A=10, B=11, …, F=15
- ❖ First 16 decimal values (0 to15) and their values in binary, octal and hex. Memorize table

Binary, Octal, and Hexadecimal

❖ Binary, Octal, and Hexadecimal are related:

Radix $16 = 2^4$ and Radix $8 = 2^3$

- ❖ Hexadecimal digit = 4 bits and Octal digit = 3 bits
- ❖ Starting from least-significant bit, group each 4 bits into a hex digit or each 3 bits into an octal digit
- ❖ Example: Convert 32-bit number into octal and hex

Converting Octal & Hex to Decimal

❖ Octal to Decimal: $N_8 = (d_{n-1} \times 8^{n-1}) + ... + (d_1 \times 8) + d_0$

❖ Hex to Decimal: $N_{16} = (d_{n-1} \times 16^{n-1}) + ... + (d_1 \times 16) + d_0$

❖ Examples:

$$
(7204)8 = (7 \times 83) + (2 \times 82) + (0 \times 8) + 4 = 3716
$$

$$
(3BA4)16 = (3 \times 163) + (11 \times 162) + (10 \times 16) + 4 = 15268
$$

Converting Decimal to Hexadecimal

- ❖ Repeatedly divide the decimal integer by 16
- ❖ Each remainder is a hex digit in the translated value
- ❖ Example: convert 422 to hexadecimal

❖ To convert decimal to octal divide by 8 instead of 16

Important Properties

- ❖ How many possible digits can we have in Radix *r* ? *r* digits: 0 to *r* – 1
- ❖ What is the result of adding 1 to the largest digit in Radix *r*? Since digit *r* is not represented, result is (10) _r in Radix *r* Examples: $1₂ + 1 = (10)₂$ $7₈ + 1 = (10)₈$

$$
9_{10} + 1 = (10)_{10} \qquad F_{16} + 1 = (10)_{16}
$$

❖ What is the largest value using 3 digits in Radix *r*? In binary: $(111)_2 = 2^3 - 1$ In octal: $(777)_{8} = 8^{3} - 1$ In decimal: $(999)_{10} = 10^3 - 1$ In Radix *r*: largest value = r^3 – 1

Important Properties – cont'd

- ❖ How many possible values can be represented …
	- Using *n* binary digits? Using *n* octal digits Using *n* decimal digits? Using *n* hexadecimal digits Using *n* digits in Radix *r* ?

2 *ⁿ* values: 0 to 2*ⁿ* – 1

8 *ⁿ* values: 0 to 8*ⁿ* – 1

10*ⁿ* values: 0 to 10*ⁿ* – 1

16*ⁿ* values: 0 to 16*ⁿ* – 1

 r^n values: 0 to $r^n - 1$

Representing Fractions

❖ A number *N^r* in *radix r* can also have a fraction part:

$$
N_r = d_{n-1}d_{n-2} \dots d_1d_0 \cdot d_{-1}d_{-2} \dots d_{-m+1}d_{-m}
$$
 0 \n
$$
0 \leq d_i < r
$$
\nInteger Part

\nTradix Point

\n1

❖ The number N_r represents the value:

$$
N_r = d_{n-1} \times r^{n-1} + ... + d_1 \times r + d_0 + \qquad \text{(Integer Part)}
$$
\n
$$
d_{-1} \times r^{-1} + d_{-2} \times r^{-2} ... + d_{-m} \times r^{-m} \qquad \text{(Fraction Part)}
$$
\n
$$
N_r = \sum_{i=0}^{r} d_i \times r^i + \sum_{j=-m}^{r} d_j \times r^j
$$

Examples of Numbers with Fractions

- \div (2409.87)₁₀ $= 2 \times 10^3 + 4 \times 10^2 + 9 + 8 \times 10^{-1} + 7 \times 10^{-2}$
- \div (1101.1001)₂ $= 2^{3} + 2^{2} + 2^{0} + 2^{1} + 2^{4} = 13.5625$
- \div (703.64)₈ $= 7 \times 8^2 + 3 + 6 \times 8^{-1} + 4 \times 8^{-2} = 451.8125$
- \triangleq (A1F.8)₁₆ $= 10 \times 16^2 + 16 + 15 + 8 \times 16^{-1} = 2591.5$
- \div (423.1)₅ $= 4 \times 5^2 + 2 \times 5 + 3 + 5^{-1} = 113.2$
- \cdot (263.5)₆ Digit 6 is NOT allowed in radix 6

Converting Decimal Fraction to Binary

- ❖ Convert *N* = 0.6875 to Radix 2
- ❖ Solution: Multiply *N* by 2 repeatedly & collect integer bits

- \triangle Stop when new fraction = 0.0, or when enough fraction bits are obtained
- \cdot Therefore, *N* = 0.6875 = (0.1011)₂
- \div Check (0.1011)₂ = 2⁻¹ + 2⁻³ + 2⁻⁴ = 0.6875

Converting Fraction to any Radix *r*

❖ To convert fraction *N* to any radix *r*

 $N_r = (0.d_{-1} d_{-2} ... d_{-m})_r = d_{-1} \times r^{-1} + d_{-2} \times r^{-2} ... + d_{-m} \times r^{-m}$

❖ Multiply *N* by *r* to obtain *d*-1

$$
N_r \times r = d_{-1} + d_{-2} \times r^{-1} \dots + d_{-m} \times r^{-m+1}
$$

- **❖** The integer part is the digit d_{-1} in radix *r*
- ❖ The new fraction is $d_2 \times r^{-1}$... + $d_m \times r^{-m+1}$
- ❖ Repeat multiplying the new fractions by *r* to obtain d_{2} d_{3} ...
- ❖ Stop when new fraction becomes 0.0 or enough fraction digits are obtained

More Conversion Examples

- ❖ Convert *N* = 139.6875 to Octal (Radix 8)
- ❖ Solution: *N* = 139 + 0.6875 (split integer from fraction)
- ❖ The integer and fraction parts are converted separately

- \div Therefore, 139 = (213)₈ and 0.6875 = (0.54)₈
- ❖ Now, join the integer and fraction parts with radix point

$$
N = 139.6875 = (213.54)_{8}
$$

Conversion Procedure to Radix *r*

- ❖ To convert decimal number *N* (with fraction) to radix *r*
- ❖ Convert the Integer Part
	- Repeatedly divide the integer part of number *N* by the radix *r* and save the remainders. The integer digits in radix *r* are the remainders in reverse order of their computation. If radix *r* > 10, then convert all remainders > 10 to digits A, B, … etc.
- ❖ Convert the Fractional Part
	- Repeatedly multiply the fraction of *N* by the radix *r* and save the integer digits that result. The fraction digits in radix *r* are the integer digits in order of their computation. If the radix *r* > 10, then convert all digits > 10 to A, B, ... etc.
- ❖ Join the result together with the radix point

Simplified Conversions

- ❖ Converting fractions between Binary, Octal, and Hexadecimal can be simplified
- ❖ Starting at the radix pointing, the integer part is converted from right to left and the fractional part is converted from left to right
- ❖ Group 4 bits into a hex digit or 3 bits into an octal digit

❖ Use binary to convert between octal and hexadecimal

Important Properties of Fractions

- ❖ How many fractional values exist with *m* fraction bits? 2 *^m* fractions, because each fraction bit can be 0 or 1
- ❖ What is the largest fraction value if *m* bits are used? Largest fraction value = 2^{-1} + 2^{-2} + ... + 2^{-m} = 1 – 2^{-m} Because if you add 2-*^m* to largest fraction you obtain 1
- ❖ In general, what is the largest fraction value if *m* fraction digits are used in radix *r*?

Largest fraction value = $r^{-1} + r^{-2} + ... + r^{-m} = 1 - r^{-m}$

For decimal, largest fraction value = 1 – 10-*^m*

For hexadecimal, largest fraction value = 1 – 16-*^m*

Complements of Numbers

- ❖ Complements are used for simplifying the subtraction operation and for easy manipulation of certain logical rules and events
- ❖ Two types of complements for each *base-r* system:
	- radix complements (*r's* complements)
	- diminished radix complements ((*r -1*)'s complements)
- ❖ Diminished radix complement
	- Given a number *N* in base *r* having *n* digits, the *(r-1)*'s complement of *N* is defined as *(r ⁿ – 1) – N*

Diminished Radix Complements

- \div For decimal number, r= 10, r-1=9, n=6
	- \bullet 9's complement of 546700 = 999999 546700 = 453299
	- \bullet 9's complement of 012398 = 999999 012398 = 987601
- \div For binary number, $r = 2$, r-1 = 1, n=7
	- \blacksquare 1's complement of 1011000 = 1111111 1011000 = 0100111
	- \blacksquare 1's complement of 0101101 = 1111111 0101101 = 1010010

Radix Complements

- ❖ The r's complement of an n-digit number N is defined as
	- $(r^n N,$ for $N \neq 0$ and 0 for $N = 0$)
- ❖ Examples:
	- 1) 10's complement of 546700 = 1000000 546700 = 453300
	- 2) 10's complement of 012398 = 1000000 012398 = 987602
	- 3) 2's complement of 1011000 = 10000000 1011000 = 0101000
	- 4) 2's complement of 0101101 = 10000000 0101101 = 1010011
- \div The 2's complement can be derived by 1's complement + 1
- ❖ The complement of the complement restores the number to its original value
- ❖ If there is a radix point, the radix point is temporarily removed during the process, and restored in the same position afterwards

Subtraction using 10's complement

❖ For subtracting two numbers using 10's complement, we first have to find the 10's complement of the subtrahend, and then we will add this complement value with the minuend. There are two possible cases when we subtract the numbers using 10's complement.

❖ **Case 1: When the subtrahend is smaller than the minuend.**

 \Diamond For subtracting the smaller number from the larger number using 10's complement, we will find the 10's complement of the subtrahend and then we will add this complement value with the minuend. By adding both these values, the result will come in the formation of carry. We ignore this carry and the remaining digits will be the answer.

❖ **Case 2: When the subtrahend is greater than the minuend.**

 \Diamond In this case, when we add the complement value and the minuend, the result will not come in the formation of carry. This indicates that the number is negative and for finding the final result, we need to find the 10's complement of the result obtained by adding complement value of subtrahend and minuend.

Examples

❖ **E.g.** using 10's comp do 72532 – 3250 72532

- $+$ 96750 \rightarrow 10's comp of 3250
	- 1 69282

Answer $= 69282$

- ❖ **E.g.** Using 10's comp do 3250 72532 03250
	- $+$ 27468 \rightarrow 10's comp of 72532 $30718 \rightarrow$ no end carry Answer $= -(10)$'s comp of 30718) $= -69282$

Subtraction using 9's complement

❖ For subtracting two numbers using 9's complement, we first have to find the 9's complement of the subtrahend and then we will add this complement value with the minuend. There are two possible cases when we subtract the numbers using 9's complement.

❖ **Case 1: When the subtrahend is smaller than the minuend.**

 \Diamond For subtracting the smaller number from the larger number using 9's complement, we will find the 9's complement of the subtrahend, and then we will add this complement value with the minuend. By adding both these values, the result will come in the formation of carry. At last, we will add this carry to the result obtained previously.

❖ **Case 2: When the subtrahend is greater than the minuend.**

 \Diamond In this case, when we add the complement value and the minuend, the result will not come in the formation of carry. This indicates that the number is negative, and for finding the final result, we need to find the 9's complement of the result.

Examples

❖ Example using 9's complement:

 \blacksquare do 72532 – 3250

72532

+ $\frac{96749}{ }$ \rightarrow 9's comp of 3250

1 69281

 $+$ $1\rightarrow$ end around carry

69282

 \blacksquare do 3250 – 72532

03250

 $+$ 27467 \rightarrow 9's comp of 72532 $30717 \rightarrow - (9's comp of 30717) = -69282$

2's Complement Subtraction

1's complement subtraction

(i) 110101 – 100101 Solution:

1's complement of 10011 is 011010. Hence

(ii) 101011 – 111001 Solution:

1's complement of 111001 is 000110. Hence Minued - 1 0 1 0 1 1 1's complement - 000110 1 1 0 0 0 1 **Hence the difference is – 1 1 1 0**

Signed Numbers

❖ Several ways to represent a signed number

- \Leftrightarrow Sign-Magnitude
- \div 1's complement
- \div 2's complement
- ❖ Divide the range of values into 2 equal parts
	- \Diamond First part corresponds to the positive numbers (≥ 0)
	- \Diamond Second part correspond to the negative numbers (< 0)
- ❖ The 2's complement representation is widely used
	- \Diamond Has many advantages over other representations

Sign-Magnitude Representation

- ❖ Independent representation of the sign and magnitude
- ❖ Leftmost bit is the sign bit: 0 is positive and 1 is negative
- ❖ Using *n* bits, largest represented magnitude = 2*ⁿ*-1 1

Sign-magnitude representation of +45 using 8-bit register

0 0 1 0 1 1 0 1 **1** 0 1 0 1 1 0 1

Sign-magnitude representation of -45 using 8-bit register

Properties of Sign-Magnitude

- ❖ Two representations for zero: +0 and -0
- ❖ Symmetric range of represented values:

For n-bit register, range is from $-(2^{n-1} - 1)$ to $+(2^{n-1} - 1)$ For example using 8-bit register, range is -127 to +127

- ❖ Hard to implement addition and subtraction
	- \Diamond Sign and magnitude parts have to processed independently
	- \Diamond Sign bit should be examined to determine addition or subtraction Addition is converted into subtraction when adding numbers of different signs
	- \Diamond Need a different circuit to perform addition and subtraction Increases the cost of the logic circuit

2's Complement Representation

- ❖ Almost all computers today use 2's complement to represent signed integers
- ❖ A simple definition for 2's complement:

Given a binary number *N*

The 2's complement of *N* = 1's complement of *N* + 1

 \div Example: 2's complement of (01101001)₂ =

 $(10010110)_{2} + 1 = (10010111)_{2}$

❖ If *N* consists of *n* bits then

2's complement of $N = 2ⁿ - N$

Computing the 2's Complement

2's complement of 11011100 $_{\rm 2}$ (-36) = 00100011 $_{\rm 2}$ + 1 = 00100100 $_{\rm 2}$ = +36

The 2's complement of the 2's complement of *N* is equal to *N*

Unsigned and Signed Value

 $= -128 + 32 + 16 + 4 = -76$

Properties of the 2's Complement

- ❖ The 2's complement of *N* is the negative of *N*
- ❖ The sum of *N* and 2's complement of *N* must be zero The final carry is ignored
- **❖ Consider the 8-bit number** $N = 00101100$ ₂ = $+44$

 $-44 = 2$'s complement of $N = 11010100$ ₂ 00101100₂ + 11010100₂ = **1** 00000000₂ (8-bit sum is 0) **Ignore final carry**

- ❖ In general: Sum of *N* + 2's complement of *N* = 2*ⁿ* where 2*ⁿ* is the final carry (1 followed by *n* 0's)
- \triangle There is only one zero: 2's complement of 0 = 0

Ranges of Unsigned/Signed Integers

- ❖ For *n*-bit unsigned integers: Range is 0 to (2*ⁿ* 1)
- **❖** For *n*-bit signed integers: Range is -2^{*n*-1} to (2^{*n*-1} 1)
- ❖ Positive range: 0 to (2*ⁿ*–1 1)
- ❖ Negative range: -2ⁿ⁻¹ to -1

Two's Complement Special Cases

❖ **Case 1**

- \bullet 0 = 000000000
- ❖ Bitwise not 11111111
- \div Add 1 to LSB $+1$
- ❖ Result 1 00000000
- ❖ Overflow is ignored, so:
- $\mathbf{\hat{P}} = 0 = 0 \sqrt{2}$
- \div -128 = 10000000
	- \div bitwise not 011111111
	- \div Add 1 to LSB $+1$
	- **❖ Result 10000000**
	- ❖ Monitor MSB (sign bit)
	- ❖ It should change during negation

Table 1-3: Signed Binary Numbers

Table 1.3 **Signed Binary Numbers**

Arithmetic Addition

- The addition of two signed binary numbers with negative numbers represented in signed-2's-complement form is obtain from the addition of the two numbers, including their sign bits. A carry out of the sign-bit position is discarded
- In order to obtain a correct answer, we must ensure that the result has a sufficient number of bits to accommodate the sum
- If we start with two n-bit numbers and the sum occupies $n + 1$ bits, we say that an overflow occurs

Binary Addition

- ❖ Start with the least significant bit (rightmost bit)
- ❖ Add each pair of bits
- ❖ Include the carry in the addition, if present

Binary Subtraction

❖ When subtracting A – B, convert B to its 2's complement \triangleleft Add A to (-B)

❖ Final carry is ignored, because

- \Diamond Negative number is sign-extended with 1's
- \Diamond You can imagine infinite 1's to the left of a negative number
- \Diamond Adding the carry to the extended 1's produces extended zeros

Carry and Overflow

- ❖ Carry is important when …
	- \Leftrightarrow Adding or subtracting unsigned integers
	- \Diamond Indicates that the unsigned sum is out of range
	- Either < 0 or >maximum unsigned *n*-bit value
- ❖ Overflow is important when …
	- \Leftrightarrow Adding or subtracting signed integers
	- \Diamond Indicates that the signed sum is out of range
- **❖ Overflow occurs when**
	- \Diamond Adding two positive numbers and the sum is negative
	- \Leftrightarrow Adding two negative numbers and the sum is positive
	- \Diamond Can happen because of the fixed number of sum bits

Carry and Overflow Examples

- ❖ We can have carry without overflow and vice-versa
- ❖ Four cases are possible (Examples are 8-bit numbers)

Addition of Numbers in Twos Complement Representation

Subtraction of Numbers in Twos Complement Representation (M – S)

Binary Codes

- ❖ How to represent characters, colors, etc?
- ❖ Define the set of all represented elements
- ❖ Assign a unique binary code to each element of the set
- ❖ Given *n* bits, a binary code is a mapping from the set of elements to a subset of the 2*ⁿ* binary numbers
- ❖ Coding Numeric Data (example: coding decimal digits)
	- \Diamond Coding must simplify common arithmetic operations
	- \Diamond Tight relation to binary numbers
- ❖ Coding Non-Numeric Data (example: coding colors)
	- \Diamond More flexible codes since arithmetic operations are not applied

Example of Coding Non-Numeric Data

- ❖ Suppose we want to code 7 colors of the rainbow
- ❖ As a minimum, we need 3 bits to define 7 unique values
- ❖ 3 bits define 8 possible combinations
- ❖ Only 7 combinations are needed
- ❖ Code 111 is not used
- ❖ Other assignments are also possible

Minimum Number of Bits Required

❖ Given a set of *M* elements to be represented by a binary code, the minimum number of bits, *n*, should satisfy:

 $2^{(n-1)} < M \leq 2^n$

 $n = \lceil \log_2 M \rceil$ where $\lceil x \rceil$, called the ceiling function, is the integer greater than or equal to *x*

❖ How many bits are required to represent 10 decimal digits with a binary code?

 $\cdot \cdot$ **Answer:** $\lceil \log_2 10 \rceil$ = 4 bits can represent 10 decimal digits

Decimal Codes

- ❖ Binary number system is most natural for computers
- ❖ But people are used to the decimal number system
- ❖ Must convert decimal numbers to binary, do arithmetic on binary numbers, then convert back to decimal
- ❖ To simplify conversions, decimal codes can be used
- ❖ Define a binary code for each decimal digit
- ❖ Since 10 decimal digits exit, a 4-bit code is used
- ❖ But a 4-bit code gives 16 unique combinations
- ❖ 10 combinations are used and 6 will be unused

Binary Coded Decimal (BCD)

- ❖ Simplest binary code for decimal digits
- ❖ Only encodes ten digits from 0 to 9
- ❖ BCD is a weighted code
- ❖ The weights are 8,4,2,1
- ❖ Same weights as a binary number
- ❖ There are six invalid code words

1010, 1011, 1100, 1101, 1110, 1111

- ❖ Example on BCD coding:
	- $13 \Leftrightarrow (0001 0011)_{\text{BCD}}$

Warning: Conversion or Coding?

- ❖ Do NOT mix up conversion of a decimal number to a binary number with coding a decimal number with a binary code
- ❖ $13_{10} = (1101)_{2}$ This is conversion
- \div 13 \Leftrightarrow (0001 0011)_{BCD} This is coding
- ❖ In general, coding requires more bits than conversion
- ❖ A number with *n* decimal digits is coded with 4*n* bits in BCD

BCD Arithmetic

▪ Given a BCD code, we use binary arithmetic to add the digits:

- Note that the result is MORE THAN 9, so must be represented by two digits!
- To correct the digit, subtract 10 by adding 6 modulo 16.

BCD Addition Example

 \triangle Add 2905_{BCD} to 1897_{BCD} showing carries and digit corrections.

Gray Code

- ❖ The reflected binary code or Gray code is an ordering of the binary numeral system such that two successive values differ in only one bit (binary digit).
- ❖ Gray codes are very useful in the normal sequence of binary numbers generated by the hardware that may cause an error or ambiguity during the transition from one number to the next.

Conversion

❖ **From Binary to Gray:**

- \Diamond The most significant bit (MSB) of the Gray code is always equal to the MSB of the given Binary code.
- \Leftrightarrow Other bits of the output Gray code can be obtained by **XORing** binary code bit at the index and previous index.

❖ **From Gray to Binary:**

- \Diamond The Most Significant Bit (MSB) of the binary code is always equal to the MSB of the given binary number.
- \Diamond Other bits of the output binary code can be obtained by checking gray code bit at that index. If current gray code bit is 0, then copy previous binary code bit, else copy invert of previous binary code bit. STUDENTS-HUB.com Uploaded By: anonymous

Binary Code

Other Decimal Codes

- ❖ BCD, 5421, 2421, and 8 4 -2 -1 are weighted codes
- ❖ Excess-3 is not a weighted code
- ❖ 2421, 8 4 -2 -1, and Excess-3 are self complementary codes

Character Codes

❖ Character sets

- \Diamond Standard ASCII: 7-bit character codes (0 127)
- \div Extended ASCII: 8-bit character codes (0 255)
- \Diamond Unicode: 16-bit character codes (0 65,535)
- \Diamond Unicode standard represents a universal character set
	- Defines codes for characters used in all major languages
	- Each character is encoded as 16 bits
- \Diamond UTF-8: variable-length encoding used in HTML
	- Encodes all Unicode characters
	- Uses 1 byte for ASCII, but multiple bytes for other characters
- ❖ Null-terminated String
	- \Diamond Array of characters followed by a NULL character

Printable ASCII Codes

❖ Examples:

- \triangle ASCII code for space character = 20 (hex) = 32 (decimal)
- \triangle ASCII code for 'L' = 4C (hex) = 76 (decimal)
- \triangle ASCII code for 'a' = 61 (hex) = 97 (decimal)

Control Characters

- ❖ The first 32 characters of ASCII table are used for control
- ❖ Control character codes = 00 to 1F (hexadecimal)
	- \Leftrightarrow Not shown in previous slide
- ❖ Examples of Control Characters
	- \Diamond Character 0 is the NULL character \Rightarrow used to terminate a string
	- \Diamond Character 9 is the Horizontal Tab (HT) character
	- \Diamond Character 0A (hex) = 10 (decimal) is the Line Feed (LF)
	- \Diamond Character 0D (hex) = 13 (decimal) is the Carriage Return (CR)
	- \Diamond The LF and CR characters are used together
		- They advance the cursor to the beginning of next line
- ❖ One control character appears at end of ASCII table
	- \Leftrightarrow Character 7F (hex) is the Delete (DEL) character

Binary Logic

- ❖ Deals with binary variables that take one of two discrete values
- ❖ Values of variables are called by a variety of very different names
	- \Leftrightarrow high or low based on voltage representations in electronic circuits
	- \Diamond true or false based on their usage to represent logic states
	- \Diamond one (1) or zero (0) based on their values in Boolean algebra
	- \Diamond open or closed based on its operation in gate logic
	- \Diamond on or off based on its operation in switching logic
	- \Diamond asserted or de-asserted based on its effect in digital systems

Basic Operations - AND

Another Symbol is ".", e.g. \bullet

$$
Z = X \text{ AND } Y \text{ or } Z = X.Y \text{ or even}
$$
\n
$$
Z = XY
$$

- \bullet X and Y are inputs, Z is an output
- Z is equal to 1 if and only if $X = 1$ and $Y = 1$; $Z = 0$ otherwise (similar to the multiplication operation)
- Truth Table:
- **Graphical symbol:**

Basic Operations - OR

Another Symbol is $"+'$, e.g.

$$
Z = X \text{ OR } Y \text{ or } \\ Z = X + Y
$$

- \bullet X and Y are inputs, Z is an output
- Z is equal to 0 if and only if $X = 0$ and $Y = 0$; Z $= 1$ otherwise (similar to the addition operation)
- Truth Table:
- Graphical symbol:

Basic Operations - NOT

Another Symbol is " ", e.g.

$$
Z = \overline{X}
$$
 or $Z = X'$

- \bullet X is the input, Z is an output
- Z is equal to 0 if $X = 1$; $Z = 1$ otherwise
- Sometimes referred to as the complement or invert operation
- Truth Table:

Graphical symbol:

Two Input Gates – Timing Diagram

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Gates with multiple inputs

Copyright ©2013 Pearson Education, publishing as Prentice Hall