Started on	Monday, 29 January 2024, 5:00 PM
State	Finished
Completed on	Monday, 29 January 2024, 5:34 PM
Time taken	34 mins 31 secs

Correct

Marked out of 2.00

Given the initial value problem: $x^2y''+3xy'+y=0,\;x>0\quad y(1)=4,\;\;y'(1)=0.$ Then y(1)=

Select one:

- 0 8
- $-\frac{4}{e}$
- $\frac{1}{e}$
- 4
- $\frac{4}{\epsilon}$

The correct answer is: 4

Question 2

Correct

Marked out of 2.00

The **inverse Laplace transform** $\mathcal{L}^{-1}ig\{rac{s}{s^2-6s+10}ig\}$ equals

Select one:

$$e^{3t} (\cos t + 3\sin t) \checkmark$$

$$e^{-2t}(\cos 2t - \sin 2t)$$

$$e^{2t} (\cos 2t - \sin 2t)$$

$$e^{3t}(\cos t + \sin t)$$

$$e^{-2t}\cos 2t$$

The correct answer is: $e^{3t} ig(\cos t + 3\sin tig)$

Correct

Marked out of 2.00

The Laplace transform of the solution of the IVP:

$$f''(t) - f'(t) - f(t) = t, \ f(0) = f'(0) = 0$$
 satisfies:

Select one:

$$\circ$$
 $F(s)=rac{1}{s(s^2+s+1)}$

$$\bigcirc \ F(s) = rac{1}{s(s^2-s-1)}$$

$$\bigcirc \ F(s) = rac{1}{s(s^2+s-1)}$$

$$lacksquare F(s) = rac{1}{s^2(s^2-s-1)}$$
 🗸

$$\bigcirc \ F(s) = rac{1}{s(s^2-s+1)}$$

The correct answer is: $F(s)=rac{1}{s^2(s^2-s-1)}$

Correct

Marked out of 3.00

Use the table of Laplace transforms or the formula: $\mathcal{L}ig\{t^nf(t)ig\}=(-1)^nrac{d^n}{ds^n}ig(\mathcal{L}ig\{f(t)ig\}ig)$,

$$\mathcal{L}\left\{t^n f(t)\right\} = (-1)^n \frac{d^n}{ds^n} \left(\mathcal{L}\left\{f(t)\right\}\right)$$

to determine the following expressions.

 $\mathcal{L}\{t\sin 3t\}$

- $\begin{array}{c}
 \frac{2s}{(s^2+1)^2} \\
 \frac{4s}{(s^2+4)^2} \\
 \frac{s^2-4}{(s^2+4)^2} \\
 \frac{s^2-1}{(s^2+1)^2} \\
 \frac{6s}{(s^2+9)^2}
 \end{array}$

The correct answer is: $\frac{6s}{(s^2+9)^2}$

 $\mathcal{L}ig\{t^2\sin3tig\}$

- $(s^2+9)^3$ $2(3s^2-1)$
- $(s^2+1)^3$
- $\begin{array}{c}
 (s^{-+1}) \\
 4(3s^2-4) \\
 (s^2+4)^3 \\
 2s(s^2-3)
 \end{array}$
- $(s^2+1)^3$ $2s(s^2-12)$

The correct answer is: $\frac{18(s^2-3)}{(s^2+9)^3}$

Correct

Marked out of 3.00

Use the table of Laplace transforms or the formula:

$$\mathcal{L}^{-1}ig\{rac{d^n}{ds^n}ig(F(s)ig)ig\}=(-t)^n\mathcal{L}^{-1}ig\{F(s)ig\}$$
 ,

to determine the following expressions. $\mathcal{L}^{-1}\Big\{-\frac{8}{(s-5)(s+3)}\Big\}$

$$\mathcal{L}^{-1}\left\{-\frac{8}{(s-5)(s+3)}\right\}$$

- $^{\circ}$ 2 e^{-4t} sinh(t)
- \circ $-2 \sinh(2 t)$
- \circ -2 $e^t \sinh(4 t)$
- $-2 e^{4t} \sinh(t)$
- \circ 2 e^{-t} sinh(4 t)
- $-2 \sinh(t)$

The correct answer is: $-2 e^t \sinh(4 t)$

$$\mathcal{L}^{-1}\left\{\ln\left(\frac{s+3}{s-5}\right)\right\}$$
 $\underline{2e^t\sinh(4t)}$

- $\bigcirc \quad \underline{)}^{t} \sinh(t)$
- $-\frac{t}{2\mathrm{e}^{-t}\sinh(4\,t)}$
- \bigcirc 2 $\sinh(t)$
- \bigcirc 2e^{4t} $\sinh(t)$

The correct answer is: $\frac{2\mathrm{e}^t \sinh(4\,t)}{t}$