
I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 1

Chapter 6

Back Tracking Procedures

• Algorithms for finding solutions to specify problems, not by

following a fixed rule of computation, but by trial and error.

Example:

Knight’s tour

• The problem is to find if the knight can tour entire N*N board by

visiting every field in the board exactly once.

• Starting from one point.

• The problem can be reduced from converting N2 fields to the

problem of either performing the next move or finding out that

none is possible.

N

N
1

2

3

4

5

1 1

-1 -1

1

1

-1

-1

2
2

-2

-2

1

2 3

4

5

6 7

8

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 2

Algorithm tryNextMove

Begin

 Initialize selection of moves

 Repeat

 Select next candidate move

 If accepted then

 Record the move

 If board is not full then

 tryNextMove

 If not successful then

 Erase previous recording

 End if

 Else

 Successful = true;

 End if

 End if

 Until (Successful) OR noMoreMoves

End.

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 3

• Data representation and initial values

o board: matrix of integer

To keep track of history, of successive board occupations.

o const int index = 8;

o int MTX[index][index]

o MTX[i][j] = 0 , means field(I, j) is not visited

o MTX[i][j] = k , means field(I, j) is visited in the kth move

1 ≤ k ≤ N2

o The MTX initial value to zero

o Parameters of tryNextMove

▪ Current field [(x, y coordinates) 1 ≤ x, y ≤ N]

▪ Move number

▪ Boolean variable (successful or not)

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 4

Procedure tryNextMove(int i, int x, int y, boolean yes)

Begin

 int u, v;

 boolean ok;

 Initialize selection of moves

 Repeat

 ok = false;

 let u, v be the coordinates of the next move

defined by the chess values

 if (1 ≤ u ≤ n) AND (1 ≤ v ≤ n) AND MTX[u][v] = 0 then

 MTX[u][v] = i;

 if (i < N2) then

 tryNextMove(i+1, u, v, ok);

 if Not ok then

 MTX[u][v] = 0;

 end if

else

 ok = true;

 end if

 end if

 until (ok) OR (no_More_Moves)

 yes = ok;

end.

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 5

• Given a starting point x, y then there are 8 potential coordinates for

(u, v).

(x + 2, y + 1)

(x + 1, y + 2)

xIncrement yIncrement

Procedure tryNextMove (…)

Begin

 Int k;

 xIncrement[8] = { 2, 1, -1, -2, -2, -1, 1, 2 } ;

 yIncrement[8] = { 1, 2, 2, 1, -1, -2, -2, -1 } ;

 k = 0;

 Repeat

 k = k + 1;

 u = x + xIncrement[k];

 v = y + yIncrement[k];

 …

 Until (ok) OR (k == 8)

end.

2

1

-1

-2

-2

-1

1

2

1

2

2

1

-1

-2

-2

-1

1 1

-1 -1

1

1

-1

-1

2
2

-2

-2

1

2 3

4

5

6 7

8

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 6

Game trees and the minmax Algorithm

• In complicated games such as chess, the computer can analyze

only a few moves deep (usually fewer than 10), become the huge

number of possible moves make the number of variations

immonse.

• However, in the game of tic_tac_toe the computer can examine

every variation, all the way to the final position, because the number

of moves is always small (less than 9).

• The number of variation will be less than 9*8*7*6*5*4*3*2 =

362,880

• The computer chooses its move using a minmax algorithm. At

positions where the game is over (either a win, loss, or draw), the

final position is given a value by using what is called the static

evaluation function.

• Static evaluation function

Value Game result

1 Win

0 Draw

-1 Loss

1 2 3

4 5 6

7 8 9

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 7

• This is the basis of the minimax algorithm, which start at the bottom

of the tree, evaluating final positions with the static evaluation

function. Then, for each internal node, the rules of its child nodes

are either maximized or minimized (depending whose move it is at

this node), and the internal node is given this value.

X X

X

O O

O

X X

X

O O

O

X X

X

O O

O X X

X

O O

O X X

X

O O

O X X

X

O O

O X X

X

O O

O X X

X

O O

O

X X

X

O O

O X X

X

O O

O

X X

X

O O

O X X

X

O O

O X X

X

O O

O X X

X

O O

O

X

X X

O O

O

O

O

O

X X

X X X X

X

X

X

X

X

X

X

X O O O O

6
7

9

7 9 6 9 6 7

9 7 6 6
-1

Loss

-1
Loss

1
Win

0

Draw

0
Draw

1
Win

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 8

Algebraic Algorithm

F(x) = a4 x4
 + a3 x3 + a2 x2 + a1 x1 + a0

• Representation of data

A : array [1..n] of real  dense representation

F(x) = x1000 + 1  sparse representation

n, d, n-1, dn-1

Worst case double storage

Example:

 F(x) = x6 + 2x2 +4

• Dense representation

6, 1, 0, 0, 0, 2, 0, 4

n Coefficient

• Sparse representation

6, 1, 2, 2, 0, 4

Power Coefficient

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 9

• Algorithm for dense representation

term = 1;

sum = a[0];

for (i = 1; I <= n; i++)

 term = term * value;

 sum = sum + a[i] * term

end for

• Horner’s Methods

8x5 + 3x4 + 2x3 + 6x2 + 7x + 4

((((8x + 3) x + 2) x + 6) x +7) x + 4

 i = n-1;

 sum = an;

 while (i > 0)

 sum = sum * value + ai ;

 i--;

 end while

• Sparse representation

sum = 0;

for (i = 1; i < m; i++)

 sum = sum + ai * v e

end for

 represent power

Mul ➔ 2n

Add ➔ n

Assg ➔ 2n+2

Mul ➔ n

Add ➔ n

Assg ➔ n+2

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 10

 Improvement

value5 = value4 * value

Example:

8X12 + 4X7 + 6X3 + 5X0

 6 (X (3-0) * X0)

 4 (X(7-3) * X3)

8 (X(12-7) * X7)

8 (X(12-7) * X7) + 4 (X(7-3) * X3) + 6 (X (3-0) * X0) + 5X0

 sum = 0;

 e0 = 0 ;

 term = 1;

 for (i = 1; i <= m; i++)

 r = v (ei – ei-1);

 term = r * term;

 sum = sum + ai * term;

 end for

 Horner’s Methods

(((am xem-em-1) * xem-1 – em-2) …

(((8 X(12-7) + 4)* X(7-3) + 6) * X (3-0) + 5) X0

 sum = 0;

 for (i = m; i >= 1; i--)

 sum = (sum + ai) * value (ei – ei-1)

 end for

Uploaded By: anonymousSTUDENTS-HUB.com

