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Chapter 6 

Back Tracking Procedures 

 

• Algorithms for finding solutions to specify problems, not by 

following a fixed rule of computation, but by trial and error. 

 

Example: 

Knight’s tour 

• The problem is to find if the knight can tour entire N*N board by 

visiting every field in the board exactly once. 

• Starting from one point. 

• The problem can be reduced from converting N2 fields to the 

problem of either performing the next move or finding out that 

none is possible. 
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Algorithm tryNextMove 

Begin 

 Initialize selection of moves 

 Repeat 

  Select next candidate move 

  If accepted then 

   Record the move 

   If board is not full then 

    tryNextMove 

    If not successful then 

     Erase previous recording 

    End if 

   Else 

    Successful = true; 

   End if 

  End if 

 Until ( Successful ) OR noMoreMoves 

End. 

 

 

 

 

 

 

 

 

 

Uploaded By: anonymousSTUDENTS-HUB.com



I y a d  J a b e r  -  A l g o r i t h m  A n a l y s i s  P a g e  | 3 

 

 

• Data representation and initial values 

o board: matrix of integer 

To keep track of history, of successive board occupations. 

o const  int index = 8; 

o int MTX[ index ][ index ] 

o MTX[ i ][ j ] = 0 , means field(I, j) is not visited 

o MTX[ i ][ j ] = k , means field(I, j) is visited in the kth move 

1 ≤ k ≤ N2 

o The MTX initial value to zero 

o Parameters of tryNextMove 

▪ Current field [ ( x, y coordinates )   1 ≤ x, y ≤ N ] 

▪ Move number 

▪ Boolean variable   ( successful or not )  
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Procedure tryNextMove( int i, int x, int y, boolean yes ) 

Begin 

 int u, v; 

 boolean  ok; 

 Initialize selection of moves 

 Repeat 

  ok = false; 

  let u, v be the coordinates of the next move 

defined by the chess values 

  if (1 ≤ u ≤ n) AND (1 ≤ v ≤ n) AND MTX[u][v] = 0 then 

   MTX[ u ][ v ] = i; 

   if ( i < N2 ) then 

    tryNextMove( i+1, u, v, ok ); 

    if Not ok then 

     MTX[ u ][ v ] = 0; 

    end if 

else 

    ok = true; 

   end if 

  end if 

 until ( ok ) OR ( no_More_Moves ) 

 yes = ok; 

end. 
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• Given a starting point x, y then there are 8 potential coordinates for 

(u, v). 

( x + 2, y + 1)  

( x + 1, y + 2)  

xIncrement yIncrement 

 

 

 

 

 

 

 

 

Procedure tryNextMove ( …) 

Begin 

 Int k; 

 xIncrement[ 8 ] = { 2, 1, -1, -2, -2, -1, 1, 2 } ; 

 yIncrement[ 8 ] = { 1, 2, 2, 1, -1, -2, -2, -1 } ; 

 k = 0; 

 Repeat 

  k = k + 1; 

  u = x + xIncrement[ k ]; 

  v = y + yIncrement[ k ]; 

  … 

 Until ( ok ) OR ( k == 8 ) 

end. 
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Game trees and the minmax Algorithm 

• In complicated games such as chess, the computer can analyze 

only a few moves deep (  usually fewer than 10), become the huge 

number of possible moves make the number of variations 

immonse. 

• However, in the game of tic_tac_toe the computer can examine 

every variation, all the way to the final position, because the number 

of moves is always small ( less than 9). 

• The number of variation will be less than 9*8*7*6*5*4*3*2 = 

362,880 

• The computer chooses its move using a minmax algorithm. At 

positions where the game is over ( either a win, loss, or draw), the 

final position is given a value by using what is called the static 

evaluation function. 

• Static evaluation function 

Value  Game result 

1       Win 

0       Draw 

-1       Loss 
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• This is the basis of the minimax algorithm, which start at the bottom 

of the tree, evaluating final positions with the static evaluation 

function. Then, for each internal node, the rules of its child nodes 

are either maximized or minimized ( depending whose move it is at 

this node), and the internal node is given this value. 
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Algebraic Algorithm 

F(x) = a4 x4
 + a3 x3 + a2 x2 + a1 x1 + a0 

 

• Representation of data 

A : array [1..n] of real  dense representation 

 

F(x) = x1000 + 1   sparse representation 

n, d, n-1, dn-1 

Worst case double storage 

 

Example: 

 F(x) = x6 + 2x2 +4 

• Dense representation 

6, 1, 0, 0, 0, 2, 0, 4 

 

n Coefficient 

 

• Sparse representation 

6, 1, 2, 2, 0, 4 

 

Power     Coefficient 
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• Algorithm for dense representation 

 

term = 1; 

sum = a[0]; 

for ( i = 1; I <= n; i++ ) 

 term = term * value; 

 sum =  sum + a[ i ] * term 

end for 

 

• Horner’s Methods 

8x5 + 3x4 + 2x3 + 6x2 + 7x + 4 

(((( 8x + 3 ) x + 2 ) x + 6 ) x  +7 ) x + 4 

      

       i = n-1; 

 sum = an; 

 while ( i > 0 ) 

  sum = sum * value + ai ; 

  i--; 

 end while 

 

• Sparse representation 

sum = 0; 

for ( i = 1; i < m; i++) 

 sum = sum + ai * v e 

end for 

    represent power 

Mul ➔ 2n 

Add ➔ n 

Assg ➔ 2n+2 

Mul ➔ n 

Add ➔ n 

Assg ➔ n+2 
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 Improvement 

value5 = value4 * value 

Example: 

8X12 + 4X7 + 6X3 + 5X0 

                                   6 ( X (3-0) * X0 ) 

            4 ( X(7-3) * X3 ) 

8 ( X(12-7) * X7 ) 

8 ( X(12-7) * X7 ) + 4 ( X(7-3) * X3 ) + 6 ( X (3-0) * X0 ) + 5X0 

 sum = 0; 

 e0  = 0 ; 

 term = 1; 

 for ( i = 1; i <= m; i++) 

  r = v  ( ei – ei-1 ); 

  term = r * term; 

  sum = sum + ai * term; 

 end for 

 

 Horner’s Methods 

((( am xem-em-1 ) * xem-1 – em-2 ) … 

(((8 X(12-7) + 4 )* X(7-3)  + 6 ) * X (3-0)  + 5 )  X0  

 sum = 0; 

 for ( i = m; i >= 1; i-- ) 

  sum = ( sum + ai ) * value  ( ei – ei-1) 

 end for 
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