

Proving and Disproving Subset Relations Define sets *A* and *B* as follows: *A* = { $m \in \mathbb{Z}$ | $m = 6r + 12$ for some $r \in \mathbb{Z}$ } $B = \{ n \in \mathbb{Z} \mid n = 3s \text{ for some } s \in \mathbb{Z} \}.$ **Prove that** *A*⊆*B***.** Suppose *x* is a particular but arbitrarily chosen element of *A*. Therefore, *x* is an element of *B*. *Show that* $x \in B$ *, means show that* $x = 3$ *(integer).* $x = 6r + 12$ $= 3(2r + 4)$. Let $s = 2r + 4$. Also, $3s = 3(2r + 4)$ $= 6r + 12$ $=$ x

 $\frac{21}{2}$

Example

Set Theory

6.1. Basics of Set Theory

6.2 Properties of Sets and Element Argument

6.3 Algebraic Proofs

6.4 Boolean Algebras

STUDENTS-HUB.com Uploaded

6.2 Properties of Sets Set Theory

In this lecture:

Part 1: Set Relations and Identities

□ Part 2: Proving Set Identities (Element Argument) \Box Part 3: Examples of proving Set Identities

Set Relations

Theorem 6.2.1 Some Subset Relations

1. *Inclusion of Intersection:* For all sets A and B, (a) $A \cap B \subseteq A$ and (b) $A \cap B \subseteq B$. 2. *Inclusion in Union:* For all sets A and B, (a) $A \subseteq A \cup B$ and (b) $B \subseteq A \cup B$.

3. Transitive Property of Subsets: For all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Procedural Versions of Set Definitions

Let *X* and *Y* be subsets of a universal set *U* and suppose *x* and *y* are elements of *U*.

1. $x \in X \cup Y$ \Leftrightarrow $x \in X$ or $x \in Y$ 2. $x \in X \cap Y$ \Leftrightarrow $x \in X$ and $x \in Y$ 3. $x \in X - Y$ \Leftrightarrow $x \in X$ and $x \notin Y$ 4. $x \in X^c$ \Leftrightarrow $x \notin X$ 5. $(x,y) \in X \times Y$ \Leftrightarrow $x \in X$ and $y \in Y$

Theorem 6.2.2 Set Identities

Let all sets referred to below be subsets of a universal set *U* .

1. Commutative Laws: For all sets A and B,

(a) $A \cup B = B \cup A$ and (b) $A \cap B = B \cap A$.

2. Associative Laws: For all sets A, B, and C,

(a) $(A \cup B) \cup C = A \cup (B \cup C)$ and (b) $(A \cap B) \cap C = A \cap (B \cap C)$.

3. Distributive Laws: For all sets, A, B, and C,

(a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and (b) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

4. *Identity Laws:* For all sets A,

(a) $A \cup \emptyset = A$ and (b) $A \cap U = A$.

5. Complement Laws:

(a)
$$
A \cup A^c = U
$$
 and (b) $A \cap A^c = \emptyset$.

6. Double Complement Law: For all sets A,

 $(A^{c})^{c} = A.$

STUDENTS-HUB.com **by** the Uploaded By: anonymous **COM** CONSERVING CONSERVANCE CONSERVENTS-HUB.com COMPOSITION CONSERVENTS

Theorem 6.2.2 Set Identities Theorem 6.2.2 Se
et all sets referred to below be subsets c
7. *Idempotent Laws:* For all sets *A*,
(a) $A \cup A = A$ and 2.2 Set Io subsets of a unity of $\frac{1}{4}$,

Let all sets referred to below be subsets of a universal set U.

(a) $A \cup U = U$ and (b) $A \cap \emptyset = \emptyset$.

9. *De Morgan's Laws:* For all sets A and B,

(a) $(A \cup B)^c = A^c \cap B^c$ and (b) $(A \cap B)^c = A^c \cup B^c$.

10. Absorption Laws: For all sets A and B,

(a) $A \cup (A \cap B) = A$ and (b) $A \cap (A \cup B) = A$.

11. Complements of U and \emptyset :

(a) $U^c = \emptyset$ and (b) $\emptyset^c = U$.

12. Set Difference Law: For all sets A and B,

 $A - B = A \cap B^{c}$.

ers at home Uploaded By: anonymous **Constanting the example of the Uploaded By:** anonymous **CONSCOTE** → We will prove some of these theories in the lecture, please prove others at home STUDENTS-HUB.com Uploaded By: anonymous

6.2 Properties of Sets Set Theory

In this lecture:

Leart 1: Set Relations and Identities

Part 2: **Proving Set Identities (Element Argument)**

 \Box Part 3: Examples of proving Set Identities

Proving Set Identities

Proving That Sets Are Equal

e.g., prove: *HumanMale* = *Man*

Basic Method for Proving That Sets Are Equal

Let sets *X* and *Y* be given. To prove that *X* =*Y*:

1. Prove that $X \subseteq Y$.

2. Prove that $Y \subseteq X$.

But: How to prove that $X \subseteq Y$?

The Element Argument Method For Proving a set is a subset of another

e.g., prove: *HumanMale* ⊆ *Man*

i.e., Prove that every element in *HumanMale* is an element in *Man*

The Element Argument Method:

Let sets *X* and *Y* be Given, To Prove that $X \subseteq Y$:

Step 1. Suppose that x is a particular but arbitrarily chosen element in X .

Step 2. Show that *x* is an element of *Y*.

The Element Argument Method In details

Example: Prove that: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

That is:

Prove: $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$

...

That is, show $\forall x$, if $x \in A \cup (B \cap C)$ then $x \in (A \cup B) \cap (A \cup C)$

Suppose $x \in A \cup (B \cap C)$. [Show $x \in (A \cup B) \cap (A \cup C)$.]

Thus $x \in (A \cup B) \cap (A \cup C)$.

Hence $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$.

Prove: $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$

That is, show $\forall x$, if $x \in (A \cup B) \cap (A \cup C)$ then $x \in A \cup (B \cap C)$.

```
Suppose x \in (A \cup B) \cap (A \cup C). [Show x \in A \cup (B \cap C).]
```
Thus $x \in A \cup (B \cap C)$.

Hence $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$.

11 STUDENTS-HUB.com Thus $(A \cup B) \cap (A \cup C)$

...

6.2 Properties of Sets Set Theory

In this lecture:

OPart 1: Set Relations and Identities

□ Part 2: Proving Set Identities (Element Argument)

Part 3: **Examples of proving Set Identities**

Proving: **A Distributive Law for Sets**

Theorem 6.2.2(3)(a) A Distributive Law for Sets

For all sets A, B, and C,

$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$

Suppose $x \in A \cup (B \cap C)$. $x \in A$ or $x \in B \cap C$. (by def. of union) Case 1 (x ∈ A): then $x \in A \cup B$ (by def. of union) and $x \in A \cup C$ (by def. of union) ∴ x∈(A∪B)∩(A∪C) (def. of intersection) Case 2 (x ∈ **B** ∩ C): then $x \in B$ and $x \in C$ (def. of intersection) As x∈B, x∈A∪B (by def. of union) As x∈C, x∈A∪C, (by def. of union) ∴ x∈(A∪B)∩(A∪C) (def. of intersection)

In both cases, $x \in (A \cup B) \cap (A \cup C)$. **Thus:** A∪(B∩C) ⊆ (A∪B) ∩ (A∪C) by definition of subset

$A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C):$ $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C):$

Suppose $x \in (A \cup B) \cap (A \cup C)$. $x \in A \cup B$ and $x \in A \cup C$. (def. of intersection) **Case 1 (x ∈ A):** then $x \in A \cup (B \cap C)$ (by def. of union) **Case 2 (x** ∉**A):** then $x \in B$ and $x \in C$, (def. of intersection) Then, $x \in B \cap C$ (def. of intersection) ∴ $x \in A \cup (B \cap C)$

In both cases $x \in A \cup (B \cap C)$. **Thus:** $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$ by definition of subset,

 $STUDENTS-HUB.com$ equality that $A \cup (B \cap C) = (A \cup B \cup B) \cup (A \cup B \cup C)$ and $A \cup B \cup C$ and $B \cup B \cup C$ and C and $B \cup C$ Conclusion: Since both subset relations have been proved, it follows by definition of set

Proving: **A De Morgan's Law for Sets**

Theorem 6.2.2(9)(a) A De Morgan's Law for Sets

For all sets A and B, $(A \cup B)^c = A^c \cap B^c$

Same As: proving whether: the people who are not students or employees is the same as the people who are either students nor employees.

Suppose $x \in (A \cup B)^c$. [We must show that $x \in A^c \cap B^c$.] By definition of complement,

 $x \notin A \cup B$.

But to say that $x \notin A \cup B$ means that

it is false that $(x \text{ is in } A \text{ or } x \text{ is in } B)$.

By De Morgan's laws of logic, this implies that

x is not in A and x is not in B,

which can be written $x \notin A$ and $x \notin B$.

Hence $x \in A^c$ and $x \in B^c$ by definition of complement. It follows, by definition of intersection, that $x \in A^c \cap B^c$ *[as was to be shown]*. So $(A \cup B)^c \subseteq A^c \cap B^c$ by definition of subset.

$(A \cup B)^c \subseteq A^c \cap B^c$ $A^c \cap B^c \subseteq (A \cup B)^c$

Suppose $x \in A^c \cap B^c$. [We must show that $x \in (A \cup B)^c$.] By definition of intersection, $x \in A^c$ and $x \in B^c$, and by definition of complement,

 $x \notin A$ and $x \notin B$.

In other words, x is not in A and x is not in B.

By De Morgan's laws of logic this implies that

it is false that $(x \text{ is in } A \text{ or } x \text{ is in } B)$,

which can be written

 $x \notin A \cup B$

by definition of union. Hence, by definition of complement, $x \in (A \cup B)^c$ [as was to be shown]. It follows that $A^c \cap B^c \subseteq (A \cup B)^c$ by definition of subset.

Theorem 6.2.3 Intersection and Union with a Subset

For any sets A and B, if $A \subseteq B$, then

(a)
$$
A \cap B = A
$$
 and (b) $A \cup B = B$.

If every person is a student, then the set of persons and **Proof:** students are students

Part (a): Suppose A and B are sets with $A \subseteq B$. To show part (a) we must show both that $A \cap B \subseteq A$ and that $A \subseteq A \cap B$. We already know that $A \cap B \subseteq A$ by the inclusion of intersection property. To show that $A \subseteq A \cap B$, let $x \in A$. We must show that $x \in A \cap B$. Since $A \subseteq B$, then $x \in B$ also. Hence

 $x \in A$ and $x \in B$,

and thus

 $x \in A \cap B$

by definition of intersection [as was to be shown].

Prove at home

Theorem 6.2.4 A Set with No Elements Is a Subset of Every Set

If E is a set with no elements and A is any set, then $E \subseteq A$.

Proof by Contradiction:

Suppose not. [We take the negation of the theorem and suppose it to be true.] That is, Suppose: E with no elements, and $E \nsubseteq A$. assuming (E \notin A) means there *x*∈E and this x \notin A [by definition of subset].

But there can be no such element since E has no elements. **This is a contradiction.**

Hence the supposition that there are sets E and A, where E has no elements and $E \nsubseteq A$, is false, and so the theorem is true.

Proving: **Uniqueness of the Empty Set**

Corollary 6.2.5 Uniqueness of the Empty Set

There is only one set with no elements.

Proof:

Suppose E_1 and E_2 are both sets with no elements. By Theorem 6.2.4, $E_1 \subseteq E_2$ since E_1 has no elements. Also $E_2 \subseteq E_1$ since E_2 has no elements. Thus $E_1 = E_2$ by definition of set equality.

Proving: **a Conditional Statement**

Example: If every student is smart and every smart is notfoolish, then there are no foolish students

Proposition 6.2.6

For all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C^c$, then $A \cap C = \emptyset$.

Proof:

Suppose not, Suppose there is an element *x* in $A \cap C$.

Thus, $x \in C$ and $x \notin C$, which is a contradiction.

So the supposition that there is an element *x* in $A \cap C$ is false, and thus $A \cap C = \emptyset$ [as was to be shown].

Set Theory

6.1. Basics of Set Theory

6.2 Properties of Sets and Element Argument

6.3 Algebraic Proofs

6.4 Boolean Algebras

6.3 Algebraic Proofs Set Theory

In this lecture:

Part 1: Disapproving and Problem-Solving

□ Part 2: Algebraic Proofs of Sets

(Dis)proving

Prove that: For all sets A, B, and C, $(A - B) U (B - C) \neq A - C$?

Example: All people except who are Palestinians with the set of Palestinians except who are female, are the same set as all people except who are female?

Counterexample 1: Let $A = \{1, 2, 4, 5\}$, $B = \{2, 3, 5, 6\}$, and $C = \{4, 5, 6, 7\}$. Then

$$
A - B = \{1, 4\},
$$
 $B - C = \{2, 3\},$ and $A - C = \{1, 2\}$

Hence

 $(A - B) \cup (B - C) = \{1, 4\} \cup \{2, 3\} = \{1, 2, 3, 4\}, \text{ whereas } A - C = \{1, 2\}.$ Since $\{1, 2, 3, 4\} \neq \{1, 2\}$, we have that $(A - B) \cup (B - C) \neq A - C$.

Counterexample 2: Let $A = \emptyset$, $B = \{3\}$, and $C = \emptyset$. Then $A - B = \emptyset$, $B - C = \{3\}$, and $A - C = \emptyset$. Hence $(A - B) \cup (B - C) = \emptyset \cup \{3\} = \{3\}$, whereas $A - C = \emptyset$. Since $\{3\} \neq \emptyset$, we have that $(A - B) \cup (B - C) \neq A - C$.

Problem-Solving Strategy

How can you discover whether a given universal statement about sets is true or false?

6.3 Algebraic Proofs Set Theory

In this lecture:

□ Part 1: Disapproving and problem-Solving

Part 2: Algebraic Proofs of Sets

Remember the following

$$
A_1 \cap (A_2 \cup A_3) = (A_1 \cap A_2) \cup (A_1 \cap A_3),
$$

$$
A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
$$

$$
(W \cap X) \cap (Y \cup Z) = ((W \cap X) \cap Y) \cup ((W \cap X) \cap Z),
$$

\n
$$
\updownarrow \qquad \updownarrow \qquad \updownarrow \qquad \updownarrow
$$

\n
$$
A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
$$

STUDENTS-HUB.com (and only a subset of the Uploaded By: anonymous (b) \overline{Z}

Algebraic Proofs Deriving a Set Difference Property

Construct an algebraic proof that for all sets A, B, and C, $(A \cup B) - C = (A - C) \cup (B - C).$

> $(A \cup B) - C = (A \cup B) \cap C^{c}$ by the set difference law $=C^c \cap (A \cup B)$ by the commutative law for \cap $=(C^c \cap A) \cup (C^c \cap B)$ by the distributive law $=(A\cap C^{c})\cup (B\cap C^{c})$ by the commutative law for \cap $= (A - C) \cup (B - C)$ by the set difference law.

Cite a property from Theorem 6.2.2 for every step of the proof.

STUDENTS-HUB.com (8) **Reserves** (8) **Reserves (8)** Uploaded By: anonymous

Algebraic Proofs

Deriving a Set Identity Using Properties of ∅

Construct an algebraic proof that for all sets *A* and *B*, $A - (A \cap B) = A - B$.

 $A - (A \cap B) = A \cap (A \cap B)^c$ by the set difference law $= A \cap (A^c \cup B^c)$ by De Morgan's laws $=(A\cap A^{c})\cup (A\cap B^{c})$ by the distributive law $= \emptyset \cup (A \cap B^{c})$ by the complement law $=(A\cap B^{c})\cup\emptyset$ by the commutative law for \cup $= A \cap B^c$ by the identity law for \cup $= A - B$ by the set difference law.

Set Theory

6.1. Basics of Set Theory

- **6.2 Properties of Sets and Element Argument**
- **6.3 Algebraic Proofs**
- **6.4 Boolean Algebra**

6.4 Boolean Algebra Set Theory

In this lecture:

Part 1: History of Algebra

Q Part 2: What is Boolean Algebra

□ Part 3: Proving Boolean Algebra Properties

What is Algebra?

Al-Khwarizmi 850 – 780 (Baghdad)

الكتاب المختصر في حساب الجبر والمقابلة

Developed an advanced arithmetical system with which they were able to do calculations in an algorithmic fashion.

The Compendious Book on Calculation by Completion and Balancing

Statements to describe relationships between things

Symbols and the rules for manipulating these symbols

Do you know any algebra (جبر)? STUDENTS-HUB.com (4)

6.4 Boolean Algebra Set Theory

In this lecture:

Q Part 1: History of Algebra

Part 2: **What is Boolean Algebra**

□ Part 3: Proving Boolean Algebra Properties

Boolean Algebra

Introduced by George Boole in his first book The Mathematical Analysis of Logic (1847),

A structure abstracting the computation with the truth values false and true.

George Boole 1815-1864, England

Instead of elementary algebra where the values of the variables are numbers, and the main operations are addition and multiplication, the main operations of Boolean algebra are the conjunction (∧) the disjunction (∨) and the negation not (\neg) .

Used extensively in the simplification of logic Circuits

STUDENTS-HUB.com (6)

Compare

Compare

Boolean Algebra

• Definition: Boolean Algebra

A **Boolean algebra** is a set B together with two operations, generally denoted $+$ and , such that for all a and b in B both $a + b$ and $a \cdot b$ are in B and the following properties hold:

1. Commutative Laws: For all a and b in B ,

(a)
$$
a + b = b + a
$$
 and (b) $a \cdot b = b \cdot a$.

2. Associative Laws: For all a, b , and c in B ,

(a)
$$
(a + b) + c = a + (b + c)
$$
 and (b) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.

3. Distributive Laws: For all a, b , and c in B ,

(a) $a + (b \cdot c) = (a + b) \cdot (a + c)$ and (b) $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$.

4. *Identity Laws:* There exist distinct elements 0 and 1 in B such that for all a in B,

(a)
$$
a + 0 = a
$$
 and (b) $a \cdot 1 = a$.

5. Complement Laws: For each a in B, there exists an element in B, denoted \overline{a} and called the **complement** or **negation** of a , such that

(a)
$$
a + \overline{a} = 1
$$
 and (b) $a \cdot \overline{a} = 0$.

STUDENTS-HUB.com (9)

Properties of a Boolean Algebra

Theorem 6.4.1 Properties of a Boolean Algebra

Let B be any Boolean algebra.

- 1. Uniqueness of the Complement Law: For all a and x in B, if $a + x = 1$ and $a \cdot x = 0$ then $x = \overline{a}$.
- 2. Uniqueness of 0 and 1: If there exists x in B such that $a + x = a$ for all a in B, then $x = 0$, and if there exists y in B such that $a \cdot y = a$ for all a in B, then $y = 1$.
- 3. Double Complement Law: For all $a \in B$, $(\overline{a}) = a$.
- 4. *Idempotent Law:* For all $a \in B$,

(a)
$$
a + a = a
$$
 and (b) $a \cdot a = a$.

5. Universal Bound Law: For all $a \in B$,

(a)
$$
a + 1 = 1
$$
 and (b) $a \cdot 0 = 0$.

6. *De Morgan's Laws:* For all a and $b \in B$,

(a)
$$
\overline{a+b} = \overline{a} \cdot \overline{b}
$$
 and (b) $\overline{a \cdot b} = \overline{a} + \overline{b}$.

7. Absorption Laws: For all a and $b \in B$,

(a)
$$
(a + b) \cdot a = a
$$
 and (b) $(a \cdot b) + a = a$.

8. Complements of 0 and 1:

$$
(a) \; \theta_{\overline{\text{p}} \overline{\text{d}}} \text{ and } \theta_{\text{y}} \cdot (\theta) \text{ and } \overline{\text{y}} \text{ and } \theta_{\text{y}} \cdot (\theta) \text{
$$

STUDENTS-HUB.com

6.4 Boolean Algebra Set Theory

In this lecture:

Q Part 1: History of Algebra

Q Part 2: What is Boolean Algebra

Part 3: **Proving Boolean Algebra Properties**

Proving of Boolean Algebra Properties

Uniqueness of the Complement Law: For all a and x in B, if $a + x = 1$ and $a \cdot x = 0$ then $x = \overline{a}$.

Proof:

Suppose *a* and *x* are particular, but arbitrarily chosen, elements of *B* that satisfy the following hypothesis: $a + x = 1$ and $a \cdot x = 0$. Then

Proving of Boolean Algebra Properties

Theorem 6.4.1(3) Double Complement Law

For all elements a in a Boolean algebra B, $(\overline{a}) = a$.

Proof:

Suppose *B* is a Boolean algebra and *a* is any element of *B*. Then

and

 $\overline{a} \cdot a = a \cdot \overline{a}$ by the commutative law $= 0$ by the complement law for 0.

Thus a satisfies the two equations with respect to \overline{a} that are satisfied by the complement of \overline{a} . From the fact that the complement of a is unique, we conclude that $(\overline{a}) = a$.

STUDENTS-HUB.com (13) (13) Uploaded By: anonymous