
Engineering statistics "ENEE2307" Chapter 3

By: Jibreel Bornat

Notes, questions and forms

Chapter 3

Two or more Random Variables

1 Discrete

let X and Y be two RV's with the following Joint-PMF
$$P(X=X, Y=Y) = \frac{1}{16} X=-1, Y=0$$

$$|X| = \frac{1}{16} \quad X = -1, \quad y = 0$$

$$|X| = 0, \quad y = 0$$

$$|X| = 1, \quad y = 0$$

$$|X| = -1, \quad y = 1$$

$$|X| = -1, \quad y = 2$$

$$|X| = 1, \quad y = 2$$

$$|X| = 1, \quad y = 2$$

*	when	we	don't	have a
	mate	h	we Pu	+ 11011

Xy	O	١	2	
-1	1/16	2/16	2/16	
0	6/16	0	0	
١	1/16	0	4/16	

1) Find K?

$$\frac{2}{2} \frac{2}{2} \frac{2}{2} P(X=X,Y=Y) = 1 \implies \frac{1}{16} + \frac{2}{16} = 1$$

$$\frac{10}{16} + K = 1 \implies K = \frac{6}{16}$$

2 P(X <0, y <1)

$$P(x \le 0) \cap P(y \le 1) = \frac{1}{16} + \frac{2}{16} + \frac{6}{16} + \frac{8}{16} + \frac{2}{16} + \frac{6}{16} + \frac{2}{16} + \frac{2}{16}$$

$$\frac{P(x \le 0/9 \le 1)}{P(y \le 1)} = \frac{9/16}{10/16} = \frac{9}{10}$$

$$F_{x,y}(0,1) = P(x \le 0, y \le 1) = 9/16$$

$$F_{x,y}(-\infty,-\infty) = P(x \leq -\infty, y \leq -\infty) = 0$$

$$F_{x,y}(\infty,\infty) = P(x \leq \infty, y \leq \infty) = 1$$

$$P(x>0, y\leqslant 0) \neq P(x\leqslant 0, y\leqslant 0)$$

$$P(x>0, y \le 0) = \frac{1}{16}$$

- Rules *

* مه

$$P(X=1) = 1 + 0 + 4 = 5$$

$$16 + 0 + 4 = 5$$

$$-1 = 1/16 = 1/16$$

$$0 = 6/16 = 0$$

$$1 = 1/16 = 0$$

$$1 = 1/16 = 0$$

$$P(y \le 1) = \frac{1}{16} + \frac{2}{16} + \frac{1}{16} + \frac{6}{16} = \frac{10}{16}$$

$$\frac{x^{9}}{16} = \frac{0}{1/16}$$

$$\frac{1}{1/16} = \frac{1}{1/16}$$

$$\frac{x^{9}}{1} = \frac{0}{1/16}$$

$$\frac{0}{1/16} = \frac{1}{1/16}$$

$$\frac{1}{1/16} = \frac{1}{1/16}$$

12) Find the marginal PMF Of X does not RV asy ust ld

$$P(X=X) = \begin{cases} 5/16 & X=-1 \\ 6/16 & X=0 \end{cases}$$

$$0 & 0 & 0 & 0 \\ 5/16 & X=1 & 0 & 0 \end{cases}$$

$$0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{cases}$$

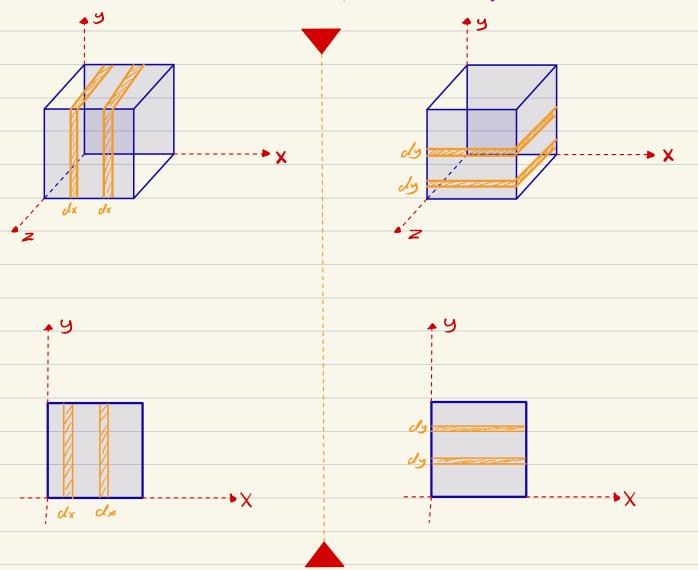
(13) Find the marginal PMF of y

$$\rho(y=y) = \begin{cases}
8/16 & y=0 \\
2/16 & y=1 \\
6/16 & y=2 \\
0.\omega
\end{cases}$$

(14) Are X and Y Statically independent?

$$P(x=0, y=0) \stackrel{?}{=} P(x=0) P(y=0)$$

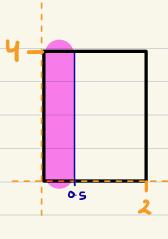
6/16 \neq (6/16)(8/16)

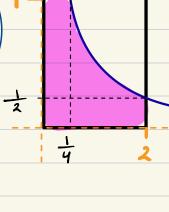

STUDENTSEHUBICOS. I FOUDIdaded By: ylibreel Bornat

X and Y are said to be Statically indefended if P(x=x, y=y) = P(x=x) P(y=y)

2 Continues

Example - 2


X and Y are RV's with
$$f_{x,y} = \begin{cases} K & 0 \le x \le 2 \\ 0 & 0 \le x \le 2 \end{cases}$$
, $0 \le y \le 4$


- بلاس عمان أوجد اكسامة رومن فم بلامل عمان اوجد الحبم
 - عندعي صدية غي اختيار سين بوعيد اتال اول xل او وله .


$$\int_{x_0}^{x_1} \int_{y_0}^{y_1} f(x,y) \, dy \, dx \implies \int_{0}^{2} \int_{0}^{4} K = \int_{0}^{2} 4K = 8K = 1 \implies K = \frac{1}{8}$$

$$\int_{0}^{0.5} \int_{0}^{4} \frac{1}{18} \, dy \, dx = \int_{0}^{0.5} \frac{1}{12} \, dx = \frac{1}{4}$$

$$XY \leq 1 \Rightarrow Y \leq \frac{1}{X}$$
 (when $X = 2 \Rightarrow Y = 0.5$

$$\int_{0}^{2} \int_{x}^{4} dy dx = \int_{0}^{2} \frac{1}{2} - \frac{x}{8} = \int_{0}^{2} \frac{1}{2} - \int_{0}^{2} \frac{x}{8} dx$$
= 1 - 1 - 2

6 find the marginal PDF of X

$$f(x) = \int_{9}^{9} f(x, y) dy = \int_{0}^{4} \frac{1}{8} dy = \frac{1}{2}$$

$$f(x=x) = \begin{cases} \frac{1}{2} & 0 \leq x \leq 2 \\ 0 & 0 \leq x \leq 2 \end{cases} \#$$

7 find the marginal PDF of y

$$f(y) = \int_{x_0}^{x_1} f(x, y) dx \implies \int_{0}^{2} \frac{1}{8} dx = \frac{1}{4}$$

$$f(Y=y) = \begin{bmatrix} \frac{1}{4} & 0 \leqslant y \leqslant 4 \end{bmatrix} \#$$

(8) Are they Statically independent?

$$\begin{bmatrix} \frac{1}{8} & 0 \leq x \leq 2 & 0 \leq y \leq 4 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} \frac{1}{2} & 0 \leq x \leq 2 \\ 0 & 0 \cdot \omega \end{bmatrix} \times \begin{bmatrix} \frac{1}{4} & 0 \leq x \leq 4 \\ 0 & 0 \cdot \omega \end{bmatrix}$$

$$\frac{1}{8} \stackrel{?}{=} \frac{1}{2} \times \frac{1}{4}$$
, Yes $\frac{1}{8} = \frac{1}{2} \times \frac{1}{4}$

: They are S. I

Note

X and Y are said to be Statically indefendent if f(x,y) = f(x) f(y)for all X and y

$$= \frac{P(0 \leq x \leq 0.5, 0 \leq y \leq 1)}{P(y \leq 2)} = \frac{\int_{0}^{3} \int_{0}^{1} dy dy}{\int_{0}^{2} dy dy} = \frac{1}{8}$$

10 P(y < 1, X = 0.5)

• Conditional PDF of X:
$$f_{y/x=x} = \frac{f(x,y)}{f(x)}$$

• Conditional PDF of Y:
$$f_{x/y=y} = \frac{f(x,y)}{f(y)}$$

$$P(y \le 1, x = 0.5) = f_{y/x=0.5} = \frac{1/8}{1/2} = \frac{1}{4}$$
=> $f_{y/x=0.5} = \frac{1}{4}$ then we integrate on y interval

$$\int_{0}^{1} f_{y/x=0.5} = \int_{0}^{1} \frac{1}{4} dy = \frac{1}{4}$$

سؤال:- حو الفرق بين 9 د١٥ ، ليمن كل داعدة بطريقة ؟

الذوك : معطى و اقل من عيى "ك" وني هذه الحالة في على عادي ملحد أية عدوط وقوانين .

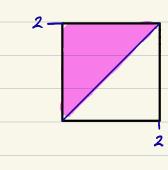
النانية: معظم و تاريع عن الالنهة الكانية عن الماكة STUDENT و تاريع عن الماكة STUDENT و الماكة STUDENT و الماكة ال

Example - 3

X and y are two RV's with this PMF

xy	-1	0		
 -1	1/8	1/2	0	
1	0	1/4	1/8	

$$= (-1*-1)(\frac{1}{8}) + (0) + (0) + (0) + (0) + (1*1)(\frac{1}{8}) = \frac{2}{8}$$


Example - 4
X and y are two RV's with this PDF.
$$f_{x,y} = \begin{cases} KX^2y \\ 0 \end{cases}$$

$$f_{x,y} = \begin{cases} kx^2y & 0 \leq x \leq y \leq 2 \\ 0 & 0 \leq x \leq y \leq 2 \end{cases}$$

(1) Find K

$$\int_{0}^{2} \int_{X}^{2} K x^{2} y \, dy \, dx = 1 \implies \int_{0}^{2} 2K x^{2} - \frac{K x^{4}}{2} \, dx = 1$$

$$\frac{161K}{3} - \frac{16K}{10} = 1 \implies K = \frac{15}{32}$$

(2) E {X(y+1)}

$$\int_{0}^{2} \int_{X}^{2} 9(x,y) f_{x,y} = \int_{0}^{2} \int_{X}^{2} \times (y+1) * \frac{15}{32} \times^{2} y = \int_{0}^{2} \int_{X}^{15} \frac{15}{32} \times^{3} y (y+1)$$

then we continue as before

Important Rules:

() E {ax + by} = aE {x} + bE {y}

(2) E {axy} = aE {x}E {y} iff they are Statically indep.

Correlation Coefficient

Rules

- Covariance: alxy = E{(x-nex)(Y-nex)}

- Variance: $6x^2 = u_{xx} = E\{(x - u_{xx})^2\}$

- Correlation Coefficient: $P_{xy} = \frac{\alpha l_{xy}}{6x 6y}$, $-1 \le P_{xy} \le 1$

if Pxy = 0 => X and Y are uncorrelated لد يوجد بينهم علدتت if $P_{XY} = 1 = X$ and Y are fully Correlated بوجد بينهم علانة توية

- let R = a, X + a, Y "موريه التربيعية التربيعية الم الخطاء عود عبيه بالمهادية التربيعية الم الم الم $6\hat{R} = a_1^2 6_x^2 + a_2^2 6_y^2 + 2a_1 a_2 6_x 6_y P_{xy}$

Notes

if x and y are Statically indep. then they are uncorrelated But if x and y are uncorrelated this object mean they are S. I

ailly air Un Correlated Statically independent

aley or aley not

Example - 5

Let X and Y be two Ru's with this PMF

That the Correlation Coefficient Pxy

First: we find fx and fy $P(X=X) = \begin{cases} 3/4 & X=-1 \\ 1/4 & X=1 \\ 0 & 0.w \end{cases}$ $P(y=y) = \begin{cases} 1/2 & y=-1 \\ 1/2 & y=1 \\ 0 & 0.w \end{cases}$

Second: find any thing we need to find P_{xy} culx = -1/2, culy = 0, $6x = \sqrt{E(x^2)^2} - alx = \sqrt{3}/2$ $6y = \sqrt{E(y^2)^2} - aly^2 = 1$, $culxy = E((x+\frac{1}{2})(y) = -1/2$ $P = \frac{-1/2}{\sqrt{3}/2 + 1} \Rightarrow P = -0.577$

Example - 6 let X and Y two RV's with cxx=1, $6x^2 = 4$, cxy=-1, $6y^2 = 9$ R = 2x - y, $\rho_{xy} = 1/2$, Find:

2 Var R $6_{R}^{2} = \alpha_{1}^{2} 6_{x}^{2} + \alpha_{2}^{2} 6_{y}^{2} + 2\alpha_{1}\alpha_{2} 6_{x} 6_{y} P_{xy}$ $= 4 \times 4 + 1 \times 9 + 2 \times 2 \times -1 \times 2 \times 3 \times \frac{1}{2} = 13$

functions of Random Variables

Example - 7
let X and Y two Ru's, and Z=X+Y
with the following Joint-PMF
1010 10 mg 30mc= 1711

XY	1	2	3	4
1	0.1	0	0.1	0
2	0.3	0	0.1	0.2
3	0	0.2	0	0

	_ 1	1.1	0.0	_	(
(I)	Find	the	YN	F	0+	

						•
P(z=z)=	90.1	Z= 2	X	У	Z	P(z=z)
,	0.3	Z = 3	١		2	0.1
	0.1	Z=4	1	2	3	0
	0.3	Z=5	١	3	4	0.1
	0.2	Z=6	1	4	5	0
	6	0.W	2		3	0.3
/	,		2	2	4	٥
# we just	use the	1001-Zero terms	2	3	5	0.1
			2	y	6	0.2
# when we have 2 volve two times					4	O
we add then together "like z=5"				2	5	0.2
	333		3	3	6	O
			3	4	7	0

2 E { Z } E { Z } = E { X + Y } => \(\frac{2}{2} \) \(\frac{2}{2

3) Find the PDF of Z

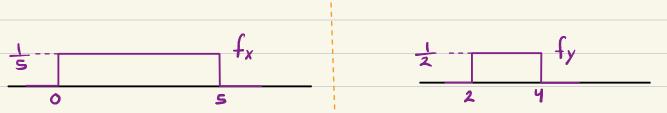
this is called Convolutional integral See the next Page >

غے بطن الحورے کان صالعے امل ما عذر إصباطدى ؟ فَوَكَّلُ عَلَى ٱلْعَزِيزِ الرَّحِيدِ ۞

Convolutional Integral

$$f_z(z) = \int_{-\infty}^{\infty} f_x(x) f_y(z-x) dx$$
 if X and Y are S. I

Example-8


X is a R.V with a Uniform distribution over [0,5], and Y is a R.V with a Uniform distribution over [2,4], Z is a New R.V such that Z = X + Y, Find

1) PDF of Z at Z=4

First: we find fx(x) and fy(y) and Plot them

$$f_{x}(x) = \begin{cases} \frac{1}{b-a} & a \leq x \leq b \end{cases} \qquad f_{y}(y) = \begin{cases} \frac{1}{b-a} & a \leq y \leq b \end{cases}$$

$$f_{x}(x) = \begin{cases} \frac{1}{5} & 0 \le x \le 5 \end{cases}$$
 $f_{y}(y) = \begin{cases} \frac{1}{2} & 2 \le y \le 4 \end{cases}$

then: We use the low above to find the PDF

$$f_{2}(y) = \int_{-\infty}^{\infty} f(x) f(y-x) \frac{find f(y-x)}{5} f_{y}(y-x) = \begin{cases} \frac{1}{2} & 2 \le y-x \le y \\ 0 & 0 \le x \le 2 \end{cases}$$

$$f_{2}(y) = \int_{-\infty}^{2} \frac{1}{5} * \frac{1}{2} = \int_{-\infty}^{2} f_{2}(y) = 1/5 \qquad \text{what i want}$$

2) Find the PDF of Z

$$Z$$
 د توجد منطقة نقاطع عنما Z نه $f_2(z) = 0$ / Z د وجد منطقة نقاطع عنما Z

$$f_{2}(z) = \int_{0}^{z-2} f_{x}(x) f(z-x) = \int_{0}^{1} \frac{1}{5} \times \frac{1}{2} dx$$

$$f_{2}(z) = \frac{1}{10} (z-2) , 2 \le z \le 4$$

$$f_{2}(z) = \frac{1}{10}(z-2), 2 \le z \le 4$$

$$z-2>0 \Rightarrow z>2$$

$$z-4<0 \Rightarrow z<4$$

$$f_{2}(z) = \int_{10}^{2-2} dx = \frac{1}{5}$$

$$z-4$$

$$f_{2}(z) = \frac{1}{5}, 4 \le 2 \le 7$$

$$f_{2}(z) = \int_{-\frac{1}{2}}^{\frac{1}{2}} dx = \frac{5}{10} - \frac{1}{10}(z-4)$$

$$f_{2}(z) = \frac{1}{10}(z-4) , 7 < z < 9$$

$$f_{2}(z) = \frac{1}{10}(z-9)$$
, $7 < z < 9$

7-4 (5 =) Z(9

2-175=>277

••
$$f_2(z) = 0 / Z > 9$$

$$f_2(2) = \begin{cases} 0 & Z < 0 \text{ or } z > q \\ 1/10(z-2) & 2 \leqslant z < 4 \\ 1/5 & 4 \leqslant z < 7 \end{cases}$$
STUDENTS-HUB Con 7-9) $7 \leqslant z < q$

z-4, why 2 and 4? Because we are dealing with Py(Y) interval which is [2,4]

Uploaded By: Jibreel Bornat