
SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset

• Tuning the Snort ruleset has the greatest impact

on Snort's performance and the number of false

positives.

• If we can apply the knowledge of our network

infrastructure and IDS policy to the ruleset, we can

achieve a high performance of the IDS operation.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• Snort rules are made up of two components:

– the Rule Header and

– the Rule Option.

• The Rule Header defines the type of alert and

which protocols, IP addresses and IP protocol

ports are to be monitored for the signature.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• The Rule Header can be described as metadata

that lets Snort know where to apply the signature.

• The Rule Header is essentially everything that

comes before the first parentheses.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• The Rule Option is the actual signature and

assigned priority of the attack.

• The Rule Option also contains links to external

documentation resources on the Internet.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• Example:

– The Rule Header:

» alert tcp $EXTERNAL_NET any->$HOME_NET 22

– The Rule Option:

» (msg:"EXPLOIT ssh CRC32 overflow /bin/sh"; flow:

to-server, established; content: "/bin/sh";)

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• The Rule Headers and Rule Options are mapped

into an internal data structure when the ruleset is

loaded into memory.

• The Rule Header is mapped to an internal data

structure within Snort known as a Rule Tree Node

(RTN).

• The RTNs are linked together into one dimension

on a three-dimensional linked list.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• Each protocol (TCP, UDP and so on) has its own

linked list made up of the corresponding RTNs.

• The second dimension is mapped from the Rule

Option in the form of an Option Tree Node (OTN).

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• The third dimension is a group of function pointers

that determine which options should be applied to

a packet to be inspected.

• This linked list of RTNs, OTNs, and function

pointers is essentially the data structure that the

detection engine uses.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• When the detection engine processes a packet, it

first checks to determine what protocol the packet

uses.

• After the protocol is determined, the packet is sent

to the corresponding linked list.

• The packet is then checked against each RTN until

a match is found.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• After a match is found, the packet is passed by the

OTNs.

• OTNs that utilize Boolean or mathematical

operators are executed in a short time with little

overhead.

• OTNs that are composed of only these types of

tests are not computationally expensive and

execute quickly.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• Example:

– The IP reserved bit rule:

» alert ip $EXTERNAL_NET any -> $HOME_NET any

(fragbits: R;)

– This rule checks to see only whether a packet has the

Reserved Bit set, which would indicate suspicious traffic.

– This rule does not check any contents, so its execution is

fast.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• OTNs that utilize any of the content checking

options (uricontent, content-list, content) are much

more computationally expensive and require more

resources than OTNs that do not.

• Content options are expensive because they force

Snort to make use of the pattern matching engine,

which is resource intensive.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• When a packet matches an OTN, an alert is

generated and passed to the output stage.

• If the packet does not match an OTN, it is flushed

from memory.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• Thus, if it is necessary to reduce the load on

Snort, the rules that utilize content checks should

be examined.

• Those rules that are unnecessary should be

removed.

• Unfortunately, about 70 % of the Snort rules make

use of one of the three content options (uricontent,

content-list, content).

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• If Snort is dropping packets, the rules should be

prioritized into categories to identify content rules

that are not critical for the protected environment.

• One should begin by removing rules that alert to

non-malicious behavior, such as inappropriate

Internet activity.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• Sometimes it is also necessary to inspect the

.rules files for content rules that alert to less

serious activity.

• These rules should be disabled only if it is

absolutely necessary (for example, to prevent

packet loss).

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• The rules should be organized in a logical, efficient

manner.

• The goal of organizing is to have rules that utilize

content options execute last.

• The packets should be inspected against rules that

are not resource intensive first, with the hope that

they will trigger on an OTN before reaching the

computationally expensive content options.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• When Snort is tuned properly for the network and

is no longer dropping packets, the next activity is to

reduce false positives.

• It is possible to reduce some false positives by

configuring network variables and preprocessors.

• A popular way to remove false positives is to

create so called pass rule.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• A pass rule is one of the possible rule categories,

such as alert and log.

• It is the inverse of an alert rule; a pass rule tells

Snort to ignore any packets that match the pass

rule.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• It is possible to use a pass rule to ignore certain

types of traffic from specific hosts.

• For example, it is possible to ignore SSH traffic

sent from a single server with a pass rule.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• Example:

– If we are getting a number of false positives from a single

host, we could write a pass rule to ignore all traffic from

that host.

– The following pass rule tells Snort to ignore all TCP

traffic from a host located at 192.168.1.1:

» pass tcp 192.168.1.1 any -> any any;

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• It is possible to get more granular if necessary.

• Example:

– If we want to ignore traffic from the same host destined

for Telnet servers:

» pass tcp 192.168.1.1 any -> any 23;

• It is also possible to append content options to

pass rules.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• If the traffic matches the rule header and the

content option, it will be ignored.

• If the same host were to constantly issue false

positives relating to unauthorized Telnet login

attempts, we could add the following content rule:

– pass tcp any 23 -> 192.168.1.1 any (content: "Login

failed"; nocase; flow: from-server, established;)

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• Pass rules can be used in many different situations

to eliminate repetitive false positive offenders.

• However, the order in which Snort processes rules

must be changed.

• By default, Snort processes alert rules, then pass

rules, and finally log rules.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• If we create a pass rule that matches an alert rule,

packets that match both the alert and pass rule will

still be logged as an alert to the output plugin.

• This processing order holds to avoid false

negatives. It protects the system from accidentally

creating a bad pass rule that would inadvertently

cause Snort to ignore traffic that it should not.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• Example:

– Suppose that in the previous pass rule example, we had

forgotten to specify the IP address of the host we wanted

to ignore.

– Then we could accidentally ignore all TCP traffic.

– This rule would do exactly that:

» pass tcp any any-> any any;

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• The order in which Snort processes alerts is

changed in such a way that pass rules are

processed first.

• In that case the alert order would be pass, alert,

log.

• We can do so by running Snort with the –o

command line option.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• It is possible to develop a targeted ruleset that will

alert only on services and hosts that actually exist

in the protected network.

• This can reduce the ruleset's size considerably.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• With a targeted ruleset, it is less likely to discover

attempted attacks.

• The attacker would have to attempt to attack a

legitimate service on a legitimate host to be

noticed by Snort.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• The targeted ruleset is also useful in cutting down

false positives.

• If we are monitoring a network that generates a lot

of false positives, a targeted ruleset will greatly

reduce the amount of false positives we receive.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• For small networks, the targeted ruleset can be

generated manually, by first performing a

portscanning and then disabling the rules targeted

at inactive ports.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• For large networks for which we would like to build

a targeted ruleset, we can make use of a tool,

snortrules.

• Snortrules takes the output from an NMAP scan

and edits a Snort rules file.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• It takes action on rules that do not match a

particular service.

• Snortrules can either remove rules or flag them as

not applicable.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• Limitations with the targeted ruleset

implementation:

– Network configurations are rarely static for any lengthy

period.

– If we compile the list of available services one day, the

network could change on the next day, making the

targeted list out of date.

– If we decide to use the targeted ruleset method for the

sensor, we should adopt a regular schedule to update

the list as appropriate.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• Limitations with the targeted ruleset

implementation (cont.):

– Another, more dangerous possibility is that an attacker

would manage to utilize a port or host we are not

monitoring in some phase of an attack.

– This is possible if the port was not open at the time of

scanning, but was subsequently opened by the attacker.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• Limitations with the targeted ruleset

implementation (cont.):

– If the attacker were able to install a Trojan, either by

tempting an unsuspecting person to open an e-mail

attachment, or by sitting at the console and installing it,

we would not be able to detect the intrusion.

– The attacker would be able to carry out any sort of

remote control tasks on the compromised host without

our knowledge.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• Fine tuning SNORT after the installation

(cont.)

– Refining the ruleset (cont.)

• Some other elements of the SNORT system could

also be tuned for a better performance:

– The database (MySQL, etc.)

– ACID

– Caching system

– Etc.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules

– The goal in creating effective signatures is to

write rules that match exclusively the network

traffic we want to discover.

– Unfortunately, this goal is almost impossible

to attain; each rule is likely to trigger on other

traffic too.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– When writing a rule, one should make a best

effort to narrow down the rule to trigger on

only the isolated traffic patterns of which one

wants to be alerted.

– One should also take care not to add too

many traffic properties, which would cause

some attacks to not match the rule.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– To write rules that will trigger only on the

traffic we intend them to, we must research

and discover properties of the traffic that are

unique.

– The individual properties of the traffic need

not be unique themselves, but the

combination of them should be.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– Example - cross-site scripting

• Cross-site scripting (XSS) occurs when a Web site

allows malicious script to be inserted into a

dynamically created Web page.

• If user input is not properly checked, the attacker

can embed script that will force the Web

application to act in an unintended manner.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– Example - cross-site scripting (cont.)

• XSS attacks can be used to steal cookies used for

authentication, access portions of the Web site that

are restricted, and otherwise attack Web

applications.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– Example - cross-site scripting (cont.)

• The majority of XSS attacks require scripting tags

inserted into a particular page request.

• We can use this feature of XSS attacks to write a

rule.

• Tags such as <SCRIPT>, <OBJECT>, <APPLET>,

and <EMBED> are required to insert an XSS script

into a Web application.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– Example - cross-site scripting (cont.)

• We can now create a rule that should trigger when

the <SCRIPT> tag is discovered.

• First we create a rule to trigger on traffic with

"<SCRIPT>" content:

– alert tcp any any -> any any (content: "<SCRIPT>'; msg:

“WEB-MISC XSS attempt”;)

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– Example - cross-site scripting (cont.)

• This rule triggers on XSS attacks, but unfortunately

also triggers on many other types of benign traffic.

• If someone were to send an email with embedded

JavaScript, the alert would be triggered, causing a

false positive.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– Example - cross-site scripting (cont.)

• To prevent this type of false alarms from

happening, we need to change the rule to trigger

only on Web trafic:

– alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS

$HTTP_PORTS (content: “<SCRIPT>” msg: “WEB-MISC

XSS attempt”;)

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– Example - cross-site scripting (cont.)

• This rule triggers only when the <SCRIPT> content

is detected in relation to an HTTP session from a

Web server.

• It triggers when the traffic originates at an external

IP address ($EXTERNAL_NET), and is sent to our

Web servers ($HTTP_SERVERS) on the ports on

which an HTTP service runs ($HTTP_PORTS).

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– Example - cross-site scripting (cont.)

• However, after loading this rule, a large number of

false positives are generated whenever a page is

requested that contains JavaScript.

• We need to further refine the rule and discover

properties of XSS traffic that are unique.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– Example - cross-site scripting (cont.)

• XSS occurs when the client embeds the

<SCRIPT> tag in a request.

• If the server sends the <SCRIPT> tag in response

to a request, it is probably benign traffic

(JavaScript).

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– Example - cross-site scripting (cont.)

• We can use this property of an XSS attack to

further refine the rule:

– alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS

$HTTP_PORTS (msg: “WEB-MISC XSS attempt”; flow:

to_server, established; content: “<SCRIPT>”;)

• This revised rule makes use of the flow option,

which uses Snort's TCP reassembly features to

identify the direction of traffic flow.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– Example - cross-site scripting (cont.)

• The flow options specified, to_server and

established, apply the rule only to sessions that

originate at the client and are sent to the server.

• This is where an XSS attack will occur: Traffic

flowing in the opposite direction is likely to be a

normal HTTP session containing JavaScript tags.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– Example - cross-site scripting (cont.)

• We also need to make sure an attacker cannot

evade the rule by taking advantage of case

sensitivity.

• The content option is case-sensitive, whereas

HTML is not, so an attacker could evade this rule

by changing the script tag to be <ScRipt> or

<script>.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– Example - cross-site scripting (cont.)

• To remedy this, we make the content option not

case-sensitive:

– alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS

$HTTP_PORTS (msg: “WEB-MISC XSS attempt” ; flow:

to_server, established; content: “<SCRIPT>”; nocase;)

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– Example - cross-site scripting (cont.)

• Finally, we assign the rule a high priority:

– alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS

$HTTP_PORTS (msq: “WEB-MISC XSS attempt”; flow:

to_server, established; content: “<SCRIPT>”; nocase;

priority: 1;)

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– Snort rules have a basic syntax that must be

adhered to for the rule to properly match a

traffic signature.

– Violating the Snort rules syntax can cause a

rule to not load into the detection engine.

– Even if such a rule does manage to load,

incorrect rule syntax may result in

unpredictable and unintended consequences.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– The rule could trigger on a large amount of

benign traffic, causing a lot of false positives.

– This could potentially overload the intrusion

database.

– The rule could trigger on randomly occurring

traffic patterns, which have the potential to

cause unnecessary panic when an alert is

generated.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– Some rules load, but never trigger on the

traffic they are designed to detect.

– The IDS operator may assume the rule is

functioning correctly and miss out on the alert.

– The same scenario can occur in the case of a

pass rule, where a poorly written rule can

cause a significant amount of potentially

malicious traffic to be ignored.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– It is therefore important to make sure the

custom rules are written in the correct syntax.

– It is a good practice to check rules over and

test them before implementing the rules in a

production situation.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– The most basic syntactical requirement of a

Snort rule is that it be in a single line.

– lf we must separate the rule into more than

one line, we must append a backslash to the

end of the line to let Snort know to continue

on the next line.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– The syntax of the rule header is:

• Rule_action protocol source_address_range

source_port_range direction_operator

destination_address_range destination_port_range

– The rule action, protocol, and direction

operator are normally chosen from a static list

of possible values.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– Snort dictates these statically because the

rule can trigger only a limited number of

possible actions, and Snort can monitor for

only a limited number of protocols.

– The remaining parameters can be assigned to

a variable (such as $HOME_NET), an IP

address or port, or a range of IP addresses

and ports.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– The rule option is the actual signature and the

assigned priority.

– The signature portion of the rule option is

represented with one or more option

keywords.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– These option keywords are used to build the

traffic signature for which one would like the

detection engine to monitor.

– When more than one option keyword that

relates to a signature is used, they can be

considered to form a logical AND statement.

Uploaded By: anonymousSTUDENTS-HUB.com

SNORT

• SNORT custom rules (cont.)

– There are essentially three methods to write

Snort rules:

• To modify or add to an existing rule, in order to

tune Snort and make it more efficient - easiest.

• To create a new rule by using the knowledge of

our network - relatively easy because no extensive

traffic analysis is required.

• To create a new rule by examining network traffic -

the most difficult.

Uploaded By: anonymousSTUDENTS-HUB.com

