
SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset 

• Tuning the Snort ruleset has the greatest impact 

on Snort's performance and the number of false 

positives.  

• If we can apply the knowledge of our network 

infrastructure and IDS policy to the ruleset, we can 

achieve a high performance of the IDS operation. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• Snort rules are made up of two components:  

– the Rule Header and  

– the Rule Option. 

• The Rule Header defines the type of alert and 

which protocols, IP addresses and IP protocol 

ports are to be monitored for the signature. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• The Rule Header can be described as metadata 

that lets Snort know where to apply the signature. 

• The Rule Header is essentially everything that 

comes before the first parentheses. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• The Rule Option is the actual signature and 

assigned priority of the attack. 

• The Rule Option also contains links to external 

documentation resources on the Internet. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• Example: 

– The Rule Header: 

» alert tcp $EXTERNAL_NET any->$HOME_NET 22 

– The Rule Option: 

» (msg:"EXPLOIT ssh CRC32 overflow /bin/sh"; flow: 

to-server, established; content: "/bin/sh";) 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• The Rule Headers and Rule Options are mapped 

into an internal data structure when the ruleset is 

loaded into memory. 

• The Rule Header is mapped to an internal data 

structure within Snort known as a Rule Tree Node 

(RTN). 

• The RTNs are linked together into one dimension 

on a three-dimensional linked list. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• Each protocol (TCP, UDP and so on) has its own 

linked list made up of the corresponding RTNs. 

• The second dimension is mapped from the Rule 

Option in the form of an Option Tree Node (OTN). 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• The third dimension is a group of function pointers 

that determine which options should be applied to 

a packet to be inspected. 

• This linked list of RTNs, OTNs, and function 

pointers is essentially the data structure that the 

detection engine uses. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• When the detection engine processes a packet, it 

first checks to determine what protocol the packet 

uses. 

• After the protocol is determined, the packet is sent 

to the corresponding linked list. 

• The packet is then checked against each RTN until 

a match is found. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• After a match is found, the packet is passed by the 

OTNs.  

• OTNs that utilize Boolean or mathematical 

operators are executed in a short time with little 

overhead. 

• OTNs that are composed of only these types of 

tests are not computationally expensive and 

execute quickly. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• Example: 

– The IP reserved bit rule: 

» alert ip $EXTERNAL_NET any -> $HOME_NET any 

(fragbits: R;)  

– This rule checks to see only whether a packet has the 

Reserved Bit set, which would indicate suspicious traffic. 

– This rule does not check any contents, so its execution is 

fast. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• OTNs that utilize any of the content checking 

options (uricontent, content-list, content) are much 

more computationally expensive and require more 

resources than OTNs that do not. 

• Content options are expensive because they force 

Snort to make use of the pattern matching engine, 

which is resource intensive. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• When a packet matches an OTN, an alert is 

generated and passed to the output stage. 

• If the packet does not match an OTN, it is flushed 

from memory. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• Thus, if it is necessary to reduce the load on  

Snort, the rules that utilize content checks should 

be  examined. 

• Those rules that are unnecessary should be 

removed.  

• Unfortunately, about 70 % of the Snort rules make 

use of one of the three content options (uricontent, 

content-list, content). 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• If Snort is dropping packets, the rules should be 

prioritized into categories to identify content rules 

that are not critical for the protected environment. 

• One should begin by removing rules that alert to 

non-malicious behavior, such as inappropriate 

Internet activity. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• Sometimes it is also necessary to inspect the 

.rules files for content rules that alert to less 

serious activity. 

• These rules should be disabled only if it is 

absolutely necessary (for example, to prevent 

packet loss). 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• The rules should be organized in a logical, efficient 

manner. 

• The goal of organizing is to have rules that utilize 

content options execute last. 

• The packets should be inspected against rules that 

are not resource intensive first, with the hope that 

they will trigger on an OTN before reaching the 

computationally expensive content options. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• When Snort is tuned properly for the network and 

is no longer dropping packets, the next activity is to 

reduce false positives. 

• It is possible to reduce some false positives by 

configuring network variables and preprocessors. 

• A popular way to remove false positives is to 

create so called pass rule. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• A pass rule is one of the possible rule categories, 

such as alert and log.  

• It is the inverse of an alert rule; a pass rule tells 

Snort to ignore any packets that match the pass 

rule. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• It is possible to use a pass rule to ignore certain 

types of traffic from specific hosts.  

• For example, it is possible to ignore SSH traffic 

sent from a single server with a pass rule. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• Example: 

– If we are getting a number of false positives from a single 

host, we could write a pass rule to ignore all traffic from 

that host.  

– The following pass rule tells Snort to ignore all TCP 

traffic from a host located at 192.168.1.1: 

» pass tcp 192.168.1.1 any -> any any; 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• It is possible to get more granular if necessary.  

• Example: 

– If we want to ignore traffic from the same host destined 

for Telnet servers: 

» pass tcp 192.168.1.1 any -> any 23; 

• It is also possible to append content options to 

pass rules.  
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• If the traffic matches the rule header and the 

content option, it will be ignored.  

• If the same host were to constantly issue false 

positives relating to unauthorized Telnet login 

attempts, we could add the following content rule: 

– pass tcp any 23 -> 192.168.1.1 any (content: "Login 

failed"; nocase; flow: from-server, established; ) 

Uploaded By: anonymousSTUDENTS-HUB.com



SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• Pass rules can be used in many different situations 

to eliminate repetitive false positive offenders. 

• However, the order in which Snort processes rules 

must be changed.  

• By default, Snort processes alert rules, then pass 

rules, and finally log rules. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• If we create a pass rule that matches an alert rule, 

packets that match both the alert and pass rule will 

still be logged as an alert to the output plugin. 

• This processing order holds to avoid false 

negatives. It protects the system from accidentally 

creating a bad pass rule that would inadvertently 

cause Snort to ignore traffic that it should not. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• Example: 

– Suppose that in the previous pass rule example, we had 

forgotten to specify the IP address of the host we wanted 

to ignore. 

– Then we could accidentally ignore all TCP traffic. 

– This rule would do exactly that: 

» pass tcp any any-> any any; 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• The order in which Snort processes alerts is 

changed in such a way that pass rules are 

processed first. 

• In that case the alert order would be pass, alert, 

log. 

• We can do so by running Snort with the –o 

command line option. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• It is possible to develop a targeted ruleset that will 

alert only on services and hosts that actually exist 

in the protected network. 

• This can reduce the ruleset's size considerably. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• With a targeted ruleset, it is less likely to discover 

attempted attacks. 

• The attacker would have to attempt to attack a 

legitimate service on a legitimate host to be 

noticed by Snort. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• The targeted ruleset is also useful in cutting down 

false positives. 

• If we are monitoring a network that generates a lot 

of false positives, a targeted ruleset will greatly 

reduce the amount of false positives we receive. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• For small networks, the targeted ruleset can be 

generated manually, by first performing a 

portscanning and then disabling the rules targeted 

at inactive ports. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• For large networks for which we would like to build 

a targeted ruleset, we can make use of a tool, 

snortrules. 

• Snortrules takes the output from an NMAP scan 

and edits a Snort rules file.  
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• It takes action on rules that do not match a 

particular service.  

• Snortrules can either remove rules or flag them as 

not applicable. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• Limitations with the targeted ruleset 

implementation: 

– Network configurations are rarely static for any lengthy 

period.  

– If we compile the list of available services one day, the 

network could change on the next day, making the 

targeted list out of date.  

– If we decide to use the targeted ruleset method for the 

sensor, we should adopt a regular schedule to update 

the list as appropriate. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• Limitations with the targeted ruleset 

implementation (cont.): 

– Another, more dangerous possibility is that an attacker 

would manage to utilize a port or host we are not 

monitoring in some phase of an attack. 

– This is possible if the port was not open at the time of 

scanning, but was subsequently opened by the attacker. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• Limitations with the targeted ruleset 

implementation (cont.): 

– If the attacker were able to install a Trojan, either by 

tempting an unsuspecting person to open an e-mail 

attachment, or by sitting at the console and installing it, 

we would not be able to detect the intrusion. 

– The attacker would be able to carry out any sort of 

remote control tasks on the compromised host without 

our knowledge. 
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SNORT 

• Fine tuning SNORT after the installation 

(cont.)  

– Refining the ruleset (cont.) 

• Some other elements of the SNORT system could 

also be tuned for a better performance: 

– The database (MySQL, etc.) 

– ACID 

– Caching system 

– Etc. 
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SNORT 

• SNORT custom rules 

– The goal in creating effective signatures is to 

write rules that match exclusively the network 

traffic we want to discover. 

– Unfortunately, this goal is almost impossible 

to attain; each rule is likely to trigger on other 

traffic too. 
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SNORT 

• SNORT custom rules (cont.) 

– When writing a rule, one should make a best 

effort to narrow down the rule to trigger on 

only the isolated traffic patterns of which one 

wants to be alerted. 

– One should also take care not to add too 

many traffic properties, which would cause 

some attacks to not match the rule. 
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SNORT 

• SNORT custom rules (cont.) 

– To write rules that will trigger only on the 

traffic we intend them to, we must research 

and discover properties of the traffic that are 

unique. 

– The individual properties of the traffic need 

not be unique themselves, but the 

combination of them should be. 
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SNORT 

• SNORT custom rules (cont.) 

– Example - cross-site scripting 

• Cross-site scripting (XSS) occurs when a Web site 

allows malicious script to be inserted into a 

dynamically created Web page.  

• If user input is not properly checked, the attacker 

can embed script that will force the Web 

application to act in an unintended manner. 
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SNORT 

• SNORT custom rules (cont.) 

– Example - cross-site scripting (cont.) 

• XSS attacks can be used to steal cookies used for 

authentication, access portions of the Web site that 

are restricted, and otherwise attack Web 

applications. 
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SNORT 

• SNORT custom rules (cont.) 

– Example - cross-site scripting (cont.) 

• The majority of XSS attacks require scripting tags 

inserted into a particular page request. 

• We can use this feature of XSS attacks to write a 

rule. 

• Tags such as <SCRIPT>, <OBJECT>, <APPLET>, 

and <EMBED> are required to insert an XSS script 

into a Web application. 
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SNORT 

• SNORT custom rules (cont.) 

– Example - cross-site scripting (cont.) 

• We can now create a rule that should trigger when 

the <SCRIPT> tag is discovered. 

• First we create a rule to trigger on traffic with 

"<SCRIPT>" content: 

– alert tcp any any -> any any (content: "<SCRIPT>'; msg: 

“WEB-MISC XSS attempt”;) 
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SNORT 

• SNORT custom rules (cont.) 

– Example - cross-site scripting (cont.) 

• This rule triggers on XSS attacks, but unfortunately 

also triggers on many other types of benign traffic. 

• If someone were to send an email with embedded 

JavaScript, the alert would be triggered, causing a 

false positive. 
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SNORT 

• SNORT custom rules (cont.) 

– Example - cross-site scripting (cont.) 

• To prevent this type of false alarms from 

happening, we need to change the rule to trigger 

only on Web trafic: 

– alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 

$HTTP_PORTS (content: “<SCRIPT>” msg: “WEB-MISC 

XSS attempt”; ) 
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SNORT 

• SNORT custom rules (cont.) 

– Example - cross-site scripting (cont.) 

• This rule triggers only when the <SCRIPT> content 

is detected in relation to an HTTP session from a 

Web server.  

• It triggers when the traffic originates at an external 

IP address ($EXTERNAL_NET), and is sent to our 

Web servers ($HTTP_SERVERS) on the ports on 

which an HTTP service runs ($HTTP_PORTS). 
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SNORT 

• SNORT custom rules (cont.) 

– Example - cross-site scripting (cont.) 

• However, after loading this rule, a large number of 

false positives are generated whenever a page is 

requested that contains JavaScript. 

• We need to further refine the rule and discover 

properties of XSS traffic that are unique. 
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SNORT 

• SNORT custom rules (cont.) 

– Example - cross-site scripting (cont.) 

• XSS occurs when the client embeds the 

<SCRIPT> tag in a request.  

• If the server sends the <SCRIPT> tag in response 

to a request, it is probably benign traffic 

(JavaScript). 
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SNORT 

• SNORT custom rules (cont.) 

– Example - cross-site scripting (cont.) 

• We can use this property of an XSS attack to 

further refine the rule: 

– alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 

$HTTP_PORTS (msg: “WEB-MISC XSS attempt”; flow: 

to_server, established; content: “<SCRIPT>”;) 

• This revised rule makes use of the flow option, 

which uses Snort's TCP reassembly features to 

identify the direction of traffic flow. 
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SNORT 

• SNORT custom rules (cont.) 

– Example - cross-site scripting (cont.) 

• The flow options specified, to_server and 

established, apply the rule only to sessions that 

originate at the client and are sent to the server. 

• This is where an XSS attack will occur: Traffic 

flowing in the opposite direction is likely to be a 

normal HTTP session containing JavaScript tags. 
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SNORT 

• SNORT custom rules (cont.) 

– Example - cross-site scripting (cont.) 

• We also need to make sure an attacker cannot 

evade the rule by taking advantage of case 

sensitivity. 

• The content option is case-sensitive, whereas 

HTML is not, so an attacker could evade this rule 

by changing the script tag to be <ScRipt> or 

<script>. 
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SNORT 

• SNORT custom rules (cont.) 

– Example - cross-site scripting (cont.) 

• To remedy this, we make the content option not 

case-sensitive: 

– alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 

$HTTP_PORTS (msg: “WEB-MISC XSS attempt” ; flow: 

to_server, established; content: “<SCRIPT>”; nocase; ) 
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SNORT 

• SNORT custom rules (cont.) 

– Example - cross-site scripting (cont.) 

• Finally, we assign the rule a high priority: 

– alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 

$HTTP_PORTS (msq: “WEB-MISC XSS attempt”; flow: 

to_server, established; content: “<SCRIPT>”; nocase; 

priority: 1; ) 
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SNORT 

• SNORT custom rules (cont.) 

– Snort rules have a basic syntax that must be 

adhered to for the rule to properly match a 

traffic signature. 

– Violating the Snort rules syntax can cause a 

rule to not load into the detection engine.  

– Even if such a rule does manage to load, 

incorrect rule syntax may result in 

unpredictable and unintended consequences. 
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SNORT 

• SNORT custom rules (cont.) 

– The rule could trigger on a large amount of 

benign traffic, causing a lot of false positives. 

– This could potentially overload the intrusion 

database. 

– The rule could trigger on randomly occurring 

traffic patterns, which have the potential to 

cause unnecessary panic when an alert is 

generated. 
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SNORT 

• SNORT custom rules (cont.) 

– Some rules load, but never trigger on the 

traffic they are designed to detect.  

– The IDS operator may assume the rule is 

functioning correctly and miss out on the alert.  

– The same scenario can occur in the case of a 

pass rule, where a poorly written rule can 

cause a significant amount of potentially 

malicious traffic to be ignored.  
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SNORT 

• SNORT custom rules (cont.) 

– It is therefore important to make sure the 

custom rules are written in the correct syntax.  

– It is a good practice to check rules over and 

test them before implementing the rules in a 

production situation. 
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SNORT 

• SNORT custom rules (cont.) 

– The most basic syntactical requirement of a 

Snort rule is that it be in a single line. 

– lf we must separate the rule into more than 

one line, we must append a backslash to the 

end of the line to let Snort know to continue 

on the next line. 
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SNORT 

• SNORT custom rules (cont.) 

– The syntax of the rule header is: 

• Rule_action protocol source_address_range 

source_port_range direction_operator 

destination_address_range destination_port_range 

– The rule action, protocol, and direction 

operator are normally chosen from a static list 

of possible values. 
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SNORT 

• SNORT custom rules (cont.) 

– Snort dictates these statically because the 

rule can trigger only a limited number of 

possible actions, and Snort can monitor for 

only a limited number of protocols. 

– The remaining parameters can be assigned to 

a variable (such as $HOME_NET), an IP 

address or port, or a range of IP addresses 

and ports. 
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SNORT 

• SNORT custom rules (cont.) 

– The rule option is the actual signature and the 

assigned priority. 

– The signature portion of the rule option is 

represented with one or more option 

keywords. 

Uploaded By: anonymousSTUDENTS-HUB.com



SNORT 

• SNORT custom rules (cont.) 

– These option keywords are used to build the 

traffic signature for which one would like the 

detection engine to monitor. 

– When more than one option keyword that 

relates to a signature is used, they can be 

considered to form a logical AND statement. 
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SNORT 

• SNORT custom rules (cont.) 

– There are essentially three methods to write 

Snort rules: 

• To modify or add to an existing rule, in order to 

tune Snort and make it more efficient - easiest. 

• To create a new rule by using the knowledge of 

our network - relatively easy because no extensive 

traffic analysis is required. 

• To create a new rule by examining network traffic - 

the most difficult. 
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