[14.8] Lagrange Multipliers

- [A] Lagrange Multipliers with one constraint: "g(x,y, 2)=0
 - . Suppose that f(x,y,z) and g(x,y,z) are diff and $\nabla g \neq \vec{o}$ when g(x,y,z) = 0.
 - · To find the extreme values (local max and local min) of f(x,y,z) subject to the constraint g(x,y,z)=0, we find the points (x, y, 2) and the Lagrange multiplier & that simultaneously satisfy $\nabla f = 1 \nabla g$ and $g(x_1y_1, z) = 0$

Exp Find the greatest and smallest values that the function $f(x_1y) = xy$ takes on the ellipse $\frac{x^2}{8} + \frac{y^2}{2} = 1$

• $f(x,y) = xy \Rightarrow \nabla f = y\vec{i} + x\vec{j}$

 $g(x,y) = \frac{x^2}{8} + \frac{y^2}{2} - 1 \Rightarrow \nabla g = (\frac{x}{y})^{\frac{3}{2}} + y^{\frac{3}{2}}$

• $\nabla f = \lambda \nabla g$ and g(x, y) = 0

 $y = \frac{\lambda x}{4}$, $x = \lambda y$ and $\frac{x^2}{8} + \frac{y^2}{2} = 1$

 $y = \frac{\lambda}{4}(\lambda y) = \frac{\lambda y}{4} \Rightarrow y[4-\lambda^2] = 0$

- case 1: $y=0 \Rightarrow x=0$. But (0,0) is not on the ellipse . Hence $y \neq 0$ $\nabla f = \pm 2 \nabla 9$
- Case 2: $\lambda = \pm 2$ $\Rightarrow x = \pm 2y \Rightarrow \frac{yy^2}{8} + \frac{y^2}{2} = 1 \Rightarrow y = \pm 1$ $\Rightarrow x = \pm 2$
- · Four points (±2,1), (±2,-1)
- f(2,1)=2 "Max value" and f(-2,1)=-2 min value f(-2,-1)=-2 min value

The suppose that $f(x_1y, z)$ is diff in a region whose interior contains a smooth curve $C: \vec{r}(t) = g(t) \vec{i} + h(t) \vec{j} + k(t) \vec{k}$.

If $f(x_0, y_0, z_0)$ is a point on the curve C where f has a local max or local min, then $\nabla f \perp C$ at $f(x_0, y_0, z_0)$.

More over, $\nabla f \cdot \vec{V} = 0$, where $\vec{V} = d\vec{r}$.

Proof: The values of f on the curve C are f(g(H), h(H), K(H)) $\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dg}{dt} + \frac{\partial f}{\partial y} \frac{dh}{dt} + \frac{\partial f}{\partial z} \frac{dk}{dt}$

If f has local max or local min at lo, then $\frac{df}{dt}(l_0) = 0$ That is ∇f . $\vec{V} = 0$

Exp Find the maximum and minimum values of f(x,y)= 3x + 4 y on the circle x²+y²=1

• $f(x_1y) = 3x + 4y$ $\Rightarrow \nabla f = 3i + 4j$

· g(x,y) = x2+y2-1 => Dg = (2x)i+(2y)j

· Vf = 1 Dg and g(x,y) = 0

3=2xx, 4=2xy and x2+y2=1

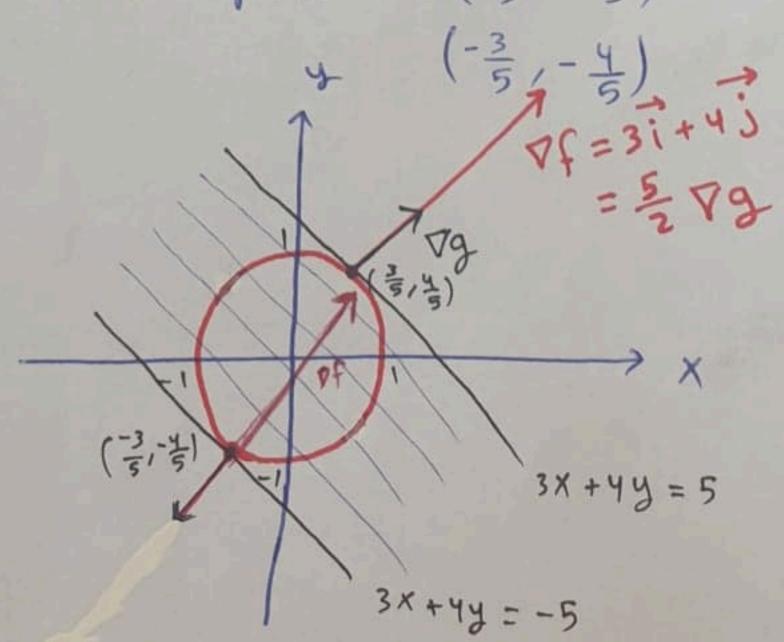
 $X = \frac{3}{2\lambda}$, $y = \frac{2}{\lambda}$ $\Rightarrow \frac{9}{4\lambda^2} + \frac{4}{\lambda^2} = 1 \Rightarrow \lambda = \pm \frac{5}{2}$

 $\Rightarrow x = \pm \frac{3}{5}$, $y = \pm \frac{4}{5}$ =) The points $(\frac{3}{5}, \frac{4}{5})$ and

of (3/5)=5 Hax value

· f (-3/5)=-5 Min value

Vf=3i+4j Vg=5i+8j



" Exp Find the point on the plane x + 2y + 3Z = 13 closest to the point (1,1,1).

· f(X,4,2)=(x-1)2+(y-1)2+(2-1)2 "f=d2" Vf = 2(x-1) i + 2(y-1) i + 2(2-1) K

· g(x,y,z) = x + 2y + 3Z-13 => Vg=i+2j+3k

· Vf = 1 Vg and g(x, y, 2) = 0

 $2(x-1)=\lambda$, $y-1=\lambda$, $2(2-1)=3\lambda$ and x+2y+3Z=13 $\frac{y}{2(x-1)} = y-1 \implies x = \frac{y+1}{2}$ $2(z-1) = 3[y-1] \implies$ Z= 34-1 Hence, $\frac{y+1}{2} + 2y + \frac{3}{2}(3y-1) = 13$ · The point is (3/2,2,5/2)

B] Lagrange Multipliers with two constraints:

 $\nabla f = \lambda \nabla g_1 + M \nabla g_2$ and $g_1(x_1y_1, z) = 0$ and $g_2(x_1y_1, z) = 0$

Exp Find the extreme values of f(x,y,z) = xy + 22 on the circle in which the

plane y-x=0 intersects the sphere $x^2+y^2+z^2=y$.

of $(x_1y,z)=xy+z^2=$ of $(x_1y,z)=xy+z^2=$ of $(x_1y,z)=xy+z^2=$ $9,(x,y,z) = y - x \Rightarrow)$ $\nabla 9, = -i + j$ 92(X14,2)= x2+y2+22-4 => V92=(2x)i+(2y)j+(2Z)K

· Vf = 1 Vg, + M Vgz, y = x, x2+y2+22=4

3=-y+2HX , X= y+2AH, [3=ZM] => 5(1-H)=0

• Cas1; Z=0 ⇒) $x^2+y^2=4$ =) $2x^2=4$ ⇒) $x=\pm\sqrt{2}$ =) $y=\pm\sqrt{2}$

• Cas2: $M=1 \Rightarrow y = -\lambda + 2x$ $\Rightarrow x + y = 2(x+y) \Rightarrow x + y = 0$ $\Rightarrow 2x = 0 \Rightarrow x = 0 \Rightarrow y = 0$

=) 22=4 =) 2=±2

of $(\pm \sqrt{2}, \pm \sqrt{2}, 0) = 2$ => f has min valve at (±12,±12,0) · f(0,0,±2)=4

=) f has max value at (0,0, ±2).