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Binary Search Trees

•An important application of Binary trees is their use of 
searching. 

•Each node is assigned a key value. Assume the key is 
integer, and assume no duplicate keys (distinct keys).

•For every node X in the tree, the values of all the keys in its 
left subtree are smaller than the key value in X. And the 
values of all they keys in its right subtree are larger than 
the key value in X. This means that all elements in the tree 
can be ordered in some consistent manner.
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Binary Search Trees (2)

•This means that all elements in the tree can be ordered in 
some consistent manner.
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A Binary Search Tree NOT a Binary Search Tree
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Structure and Operations on BST

•The average  depth of BST is O(log n).

• Implementation of BST using linked structure:
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Left Element Right
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Struct

struct Node{

int Element;

struct Node* Left;

struct Node* Right;

};

typedef struct Node* TNode;
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Left Element Right
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MakeEmpty

//used to initialise a tree

TNode MakeEmpty( TNode T ){

if( T != NULL ){

MakeEmpty( T->Left );

MakeEmpty( T->Right );

free( T );

}

return NULL;

}
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Find

•returns a pointer to the node in tree T that has key X:
- if T is NULL, then return NULL;
- if the KEY stored at T is X, then return T;
- Otherwise, make a recursive call on a subtree of T, 
either left or right, depends on the relationship of X 
to the key stored in T (greater than or less than)
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Find (2)

TNode Find( int X, TNode T ){

if( T == NULL)

return NULL;

else if( X < T->element )

return Find( X, T->Left );

else if( X > T->element )

return Find( X, T->Right );

else

return T;

}
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FindMin & FindMax

•Return the position of the smallest and largest 
elements in the tree. They return position not the 
values (keys). This is to be consistent with the Find 
method. 

•FindMin: start from the root, go left 
as long as there is a left child. The 
stopping point in the smallest element. 

9

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Dr. Radi Jarrar – Birzeit University, 2021

FindMin – Recursive Logic

//recursive implementation of the FindMin

TNode FindMin( TNode T ){

if( T == NULL)

return NULL;

else if( T -> Left == NULL)

return T;

else 

return FindMin( T->Left );

}
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FindMin – Iterative Logic

//non-recursive implementation of the FindMin

TNode FindMin( TNode T ){

if( T != NULL)

while( T->Left != NULL)

T = T->Left;

return T;

}
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FindMax – Recursive Logic

•FindMax: the same, except you have to go to the right 
child.

TNode FindMax( TNode T ){
if( T == NULL)

return NULL;
else if( T -> Right == NULL)

return T;
else 

return FindMax( T->Right);
}
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FindMax – Iterative Logic

//non-recursive implementation of FindMax

TNode FindMax( TNode T ){

if( T != NULL)

while( T->Right != NULL)

T = T->Right;

return T;

}
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Insert Routine

•To insert X into tree T, proceed down the tree as you would 
with a FIND. 

• If X is found, do nothing (or update, duplicates are handled 
by keeping an extra field in the node record indicating the 
frequency of occurrence). 

•Otherwise (X is not found), insert X at the last spot on the 
path traversed.
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Insert Routine
TNode Insert( int X, TNode T ){

if( T == NULL){
//create and return a 1-node tree
T = (struct Node*)malloc( sizeof( struct Node ) );

if( T == NULL)
printf(“Out of space”);

else
{

T->element = X;
T->Left = T->Right = NULL;

}
}
else if( X < T->element )

T->Left = Insert( X, T->Left);
else if( X > T->element)

T->Right = Insert( X, T->Right );
//else, X is in the tree already; do nothing

return T; }
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Delete
• The hardest operation – there are several possibilities (scenarios) to 

consider once a node is found to be deleted.

1. If the node is leaf, it can be deleted immediately;

2. If the node has one child, the node can be deleted after its parents adjust a 
pointer to bypass the node (draw the pointer directions explicitly for clarity 
as below);
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Delete (2)
3. Deleting a node with two children, steps:

a) replace the key of this node with the smallest key of the right 
subtree (which is easily found)

b) recursively delete that node (which is now empty)

• Because the smallest node in the 
right subtree cannot have a left 
child, the second delete is an easy 
one (i.e., a leaf node). The other 
case is that a node will have one 
child which is case#2.
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Delete (2)
TNode Delete( int X, TNode T )         

{             

TNode TmpCell;              

if( T == NULL )                 

printf( "Element not found" );             

else if( X < T->Element )  /* Go left */                 

T->Left = Delete( X, T->Left );             

else if( X > T->Element )  /* Go right */                 

T->Right = Delete( X, T->Right );             

else  /* Found element to be deleted */             

if( T->Left && T->Right )  

/* Two children */             

{                 

/* Replace with smallest in right 

subtree */                      

TmpCell = FindMin( T->Right );

T->Element = TmpCell->Element;

T->Right = Delete( T->Element, T-

>Right );             

}             

else  /* One or zero children */

{                 

TmpCell = T;                 

if( T->Left == NULL ) 

/* Also handles 0 children */ 

T = T->Right;

else if( T->Right == NULL )                     

T = T->Left;                 

free( TmpCell );             

}              

return T;         

} //end of Delete routine
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Time Analysis
• The previous operations should take O(log n) time except 

MakeEmpty. 

• This is because we descend a level in the tree in a constant time. 

• Thus we are operating on a tree that is roughly half large. 
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