Operational Amplifiers

1 Uploaded By: anonymous

STUDENTS-HUB.com

The Operational Amplifier

Very high voltage gain ; 200,000 Very High input impedance ; 10M ohm Very small output impedance ; 75ohm Designed to do mathematical operations such as addition , subtraction

Operational Amplifiers

Operational Amplifier

Let $\pm V_{cc} = \pm 15V$; Ad = 200,000

 $\therefore \pm V_{sat}$ =±13V

 \therefore If Vd > 65 μ V ; V₀ =+13V

 \therefore If Vd < - 65 μ V ; V₀ = -13V

5 Uploaded By: anonymous

STUDENTS-HUB.com

Op-amp Model in the Linear Region:

1)Vd
$$\cong$$
 0 \Longrightarrow V(+) = V(-)

2) i(+) = i(-) = 0

7 Uploaded By: anonymous

6

1. Inverting Amplifier Op-Amp is ideal a) Since V(+) = 0; \therefore V(-) = 0▲_is→ Ri And $i_s = \frac{v_s}{R_i}$ (Virtual ground) Vo b) Since i(-) = 0; \therefore $i_F = i_S$ $V_O = -\frac{R_F}{R_i} V_S$ c) $V_0 = -R_F i_F$ $V_0 = -R_F i_S$ $\therefore A_{CL} = -\frac{R_F}{R_F}$

STUDENTS-HUB.com

Uploaded By: anonymous

8

Analysis of an Inverting-Amplifier Circuit Using the More Realistic Op Amp Model

STUDENTS-HUB.com

Analysis of an Inverting-Amplifier Circuit Using the More Realistic Op Amp Model

$$\left(\frac{1}{R_s} + \frac{1}{R_i} + \frac{1}{R_f}\right)v_n - \frac{1}{R_f}v_o = \frac{1}{R_s}v_s$$

$$\left(\frac{A}{R_o}-\frac{1}{R_f}\right)v_n+\left(\frac{1}{R_f}+\frac{1}{R_o}\right)v_o=0.$$

$$v_o = \frac{-A + (R_o/R_f)}{\frac{R_s}{R_f} \left(1 + A + \frac{R_o}{R_i}\right) + \left(\frac{R_s}{R_i} + 1\right) + \frac{R_o}{R_f}} v_s$$

$$R_o \rightarrow 0, R_i \rightarrow \infty, \text{ and } A \rightarrow \infty$$

$$v_o = \frac{-R_f}{R_s} v_s$$

STUDENTS-HUB.com

Analysis of an Inverting-Amplifier Circuit Using the More Realistic Op Amp Model

$$v_{o} = \frac{-A + (R_{o}/R_{f})}{\frac{R_{s}}{R_{f}}\left(1 + A + \frac{R_{o}}{R_{i}} + \frac{R_{o}}{R_{L}}\right) + \left(1 + \frac{R_{o}}{R_{L}}\right)\left(1 + \frac{R_{s}}{R_{i}}\right) + \frac{R_{o}}{R_{f}}}v_{s}$$

$$R_{o} \rightarrow 0, R_{i} \rightarrow \infty, \text{ and } A \rightarrow \infty$$

$$v_{o} = \frac{-R_{f}}{R_{s}}v_{s}$$
13

STUDENTS-HUB.com

Uploaded By: anonymous

13

1. Inverting Amplifier

Design an inverting amplifier to provide $A_{CL} = -200$ Solution : $A_{CL} = -\frac{R_F}{R_i} = -200$

Let *R*_{*i*} = 20K

∴ **R**_F = 4000K

$$\therefore \frac{R_F}{R_i} = 200$$

STUDENTS-HUB.com

3TUD KOSHUB FIF

Op-amp Linear Applications: Non Inverting Amplifier

Design a non inverting amplifier to provide A_{CL} = 100

Solution : $A_{CL} = 1 + \frac{R_F}{R_i} = 100$ $\therefore \frac{R_F}{R_i} = 99$ Let $R_i = 10K$

STUBERTS-H9990K

Analysis of a Noninverting-Amplifier Circuit Using the More Realistic Op Amp Model

STUDENTS-HUB.com

At node a

$$\frac{v_n}{R_s} + \frac{v_n - v_g}{R_g + R_i} + \frac{v_n - v_o}{R_f} = 0.$$

at node b

STUDENTS-HUB.com

 $\frac{v_o - v_n}{R_f} + \frac{v_o}{R_L} + \frac{v_o - A(v_p - v_n)}{R_o} = 0$ Uploaded By: anonymous

$$v_o = \frac{[(R_f + R_s) + (R_s R_o / A R_i)]v_g}{R_s + \frac{R_o}{A}(1 + K_r) + \frac{R_f R_s + (R_f + R_s)(R_i + R_g)}{A R_i}}$$

where

$$K_{r} = \frac{R_{s} + R_{g}}{R_{i}} + \frac{R_{f} + R_{s}}{R_{L}} + \frac{R_{f}R_{s} + R_{f}R_{g} + R_{g}R_{s}}{R_{i}R_{L}}$$

$$R_o \rightarrow 0, R_i \rightarrow \infty, \text{ and } A \rightarrow \infty$$

$$v_o = \frac{R_s + R_f}{R_s} v_g$$
STUDENTS-HUB.com

4. Buffer , Unity Gain

- **1-** Since $V(+) = V_s$; \therefore $V(-) = V_s$
- 2- $V_0 = V(-) = V_s$

Buffer is a special Case of

non inverting amplifier for which:

23 Uploaded By: anonymous

STUDENTS-HUB.com

If we have n signal : let $R_F = (n-1)R$

 $V_0 = V_1 + V_2 + \dots + V_N$

STUDENTS-HUB.com

6. Voltage Subtraction

Using superposition a) Let $V_1 = 0$ $\therefore V_{o1} = -\frac{R_4}{R_3} V_2$ (Inverting amplifier) b) Let $V_2 = 0$

$$\therefore V_{o2} = (1 + \frac{R_4}{R_3}) \left(\frac{R_2}{R_1 + R_2}\right) V_1$$

(non inverting amplifier)

$$\therefore V_0 = (1 + \frac{R_4}{R_3}) (\frac{R_2}{R_1 + R_2}) V_1 - \frac{R_4}{R_3} V_2$$

STUDENTS-HUB.com

 $V_0 = \mathsf{m}(V_1 - V_2)$

Basic Difference Amplifier

26 Uploaded By: anonymous

STUDENTS-HUB.com

Basic Difference Amplifier

 $V_0 = \mathsf{m}(V_1 - V_2)$

 $Z_{i1} = R+mR$

 $Z_{i2} = \mathbf{R}$

*It has low input impedance

*To Change the gain, we must change two resistors.

Instrumentation Amplifier:

STUDENTS-HUB.com

Measuring small resistance change

STUDENTS-HUB.com

Measuring small resistance change

STUDENTS-HUB.com

ENEE3304 Project#1 :Water Temperature Controller

°C	Ohms	°C	Ohms	°C	Ohms	°C	Ohms	
-11	95.69	51	119.78	114	143.80	177	167.35	
		52	120.16	115	144.17	178	167.72	
-10	96.09	53	120.55	116	144.55	179	168.09	
_0	96 48	54	120.93	117	144 93			
-8	96.87	55	121.32	118	145.31	180	168.46	
-7	97.26	56	121.70	119	145.68	181	168.83	
-6	97.65	57	122.09			182	169 20	
-5	98.04	58	122.47	120	146.06	183	169.57	
-4	98 44	50	122.86	121	146 44	184	169.94	
-3	98.83			122	146.81	185	170.31	
-2	99.22	60	123.24	123	147.19	186	170.68	
-1	99.61	61	123.62	124	147.57	187	171.05	
	22.01	62	124.01	125	147.94	188	171.42	
0	100.00	63	124 39	126	148.32	189	171 79	
1	100.39	64	124 77	127	148 70			
2	100.78	65	125.16	128	149.07	100	172.16	
	101.17	66	125 54	120	140.45	101	172.53	
4	101.56	67	125.92	125	142.43	102	172.90	
	101.05	69	126 31	130	140.82	103	173.26	
	102.34	60	126.60	130	150.30	104	172.62	
	102.34	09	120.09	131	150.20	105	174.00	
é	102.75	70	122.02	132	150.05	105	174.00	
õ	103.12	21	127.45	134	151.33	190	174.24	
9	103.51		127.45	134	151.33	197	174.74	
10	103.00	72	127.84	135	151.70	198	175.10	
10	103.90	73	128-22	130	152.08	199	1/5.4/	
11	104.29	74	128.00	137	152.45	200	176.84	
12	104.88	75	128.98	138	152.83	200	175.84	
13	105.07	20	129.37	139	153.20	201	176.21	
14	105.40		129.75			202	1/0.5/	
15	105.85	78	130.13	140	153.58	203	176.94	
10	106.24	.79	130.51	141	153.95	204	177.31	
17	100.03			142	154.32	205	177.08	
18	107.02	80	130.89	143	154.70	206	178.04	
19	107.40	81	131.27	144	155.07	207	178.41	
		82	131.66	145	155.45	208	178.78	
20	107.79	83	132.04	146	155.82	209	179.14	
21	108.18	84	132.42	147	156.19			
22	108.57	85	132.80	148	156.57	210	179.51	
23	108.96	86	133.18	149	156.94	211	179.88	
24	109.35	87	133.56			212	180.24	
25	109.73	88	133.94	150	157.31	213	180.61	
26	110.12	89	134.32	151	157.69	214	180.97	
27	110.51			152	158.06	215	181.34	
28	110.90	90	134.70	153	158.43	216	181.71	
29	111.28	91	135.08	154	158.81	217	182.07	
		92	135.46	155	159.18	218	182.44	
30	111.67	93	135.84	156	159.55	219	182.80	
31	112.06	94	136.22	157	159.93			
32	112.45	95	136.60	158	160.30	220	183.17	
33	112.83	96	136.98	159	160.67	221	183.53	
34	113.22	97	137.36			222	183.90	
35	113.61	98	137.74	160	161.04	223	184.26	
36	113.99	99	138.12	161	161.42	224	184.63	
37	114.38			162	161.79	225	184.99	
38	114.77	100	138.50	163	162.16	226	185.36	
39	115.15	101	138.88	164	162.53	227	185.72	
		102	139.26	165	162.90	228	186.09	
40	115.54	103	139.64	166	163.27	229	186.45	
OTUDEN41	115.93	104	140.02	167	163.65			
SIUDEN4S-F	ULLCOM 1	105	140.39	168	164.02	230	Uploaded_By: anonymo	JS
43	116.70	106	140.77	169	164.39	231	187.18	

To detect the temperature of water, commonly used resistance-temperature detector (RTD) PT100 is used. It is connected to one of the arms of a Wheatstone bridge as shown in the figure RTD PT100 has a resistance of 100 ohms

Before using this circuit, the following adjustments have to be made. First, immerse the RTD in ice water (0oC) and adjust preset VR1 such that the bridge becomes balanced and the output of IC3 becomes oV. Next, immerse

the RTD in boiling water and slightly adjust preset VR2 such that the output of IC3 becomes 6V.

Water Temperature Controller

Basic Bridge Amplifier

Sensor ∽ R+∆R ▲ Vcc \sim R1 + Vo \sim -Vcc Ε R1 R₹

Prove that

$$V_o = - E \left(\frac{\Delta R}{R_1 + R} \right)$$

$\boldsymbol{V_o} = \Delta \boldsymbol{R}$

Place the circuit in the reference tempareture (T=100F) and measure the total resistance of the thermistor(R=5k)

Electronic Thermometer

37 Uploaded By: anonymous

STUDENTS-HUB.com
Voltage to current Converter RL a) Floating load Ri li Since V(+) = Vi \therefore V(-) = Vi $I_{i} = \frac{V_{i}}{R_{i}}$ $I_{L} = I_{i} = \frac{V_{i}}{R_{i}}$

38 Uploaded By: anonymous

High-Resistance DC Voltmeter

STUDENTS-HUB.com

Current to Voltage Converter

STUDENTS-HUB.com

Constant High Current Source

Single Supply Op-amp

The Maximum possible swing = 26V peak to peak

STUDENTS-HUB.com

Single Supply Op-amp

45 Uploaded By: anonymous

Single Supply Op-amp

DC Equivalent ckt:

STUDENTS-HUB.com

The Maximum possible swing = 16V peak to peak STUDENTS-HUB.com

STUDENTS-HUB.com

Comparator : Zero –Level detector

When vd > 0V; $V_0 = +V_{sat}$

When vd < 0V; $V_0 = -V_{sat}$

STUDENTS-HUB.com

Comparator : Zero –Level detector

STUDENTS-HUB.com

Non Zero –Level detector

STUDENTS-HUB.com

Practical Non Zero – Level detector

The pressure sensor generates a voltage proportional to the water level in the tank

When water level reaches the maximum allowable lever Vi = 2VSTUDENTS-HUB.com

V(-) = 2V

When $V_i > 2V$; $V_0 = +V_{sat}$ When $V_i < 2V$; $V_0 = -V_{sat}$

52

Voltage–Level detector with LEDs:

When
$$V_i = 2V$$
; $V_0 = 0$
 \therefore green LED and the Red LED are OFF

53 Uploaded By: anonymous

Over Temperature sensing Circuit

R1 \uparrow as T \downarrow **R1** = Resistance of the thermistor. A Vcc R2 is set equal to the resistance of the ACN Relav N.O thermistor at the critical temp. **≶**R R1 This is the thermistor R = 100kRb **1)**At Normal temperature $(T < T_c)$ R2 $R_1 > R_2$ $V(+) = \frac{R_2}{R_1 + R_2} \quad V_{CC} < \frac{1}{2} \quad V_{CC}$ $V(-) = \frac{1}{2} V_{CC}$ ∴ Relay is denergized \therefore switch is open \therefore V(-) > V(+) , \therefore V_{op} = -V_{sat} ∴ Lamp is OFF

: transistor is cut OFF ; $I_C = 0$ STUDENTS-HUB.com

Uploaded By: anonymous

54

Over Temperature sensing Circuit

- transistor is in cut OFF
- $I_C = 0$
- ∴ Relay is denergized
- ∴ switch is open
- STUDE AMP IS OFF

Over Temperature sensing Circuit

- ∴ transistor is conducting
- ∴ Relay is energized

STLEAMSHIS ON

The signal Vi is noisy The noise will produce a false turn off spike

The solution is *Schmitt Trigger Comparator*

When Vi > Vref(U)Vo switch to + Vsat When Vi < Vref(L)• Vo switch to - Vsat (This case should not happen in this application)

We must have two references

Schmitt Trigger Comparator Vcc Vo 1. Assume $V_0 = + V_{sat}$ V(-) = ViVi(t) -Vcc $V(+) = \frac{R_2}{R_1 + R_2} (+ V_{sat}) = V_{UT}$ R2 vd > 0 $\frac{R_2}{R_1 + R_2}$ (+ V_{sat}) - $V_i > 0$ $\therefore V_i < \frac{R_2}{R_1 + R_2} \ (+ V_{sat})$ Inverting Schmitt trigger comparator \therefore as long as $V_i < \frac{R_2}{R_1 + R_2} (+ V_{sat})$ hysteresis $V_0 = + V_{sat}$ VUT But when $V_i > \frac{R_2}{R_1 + R_2} (+ V_{sat})$ V₀ switch to (- V_{sat}) STUDENTS-HUB.com Uploaded By: anonymous

Schmitt Trigger Comparator

60 Uploaded By: anonymous

Schmitt Trigger Comparator

- Hysteresis voltage $\equiv V_H = V_{UT} V_{LT}$
- $V_{UT} \equiv Upper Threshold voltage$
- $V_{UT} = \frac{R_2}{R_1 + R_2} \left(\neq V_{sat} \right)$
- $V_{LT} \equiv$ Lower Threshold voltage

$$V_{LT} = \frac{R_2}{R_1 + R_2} \left(-V_{sat}\right)$$

⁶² Uploaded By: anonymous

Room Thermostat

13

Fig. 2. Complete circuit diagram for the Room Thermostat. The connections to the "relay" are for the low voltage switchin only.

63 Uploaded By: anonymous

Room Thermostat

Fig. 2. Complete circuit diagram for the Room Thermostat. The connections to the "relay" are for the low voltag only.

	IC1 = 1 m 35 DZ			
	IC2 = LM324	R1 = 390K	R5 = 100K	Rq = IOK
	IC3 = MA741	R1 = 10K	R6= 100K	RID = IOK
	IC4 = 4001B	R1 = 10K	R7 = 2.7 mm	R 11 = 2.2K
	TRI = 2N3702	VRI = 47K	R8 = 6.8K	$R_n = 2.2K$
STUDEN	TS-HUB.com = 2N 3702	Ry = 30K	Uploaded	R ₁₁ = 0.68k d By: anonymous

Schmitt Trigger Comparator

Room Thermostat

STUDENTS-HUB.com

Schmitt Trigger Comparator

: As long as $V_i < 4.072$ V; $V_0 = -V_{sat}$ But when $V_i > 4.072$ V; V_0 switch to $(+V_{sat})$

STUDENTS-HUB.com

Schmitt Trigger Comparator

1)When T > 10.37 C, Vo = +Vsat Transistor (2) is Off, Relay is denergized and Heater is Off.

2)Then T < 9.44 C, Vo = -Vsat Transistor (2) is On, Relay is energized and Heater is on.

- Inverting Amplifier
- Let Vi = 0

 $V_{OS} \equiv$ the output voltage when $V_i = 0$

STUDENTS-HUB.com

Current source in parallel with short

short

Current source in parallel with a resistor

Voltage source in series with the same resistor

STUDENTS-HUB.com

Inverting Amplifier

$$V_0 = -\frac{R_f}{R_I} V_s$$

74 Uploaded By: anonymous

STUDENTS-HUB.com