DC power supply: Hohammed Sa'del Transformer $n:1$ $42 - 10$ $(2 - n)$ 3 Rectifier A) Half wave rectifier $V_{0,av} = \frac{\sqrt{3}}{2}$ $\zeta_{\Delta, \text{av}} = \frac{\sqrt{m}}{\pi R_1}$ $\ell = \ell_{\circ}$ $I_{FM} = \frac{1}{\pi R_1}$ $PIV = \sqrt{R\mu} = -V_m$ B) Full Wave rectifier 1 Center-tapped transformer full-wave rectifier -70 $N_{o,av} = 2V_m$ $f = 2f_0$ $\frac{2V_m}{\pi R_1}$ $\zeta_{o,av} = I_{\tau u}$ = $PIU = V_{\ell\mu} = -2Um$

STUDENTS-HUB.com

Uploaded By: Mohammed Saada

② Bridge full-wave rectifier $V_{o,av} = 2V_m$ $T=\frac{1}{2}T_0$ $\frac{1}{\pi}$ $C_{\text{o,av}} = I_{\text{FML}} = \frac{2V_m}{\sqrt{2\pi}} = 2f_{\text{o}}$ $\overline{\pi}$ e $PIV = \sqrt{R\mu} = -\sqrt{m}$ 3) Filter $Ripple$ factor $N = \frac{RMS}{M}$ x 100% Average value of output signal for triangular signal $RMS = \frac{PeakValue}{\sqrt{3}}$ Or $RMS = Re^{k-k-1}$ - Peak Value $\overline{2\sqrt{3}}$ - $\frac{V_{L7, P-1}}{2\sqrt{3}}$ $r=\frac{V_{cr, p-p}}{2F}$ $\frac{2}{3}$ $\overline{\vee_{L}}$, \overline{dc} $V_{L,dc} = V_{L,av} = V_{m-\frac{\lambda}{2}}V_{L,r,\rho-P}$

for Half-wave rectifier $V_{Lr, p-p} = \frac{V_m}{R}$ FoRC \Rightarrow r= $\frac{1}{\sqrt{27}}$ $\frac{1}{\sqrt{3}(2f.R.C-1)}$ 1) x loo). for full-wave rectifier $V_{Lr, p-\rho} = \frac{V_m}{\rho R}$ $2P_0RC$ \Rightarrow $r=\frac{1}{\sqrt{3}(4f_0Rc-1)}$ x 100% Regulator with Zener diode : Zener in the Break down region : I z (min) $\langle I_z \rangle$ I_z (Fz (max) \mathbf{r} u^2 Design for Rs R_{L} **t** J_{S} \overline{I}_{2} \overline{I}_{1} \overline{R}_{1} \overline{R}_{2} \overline{I}_{0} · $\leq \frac{\sqrt{s(\min)} - \sqrt{2}}{I_{L(\max) +} I_{2(\min)}}$ $\sqrt{s_{s(max)}-s_{z}}\leq Rs$ $\overline{\mathcal{I}_{L\,C}}_{min}) + \mathcal{I}_{L\,C}$ max)

AC Small Signal analysis for diodes $\overrightarrow{C}_{\Omega}(t) = I_{\Omega Q} + \overrightarrow{C}_{\Omega}(t)$ $\boldsymbol{\eta}$ DC component Al component $v_{D^{(t)}} = v_{D\omega} + v_{N^{(t)}}$ \boldsymbol{r} DC component AC component $V_0(t) = V_0 \omega + V_0(t)$

DC component AC component
 $V_d = \frac{cd}{d}$, $V_d = \frac{V_T}{I_0 \omega}$, $V_T = 25.69 \text{ mV}$ Ed Q

STUDENTS-HUB.com

Uploaded By: Mohammed Saada

In Cutoff region I_c = I_g = I_e = \circ In saturation region For $n \rho n$: $\sqrt{CE} = \sqrt{CE}$, sat z o. 2 Volt \triangle _{BE} = 0.8 Volt. P_{or} ρ_{np} : $V_{\text{CE}} = V_{\text{CE}} \text{set} = -0.2 U_{\text{e}}/k$ to verify that BJT in saturation region $I_{\beta(\text{min})} = \frac{I_{c, \text{self}}}{\beta}$ I_3 > I_4 (min) BJT in Saturation region IB < IB (min) BJT in active region AC Small Signal analysis $h_{fe} = \beta$, $h_{ce} = \frac{\sqrt{T}}{I_e}$; $\sqrt{T} = 25.69 \text{ mV}$ $h_{12} = \alpha$ $hib = \sqrt{T}$

STUDENTS-HUB.com

Uploaded By: Mohammed Saada

OP-Amp

 \vec{c} (+) = \vec{c} (-) = 0

is Linear region ear region
-> there is regative feedback. $\frac{1}{2}$
(here is negative form is negative form in the $\frac{1}{2}$ 1) Inverting Amplifier Jo = $\frac{1}{\log_{c}k}$.
 $-\frac{R_{F}}{R_{i}}$ $\sqrt{1-R_{F}}$ $2)$ Inverting Adder V_0 = $-(\frac{R_{F}}{R_{I}})U_{I} +$ $\frac{R_{F}}{R_{1}}V_{t} + \frac{R_{F}}{R_{1}}V_{2}$ 3) Non-Inverting Amplifier $\sqrt{0} = (1 +$ $\frac{V_{S}}{R_{E}}$ $V_{L} + \frac{R_{E}}{R_{I}}$
 $\frac{R_{E}}{R_{C}}$ V_{L} V_{L} $4/$ subtraction $V_0 = (1 + \frac{R_F}{\rho_0})V(t) - \frac{R_F}{\rho_0}V_1$ R_i
 $V_0 = -\left(\frac{p_F}{R_i}U_i + \frac{p_F}{R_i}U_i\right)$

plifier $V_0 = \left(1 + \frac{p_F}{R_i}\right)$
 $\left(1 + \frac{p_F}{R_i}\right)U(t) - \frac{p_F}{R_i}U_i$

Amplifier $V_0 = \left(1 + \frac{2}{\epsilon}\right)$ S) Instrumentation Amplifier $\sqrt{u} = (1 + \frac{2}{a}) (v_1 - v_1)$ 2 Non-Linear (comparator) - > there is neither negative nor positive Feedback . $When \gamma_{d} > 0 \implies d(t) > \gamma_{0} = + \sqrt{3}at$ When $\begin{array}{l} \sqrt{d} & \sqrt{0} & \rightarrow & \sqrt{1+1} & \sqrt{1-1} & \rightarrow \sqrt{0}= & -\sqrt{2} \text{d} \end{array}$

^⑮) Schmitt trigger - > there is positive feedback find V_{UT} and V_{LT} by assume :
1) $\sqrt{a} = \pm \sqrt{3}at \implies \sqrt{a} \ge 0$) کے سے علم ہولا ہے کہ (ا
اس کے سالہ کو علم ہولا ہے
اس کے سالہ کو علم کے مسلم ک

STUDENTS-HUB.com Uploaded By: Mohammed Saada

Voltage Regulator 1) Simple Discrete Regulator $\sqrt{6} = (1 + \frac{R_1}{R_2})\sqrt{2}$ Simple Discrete Regulator
 $\sqrt{6} = (1 + \frac{R_1}{R_2})V_2$
for current limiting $R_{sc} = \frac{6.7}{16}$ 7 $IL(MAX)$ 2) EC Regulator $V_o = V_{reg}$ (1+ $\frac{\beta_{2}}{\beta_{1}}$ + Ru Fo

FET F E T
|
| JFET MOSFET I n - channel ρ -channel J DUOSFET EUOSFET UNOSFET ENOSFE

Julie - Channel n-Channel a-che

Channel P-Channel n-Channel a-che U-Channel P-Channel n-Channel p-channel I JFET $\mathcal{I}_{\mathsf{DS}}$ = $\mathcal{I}_{\mathsf{DS}}$ (1- $\frac{165}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\frac{1}{16}$ $\mathbf D$ A) n-channel
 $\frac{1}{2}$ $\frac{1}{$ $10s$ n-channel
Jp , Vas negative G-S Pinch off region \rightarrow $\sqrt{p} < \sqrt{q} s \leq 0$ $\vert \gamma^{02} \vert > \vert \gamma^{b} \vert - \vert \gamma^{g} \vert$ β) ρ -channel $\uparrow \mathcal{I}$ وه J_{β} , $J_{\alpha s}$ positive $\overline{J_{s}}$
 \rightarrow 0 \leq $\sqrt{a_{1}}$ Pinch offregion $\mathcal{N}_{\rho_{1}}\geq 1$ $\mathcal{N}_{\rho_{1}}\geq 1$ STUDENTS-HUB.com Uploaded By: Mohammed Saada

E DMOSFET L_{DS} = I_{DSS} $\left(1 - \frac{\sqrt{q}}{\sqrt{p}}\right)^2$ A) n-channel negative م کروهاک Pinch off regio $\sqrt{2}$ $\sqrt{2}$ D B) P-Channel $PostFive G -$ S \rightarrow $\sqrt{a} s$ pinch off region < Jasktas-P 3 EMOSFET $\mathcal{I}_{\mathcal{D}^{\mathcal{S}}} = \mathcal{K}_{n}(\nu_{\mathcal{G}_{\mathcal{S}}} - \nu_{\tau})^{2}$ A) n-Channel B) P-channel in pinch off in pinch off 3) EMOSFET
 $I_{DS} = K_n (V_{GS} - V_T)^2$

A) n - Channel B) P Channel

P in pinch off in pinch off D

region region region
 θ

S $V_{GS} > V_T$ positive θ region
Y_{GS}>VT positive $\boldsymbol{\beta}$ \Box \vee Gs L \vee negative For both: $|\sqrt{\Delta s}|/|\sqrt{\Delta s}-\sqrt{\Delta t}|$

STUDENTS-HUB.com Uploaded By: Mohammed Saada

AC Smell Signal analysis ? > For JFET and DUOSFET $g_{m} = -2$ TOSS $(1 - \frac{\sqrt{6}}{4})$ => For EMOSFET $\mathcal{G}_{m} = 2K_{n} (V_{GS} - V_{T})$ $\mathcal{J}_m = 2 \sqrt{k_n} I_{DS}$ Drain equivalent Circuit: - What's in the Drain Stay the Same
- What's in the Source multiply By (4+1)
- Yg multiply i3y M. en économe Source equivalent Circuit. - What's in the Source Stay the same.
- What's in the Drain clivide By (H+1) $U_{\mathbf{g}}$ multiply $B \frac{\mu}{\mu + 1}$ $1 = \frac{g_{m}}{g_{m}}$ rds $LD(6n)$ $($ \lnot \lnot STUDENTS-HUB.com