

Phys111 Report

Experiment #4: DC Circuit

Name:	Malek Zeghari	ID #:	1230358
Partner:	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ID #:	///////////////////////////////////////
Section:	W01		
Date:	26\12\2023		

(1) Abstract:

Aim of the experiment:

To calculate the value of an unknown resistance and to find if it ohmic or non-omhic, and to find the value of $R_{\rm p}$.

o The main results are:

$$R = 100 \pm 11 \Omega$$

$$R_s = 300 \pm 50 \Omega$$

$$R_p = 62 \pm 14 \Omega$$

(2) Data:

Part A: One resistor circuit

	1.	2.	3.	4.	5.	6.
I (mA)	5mA	10mA	15mA	20mA	25mA	30mA
V (volts)	0.5v	1.0v	1.5v	2.0v	2.5v	3.0v

Part B: Two resistors in series

$I_s = 16\text{mA}$	$V_s = 5 \text{V}$
$\Delta I_s = 1 \text{mA}$	$\Delta V_s = 0.5 \text{mA}$

Part C: Two resistors in parallel

$I_p = 80 \text{mA}$	$V_p = 5$ V
$\Delta I_p = 10 \text{mA}$	$\Delta V_p = 0.5 \text{V}$

Note: the result of V, I in ΔR is the average of my readings in the experiment.

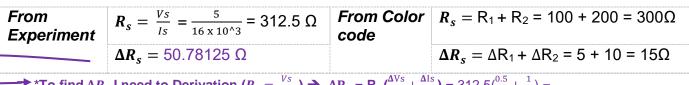
 $V_{average} = 1.75 \Omega$

 $I_{average} = 17.5 \Omega$

(3) Calculations:

Part A: One resistor circuit

From the Graph :(in the last page)


From Graph	$R = 100 \Omega$	From Color	$R = 100 \Omega$
	$\Delta R = 11.42857143 \ \Omega$	code	$\Delta R = 5 \Omega$

To find ΔR I need to Derivation (R = $\frac{V}{I}$) \Rightarrow ΔR = R $\times (\frac{\Delta V}{V} + \frac{\Delta I}{I}) = 100 \times (\frac{0.1}{1.75} + \frac{1}{1.75}) = 11.42857143$

Resistance form color code

Brown	Black	Brown	Gold	
$R_1 = 100 \pm 5 \Omega$				
Red	Black	Brown	Gold	
$R_2 = 200 \pm 10$				

Part B: Two resistors in series

*To find ΔR_s I need to Derivation ($R_s = \frac{Vs}{I_s}$) $\Rightarrow \Delta R_s = R_s (\frac{\Delta Vs}{V_s} + \frac{\Delta Is}{I_s}) = 312.5(\frac{0.5}{5} + \frac{1}{16}) =$

Part B: Two resistors in series

From Experiment
$$R_p = \frac{Vp}{Ip} = \frac{5}{80 \times 10^{\circ}3} = 62.5 \Omega$$
 From Color code $R_p = \frac{R1 \times R2}{R1 + R2} = \frac{100 \times 200}{100 + 200} = 66.6667\Omega \approx 70\Omega$ $\Delta R_p = 14.0625 \Omega$

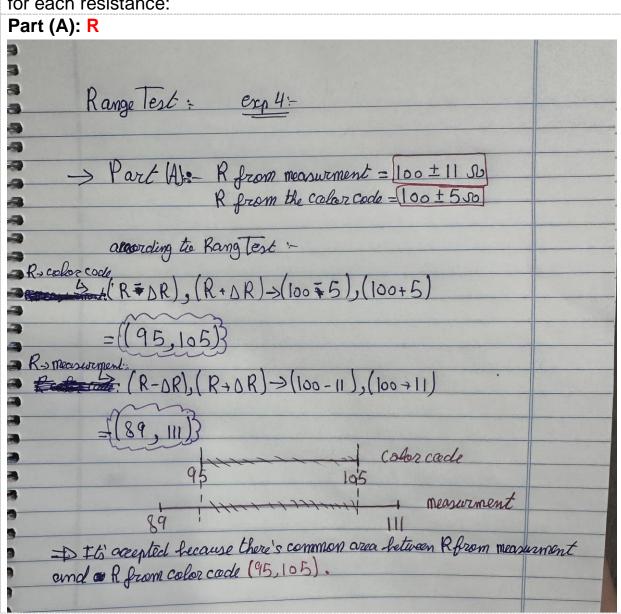
→*To find ΔR_p I need to Derivation $(R_p = \frac{Vp}{Ip})$ → $\Delta R_p = R_p(\frac{\Delta Vp}{Vp} + \frac{\Delta Ip}{Ip}) = 62.5(\frac{0.5}{5} + \frac{10}{90}) =$

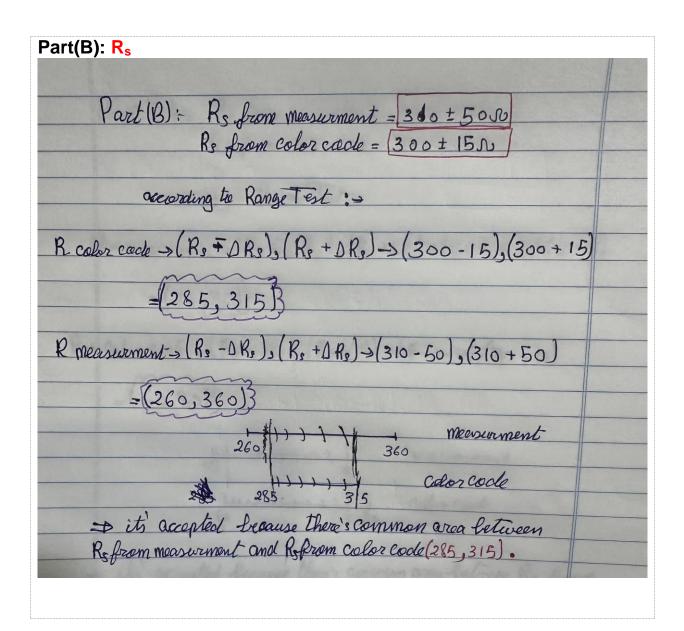
(4) Results:

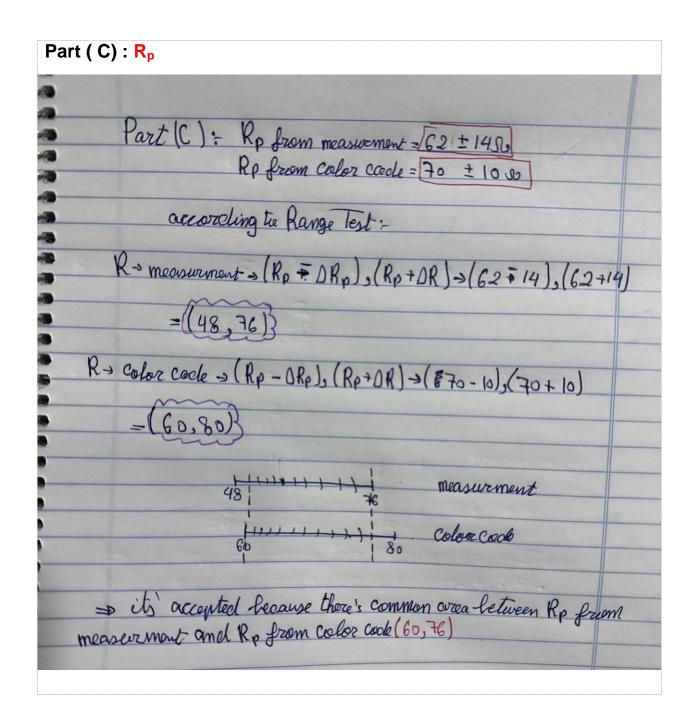
$$R_s = 100 \pm 11 \Omega$$

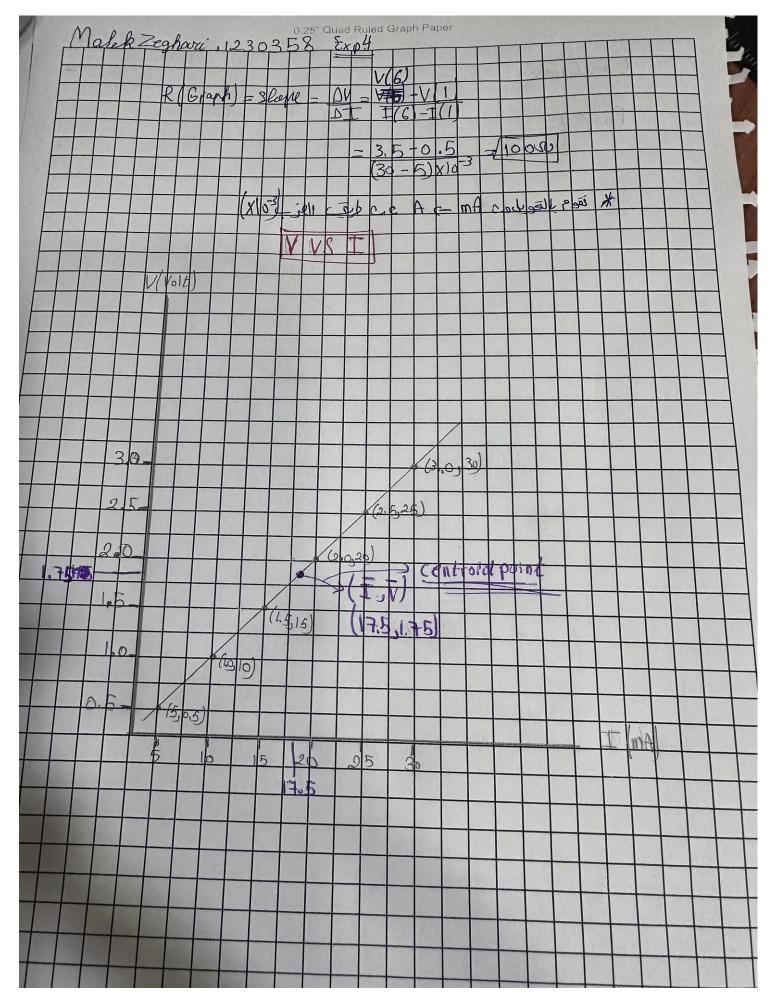
$$R_s = 310 \pm 50 \Omega$$

$$R_p = 62 \pm 14 \Omega$$


<u>I want to suppose</u>: $A = R_1 \times R_2$, $B = R_1 + R_2 \rightarrow A = 100 \times 200 = 20000 /// B = 100 + 200 = 300$


 $\Delta A = R_1 \times \Delta R2 + R_2 \times \Delta R1 : \Delta B = \Delta R1 + \Delta R2 \rightarrow \Delta A = 100 \times 10 + 200 \times 5 = 20000 /// \Delta B = 10 + 5 = 15$ diff. A, B →


*To find ΔR_p I need to Derivation ($R_p = \frac{\text{R1 x R2}}{\text{R1 + R2}}$) = $\Delta R_p = (\frac{\text{A}}{\text{B}})$ $\Delta R_p = \text{Rp x}(\frac{\Delta \text{A}}{\text{A}} + \frac{\Delta \text{B}}{\text{B}}) = 66.6667(\frac{2000}{20000} + \frac{15}{300}) =$


(5) Conclusions:

After I did the readings and calculations in the experiment, if I want to know if the results are acceptable or not, I need to make the **range test** for each resistance:

