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Linear Time invariant system in Laplace and time domains:

Poles and Zeros of LTI Systems:
Given the transfer function of a proper system i(primitive rational function):

𝑇 𝑠 =
𝛽𝑚𝑠𝑚+𝛽𝑚−1𝑠

𝑚−1+⋯+𝛽1𝑠
1+𝛽0

𝛼𝑛𝑠𝑛+𝛼𝑛−1𝑠𝑛−1+⋯+𝛼1𝑠1+𝛼0
with 𝑚 < 𝑛

System Zeros:
A system zero is defined  as the value 𝑠𝑧 at which 𝑇 𝑠𝑧 = 0.
A system zero can be a zero at finite or infinite.
A proper system has 𝑛 − 𝑚 zeros at infinite, that is those that satisfy the relation lim

𝑠→∞
|𝑇 𝑠 | = 0 .

System Poles:
A system pole is defined  as the value 𝑠𝑝 at which lim

𝑠→𝑠𝑝
|𝑇 𝑠 | = ∞.

A system pole can be a pole at finite or infinite.
An improper system (improper: 𝑚 ≥ 𝑛) has 𝑚 − 𝑛 poles at infinite, that is those that satisfy the relation lim

𝑠→∞
|𝑇 𝑠 | = ∞
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Effect of poles on system response:
The  poles number and locations (system transfer 
function roots ) determine the shape and the time 
performance of the transient response:
• Left-side poles generate a response that vanishes for 

𝑡 → ∞, whereas right-side poles transient diverges
• Real-axe poles do not produce oscillation in the time 

response.
• Imaginary axe poles produce an undamped 

oscillation response.
• Complex poles produce oscillation in the response.
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• Transient time performance depends on the relative distance 
between the imaginary axe and the pole location. That is the 
magnitude of the real part of the pole. Higher distance →
Higher performance and faster transient. The time constant 

of a pole 𝑠𝑝 is defined as 𝜏𝑝 = −
1

𝑅𝑒(𝑠𝑝)

• Oscillation frequency depends on the relative distance 
between the real axe and the pole location. That is the 
magnitude of the imaginary part of the pole. Higher distance 
→ Higher oscillation frequency and smaller period with higher 
density of oscillation cycles.

• Poles that are located on the same line have different time 
performance and oscillation frequency but equal damping 
ratio and relative overshoot value.
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Dominant Poles:
• The set of dominant poles are those proximal to 

the imaginary axe  and from the more distal poles 
with min(𝜏𝑑𝑜𝑚) > 5 ×max(𝜏𝑛𝑜𝑛−𝑑𝑜𝑚). The 
dominant poles has slower transient response and 
thus they are the objective of the control problem. 

• Considering the dominant poles reduces the order 
of the control system and the design of the 
controllers. 

Pole-Zero Cancellation: zeros and poles can be set at the same 
position to cancel the effects of each other. Cancellation can be 
employed in controller design to cancel undesired effects or to 
reduce the order of the system(if it is a design degree of  
freedom)
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Effect of Zeros:
• The zeros affect the response amplitude.
• The effects of the zeros are more evident when they are more proximal to the dominant poles (zeros with smaller real part 

has a higher time constant and has a more evident effect on the system response).
• The zeros affect the response phase.
• A real zero (or the real part of a complex zero) introduces a derivative and proportional effect in the response without zero.
• For more distal zeros (from the imaginary axe) the proportional effect is higher than the derivative effect (fast zero effect). 

For the nearer zeros, the derivative effect is higher than the proportional one.   
• Slower zeros cause higher signal overshoot because of the added positive value of the derivative.
• A left-side complex zero has a positive phase and thus an anticipation effect.
• A right-side complex zero has a negative phase and thus introduces a delay effect.
• A right-side zero with a smaller derivative effect than the proportional part may cause initial phase inversion. 
• Asymptotically stable systems with only left-side zeros are said to be minimum-phase systems
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Performance parameters:
Performance parameters are used to set, evaluate, and compare the behavior of 
stable dynamic systems.
Time performance parameters:
• Rising time 𝑡𝑟𝑖𝑠: the time necessary for the response to rise from 10% to 90% of 

its final value.
• Delay-time 𝑡𝑑: the time necessary for the response to reach 50% of its final value.
• Steady-state time (Settling time) 𝑡𝑠𝑒𝑡: at p% error: the time necessary for the 

response to reach and stay in ±0.0𝑝 around its final value.
• Peak time 𝑡𝑝𝑛: the time of the local maximum and minimum values of the 

response.
• Overshoot time 𝑡𝑜𝑣: the time of the maximum deviation of the response from its 

final value.
Value Performance parameters:
• Overshoot (𝑂𝑉): the maximum deviation between the response and its final steady state value. 

𝑂𝑉 𝑡𝑜𝑣 = 𝑦𝑚𝑎𝑥(𝑡𝑜𝑣) − 𝑦𝑓𝑖𝑛𝑎𝑙. This parameter depends on the input value.

• Relative Overshoot (𝑂𝑉𝑟): the ratio of the overshoot and the response final value. That is 𝑂𝑉𝑟

=
𝑦𝑚𝑎𝑥(𝑡𝑜𝑣)−𝑦𝑓𝑖𝑛𝑎𝑙

𝑦𝑓𝑖𝑛𝑎𝑙
independent of the input value but requires the knowledge of the final value.

• Percentage Overshoot (𝑂𝑉𝑟%): the ratio of the overshoot and the response final value. That is 

𝑂𝑉𝑟 =
𝑦𝑚𝑎𝑥(𝑡𝑜𝑣)−𝑦𝑓𝑖𝑛𝑎𝑙

𝑦𝑓𝑖𝑛𝑎𝑙
× 100%
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First Order System Step response:

Time constant and steady-state approximation:

• The time constant is defined as 𝜏 =
1

𝑎

• Steady-state time: is the time at which the steady state 
response is assumed to be reached accepting and tolerating a 
defined maximum error value (because operations with the 
system can not be done for 𝑡 → ∞). 

• The most used in Engineering is 𝑡𝑠𝑡𝑒𝑎𝑑𝑦=4𝜏 with approximately 

𝑒𝑟𝑟𝑜𝑟𝑠𝑡𝑒𝑎𝑑𝑦=2%
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Second Order System:

The response of a stable second-order system has four shapes 
according to the classification of the poles of the system (roots 
of the characteristic algebraic equation.
• Overdamped oscillation response (no oscillation): real and 

different poles 𝜁 > 1 (positive discriminant)
• Critically damped response (change in convexity-start of 

oscillation: real and equal poles  𝜁 = 1 (discriminant=0)
• Undamped oscillation response (sustained oscillation): 

imaginary poles 𝜁 = 0 (negative discriminant with 
Re(pole)=0)

• Underdamped oscillation response:(damped oscillation): 
complex roots 0 < 𝜁 < 1 (negative discriminant with 
𝑅𝑒(𝑝𝑜𝑙𝑒) ≠ 0)
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Second-order system-performance parameters
The underdamped response will be taken to determine the performance parameters because it has the 
maximum number of performance parameters.
Polar and cartesian representation: 
a complex pair of system poles can be represented in:
cartesian  form: 𝑠1,2 = 𝛼 ± 𝑗𝜔𝑑 𝛼: 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟, 𝜔𝑑: 𝑑𝑎𝑚𝑝𝑒𝑑 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

Polar form: 𝑠 = 𝜔𝑛𝑒
𝑗𝜃 𝜁 = 𝑐𝑜𝑠𝜃: 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜, 𝜔𝑛: 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

Relations between polar and cartesian representations:

𝛼 = 𝜔𝑛 cos 𝜃 = 𝜔𝑛𝜁 , 𝜔𝑑 = 𝜔𝑛 sin 𝜃 = 𝜔𝑛 1 − 𝜁2

𝜔𝑛 = 𝛼2 + 𝜔𝑑
2, 𝜃 = −𝑡𝑎𝑛−1(

𝜔𝑑

𝛼
)

Under damped Step response: 

By computing the parameters using partial fractions and adjusting the 
function form to have the Laplace cosine and sine expression: 

using the Laplace inverse  we obtain:
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Performance parameters of the second-order system:
The most used performance parameters of the second-order system are the settling time, the overshoot time, and the 
overshoot value with all its variants.
Settling time at p% error:
To simplify computation it is assumed that the settling time is reaches at the first peak after the 0.0p, that is we consider 
a smaller error that satisfies the requirements. Thus, considering 

we have to solve the equation:  
1

1−𝜁2
𝑒−𝜁𝜔𝑛𝑡𝑠𝑒𝑡 = 0.0𝑝

Solving for 𝑡𝑠𝑒𝑡 we obtain: 𝑡𝑠𝑒𝑡 =
−ln(0.𝑜𝑝 1−𝜁2)

𝜁𝜔𝑛
at 2% this result is approximated as 𝑡𝑠𝑒𝑡_2% =

4

|𝜁𝜔𝑛|
=

4

|𝛼|
= 4𝜏

Peak and overshoot time:
The peak time is periodic and obtained by computing equating the derivative of the step response c(t) to zero. 
Since the underdamped response of the second order system is strictly decreasing, the overshoot time is obtained at the 
first peak value. Considering: 

and the inverse of the derivative 

Thus the overshoot time is: 

Applying Laplace inverse

↔
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Overshoot evaluation: using and

compute

Applying 𝑐𝑓𝑖𝑛𝑎𝑙 = 1 in the percentage overshoot equation we obtain

Moreover, in the design problem, we can compute the damping ratio necessary to obtain a specific percentage overshoot by:

Uploaded By: 1201458@student.birzeit.eduSTUDENTS-HUB.com



Example:  Consider the following system and determine the moment of inertia and the damping coefficient to 
20% overshoot and a 2% ERROR settling time of 2 seconds for a step torque input.

→

→

→
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Control Systems Representation

Block and Signal-flow Diagrams
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Block Diagrams and Signal-flow Diagrams:
• A control system is composed of several subsystems that interact and exchange signals and employ signal combination 

through sum nodes  and distribution through derivation points. 
• A simple representation that describes the subsystems  interaction and signal flow become necessary to analyze and 

study.
• Block diagrams and Signal-flow diagrams are among the most used universal languages in control systems.
• An analogy relation exists between Block diagrams and signal flow diagrams. That is between the input and output 

vocabularies of the these languages and  their grammar.
• Whenever, these representation are used, it is inherently assumed that the chain rule is satisfied, that is the connection 

of two subsystems does not affect the validity of their mathematical models. That is each system maintains its transfer 
relation.

• Specific subsystems interconnection (cascade, parallel, and feedback) and other rules related to signals combination 
(sum nodes) and extraction (derivation points) are used to reduce the system representation to an equivalent one that 
includes only the necessary components for the control systems objectives.
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Block Diagrams:
The basic input vocabulary components of the block 
diagrams are shown in figure, with the signal represented 
by an arrow, system transfer relation (gain) represented by 
a block and signal combination and extraction represented 
by sum and derivation nodes. 

Block Algebra:
• Cascade connection

• Parallel connection
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• Feedback connection 𝐶 𝑠 = 𝐺 𝑠 𝐸 𝑠
𝐸 𝑠 = 𝑅 𝑠 − 𝐻 𝑠 𝐶 𝑠 = 𝑅 𝑠 − 𝐻 𝑠 𝐺 𝑠 𝐸 𝑠 →

𝐸 𝑠 1 + 𝐻 𝑠 𝐺 𝑠 = 𝑅 𝑠 → 𝐸 𝑠 =
1

1 + 𝐻 𝑠 𝐺 𝑠
𝑅 𝑠 →

𝐶 𝑠 =
𝐺(𝑠)

1 + 𝐻 𝑠 𝐺 𝑠
𝑅 𝑠

Moving Blocks to Create Familiar Forms:
• Transfer of a sum node from the input to the output of a block:

𝐶 𝑠 = 𝐺 𝑠 [𝑅 𝑠 + 𝑋 𝑠 ] = 𝐺 𝑠 𝑅 𝑠 + 𝐺 𝑠 𝑋(𝑠)

• Transfer of a sum node from the output to the input of a block:

𝐶 𝑠 = 𝐺 𝑠 𝑅 𝑠 + 𝑋 𝑠 = 𝐺 𝑠 [𝑅 𝑠 +
1

𝐺 𝑠
𝑋 𝑠 ]
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• Transfer of a derivation point from the input to 
the output of a block:

• Transfer of a derivation point from the output to 
the input of a block:

• Signal-node switching:
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Example1: Reduce the block diagram shown in Figure to a single transfer function.

Reduction Steps:
1. 𝐶𝑎𝑠𝑐𝑎𝑑𝑒 𝐺3, 𝐺2 = 𝑇1
2. 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐻1, 𝐻2, 𝐻3 = 𝑇2
3. 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑇1, 𝑇2) = 𝑇3
4. 𝐶𝑎𝑠𝑐𝑎𝑑𝑒 𝑇3, 𝐺1 = 𝑇

Uploaded By: 1201458@student.birzeit.eduSTUDENTS-HUB.com



Example2: Reduce the block diagram shown in Figure to a single transfer function. 

Reduction Steps:
• 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑡ℎ𝑒 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒
• 𝑖𝑛𝑝𝑢𝑡 𝑜𝑓 𝐺2 𝑡𝑜 𝑖𝑡𝑠 𝑜𝑢𝑡𝑝𝑢𝑡and apply 

feedback(𝐺3, 𝐻3) 
• 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑛𝑜𝑑𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓

𝐺1 𝑡𝑜 𝑖𝑡𝑠 𝑜𝑢𝑡𝑝𝑢𝑡+ parallel(
1

𝐺2(𝑠)
, 1)

• 𝑐𝑎𝑠𝑐𝑎𝑑𝑒 𝑎𝑛𝑑 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
• 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 and then cascade
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Signal-Flow diagrams:

The basic input vocabulary of the signal flow 
diagrams are shown in figure, with the signal 
represented by a node, system transfer relation 
(gain) represented by an arrow, and signal 
combination and extraction represented by rows 
converging in a node and rows diverging from it. 

Converting a Block Diagram to a Signal-Flow Graph

Uploaded By: 1201458@student.birzeit.eduSTUDENTS-HUB.com



Mason’s Rule:
We define the following:
• Pathi,j : the sequence of branching that connects node i and node j without going through any node more than one time.
• Path-gain: the product of the gains of all the branches of the path.
• Loop: a closed path.
• Loop gain: its relative path gain. 
• Nontouching loops: Loops that do not have any nodes and branches in common. Nontouching loops are inspected as two, 

three, four, or more at a time. 
• Nontouching loops gains: the product of nontouching loops taken as two, three, four, or more at a time. 
• Loops and nontouching loops with a pathij: the loops and nontoucing loops that do not have any nodes or branches in 

common. 
• Loops and nontouching loops with a pathij gains: the product of the gains of the Loops and nontouching loops with the 

pathij .

Masons Formula:
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Example 1: determine the transfer function of 
the following system using Masons rule.
Solution:
graph elements gains will be written directly.
Path gains:
𝑃1 = 𝐺1𝐺2𝐺3𝐺4𝐺5𝐺7
𝑃2 = 𝐺1𝐺2𝐺3𝐺4𝐺6𝐺7
Loop gains:
𝐿1 = 𝐻1𝐺2
𝐿2 = 𝐻2𝐺4
𝐿3 = 𝐻3𝐺4𝐺5
𝐿4 = 𝐻3𝐺4𝐺6
Nontouching Loops gains (2-2):
𝐿12 = 𝐻1𝐻2𝐺2𝐺4
𝐿13 = 𝐻1𝐻3𝐺2𝐺4𝐺5
𝐿14 = 𝐻1𝐻3𝐺2𝐺4𝐺6
Nontouching Loops gains (3-3):
Do not exist
Nontouching Loops with 𝑃1gains:           
Do not exist
Nontouching Loops with 𝑃2 gains:
Do not exist

Computation:
∆= 1 − (𝐻1𝐺2+𝐻2𝐺4+𝐻3𝐺4𝐺5 + 𝐻3𝐺4𝐺6) +(𝐻1𝐻2𝐺2𝐺4 + 𝐻1𝐻3𝐺2𝐺4𝐺5 +𝐻1𝐻3𝐺2𝐺4𝐺6)
∆𝑃1= 1, ∆𝑃2= 1

𝑇 𝑠 =
𝐶(𝑠)

𝑅(𝑠)
=

𝐺1𝐺2𝐺3𝐺4𝐺7(𝐺5 + 𝐺6)

1 − (𝐻1𝐺2+𝐻2𝐺4+𝐻3𝐺4𝐺5) + (𝐻1𝐻2𝐺2𝐺4 + 𝐻1𝐻3𝐺2𝐺4𝐺5)
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Example 2: determine the transfer function of the following system using Masons rule.

Solution:
graph elements gains will be written directly.
Path gains:
𝑃1 = 𝐺1𝐺2𝐺3𝐺4𝐺5
Loop gains:
𝐿1 = 𝐻1𝐺2
𝐿2 = 𝐻2𝐺4
𝐿3 = 𝐻4𝐺7
𝐿4 = 𝐺2𝐺3𝐺4𝐺5𝐺6𝐺7𝐺8
Nontouching Loops gains (2-2):
𝐿12 = 𝐻1𝐻2𝐺2𝐺4
𝐿13 = 𝐻1𝐻4𝐺2𝐺7
𝐿23 = 𝐻2𝐻4𝐺4𝐺7
Nontouching Loops gains (3-3):
𝐿123 = 𝐻1𝐻2𝐻4𝐺2𝐺4𝐺7
Nontouching Loops with 𝑃1gains:
𝐿𝑃1−3 = 𝐻4𝐺7
Computation:
∆= 1 − (𝐻1𝐺2+𝐻2𝐺4+𝐻4𝐺7 + 𝐺2𝐺3𝐺4𝐺5𝐺6𝐺7𝐺8) +(𝐻1𝐻2𝐺2𝐺4 + 𝐻1𝐻4𝐺2𝐺7 + 𝐻2𝐻4𝐺4𝐺7) − 𝐻1𝐻2𝐻4𝐺2𝐺4𝐺7 , ∆𝑃1= 1 − 𝐻4𝐺7

𝑇 𝑠 =
𝐶(𝑠)

𝑅(𝑠)
=

𝐺1𝐺2𝐺3𝐺4𝐺5 ∙ (1 − 𝐻4𝐺7)

1 − (𝐻1𝐺2+𝐻2𝐺4+𝐻4𝐺7 + 𝐺2𝐺3𝐺4𝐺5𝐺6𝐺7𝐺8) + (𝐻1𝐻2𝐺2𝐺4 + 𝐻1𝐻4𝐺2𝐺7 + 𝐻2𝐻4𝐺4𝐺7) − 𝐻1𝐻2𝐻4𝐺2𝐺4𝐺7
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State Space Representation
Dr. Jamal Siam
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State Space Representation:
• It is an internal system time-domain representation composed of a set of simultaneous first-order differential 

equations that describes the evolution of the internal state variables (memory elements variables or other 
related variables ) and a second set of algebraic equations that set the relation between the input and the 
state.

 𝑥 = 𝑓 𝑥, 𝑢
𝑦 = 𝑔(𝑥, 𝑢)

• The number of independent state equations is equal to the order of the system.
• The natural selection of the independent state variables is the energy variable of the conservative elements. 
• The state equation includes only state variables and input excitation.
• For a linear type invariant system of order 𝑛 with 𝑚 inputs and 𝑑 outputs, the state equations representation 

is formulated as follow: 

 
 𝑥 = 𝐴𝑛×𝑛𝑥𝑛×1 + 𝐵𝑛×𝑚𝑢𝑚×1 x : state vector, A: state Space matrix, B: state−input matrix,
𝑦𝑑×1= 𝐶𝑑×𝑛𝑥 + 𝐷𝑑×𝑚𝑢 C: output−ste matrix, D:output−input Matrix

Example:
• The system is first order system, thus we need one state variable. The output is 𝑣𝑅 𝑡 .
• Select the mesh current which is equal to the inductor current as state variable.

• The energy element equation is 𝑣𝐿 𝑡 = 𝐿
𝑑𝑖𝐿(𝑡)

𝑑𝑡
which is not a state equation because 𝑣𝐿(𝑡) is not a state 

variable an has to be eliminated.
• Applying KVL and the resistor characteristic equation we obtain 𝑣𝐿 𝑡 = 𝑣 𝑡 − 𝑅𝑖(𝑡)

• Substituting in the energy equation,  we obtain 
𝑑𝑖(𝑡)

𝑑𝑡
=

1

𝐿
𝑣 𝑡 −

𝑅

𝐿
𝑖(𝑡) …….state equation

𝑣𝑅 𝑡 = 𝑅𝑖(𝑡) ……output equationUploaded By: 1201458@student.birzeit.eduSTUDENTS-HUB.com



Example2
• The system of a second-order system, thus we need two independent state variables.
• The natural selection of state variables is 𝑖𝐿 𝑡 and 𝑉𝑐 𝑡 .
• Assume the output variable is  𝑉𝑐 𝑡 . The output equation becomes y t = 𝑉𝑐 𝑡
• Solution:

• The energy equations are 𝑣𝐿 𝑡 = 𝐿
𝑑𝑖𝐿(𝑡)

𝑑𝑡
and 𝑖𝑐 𝑡 = 𝑐

𝑑𝑣𝑐(𝑡)

𝑑𝑡
which are both not state equations.

• From the node equations 𝑖𝑐 𝑡 = 𝑖𝐿 𝑡 →the first state equation: 
𝑑𝑣𝑐(𝑡)

𝑑𝑡
=

1

𝐶
𝑖𝐿 𝑡

• From the KVL and the resistor characteristic equation: 𝑣𝐿 𝑡 = 𝑣 𝑡 − 𝑅𝑖𝐿 𝑡 − 𝑣𝑐 𝑡
• Applying in the inductor characteristic equation and ordering we obtain:

𝑑𝑖𝐿(𝑡)

𝑑𝑡
=
1

𝐿
𝑣 𝑡 −

𝑅

𝐿
𝑖𝐿 𝑡 −

1

𝐿
𝑣𝑐 𝑡

In matrix form                      
 𝑣𝐶
 𝑖𝑙

=  
0

1

𝐶

−
1

𝐿
−

𝑅

𝐿

𝑉𝑐 𝑡

𝑖𝐿 𝑡
+

0
1

𝐿

𝑣𝑐 𝑡

𝑦 𝑡 = 1 0
𝑉𝑐 𝑡

𝑖𝐿 𝑡

Exercise: Write the state equations of the following systems in algebraic matrix form. Outputs: 𝑣𝐿 𝑡 , 𝑥, 𝑥1𝑎𝑛𝑑𝑥2 , respectively.

Uploaded By: 1201458@student.birzeit.eduSTUDENTS-HUB.com



Transforming Internal representation to external representation (unique form)
• State space representation → Transfer Matrix/System of differential equations.
• For a SISO system:  State space representation → Transfer function/ differential equations.
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→

Example:
Determine the transfer function of the system defined by the following state space representation.

Solution:

→

→

Exercise: determine the transfer function of the system represented by the following state space representation
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Converting external representation to internal representation:

differential equation/ transfer function state space representation (not unique)→

Consider the following differential equation and the following variable assignment:

Phase-variable state space representation:

→
→

In matrix form-The state matrix is called companion matrix because it includes the coefficient of the transfer 
equation :
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Example1: Consider the following transfer and 
• determine the system differential equation and the phase variable representation.
• Plot the block diagram of the system 

Solution:

→

State variable assignment → → →

Block Diagram:
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Example2: Transfer function with polynomial numerator
Determine the state space representation of the following system and plot the corresponding block diagram

→

→

→ using →

Exercise: Determine the state space representation of the following system and 
plot the representation block diagram
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Alternative Representations in State Space:

Controller Canonical Form:( a variant of the phase variable representation with companion matrix)

Phase 
variable:

The controller canonical representation is obtained by changing the numbers of the variables and reordering the equations

→
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→

Observer Canonical Form:
The transfer function/differential equation are written in integral form which is then written as a sequence of 
integration and variables are assigned accordingly.
Example:

→ → →

→

Controller-Observer Duality:
The controller representation of the same system is given by: Observe the duality relation between the two representations:

Exercise: Determine the phase-variable, controller, and observer 
representation of the following system  represented by state space 
and plot the signal flow diagrams 
Hint: convert the state space representation to the transfer function
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Cascade representation(for transfer functions with simple roots(Triangular Matrix Form):
The Transfer function is written as the product of its basic-first-order terms and cascaded with the numerator term.

→

Representation of the general first-order term

→ → →

The system can be represented using this representation as:

Writing the equations of each block we obtain:

→
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Parallel representation: systems with simple roots written in the form of the partial fraction(Diagonal Matrix)

→

Using the general first-order representation we can obtain the parallel 
plot in the figure. Writing the equation of each block we obtain:

→

Mixed Parallel-Cascade representation: partial fractions with repeated roots(Jordan Matrix):

→ Plotting using the first-order cell and 
reading the equation we obtain:

→
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Stability
Dr. Jamal Siam
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System Stability-Review:
Definition: An LTI system is said to be asymptotically stable if its transient response goes to zero and a steady state response 
is reached for t goes to infinity. 
Theorem1: an LTI system with impulse response ℎ 𝑡 is asymptotically stable ↔ lim

𝑡→∞
ℎ 𝑡 = 0.

Theorem2: adynamic LTI system is asymptotically stable↔ all the roots of its characteristic equation/ the poles of its 
transfer function have a negative real part (located in the left semi plan of the complex plan) 
Theorem3: an LTI system is unstable if  it has at least a positive real-part root or a repeated root with zero real part.
Definition:(BIBO stability) an LTI system is said to be BIBO (Bounded Input/Bounded Output)↔ ∀ 𝑖𝑛𝑝𝑢𝑡 𝑥 𝑡 𝑤𝑖𝑡ℎ 𝑥 𝑡
≤ 𝑁, ∃𝑀 < ∞ so that the respons 𝑦 𝑡 ≤ 𝑀, ∀𝑡 (weak stability)

Theorom4: a system is BIBO stable ↔  −∞
∞

|ℎ 𝑡 |𝑑𝑡 < ∞ that is if its impulse response is absolutely integrable.

Exercise: prove this theorem.
Theorom5: a system is BIBO stable if it has no roots with positive real parts and all the roots with zero real part are not 
repeated roots. 
Example1: discuss the stability of the following dynamic systems:

•
𝑑2𝑦

𝑑𝑡2
+ 3

𝑑𝑦(𝑡)

𝑑𝑡
+ 2𝑦 𝑡 = 𝑥(𝑡), the roots of are 𝜎1 = −1, 𝜎2 = −2 → 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑡𝑎𝑏𝑙𝑒

Example2: Prove that the system with the following ℎ(𝑡) achieves the  BIBO stability theorem

ℎ 𝑡 = 10𝑒−3𝑡𝑢 𝑡 →  
−∞

∞
10𝑒−3𝑡𝑢 𝑡 𝑑𝑡 →  0

∞
10𝑒−3𝑡𝑑𝑡 =

10𝑒−3𝑡

−3
|0
∞ =

10

3
< ∞ →BIBO stable

• 𝐻 𝑠 =
(𝑠+4)

(𝑠2+4)(𝑠+1)
→ 𝐵𝐼𝐵𝑂 𝑠𝑡𝑎𝑏𝑙𝑒

• 𝐻 𝑠 =
(𝑠+4)

(𝑠2+4) 2(𝑠+1)
→ 𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒

• 𝐻 𝑠 =
(𝑠+4)

(𝑠+2)(𝑠−1)
→ 𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒

Asymptotically stable→BIBO Stable
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Stability- a different perspective
Observation: 
• It is noted that the system stability depends of the locations of the roots of the characteristic equation of the LTI system in 

the complex plane.
• The system roots locations depend on the coefficients of the system characteristic equation (system parameters). For 

example, the roots of the second order characteristic equation 𝑎𝑠2 + 𝑏𝑠 + 𝑐 = 0 are 𝑠1,2 =
−𝑏± 𝑏2−4𝑎𝑐

2

Accordingly, It is possible to set stability algorithms based on the equation coefficients (roots location and not values).

Coefficients-Based Stability Theorems and Methods:

Theorem I: 
It is necessary for an LTI system to be stable that the coefficients of the characteristic polynomial has all the same signs.

Example1: Discuss the stability of the LTI system with the following characteristic equation.
𝐷 𝑠 = 5𝑠4 + 3𝑠3 − 2𝑠2 + 𝑠 + 1

The system is unstable because the coefficients have different signs.
Example2: Discuss the stability of the LTI system with the following characteristic equation.

𝐷 𝑠 = 5𝑠4 + 3𝑠3 + 2𝑠2 + 𝑠 + 1
The system stability can not be determined based on Theorem I.
Observation: Routh and Hurwitz developed a stability criteria to set a necessary and sufficient conditions for LTI system Stability. 
The Routh-Hurwitz(RH)  criterion is applied to proper polynomials which do not have poles in the origin. Poles in the origin 
implies that the system can not be asymptotically stable(can be BIBO stable or Unstable based on the number of origin poles or 
the application of the RH criterion in the extracted proper polynomials (after extracting the origin poles)Uploaded By: 1201458@student.birzeit.eduSTUDENTS-HUB.com



Routh-Hurwitz Stability Criterion:
Method Formulation: 
• Construction of the Routh-Hurwitz (RH) table.
• Test of the sign changes in elements of the first column of the table.
• Any change in sign of the elements of the first column implies system instability.
• The number of first-column-elements sign changes equals the number of right side poles. 
RH-table regular construction:
• The table has 𝑛 + 1 rows, where n is the polynomial order.
• The  characteristic polynomial is divided in two polynomials, the first the odd terms power polynomial and the second is the even power 

polynomial. 
• The coefficients of the higher power polynomial (odd or even polynomials)  are distributed on the first row of the table and the lower 

power polynomial coefficients on the second row.
• The difference in terms power between of two consecutive columns always equals two (thus the coefficients of the power terms that do 

not appear in the equation should be set to zero.
• The coefficient 𝑟th element of the kth+2 row is determined by the negative value of the determinant  of a second order matrix (composed 

of the first column of these kth and kth+1 rows and the two elements of the r+1 column  of the same rows) divided by the first element of 

the kth+1 row. That is, 𝑥𝑘+2,𝑟 = −

𝑥𝑘,1 𝑥𝑘,𝑟+1
𝑥𝑘+1,1 𝑥𝑘+1,𝑟+1

𝑥𝑘+1,1

Observation: 
• The multiplication of the elements of a row with a positive constant (to simplify the computation) does not compromise the table

construction or change the RH stability-test outcomes.
• The table construction can not be continued in the following two cases, and thus alternative ways can be adopted for the RH table 

construction and test.
1. A zero in the first column with at least one  non-zero element in the other columns.
2. A row of zero-elements.
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Stability Test:
• Check  the elements of the first column for possible sign changes.
• The existence of sign changes implies the existence of right-side poles which means that the LTI system is unstable.
• The number of right-side poles equals the number of sign changes. 
Observation:
The method can also be useful to determine the number of right-side poles of an unstable LTI system according to Theorem I. 

Example1: Discuss the stability of the following LTI system using The RH criterion.

𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:

𝐷 𝑠 = 𝑠3 + 10𝑠2 + 31𝑠 + 1030

RH-table:

RH-test: The system is unstable with two right side poles 
because of the existence of two changes in the sign of the first 
column elements 
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Example2: Discuss the stability of the LTI system with the following transfer function using The RH criterion.

𝐷 𝑠 = 𝑠4 + 6𝑠3 + 11𝑠2 + 6𝑠 + 200

RH-table:
RH-test: The system is unstable with two right side poles 
because of the existence of two changes in the sign of the first 
column elements 
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Routh-Hurwitz Stability Criterion-Special cases: 

A zero in the first column:
In this case the construction of the table falls because of the division by zero error. Two ways are used to overcome this problem 
• Substitution of a small number 𝜀 and computation of sign (lim

𝜀→0
𝑓𝑢𝑛𝑐(𝜀)) in all the first columns elements where it appears.

• Construction of the  reciprocal which have reversed coefficient order and consequently the inverse of the original polynomial
poles with the same signs.  

Example1 𝜀 − 𝑚𝑒𝑡ℎ𝑜𝑑 Discuss the stability of the LTI system with the following transfer function using The RH criterion.

𝐷 𝑠 = 𝑠5 + 2𝑠4 + 3𝑠3 + 6𝑠2 + 5𝑠 + 3

RH-table construction: RH-table elements sign computation:

RH-test: The system is unstable with two right side poles because of the existence of two changes in the sign of the first 
column elements 
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Example2 𝑅𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑒 − 𝑚𝑒𝑡ℎ𝑜𝑑:
Discuss the stability of the LTI system with the following transfer function using The RH criterion.

𝐷 𝑠 = 𝑠5 + 2𝑠4 + 3𝑠3 + 6𝑠2 + 5𝑠 + 3 𝐷𝑟𝑒𝑐 𝑠 = 3𝑠5 + 5𝑠4 + 6𝑠3 + 3𝑠2 + 2𝑠 + 1

RH-table

RH-test: The system is unstable with two right side poles 
because of the existence of two changes in the sign of the first 
column elements 
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A row of zeros:
• A row of zeros (with proper polynomials) can occur only at an odd-indexed rows and is caused by imaginary roots.
• The problem is solved by operating on the Auxiliary polynomial by:
1. Solving the auxiliary polynomial equation that is  determining the corresponding system roots. 
2. Differentiating the auxiliary polynomial,  applying the coefficient at the zero elements row, and continuing the 

regular construction process.

Construction of the auxiliary polynomial:
The auxiliary polynomials has even power terms with order equals to the index of the row that precedes the row of 
zeros and coefficients equal to the preceding row elements (according to the difference of 2 columns rule)

Example1: Discuss the stability of the LTI system with the following transfer function using The RH criterion

𝐷 𝑠 = 𝑠5 + 7𝑠4 + 6𝑠3 + 42𝑠2 + 8𝑠 + 56
Auxiliary polynomial and its derivative 

RH-test: There are no changes in the signs of the first column 
elements. However, the system can not be asymptotically stable 
because the table has a row of zeros which implies the existence of 
four imaginary poles, which imply that the system is BIBO stable since 
the imaginary roots has multiplicity one because the polynomial is not 
a perfect polynomial (can not be written as (𝑠2+ 𝛼2)2 . The fifth pole 
is in the semi-left plane.  
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Example2: Discuss the stability of the LTI system with the following transfer function using The RH criterion (number of poles)

Auxiliary polynomial and its derivative 

RH-test: the system is unstable because of the existence of two changes in the signs of the first column elements which means 
two right side poles. Continuing the table construction helps in determining the poles distribution. The construction with 
auxiliary polynomial (row of zeros) shows  the existence of four different imaginary poles. Thus the two remaining poles should 
be at the semi left plane. 
Observation: The  polynomial equation with only even power terms has always symmetric roots around the origin, which 
means that the system poles should have positive and negative real parts (changes in first column sign) or zero real part 
(imaginary poles) the roots are repeated imaginary roots only if the polynomial is a perfect polynomial and can be written as
(𝑠2+ 𝛼2)𝑟 . Uploaded By: 1201458@student.birzeit.eduSTUDENTS-HUB.com



Example1: Discuss the conditional  stability of the LTI system with the following transfer function using The RH criterion

LTI System Conditional Stability:
A system stability that depends on parameters with values that variates in a defined parameters space.

Observation: the conditional stability analysis should cover all the values of the parameters space and can include different special cases.

Discussion: 
To have asymptotic stability the first column parametric terms should be positive (no signs change). 
Thus we solve for 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 𝑡𝑒𝑟𝑚𝑠 ≥ 0 and determine the changes in sign in each part of the 
sequence of  signs distribution.
𝑓𝑖𝑟𝑠𝑡 𝑡𝑒𝑟𝑚 1386 − 𝑘 ≥ 0 → 𝑘 ≤ 1386, 𝑠𝑒𝑐𝑜𝑛𝑑 𝑡𝑒𝑟𝑚 𝑘 ≥ 0
At the value 𝑘 = 1386 we have a special case with a row of zeros at odd indexed row.
At 𝑘 = 0 in the last row (the only case with row of zeros in an odd indexed row) the special case 
indicates that the polynomial has roots in the origin, therefore, these poles should be extracted, 
discussed, and the stability analysis continues with the proper polynomial .

Stability analysis 
Columns(3,2): ++++++++++++++++++++++++++++++++++++++++
Column(1)      :++++++++++++++++++++++++++(1386)----------------
Column(0)      :-----------(0)+++++++++++++++++++++++++++++++

For 𝑘 = 0 the extracted polynomial becomes: 𝐷 𝑠 = 𝑠 𝑠2 + 18𝑠 + 77 with roots 𝑠1 = 0, 𝑠2 = −11, 𝑠3 = −7
The system is BIBO stable.
Observation: the polynomial equations were simple and solved to obtain the remaining system roots. 
Exercise Use the RH-table with the auxiliary polynomial (for 𝑘 = 1386 ) and the extracted polynomial (for 𝑘 = 0) to reach the same 
conclusions.

Thus: the system is unstable for 𝑘 < 0 with one right side pole (RSP).
the system is asymptotically stable in the interval ]0, 1386[
the system is unstable for 𝑘 > 1386 with two right side poles 

Special cases:
For 𝑘 = 1386 we have a row of zeros with auxiliary equation 18𝑠2 + 1386 = 0 → 𝑠1,2 = ±𝑗8.77 so the system is BIBO stable
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Example2: Discuss the conditional  stability of the LTI system with the following transfer function using The RH criterion

Rows(4,3) sign:                 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Row(2) sign:                      +++++++++++++++++++++++++++++++++++++++++++++++++++++++(44.91)-----------------------------------
Row(1) sign:                       ----------(-4.685)++++++++++++++++++++++++(25.87)---------------------(44.91)++++++++++++++++++++++++

Row(0) sign:                       -----------------------------(-0.382)++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

The system is unstable with one RSP for 𝑘1 < −4.685
The system is unstable with one RSP for −4.685 < 𝑘1 < −0.382
The system is Asymptotically stable for −0.382 < 𝑘1 < 25.87
The system is unstable with two RSP for 25.87 < 𝑘1 < 44.91
The system is unstable with two RSP for𝑘1 > 44.91

Exercise: Study the stability of the system at the critical points 𝑘1 = −0.382, −4.685, 25.87, 𝑎𝑛𝑑 44.91

Row(1) sign (division of numerator and denominator signs)
Numerator sign:      -------(-4.685)++++(25.87)------------
Denominator sign:    +++++++++++++++++++++++(44.91)-----

Stability analysis:
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Steady-State Error
Dr. Jamal Siam
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Steady-State Error:

Definition (system error): 
Given a linear feedback control system with response 𝑐(𝑡) and reference 𝑟(𝑡), the system error function is defined as:

𝑒(𝑡) = 𝑟(𝑡) − 𝑐(𝑡). 

Definition (actuation error):
Given a linear feedback control system with feedback signal 𝑝(𝑡) and reference 𝑟(𝑡),
the system error is defined as: 𝑒𝑎(𝑡) = 𝑟(𝑡) − 𝑝(𝑡).

Definition (system steady-state error): 
Given a linear feedback control system with response 𝑐 𝑡 , reference 𝑟(𝑡), and a system steady-state error function  𝑒(𝑡), 
the system steady-steady error 𝑒𝑠𝑡𝑒𝑎𝑑𝑦 is defined under the existence condition of the limit as: 

𝑒𝑠𝑡𝑒𝑎𝑑𝑦 = lim
𝑡→∞

𝑒 (𝑡)

Steady-State Control Objective:
To adjust the steady-state error to a value that follows the steady state error specifications.
Theorem:
It is necessary for the existence of the steady-state error that the system be asymptotically stable.
Observation:
The computation of the steady state error with a conditional stability parameter space has a meaningful value only in the 
asymptotic stability parameter-space region. 
Lemma: 
Under the asymptotic stability condition, the steady-state error can be  computed using the Laplace transform final value 
theorem. That is, 𝑒𝑠𝑡𝑒𝑎𝑑𝑦 = lim

𝑠→0
𝑠 𝐸(𝑠).

𝑃(𝑠)
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Steady-State error (Basic Concept):
The value and type of the steady-state error depends on the order of the order of the  dynamic of the reference r(t) to be 
tracked and  the order of the dynamic of the system in the following sense:
• If the order of the dynamic of the reference is higher than that of the system, that is the reference changes are faster than

the system dynamic, then 𝑒𝑠𝑡𝑒𝑎𝑑𝑦 → ∞.

• If the order of the dynamic of the reference is has the same order of that of the system, that is the reference changes are of 
the same order of the system dynamic, then 𝑒𝑠𝑡𝑒𝑎𝑑𝑦 = 𝑓𝑖𝑛𝑖𝑡𝑒 − value.

• If the order of the dynamic of the reference is lower than that of the system, that is the reference changes are slower than 
the system dynamic, then 𝑒𝑠𝑡𝑒𝑎𝑑𝑦 = 0.

Reference Dynamic Order-Error-type:
The order of 𝑟(𝑡) as an infinite function of 𝑡.

Zero-order dynamic: 𝑟 𝑡 = 𝑢𝑛𝑖𝑡 𝑠𝑡𝑒𝑝 𝑖𝑛𝑝𝑢𝑡 = 𝑢 𝑡 → 𝑅 𝑠 =
1

𝑠
.

Error-type: position error 𝑒𝑠𝑡𝑒𝑎𝑑𝑦 = 𝑒𝑝. 

First-order dynamic: 𝑟 𝑡 = 𝑟𝑎𝑚𝑝 𝑖𝑛𝑝𝑢𝑡 = 𝑟(𝑡) → 𝑅 𝑠 =
1

𝑠2
.

Error-type: velocity error 𝑒𝑠𝑡𝑒𝑎𝑑𝑦 = 𝑒𝑣. 

Second -order dynamic: 𝑟 𝑡 = 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 𝑖𝑛𝑝𝑢𝑡 = 𝑝 𝑡 → 𝑅 𝑠 =
1

𝑠3
.

Error-type: acceleration error 𝑒𝑠𝑡𝑒𝑎𝑑𝑦 = 𝑒𝑎.

System Dynamic-System-Type: 
The system type equals the number of zero-roots of the dynamic characteristic error gain function or equivalently the number 
of the singularity points of the error-gain Laplace transfer function at the origin. 
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Singularity points of 𝑓(𝑥):
A point 𝑥0 is said to be a singularity point for 𝑓(𝑥) if lim

𝑥→𝑥0
|𝑓 𝑥 | → ∞

Error gain function-Laplace domain:
The error gain transfer function is the equivalent direct path gain function that sets the feedback control system in its unity 

feedback form. 𝐺𝐸 𝑠 =
𝐺(𝑠)

1+𝐺 𝑠 [𝐻 𝑠 −1]

System of Type n:

𝐺𝐸 𝑠 =
𝑎(𝑠)

𝑠𝑛𝑏(𝑠)
with 𝐺𝐸 𝑠 in its primitive form and 𝑏(𝑠) = 0 has no solutions at 𝑠 = 0.

Observation 1:
The error gain-function is used for error computation purposes and not used for stability analysis unless the complete closed 
loop transfer function is computed.
Observation 2:
In a unity feedback system 𝐺𝐸 𝑠 = 𝐺(𝑠) as can be deduced by substituting 𝐻(𝑠) = 1 in  𝐺𝐸 𝑠
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Steady-State Error Computation (Error Static Gain):

𝑒 𝑡 = 𝑟 𝑡 − 𝑐 𝑡 → 𝐸 𝑠 = 𝑅 𝑠 − 𝐶 𝑠 = 𝑅 𝑠 − 𝐺𝐸 𝑠 𝐸 𝑠 → 𝐸 𝑠 =
𝑅(𝑠)

1 + 𝐺𝐸(𝑠)
𝑒𝑠𝑡𝑒𝑎𝑑𝑦 = lim

𝑠→0
𝑠𝐸(𝑠)

Position-Error 𝑒𝑝: (𝑅 𝑠 =
1

𝑠
)

𝑒𝑝 = lim
𝑠→0

𝑠 ∙

1
𝑠

1 + 𝐺𝐸 𝑠
=

1

1 + lim
𝑠→0

𝐺𝐸 𝑠

System type cases:

• Type0: lim
𝑠→0

𝐺𝐸 𝑠 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑘𝑝 → 𝑒𝑝 =
1

1+𝑘𝑝
= 𝑓𝑖𝑛𝑖𝑡𝑒,   𝑘𝑝 is called position static gain. (reference dynamic =type)

• Type1: lim
𝑠→0

𝐺𝐸 𝑠 → ∞ → 𝑒𝑝 =
1

1+lim
𝑠→0

𝐺𝐸 𝑠
= 0, (reference dynamic < type)

• In general Type(n)≥1: lim
𝑠→0

𝐺𝐸 𝑠 → ∞ → 𝑒𝑝 =
1

1+lim
𝑠→0

𝐺𝐸 𝑠
= 0, (reference dynamic < type→ system is faster than reference)

Velocity-Error 𝑒𝑣: (𝑅 𝑠 =
1

𝑠2
)

𝑒𝑣 = lim
𝑠→0

𝑠 ∙

1
𝑠2

1 + 𝐺𝐸 𝑠
= lim

𝑠→0

1

𝑠 + 𝑠𝐺𝐸 𝑠
=

1

lim
𝑠→0

𝑠𝐺𝐸 𝑠
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System type cases:
• Type0: lim

𝑠→0
𝑠𝐺𝐸 𝑠 = 0 → 𝑒𝑣 → ∞, (reference dynamic > system type)

• Type1: lim
𝑠→0

𝑠𝐺𝐸 𝑠 = 𝑓𝑖𝑛𝑖𝑡𝑒 = 𝑘𝑣 → 𝑒𝑣 =
1

𝑘𝑣
, 𝑘𝑣 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑠𝑡𝑎𝑡𝑖𝑐 𝑔𝑎𝑖𝑛 (reference dynamic =system type)

• In general Type(n)>1: lim
𝑠→0

𝑠𝐺𝐸 𝑠 → ∞ → 𝑒𝑣 = 0, (reference dynamic < system type→ system is faster than reference)

Acceleration-Error 𝑒𝑎: (𝑅 𝑠 =
1

𝑠3
)

𝑒𝑎 = lim
𝑠→0

𝑠 ∙

1
𝑠3

1 + 𝐺𝐸 𝑠
= lim

𝑠→0

1

𝑠2 + 𝑠2𝐺𝐸 𝑠
=

1

lim
𝑠→0

𝑠2𝐺𝐸 𝑠

System type cases:
• Type0 and Type 1: lim

𝑠→0
𝑠2𝐺𝐸 𝑠 = 0 → 𝑒𝑎 → ∞, (reference dynamic > system type)

• Type2: lim
𝑠→0

𝑠2𝐺𝐸 𝑠 = 𝑓𝑖𝑛𝑖𝑡𝑒 = 𝑘𝑎 → 𝑒𝑎 =
1

𝑘𝑎
, 𝑘𝑎 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑖𝑐 𝑔𝑎𝑖𝑛 (reference dynamic =system type)

• In general Type(n)>2: lim
𝑠→0

𝑠2𝐺𝐸 𝑠 → ∞ → 𝑒𝑎 = 0, (reference dynamic < system type→ system is faster than reference)

Example: Compute the position, velocity  and acceleration errors of the following  feedback system. 
Exercise: prove that the system is stable using the RH criterion.
The error gain function of this asymptotically stable system is given by:

𝐺𝐸 𝑠 =
𝐺(𝑠)

1 + 𝐺 𝑠 [𝐻 𝑠 − 1]
=

100(𝑠 + 5)

𝑠3 + 15𝑠2 − 50𝑠 − 400

The error gain function has no roots at the origin → the system type is zero→ 𝑒𝑣 = 𝑒𝑎 → ∞

𝑘𝑝 = lim
𝑠→0

𝐺𝑒 𝑠 =
500

−400
= −

5

4
→ 𝑒𝑝 =

1

1 + 𝑘𝑝
=

1

1 −
5
4

= −4
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Example2: Consider the following static gain and determine the type of the system and the system static gain so that the 
steady state error = 10%.

Solution:
The system error gain function 𝐺𝐸 𝑠 = 𝐺(𝑠)the direct path gain function because of the unity feedback condition.
Accordingly the system is of type1→ 𝑒𝑝 = 0 𝑎𝑛𝑑 𝑒𝑎 → ∞.

Thus, K should be computed using the velocity steady state error 𝑒𝑣 =
1

lim
𝑠→0

𝑠𝐺𝐸(𝑠)
= 0.1 =

1
5𝑘

6∙7∙8

→ 𝑘 =
6∙7∙8

0.5
= 672.

Important Observation: The result is not valid until it is proved that the system is asymptotically stable for 𝑘 = 672.
Exercise1: 
Compute the system transfer function of the system, study the conditional stability of the system using RH, and prove that the 
system is asymptotically stable for  𝑘 = 672.

Exercise1: 
Compute the velocity steady state error as a function of 𝑘 and determine the minimum and maximum velocity errors in the 
asymptotic stability interval of the parameter 𝑘.
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Steady state error in presence of disturbance:
Superposition is applied to compute the steady state error in presence of deterministic disturbance.
𝐶 𝑠 = 𝐶𝑅 𝑠 + 𝐶𝐷 𝑠
𝐸 𝑠 = 𝑅 𝑠 − 𝐶 𝑠

𝐶𝑅 𝑠 =
𝐺1(𝑠)𝐺2(𝑠)

1 + 𝐺1 𝑠 𝐺2 𝑠 𝐻(𝑠)
∙ 𝑅(𝑠)

𝐶𝐷 𝑠 =
𝐺2(𝑠)

1 + 𝐺1 𝑠 𝐺2 𝑠 𝐻(𝑠)
∙ 𝐷 𝑠

𝐸 𝑠 = 𝑅 𝑠 −
𝐺1 𝑠 𝐺2 𝑠

1 + 𝐺1 𝑠 𝐺2 𝑠 𝐻 𝑠
∙ 𝑅 𝑠 +

𝐺2 𝑠

1 + 𝐺1 𝑠 𝐺2 𝑠 𝐻 𝑠
∙ 𝐷 𝑠 =

𝑅 𝑠 1 −
𝐺1 𝑠 𝐺2 𝑠

1 + 𝐺1 𝑠 𝐺2 𝑠 𝐻 𝑠
−

𝐺2 𝑠

1 + 𝐺1 𝑠 𝐺2 𝑠 𝐻 𝑠
∙ 𝐷 𝑠 =

= 𝑅 𝑠
1 + 𝐺1 𝑠 𝐺2 𝑠 (𝐻 𝑠 − 1)

1 + 𝐺1 𝑠 𝐺2 𝑠 𝐻 𝑠
−

𝐺2 𝑠

1 + 𝐺1 𝑠 𝐺2 𝑠 𝐻 𝑠
∙ 𝐷 𝑠

𝐸𝑅 𝑠 = 𝑅 𝑠
1 + 𝐺1 𝑠 𝐺2 𝑠 (𝐻 𝑠 − 1)

1 + 𝐺1 𝑠 𝐺2 𝑠 𝐻 𝑠
→ 𝑒𝑟𝑒𝑓_𝑠𝑡𝑒𝑎𝑑𝑦 = lim

𝑠→0
𝑠𝐸𝑅 𝑠

𝐸𝐷 𝑠 =
𝐺2 𝑠

1 + 𝐺1 𝑠 𝐺2 𝑠 𝐻 𝑠
∙ 𝐷 𝑠 → 𝑒𝑑𝑖𝑠𝑡_𝑠𝑡𝑒𝑎𝑑𝑦 = lim

𝑠→0
𝑠𝐸𝐷 𝑠

𝑒𝑡𝑜𝑡𝑎𝑙_𝑠𝑡𝑒𝑎𝑑𝑦 = 𝑒𝑟𝑒𝑓_𝑠𝑡𝑒𝑎𝑑𝑦 − 𝑒𝑑𝑖𝑠𝑡_𝑠𝑡𝑒𝑎𝑑𝑦
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Observation 1:
The stability analysis must be done before error computation, and is done using the denominator of one of the transfer 

functions
𝐶𝑅 𝑠

𝑅(𝑠)
𝑜𝑟

𝐶𝐷 𝑠

𝐷(𝑠)

Observation 2:
The type of the system is determined by the 𝑅(𝑠) reference input that makes 𝑒𝑟𝑒𝑓_𝑠𝑡𝑒𝑎𝑑𝑦 finite. That is if it is finite for 

𝑅 𝑠 =
1

𝑠
then the system is type0, for 𝑅 𝑠 =

1

𝑠2
then the system is type1, and for   𝑅 𝑠 =

1

𝑠3
the system is type2.

Observation 3:
The rules related to the comparison of the reference dynamic and system type continue to be valid also in this case. For 

example, if the error  𝑒𝑟𝑒𝑓_𝑠𝑡𝑒𝑎𝑑𝑦 is finite for 𝑅 𝑠 =
1

𝑠
→ 𝑡𝑦𝑝𝑒0 then 𝑒𝑝= 𝑓𝑖𝑛𝑖𝑡𝑒, 𝑒𝑣= 𝑒𝑎→ ∞

Observation 3:
𝑒𝑑𝑖𝑠𝑡_𝑠𝑡𝑒𝑎𝑑𝑦 remains the same and computed one time whatever is the reference, that is independent of computing the 

position, velocity, or acceleration errors.
Example: Compute the total steady state error for a unit step 
disturbance and 𝑘 ∈ 𝑅.

𝐸𝑅 𝑠 = 𝑅 𝑠
1 + 𝐺1 𝑠 𝐺2 𝑠 (𝐻 𝑠 − 1)

1 + 𝐺1 𝑠 𝐺2 𝑠 𝐻 𝑠
= 𝑅 𝑠

1

1 +
100𝑘

(𝑠 + 5)(𝑠 + 2)

=

𝐸𝑅 𝑠 =
𝑠2 + 7𝑠 + 10

𝑠2 + 7𝑠 + 10 + 100𝑘
∙ 𝑅(𝑠)

𝐸𝐷 𝑠 =

100
𝑠 + 2

1 +
100𝑘

𝑠 + 5 𝑠 + 2

∙ 𝐷(𝑠) =
100 𝑠 + 5

𝑠2 + 7𝑠 + 10 + 100𝑘
∙ 𝐷(𝑠)
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Stability analysis:
The characteristic equation is 𝐷𝑘 𝑠 = 𝑠2 + 7𝑠 + 10 + 100𝑘

From the RH table the region of asymptotic stability is defined by 10 + 100𝑘 > 0 → 𝑘 > −0.1
Error analysis: 

position error: 𝑒𝑝 = lim
𝑠→0

𝑠 ∙
1

𝑠
∙

𝑠2+7𝑠+10

𝑠2+7𝑠+10+100𝑘
=

10

10+100𝑘
=

1

1+10𝑘
. 

Thus the system is of type zero for 𝑘 > −0.1 → 𝑒𝑣= 𝑒𝑎→ ∞.

𝑒𝐷 = lim
𝑠→0

𝑠 ∙
1

𝑠
∙

100 𝑠 + 5

𝑠2 + 7𝑠 + 10 + 100𝑘
=

500

10 + 100𝑘
=

50

1 + 10𝑘
The total error 𝑒𝑡𝑜𝑡_𝑠𝑡𝑒𝑑𝑦 = 𝑒𝑝 − 𝑒𝐷 =

1

1+10𝑘
−

50

1+10𝑘
=

−49

1+10𝑘

Exercise: Determine the absolute values of minimum and maximum total steady state error with 𝑘.

2 1 10 + 100𝑘

1 7 0

0 10 + 100𝑘
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