Control systems 2

System Transient Performance
D. Jamal Siam

STUDENTS-HUB.com Uploaded By: 1201458@student.birzeit.edu



Linear Time invariant system in Laplace and time domains:

Poles and Zeros of LTI Systems:

Given the transfer function of a proper system i(primitive rational function):
SM+Bm—1sM 14+ +pBsT+

T(s) = ﬁc:;s"+£;n_1ls"‘1+---+a’61’21+a€0

System Zeros:

A system zero is defined as the value s, at which |T(s,)| = 0.

A system zero can be a zero at finite or infinite.

A proper system has n — m zeros at infinite, that is those that satisfy the relation lim |T(s)| = 0.

S— 00

withm < n

System Poles:

A system pole is defined as the value s, at whichlim |T(s)| = oo.
S—>Sp

A system pole can be a pole at finite or infinite.
An improper system (improper: m = n) has m — n poles at infinite, that is those that satisfy the relation lim |T(s)| = oo

S—00
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Effect of poles on system response:

The poles number and locations (system transfer

function roots ) determine the shape and the time

performance of the transient response:

* Left-side poles generate a response that vanishes for
t — oo, whereas right-side poles transient diverges

e Real-axe poles do not produce oscillation in the time
response.

* Imaginary axe poles produce an undamped
oscillation response.

 Complex poles produce oscillation in the response.
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Transient time performance depends on the relative distance
between the imaginary axe and the pole location. That is the
magnitude of the real part of the pole. Higher distance —

Higher performance and faster transient. The time constant
1

Re(sp)

Oscillation frequency depends on the relative distance
between the real axe and the pole location. That is the
magnitude of the imaginary part of the pole. Higher distance
— Higher oscillation frequency and smaller period with higher
density of oscillation cycles.

Poles that are located on the same line have different time
performance and oscillation frequency but equal damping
ratio and relative overshoot value.

of a pole Sp is defined as T, = —
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. ” L] 7\ I‘I TR,
Domlnant POleS X s-plane ‘ s-plane s-plane
. . "3 s
e The set of dominant poles are those proximal to 7] Rl 7 e T
the imaginary axe and from the more distal poles 2 > | X
with min('l'dom) > 5 X max('rnon_dom)' The Case | Case I Case 111
. . @)
dominant poles has slower transient response and
. . Response
thus they are the objective of the control problem. ) . .
. . . ; l e — Aulr) + ¢ (B cos wytr + C sin w 1)
e Considering the dominant poles reduces the order B T —
. “ /S~ Casel
of the control system and the design of the | \\///
Component 7
NTr ” IS. responses o1 a three-pale Lisf
co t Ollers a}alt-.'ln: i pole |1'|nl.] {'\\ /
b. component responses: 0 L,./‘__ 2 e
MNondominant pole is near } P i e
dominant second-order Vo L De™
pair I('u:n.' Iy, far from the ‘ // ,
pair (Case II), and at infimity Case |
(Case [y ‘ /
| /
Pole-Zero Cancellation: zeros and poles can be set at the same | > Thioe
(b)

position to cancel the effects of each other. Cancellation can be
employed in controller design to cancel undesired effects or to
reduce the order of the system(if it is a design degree of
freedom)

STUDENTS-HUB.com Uploaded By: 1201458@student.birzeit.edu



Effect of Zeros: (s + a)C(s) = sC(s) + aC(s)

The zeros affect the response amplitude.

The effects of the zeros are more evident when they are more proximal to the dominant poles (zeros with smaller real part
has a higher time constant and has a more evident effect on the system response).

The zeros affect the response phase.

A real zero (or the real part of a complex zero) introduces a derivative and proportional effect in the response without zero.
For more distal zeros (from the imaginary axe) the proportional effect is higher than the derivative effect (fast zero effect).
For the nearer zeros, the derivative effect is higher than the proportional one.

Slower zeros cause higher signal overshoot because of the added positive value of the derivative.

A left-side complex zero has a positive phase and thus an anticipation effect.

A right-side complex zero has a negative phase and thus introduces a delay effect.

A right-side zero with a smaller derivative effect than the proportional part may cause initial phase inversion.
Asymptotically stable systems with only left-side zeros are said to be minimum-phase systems
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Performance parameters:

Performance parameters are used to set, evaluate, and compare the behavior of

stable dynamic systems.

Time performance parameters: Lo

* Rising time t,;5: the time necessary for the response to rise from 10% to 90%
its final value.

* Delay-time t;: the time necessary for the response to reach 50% of its final v
* Steady-state time (Settling time) tq.¢: at p% error: the time necessary for the
response to reach and stay in £0.0p around its final value. .

* Peaktime t,y,: the time of the local maximum and minimum values of the T _ _ .

response. - |
* Overshoot time t,,: the time of the maximum deviation of the response from its

final value.
Value Performance parameters:

* Qvershoot (OV): the maximum deviation between the response and its final steady state value.
OV (toy) = Ymax(tov) — Yfinar- This parameter depends on the input value.

c(t)

Y

vy

0‘9801111;1[

0.9¢fina1

* Relative Overshoot (OV;.): the ratio of the overshoot and the response final value. That is OV,

t — .
— Ymax(tov)~Vinal independent of the input value but requires the knowledge of the final value.

Yfinal

* Percentage Overshoot (OV,.%): the ratio of the overshoot and the response final value. That is

OVT _ Ymax(ov) =Y final % 100%
Yfinal
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First Order System Step response:

Jja

G(s) ‘ s-plane a
R(s) a | Cs) N C(s) = R(s)G(s) =
— >0 () (5)G(s) s(s + a)

s+ a > X ‘
—a
(@) (»

Time constant and steady-state approximation:

 The time constant is defined as T = -
e Steady-state time: is the time at which the steady state

response is assumed to be reached accepting and tolerating a

defined maximum error value (because operations with the

system can not be done for t = o).

* The most used in Engineering is tsteqqy=4T With approximately

erTOoTsteqay=2%
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Second-oraer system-performance parameters

The underdamped response will be taken to determine the performance parameters because it has the
maximum number of performance parameters.

Polar and cartesian representation:

a complex pair of system poles can be represented in:

cartesian form:s;, = a * jwg  a:attenuation factor, w,: damped oscillation frequency

Polar form: s = w,e’? { = cosO: attenuation ratio, w,:natural oscillation frequency
Jjo
Relations between polar and cartesian representations:
_________ - +jw,V1 - gz=.jm¢!
a = w,cosl = w,{, Wy = Wy SN0 = wy/1 — {? N s-pane
_1,Pd | 0
Wy = a? + wg?, 0 = —tan~1(—) Lon=o, °
a i
Under damped Step response: o o Y S
2
w K Kis+K I _
C(s) = 3 L 5 :_l_|. 5 2 3 5 1.8 ¢=.1
S(s* +20wns+w;) s 57+ 20was + w; L6 [ 2
. . . . . . 1.4
By computing the parameters using partial fractions and adjusting the L >
. . . . 6
function form to have the Laplace cosine and sine expression: Lof 8 v
0.8 -
(.s+gaJn)+—£,(1;n\/1-gz using the Laplace inverse we obtain: °/
C(s)=—- 21 iy 5 02t
s (s+lwn) +02(0=-¢
0O 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17
c(t)=1—e 5ot (cos w1 — -t ¢ = sinw,\/ 1 — C2I)
vi=¢ ¢ =tan'(¢/V1-0).
1
=1————e % cos(wy\/1 — 2t —
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Performance parameters of the second-order system:
The most used performance parameters of the second-order system are the settling time, the overshoot time, and the

overshoot value with all its variants.

Settling time at p% error:
To simplify computation it is assumed that the settling time is reaches at the first peak after the 0.0p, that is we consider

a smaller error that satisfies the requirements. Thus, considering T e~ cos(wny/ 1 — C2t — )
2

i . L —Cwntset —
we have to solve the equation: \/1__(23 0.0p
—In(0.0p/1-{2 : . . 4 4
n0-0pVI=¢7) o 2% this result is approximated as tser 204 = =— =41
{wn <7 Qwn| el

=g

Solving for tg. We obtain: tgor =

Peak and overshoot time:
The peak time is periodic and obtained by computing equating the derivative of the step response c(t) to zero.

Since the underdamped response of the second order system is strictly decreasing, the overshoot time is obtained at the
2

first peak value. Considering: ? ®
C(s) = - and the inverse of the derivative  Z[¢(t)] = sC(s) = 2
(5% + 2L wns + @2) [€()] (s) 52+ 28 w,s + (1)3
5 o 5 Wn'\/ 1 - 4'2
LLe()] = & P ey _ Applying Laplace inverse &(f) = —mt el sin e, \/1 — 21
S+ o) +02(1=C°) (s+Clwp) +@2(1-¢7) 1-¢2

Setting the derivative equal to zero yields
nx

l=—
wyy\/ 1 —t=nn « w, V1 — gz

. . T
Thus the overshoot time is: | 7,=—F— =—
Wy l_é’ g
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Cfinal

. . C — C -
Overshoot evaluation: using () =1— e (cosa),,\/l —t+ sin @,/ 1 —g%) and g5 = —mx — Tl o100

¢
Vi @
sin JI) — ] 4 ¢~ Cr/V1=E)

COMPULE oy = ¢(T,) = 1 = ¢~/ VI=E) (cos T+ =
1 —

Applying cfingr = 1 in the percentage overshoot equation we obtain

%08 = e=Cr/V1-C) % 100

Moreover, in the design problem, we can compute the damping ratio necessary to obtain a specific percentage overshoot by:

_ =In(%0S/100)
\/nz + In2(%0S/100)
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Example: Consider the following system and determine the moment of inertia and the damping coefficient to
20% overshoot and a 2% ERROR settling time of 2 seconds for a step torque input.

o K — () 0@)
G(s) = — /7 On=\T &
’ D K - - |
L
D

24+ —5+— D
o 2wy =

4
TSZZZC% - {w, =2

4 J
=2/= =045 — J_
\/; = =0.052

2w,

J
—=0.052
X 0.05
D

S=4

K =5 N-m/rad

D =1.04 N-m-s/rad, and J = 0.26 kg-m?
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Control Systems Representation

Block and Signal-flow Diagrams
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Block Diagrams and Signal-flow Diagrams:

A control system is composed of several subsystems that interact and exchange signals and employ signal combination
through sum nodes and distribution through derivation points.

A simple representation that describes the subsystems interaction and signal flow become necessary to analyze and
study.

Block diagrams and Signal-flow diagrams are among the most used universal languages in control systems.

An analogy relation exists between Block diagrams and signal flow diagrams. That is between the input and output
vocabularies of the these languages and their grammar.

Whenever, these representation are used, it is inherently assumed that the chain rule is satisfied, that is the connection
of two subsystems does not affect the validity of their mathematical models. That is each system maintains its transfer
relation.

Specific subsystems interconnection (cascade, parallel, and feedback) and other rules related to signals combination
(sum nodes) and extraction (derivation points) are used to reduce the system representation to an equivalent one that

includes only the necessary components for the control systems obiectives.
R, R R, K Ry R

||\':I rl Eal Lj ,‘\ 1-_”\_:' ||I:'\-: f-\.l ;: K {-.j ;: 1_” 5}

(5) C_) C ;?; Vils)  Vi(s) Cl

N
~
Y|

S+

. 7 Vals
Vils) Val(s) 2(s) +* G:ij}l{j} Fj(.‘fj

r\Nl = 14l5) = G s = ~
FI{” 1.'I|.'I:.‘|'_:I (_-(‘IJ Fl{j} }'{” 1&"']-1.‘;'} | G?-{j}: L_,f_L‘_J = Kl’j_._.{_”[,lu}
1 1
7« W Fal & D . Val(s RI\CiR,(C5
(;.(.s-)=1”_{'f)= sle (;:{j-)=1'-(")= RyC» G(s) = .(f)= : ll 1 e I
ZORN Vi) Ty R O
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R(s) C(s) R(s) G(s) C(s)
Block Diagrams: Input Output
The basic input vocabulary components of the block v v T
diagrams are shown in figure, with the signal represented
. . R(:
by an arrow, system transfer relation (gain) represented by L
. . . . R(s) R(s)
a block and signal combination and extraction represented ‘ -
. . R(s)
by sum and derivation nodes. -
Summing junction Pickoff point
Block Algebra: © @
e Cascade connection Xo(s) = X,(5) = Cs) =
R(s) G(s)R(s) G(5)G(5)R(5) Gl 5)GA(5)G(5)R(s)
— G y(s) ™ (s(5) = (5(5) -
la)
R(s) C(s)
i G_';(.T]G:{.?]{;][.‘f} -
* Parallel connection ®)
X1(5) =R(5)G(s5)
—{ G(5)
R(s) Xo(s5) = R(S)Go(s) + ol C(s) = [+ Gy(5) £ Gols) £ G(s)]R(s) R(s) Cls)
| Gy(s) Dt bl el : — - R — G (5) £ Go(s) £ Gi(s) f—=

H

X5(5) = R(5)Gs(s)

G_g{."i'}
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 Feedback connection
Plant and
controller

R(s) + E(: Cl.
(s) (s) G(s) (s)
Output

Actuating
signal
{error)

Input

T

H(s) [[*+——

Feedback

Moving Blocks to Create Familiar Forms:

Ris) +
Gix)
* Transfer of a sum node from the input to the output of a block: T'i
C(s) = G(s)[R(s) + X(s)] = G(s)R(s) + G(s)X(s)

* Transfer of a sum node from the output to the input of a block:

C(s) =G(S)R(s) +X(s) = G(s)[R(s) +
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C(s) = G(s)E(s)

E(s) =R(s) — H(s)C(s) = R(s) —H(s)G(s)E(s) —»
E(S)(l + H(S)G(S)) = R(s) 2> E(s) =

G(s)
1+ H(s)G(s)

C(s) = R(s)

X(5)

Ris)

—=  (s)

1
——=X(s)]

R(s)

1+ H(s)G(s)

G(s)

Inpu

t - 1 £ Gis)H(s)

C(s)

C(s)

G(s)

+

Xis)

1 % Cis) S

R(s)

Ris) +

S ——

R(s) »

o e

Output

c_' ..
Gs) + (5)
T

Gi5)

|

X(s)

R

1
Gis)

!

Cis)
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R(s)Gix) R(5)G(s)

—=| ((5) p———

* Transfer of a derivation point from the input to
the output of a block: R(s) R(s) RO | R(s)
- ——  —=| ((5) = G =
R(s) I R(s)
B ™ G(s) |
* Transfer of a derivation point from the output to R(s)G(s) R()G(s)
the input of a block: " = Gs) [
R(s) R(5)G(s) __ Ris) R(5)(G(s)
—= G(s) - — = G(s) F———=
Ri(5)G(s) R(5)G(x)
e = G(s) f—"

e Signal-node switching:
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Examplel: Reduce the block diagram shown in Figure to a single transfer function.

Reduction Steps: RO 6o N I U
1. Cascade(G3,G,) =T;
2. Parallel (Hl, Hz,Hg) = TZ Hys) |
3. feedback(T,, T,) =Ts
4. Cascade(T;,G,) =T o
Hs(s)
()G + GA(5)Go(s) R(s) n Ga(5)Fa(5)G(5) l‘:{.':]l.-_
FETRY LW ETR — = - FETRY L ETRY
] e Hi() — B+ Hy(s) 1= _ ’ B | + Gy(5)G5(5)[H (5) — Hs(s) + Hy(s5)]

H]{.’!':] - HE{S} + H}{S}

Ris) Gy 5)Galx) C{::}-__
1 + Ga(5)Ga(s) | H(s) — Ha(s) + Hy(s)]
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Example2: Reduce the block diagram shown in Figure to a single transfer function.

C(s)

(r5(5)

H_:,'f.i‘)

[ 4

Iy

Hy(s)

Reduction Steps:

Transfer the derivation point from the
input of G, to its outputand apply
feedback (G, H3)

* Transfer the sum node from the output of

G4 to its output + para]]e](%(s), 1)
2

* cascade and parallel
* feedback and then cascade

R(s) + Vy(s) | Cry(5) Cis)
G1(5)Gals) - ( + l)( : ) —
- (ra(5) I+ Gals)H;(5)
H3(s) )
Gry(s)
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Gﬂ.‘f]‘

Viis)

H(s) =

(ia(5) Cis)
I + Gyl shH i)

(71(s)

1 + Gs(s)Hs(s)

Cis)

Vil5) |
G1(5)Gals) - G-{-:}+] -
Ho(s)
==
Gy(s)

Ris) o

Cry(5)Ga(5)

G5(s)

|+ G(s)H5(5) + G (5)Ga(5)H  (5)

V4|:.T}=_ I. + |_
GE{.E':I

Ris)

—_—

Cis)
1+ G_:,{.?}H_:,{.?})

G(s)Gs(s)[1 + Gals)]

Cis)
-

[1+ Ga(s)HA(5) + G(5)G(5)H ()] 1 + Gs(5)H5(5)]
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Signal-Flow diagrams:

The basic input vocabulary of the signal flow Ry(s)
diagrams are shown in figure, with the signal

represented by a node, system transfer relation

(gain) represented by an arrow, and signal

combination and extraction represented by rows Gls)
converging in a node and rows diverging from it.

Rs(5)

Cl E _:-ll: 5)

G]L‘fj GE{.T} {;_1"[.'5'} ,
R(s) O——CO——0O——0 ) )
1._'\-[_\'] ll.-|l:_'\|.']

| Gl(.
C(s) R(s) O——)—> C(s)
Ei(x)

Converting a Block Diagram to a Signal-Flow Graph V(s) 1

(r4(5)

+l 1

Vil Vil Cls )
als) + 5(5) Gy(s) () Ris») O

Gi(s)

i

H_J,{.S'} -

Hl{_ﬂ =%

Hy(s)
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Mason’s Rule:

We define the following:

Pathi,j : the sequence of branching that connects node i and node j without going through any node more than one time.
Path-gain: the product of the gains of all the branches of the path.

Loop: a closed path.

Loop gain: its relative path gain.

Nontouching loops: Loops that do not have any nodes and branches in common. Nontouching loops are inspected as two,
three, four, or more at a time.

Nontouching loops gains: the product of nontouching loops taken as two, three, four, or more at a time.

Loops and nontouching loops with a path;: the loops and nontoucing loops that do not have any nodes or branches in
common.

Loops and nontouching loops with a path; gains: the product of the gains of the Loops and nontouching loops with the
path;.

Masons Formula:

where
G(s) = C(s) = 2Tk k = number of forward paths
R(s) A T} = the kth forward-path gain

A =1 - Xloop gains + £ nontouching-loop gains taken two ata time — X
nontouching-loop gains taken three at a time + X nontouching-loop gains
taken four at a time — . . .

A = A — X loop gain terms in A that touch the kth forward path. In other words, A;

is formed by eliminating from A those loop gains that touch the kth forward path.

STUDENTS-HUB.com Uploaded By: 1201458@student.birzeit.edu



Example 1: determine the transfer function of
the following system using Masons rule.

Solution:

graph elements gains will be written directly.

Path gains:
Pl == GleG3G4G5G7
P2 == GlG2G3G4G6G7

Loop gains:
Ly = H1G,
L, = HyGy
Lz = H3G,G5
Ly = H3G4Gq

Nontouching Loops gains (2-2):
Li; = HiHyG,Gy

Li3 = HiH3G,G4G5

L1y = HiH3GyG,Gg
Nontouching Loops gains (3-3):
Do not exist

Nontouching Loops with P;gains:

Do not exist

Nontouching Loops with P, gains:

Do not exist
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Gf]'[.'!'-'}
G (5) (5(5) G4(s) Gy(s) m G4(5)
R(s) O——- ——-ri ——{ —> = —{) ((s)
| '_:.[ %) 'I-'_p: %) ! '..','i 5) ! '_-I' (] ! '-_ (5]
Hy(s)

H_'-*.':-‘f]

Computation:

A=1— (H162+HzG4+H3G4G5 + H3G4G6) +(H1H2G2G4 + H1H3G2G4G5 + H1H3GzG4_G6)
AP1= 1,Ap2= 1

T(s) =

C(s) _ G1G2G3G4G7(Gs + Gg)

R(s) 1— (H{G,+H,G4+H3G,G) + (H{H,G,G, + H{H3G,G,G:)
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Example 2: determine the transfer function of the following system using Masons rule.

Solution:

graph elements gains will be written directly. G(s) Gals) Ga(s) Gy(s) Gs(s)
Path gains: '
Py = G1G3G3G4G5

Loop gains:

L, = H1G,

L, = HyG,4

Ly = HyGy

Ly = G5G3G4G5GGGg
Nontouching Loops gains (2-2):
Li; = HiH;G,Gy

Li3 = H1HyG, Gy

Lyz = HyHyuGyGy

Nontouching Loops gains (3-3):
L33 = HiHyHyG,GyGy
Nontouching Loops with P, gains:
LP1_3 = HuGy

Computation:

A=1— (H1G,+H,G4+H,G7 + G,G3G,G5G¢G,Gg) +(H H,G,G, + H{H,G,G, + HyH,G,G7) — (H{H,H,G,G4G), Ap, =1 — HuGy
C(s) _ G1G7G3G,4Gs - (1 — HyGy)

R(s) 11— (H G,+H,G4+H,G7 + G,G3G4GsGoG,Gg) + (H{H,G,G, + HHH,G,G, + HyH,G4G7) — (H{H,HyG,G4G)
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State Space Representation
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State Space Representation:

* |tis an internal system time-domain representation composed of a set of simultaneous first-order differential
equations that describes the evolution of the internal state variables (memory elements variables or other
related variables ) and a second set of algebraic equations that set the relation between the input and the
state.

x = f(x,u)
y=g(xu)
 The number of independent state equations is equal to the order of the system.
* The natural selection of the independent state variables is the energy variable of the conservative elements.
e The state equation includes only state variables and input excitation.
* For alinear type invariant system of order n with m inputs and d outputs, the state equations representation
is formulated as follow:

X = ApxnXnx1 T BuxmUmxa X : state vector, A:state Space matrix, B: state-input matrix,
Vax1= CaxnX + DgxmU C: output-ste matrix, D:output-input Matrix
M
Example:
* The system is first order system, thus we need one state variable. The output is vz (t). o) i) 8
e Select the mesh current which is equal to the inductor current as state variable.

diy(t)

* The energy element equation is v (t) = L—== which is not a state equation because v, (t) is not a state

variable an has to be eliminated.
* Applying KVL and the resistor characteristic equation we obtain v, (t) = v(t) — Ri(t)

e Substituting in the energy equation, we obtain (t) —v(t) ——i(t) ... state equation
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Example?2
* The system of a second-order system, thus we need two independent state variables.

* The natural selection of state variables is i; (t) and V.(t).
* Assume the output variable is V.(t). The output equation becomes y(t) = V.(t)

e Solution:
dip(t) . dv.(t) . )
* The energy equations are v, (t) = L——= ” and i (t) = c— = which are both not state equations.
* From the node equations i.(t) = i, (t) —the first state equation: ;f ) Z, i (t) ’\/ﬁ/\, =
* From the KVL and the resistor characteristic equation: v, (t) = v(t) — Ri; (t) — v.(t)
* Applying in the inductor characteristic equation and ordering we obtain: o () o ) T ¢
diL(t) 1
=7v() - —lL(t) - —vc(t)
1
. O —
v V.(t
In matrix form [ .-C] =1 ¢ [ ( )] [ ] v (t)
) I R (®)
Ve(®)
t)=[1 0][.°
yO=[1 0 LL =

Exercise: Write the state equations of the following systems in algebraic matrix form. Outputs: v, (t), x, x;andx, , respectively.

Node 1 % = x(1) i
T — ] —_— A2
i g . M w0000
. |_ R e e e et s e e St e e i s e e e
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Transforming Internal representation to external representation (unigue form)
» State space representation — Transfer Matrix/System of differential equations.
* For a SISO system: State space representation — Transfer function/ differential equations.

Given the state and output equations

x = Ax + Bu (3.68a)
y = Cx+Du (3.68b)

take the Laplace transform assuming zero initial conditions:®

sX(s) = AX(s) + BU(s) (3.692)
Y(s) = CX(s) + DU(s) (3.69b)
Solving for X(s) in Eq. (3.69a),
(sI — A)X(s) = BU(s) (3.70)
or
X(s) = (sI — A)"'BU(s) (3.71)

where I is the identity matrix.
Substituting Eq. (3.71) into Eq. (3.69b) yields

Y(s) = C(sI - A)"'BU(s) + DU(s) = [C(SI -A)'B+ D] U(s) (3.72)
We call the matrix [C(sl -A)'B+ D] the transfer function matrix, since it relates

the output vector, Y(s), to the input vector, U(s). However, if U(s) = U(s) and Y(s) = Y(s)
are scalars, we can find the transfer function, Thus,

T(s) = % =CsI-A)"'B+D
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Example:
Determine the transfer function of the system defined by the following state space representation.

0 1 0 10
)k:! 0 0 1}(+[O]u
-1 =2 =3 0

y=[1 0 0]x

-1 s(s+3) s

s 00 0 1 0 s =1 0 I [ . s+ 1) 2
(-A)=10 s of=| 0 o 1l=]0o s —1| o c1-a =200 _
det(sI — A) s +352+ 25+ 1
0 0 - 1 2 s+3

(s +3s+2) s+3 1}

10
B=10 N T(s):is):C(sI—A)‘lB+D N _ 10(52+3s+2)
0 U(s) T(s) = = 5
§7 4+ 35+ 25+ 1
C=[1 0 0]
D=0

Exercise: determine the transfer function of the system represented by the following state space representation

. [-4 -15 2
x:[ 4 0}x+[0]u(t)
y=|15 0625]x
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Converting external representation to internal representation:

differential equation/ transfer function — state space representation (not unique)

Phase-variable state space representation:

Consider the following differential equation and the following variable assignment:
dny dn—ly
ar Tt g

dy
+ --- +a;—+ apy = bou
la’z‘ 0y 0

_ dy
Xl = y x = — .
" dr X1 = X2
dy )
Xy = — b ! -
) - dr?
dy ; -
X = —— s .
3 dr? X3 = d_g Xp—1 = X
. dt .
: _ Xp = —aoX| — A1 X2+ + — dy—1X, + bou
dn—ly .
X, = d”}-’
dr-1 X, =
. ! dt}z . . . . . . . .
In matrix form-The state matrix is called companion matrix because it includes the coefficient of the transfer
equation: _ . . _ e
X1 0 1 0 0 0 0 0 X1 0 [ xp ]
i o 0 1 0 0 0 .- 0 X2 X
X3 0 0 0 1 0 0 0 X3 0 X3
=| | y=[1 0 0 -+ 0]
Kot o 0 0 0 0 0 - 1 X1 0 Xp—1
X —ayp —a; —a —az; —as —as -+ —dp_1 || X, | | bo] L X,
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Examplel: Consider the following transfer and
* determine the system differential equation and the phase variable representation.

* Plot the block diagram of the system

C(s) 24
R(s) (53 +9s2 4 265 + 24)

Solution:

(s° +95® + 265 4 24)C(s) = 24R(s) —

State variable assignment -

Block Diagram: o)

STUDENTS-HUB.com

¢+ 9¢ + 26¢ + 24c = 24r

w1 T 0 1 07 [x
- Xy | = 0 0 1 Xy | + 0 |r
).C3 -24 =26 -9 X3 24

X1
X3

x, (1) ()

X|]=c¢ X = X2
R
Xo =¢C
X3 = =24x1 — 26x7 — 9x3 + 24r
X3 =¢C
y=c=x
J x;(1) J X, (1) J
9 J
26 |
24
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Example2: Transfer function with polynomial numerator

Determine the state space representation of the following system and plot the corresponding block diagram

C(s)

C(s)

R(s) bos® + bys+ by C(s) - R(s) 1 Xi(s) 5
bys™tbyis+b
) - — 2 15+ bo
a3s® + ars* + ais + ag a333 + a252 +as+ag
R(s) 2+ Ts+2 C(s) R(s) | Xi(s) 2p 7540
- A §
53+ 95% + 265 + 24 - B3+ 92 4+ 265+ 24
jC[ 0 1 0 X1 0
Xy | = 0 0 | x| + |0|r
5C3 =24 =26 -9 X3 1
. X1 =X
C(s) = (bas* + bis + bo)X1(s) = (s* + Ts + 2)X1(s) — c=Xx +7k1+2x; using =x —
.3%1 = X3 )

o= [0 h MHZ[Q ; l]H

A3 X3

| y(f) = ngl + bIXQ + bzl’3

Exercise: Determine the state space representation of the following system and

plot the representation block diagram
25+ 1
s2+Ts+9

G(s) =

STUDENTS-HUB.com

X, (1)

26

24
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Alternative Representations in State Space:

Controller Canonical Form:( a variant of the phase variable representation with companion matrix)

Gls) = C(s) s+ Ts+2 Phase b9 0 1L 07 [x 0

°) = -3 2 | =

R(s) s°+9s*+26s+24 variable: |:XQ:| _[ 0 0 l} |:JC2:| + {0]
-24 -26 -9 1

y=1[2 7 1] F;]

The controller canonical representation is obtained by changing the numbers of the variables and reordering the equations

X3 0 1 0 X3 0 X1 -9 =26 -24 X 1
| = 0 0O 1| |x|+|0|r nl|l=] 1 0 0| |x2| +|[0]r
X =24 =26 -9 X1 1 X3 0 1 0 X3 0

X3 - X1
y=[2 7 1]{;@} y=[1 7 2][3@}

X1

X3 X3

(b)
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Observer Canonical Form:
The transfer function/differential equation are written in integral form which is then written as a sequence of

integration and variables are assigned accordingly.

Example:
1 7 2
C(s) s+ Ts+2 ——+—
G(s) = —— = - C(s) s | §2 0§ 1 7 2 9,26 24
R(s) s> +9s%+265+24 R(s) =79 26 24 - [—‘ =+ —} R(s) = [1 = ] C(s) =
l+-+5+= 5 S s 82
A) S A}

C(s) = [R(s) 9C(s)] + - SITR() = 26C(s)] + ! S2R() = 24CE)] - ) =% [R(s) — 9C(s)] +% ([7R(s) —26C(s)] +%[2R(s) - 24C(s)])]

X1= —9%; +xy +r -9 1 0 17 7
Xy =265 +x347r o X= 7260 x4 7y IVEI
=24 0 O 2]
X3 = —24x + 2r
y=[1 0 0]x
y=c(t) =x

Controller-Observer Duality: o
The controller representation of the same system is given by: ~ Observe the duality relation between the two representations:

Exercise: Determine the phase-variable, controller, and observer Ap=A",Bp=C’", Cp =B".
representation of the following system represented by state space X1 -9 26 -247 [x 1
and plot the signal flow diagrams Ll=1 0 0ofl|lx|+]|0]|r
Hint: convert the state space representation to the transfer function X3 0 1 0] [ 3 0

: -105 =506 1 o x|

X:[ 1 O}HMF Y= 100300 y=[1 7 2]|x
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Cascade representation(for transfer functions with simple roots(Triangular Matrix Form):
The Transfer function is written as the product of its basic-first-order terms and cascaded with the numerator term.

| l 1 [ C)

> -l — —
s+2 | X30s) | S+3 | Xo(s) | s+4 | X(s)

Yy

C(s) 24 _, R 9

R(s) (s+2)(s+3)(s+4)

Representation of the general first-order term

C,'(S) 1 |
Ri(s) - (s + a;) - (s + a;)Ci(s) = Ri(s) — di}(t) _

The system can be represented using this representation as: **

Writing the equations of each block we obtain:

Jlfl :—4X1+XQ —4 1 0 0

- X = 0 -3 Il {x+| Ofr
Xy = —3x2 + x3 0O 0 =2 24
X3 = — 2x3 + 24r yz[l 0 O}x
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Parallel representation: systems with simple roots written in the form of the partial fraction(Diagonal Matrix)

C(s) 24 12

24 12

R(s) (9 +2)(s+3)(s+4) (s‘ +2)

Using the general first-order representation we can obtain the parallel
plot in the figure. Writing the equation of each block we obtain:

-2
ﬁz! 0 -3

Xp = —2x +12r
_IX2 = —3XZ —24r
iy = —dxy +12r

y=c(t) =x; +x+x3

643 T 6+49

— C(s) =R(s) ——

(s +

)|

y=[1 1 1]x

12
2)

—24

12
s
(s+4)

R(s) C(s)

Mixed Parallel-Cascade representation: partial fractions with repeated roots(Jordan Matrix):

Cis)  (s+3) _, C(s)

| 1

RS (s+1%+2)  R(es) (541

i’l =—Xx; “+x2
JITQ = %) + 2r
X3 = —2x3+ r

1
y =c(t) = xl—§x2 + X3

STUDENTS-HUB.com

Plotting using the first-order cell and
G+ 6+ reading the equation we obtain:
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Stability

Dr. Jamal Siam
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System Stability-Review:

Definition: An LTI system is said to be asymptotically stable if its transient response goes to zero and a steady state response
is reached for t goes to infinity.

Theorem1: an LTI system with impulse response h(t) is asymptotically stable & lim h(t) = 0.

t—oo

Theorem?2: adynamic LTI system is asymptotically stable< all the roots of its characteristic equation/ the poles of its
transfer function have a negative real part (located in the left semi plan of the complex plan)

Theorem3: an LTI system is unstable if it has at least a positive real-part root or a repeated root with zero real part.
Definition:(BIBO stability) an LTI system is said to be BIBO (Bounded Input/Bounded Output)e V input x(t)with |x(t)|
< N, IM < o sothat the respons |y(t)| < M, Vt (weak stability)

Theorom4: a system is BIBO stable & ffooo |h(t)|dt < oo that is if its impulse response is absolutely integrable.

Exercise: prove this theorem.
Theorom5: a system is BIBO stable if it has no roots with positive real parts and all the roots with zero real part are not

repeated roots. fr—
Examplel: discuss the stability of the following dynamic systems:

2 !
* % +3 dj;(tt) + 23’(15) = x(t), the roots of are 01 = —1, 0, = -2 - asymptotically stable u-;‘ni-z’.lr-J o “ 1 \
. _ (s+4) 4 T
1) G PIP0 stadle Asymptotically stable —BIBO Stabl —
. __ (st4 symptotically stable — able " »
H(s) = 26D Unstable oD 1AW '1
o H(S) = % — Unstable a"..f.‘s'“'lnt-f-‘_l[.)lf, M_v'qlmnlr, Urstable
stable stable v /oo
Example2: Prove that the system with the following h(t) achieves the BIBO stability theorem S % e:* .
o o -3t Left hall plane gt half plare ‘
h(t) = 10e7>tu(t) - [ |10e 3 u(t)|dt - J, 10e73tdt = 1063 I = ? < 00 —BIBO stable’ t-
- edmagmary ans
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Stability- a different perspective

Observation:

* |tis noted that the system stability depends of the locations of the roots of the characteristic equation of the LTI system in
the complex plane.

* The system roots locations depend on the coefficients of the system characteristic equation (system parameters). For
—b+VbZ%—-4ac

2
Accordingly, It is possible to set stability algorithms based on the equation coefficients (roots location and not values).

example, the roots of the second order characteristic equation as? + bs + ¢ = 0 are S12 =

Coefficients-Based Stability Theorems and Methods:

Theorem I:
It is necessary for an LTI system to be stable that the coefficients of the characteristic polynomial has all the same signs.

Examplel: Discuss the stability of the LTI system with the following characteristic equation.
D(s) =5s*+3s3—2s>+s+1
The system is unstable because the coefficients have different signs.
Example2: Discuss the stability of the LTI system with the following characteristic equation.
D(s) =5s*+3s3+2s?+s+1
The system stability can not be determined based on Theorem I.
Observation: Routh and Hurwitz developed a stability criteria to set a necessary and sufficient conditions for LTI system Stability.
The Routh-Hurwitz(RH) criterion is applied to proper polynomials which do not have poles in the origin. Poles in the origin
implies that the system can not be asymptotically stable(can be BIBO stable or Unstable based on the number of origin poles or
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Routh-Hurwitz Stability Criterion:

Method Formulation:

e Construction of the Routh-Hurwitz (RH) table.

* Test of the sign changes in elements of the first column of the table.

* Any change in sign of the elements of the first column implies system instability.

* The number of first-column-elements sign changes equals the number of right side poles.

RH-table regular construction:

e Thetable hasn + 1 rows, where n is the polynomial order.

 The characteristic polynomial is divided in two polynomials, the first the odd terms power polynomial and the second is the even power
polynomial.

* The coefficients of the higher power polynomial (odd or even polynomials) are distributed on the first row of the table and the lower
power polynomial coefficients on the second row.

* The difference in terms power between of two consecutive columns always equals two (thus the coefficients of the power terms that do
not appear in the equation should be set to zero.

* The coefficient " element of the k'+2 row is determined by the negative value of the determinant of a second order matrix (composed

of the first column of these k" and k™+1 rows and the two elements of the r+1 column of the same rows) divided by the first element of
Xk,1 Xkr+1
Xk+1,1 Xk+1,r+1

the k™+1 row. That is, Xy 40, = —
’ Xk+1,1

Observation:
 The multiplication of the elements of a row with a positive constant (to simplify the computation) does not compromise the table
construction or change the RH stability-test outcomes.
* The table construction can not be continued in the following two cases, and thus alternative ways can be adopted for the RH table
construction and test.
1. Azeroin the first column with at least one non-zero element in the other columns.
2. Arow of zero-elements.
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Stability Test:

* Check the elements of the first column for possible sign changes.

The existence of sigh changes implies the existence of right-side poles which means that the LTI system is unstable.

* The number of right-side poles equals the number of sign changes.

Observation:

The method can also be useful to determine the number of right-side poles of an unstable LTI system according to Theorem I.

Examplel: Discuss the stability of the following LTI system using The RH criterion.

Cix)

Ris El:
(5) + (%) 10000
B s+ 2Ws+3)s+3)

R(s) 1000
52+ 10s? + 315 + 1030

Cis)

characteristic equation:

D(s) = s3 +10s% + 31s + 1030

STUDENTS-HUB.com

RH-table:
1 31
41 1630 103
1 3] 1 n‘ 1 0
| L 03] 0 0_, L o] _,
1 | 1
1 103 ] ‘ 1 n‘ 1 0
] _77 | — —
72 0l_ 10 72 0l_, 72 0l_,
) —72 —72

RH-test: The system is unstable with two right side poles

because of the existence of two changes in the sign of the first
column elements
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Example2: Discuss the stability of the LTI system with the following transfer function using The RH criterion.

200
st 4657+ 1152 4+ 65+ 200

D(s) = s* 4+ 653 + 11s% + 65 + 200

T(s)=

RH-table:
RH-test: The system is unstable with two right side poles
st | I 200 because of the existence of two changes in the sign of the first
s 6 | 6 1 column elements
5 BT 2060 20
5! -19
5 20
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Routh-Hurwitz Stability Criterion-Special cases:

A zero in the first column:
In this case the construction of the table falls because of the division by zero error. Two ways are used to overcome this problem

» Substitution of a small number € and computation of sign (lim func(¢)) in all the first columns elements where it appears.
-0
* Construction of the reciprocal which have reversed coefficient order and consequently the inverse of the original polynomial
poles with the same signs.

Examplel € — method Discuss the stability of the LTI system with the following transfer function using The RH criterion.

10

T6) = 5 5a3or el T T3 — D(s) =s° + 2s* +3s3 + 652+ 55+ 3
RH-table construction: RH-table elements sign computation:
¢ 3 5 Label First column £=-4 £=—
."|4 2 6 3 .'L:T' I + +
) 7 st 2 + +
5 & € — 0 .
2 5 H ¢ + -
2 be — 7 . .
S [. 3 0 . be . 7 B +
t
I 42¢ — 49 — 62 | 42¢ — 49 — ¢
5 ﬂ n A
12¢ — 14 12¢— 14 + +
50 3 0 0 5 3 + +

RH-test: The system is unstable with two right side poles because of the existence of two changes in the sign of the first
column elements
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Example2 Reciprocal polynome — method:
Discuss the stability of the LTI system with the following transfer function using The RH criterion.

D(s) =s°+25s*+3s3+652+55+3 =meep D,,.(s) =35> +5s*+6s3+3s2+2s5+1

RH-table
5 3 6 2 RH-test: The system is unstable with two right side poles
5" 5 3 1 because of the existence of two changes in the sign of the first
o 4.7 | 4 column elements
5 1.33 1
5’ ~1.75
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A row of zeros:

* A row of zeros (with proper polynomials) can occur only at an odd-indexed rows and is caused by imaginary roots.

* The problem is solved by operating on the Auxiliary polynomial by:

1. Solving the auxiliary polynomial equation that is determining the corresponding system roots.

2. Differentiating the auxiliary polynomial, applying the coefficient at the zero elements row, and continuing the
regular construction process.

Construction of the auxiliary polynomial:
The auxiliary polynomials has even power terms with order equals to the index of the row that precedes the row of
zeros and coefficients equal to the preceding row elements (according to the difference of 2 columns rule)

Examplel: Discuss the stability of the LTI system with the following transfer function using The RH criterion

T(s) 10 —  D(5) =8>+ 7s* + 653 + 4252 + 85 + 56

§5 + 75* + 65 + 4252 + 85 + 56 Auxiliary polynomial and its}fgl{erivative
aP(s)

P(s) = 57 + 657 4 8 e =45 + 12540
&

& | 6 g RH-test: There are no changes in the signs of the first column
o F 42 6 s¢ 8 elements. However, the system can not be asymptotically stable
S & 4+ 1 & 12 3 & - o becausethe table hasarow of zeros which implies the existence of
§2 3 8 o fourimaginary poles, which imply that the system is BIBO stable since

1 the imaginary roots has multiplicity one because the polynomial is not
5 — 0 0 ) . 2 272 .

3 a perfect polynomial (can not be written as (s“+ a“)“ . The fifth pole
i 8 0 0

is in the semi-left plane.
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Example2: Discuss the stability of the LTI system with the following transfer function using The RH criterion (number of poles)

20
T(s)= ~
( 5% 457 4+ 125° + 2257 4+ 395% + 5957 + 4852 + 385 + 20
st 1 12 39 48 20
s’ 1 22 59 38 0 . . . ..
Auxiliary polynomial and its derivative
5° — -1 —26 -2 1 20 2 0
g 20 | 60 3 46 2 0 0 P(s)=5" 435 + 2 e djﬂ =45° + 65+ 0
5
5t 1 3 2 0 0
5 o & 2 o 6 3 o 6 0 0 0
2 SR 2 4 0 0 0
; 2
5! ! 0 0 0 0
3
4 0 0 0 0

RH-test: the system is unstable because of the existence of two changes in the signs of the first column elements which means
two right side poles. Continuing the table construction helps in determining the poles distribution. The construction with
auxiliary polynomial (row of zeros) shows the existence of four different imaginary poles. Thus the two remaining poles should
be at the semi left plane.

Observation: The polynomial equation with only even power terms has always symmetric roots around the origin, which
means that the system poles should have positive and negative real parts (changes in first column sign) or zero real part
(imaginary poles) the roots are repeated imaginary roots only if the polynomial is a perfect polynomial and can be written as
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LTI System Conditional Stability:
A system stability that depends on parameters with values that variates in a defined parameters space.

Observation: the conditional stability analysis should cover all the values of the parameters space and can include different special cases.

Examplel: Discuss the conditional stability of the LTI system with the following transfer function using The RH criterion

K Discussion:
I(s) = S +182+T7s+K To have asymptotic stability the first column parametric terms should be positive (no signs change).
Thus we solve for parametric terms = 0 and determine the changes in sign in each part of the

5 I 77 sequence of signs distribution.
5” 18 K firstterm 1386 —k >0 — k < 1386, second term k>0

| 1386 — K At the value k = 1386 we have a special case with a row of zeros at odd indexed row.
’ 18 At k = 0 in the last row (the only case with row of zeros in an odd indexed row) the special case
s K indicates that the polynomial has roots in the origin, therefore, these poles should be extracted,

discussed, and the stability analysis continues with the proper polynomial .
Stability analysis
Columns(3,2): ++++++++++++++tt+tttttttttttrttt++++++++  ThUS: the system is unstable for k < 0 with one right side pole (RSP).
Column(1)  :++++++++++++++++++++++++++(1386)---------------- the system is asymptotically stable in the interval ]0,1386]
Column(0)  :----------- (0)+++++++++++++++++tttttttt b+ the system is unstable for k > 1386 with two right side poles

Special cases:
For k = 1386 we have a row of zeros with auxiliary equation 18s% + 1386 = 0 — S12 = £j8.77 so the system is BIBO stable

For k = 0 the extracted polynomial becomes: D(s) = s(s? + 18s + 77) with roots s; = 0,s, = —11, 53 = —7

The system is BIBO stable.

Observation: the polynomial equations were simple and solved to obtain the remaining system roots.

Exercise Use the RH-table with the auxiliary polynomial (for k = 1386 ) and the extracted polynomial (for k = 0) to reach the same
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Example2: Discuss the conditional stability of the LTI system with the following transfer function using The RH criterion

0.25K,(s + 0.435)

T(s)= -
(5) s* +3.4565° + 3.457s% + (0.719 + 0.25K)s + (0.0416 + 0.109K ;)

st 1 3.457 0.0416 + 0.109K

5 3.456 0.719 + 0.25K,

5 11.228 - 0.25K, 0.144 + 0.377K,

! —006K,; + 1.324K, + 757 Row(1) sign (division of numerator and denominator signs)

I __ .

. e Numerator sign:  ------- (-4.685)++++(25.87)------------

. e llEn e Denominator sign: +++++++++++++++++++++++(44.91)-----
Stability analysis:
Rows(4,3) sign: ++++++HHH
Row(2) sign: +H++++HH (44,9 ) e
Row(1) sign: - (-4.685)++++++++++++++++++++++++(25.87) - (44.91)++++++++++++++++++++++++
Row(0) sign: e (-0.382)+++++++++++++++++++H+HHH+ A

The system is unstable with one RSP for k; < —4.685

The system is unstable with one RSP for —4.685 < k; < —0.382
The system is Asymptotically stable for —0.382 < k; < 25.87
The system is unstable with two RSP for 25.87 < k; < 44.91
The system is unstable with two RSP fork; > 44.91

Exercise: Study the stability of the system at the critical points k; = —0.382, —4.685,25.87, and 44.91
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Steady-State Error
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STUDENTS-HUB.com Uploaded By: 1201458@student.birzeit.edu



Steady-State Error:

Definition (system error):
Given a linear feedback control system with response c(t) and reference r(t), the system error function is defined as:

e(t) =r(t) — c(t).

Definition (actuation error): R(s) + <\ E,(s)

Given a linear feedback control system with feedback signal p(t) and reference r(t),
the system error is defined as: e, (t) = r(t) — p(t).

(i 5) =

P(s)

Definition (system steady-state error):
Given a linear feedback control system with response c(t), reference r(t), and a system steady-state error function e(t),
the system steady-steady error egteqqy is defined under the existence condition of the limit as:

€steady = lim e (t)

t—oo

Steady-State Control Objective:

To adjust the steady-state error to a value that follows the steady state error specifications.

Theorem:

It is necessary for the existence of the steady-state error that the system be asymptotically stable.

Observation:

The computation of the steady state error with a conditional stability parameter space has a meaningful value only in the
asymptotic stability parameter-space region.

Lemma:

Under the asymptotic stability condition, the steady-state error can be computed using the Laplace transform final value
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Steady-State error (Basic Concept):

The value and type of the steady-state error depends on the order of the order of the dynamic of the reference r(t) to be

tracked and the order of the dynamic of the system in the following sense:

e If the order of the dynamic of the reference is higher than that of the system, that is the reference changes are faster than
the system dynamic, then esteqqy — 0.

* If the order of the dynamic of the reference is has the same order of that of the system, that is the reference changes are of
the same order of the system dynamic, then egseqqy = finite — value.

* |If the order of the dynamic of the reference is lower than that of the system, that is the reference changes are slower than
the system dynamic, then egteqqy = 0.

Reference Dynamic Order-Error-type:
The order of r(t) as an infinite function of t.

Zero-order dynamic: r(t) = unit step input = u(t) - R(s) = %

Error-type: position error esteqay = €p-

First-order dynamic: r(t) = ramp input = r(t) - R(s) = Siz
Error-type: velocity error egteqay = €.

Second -order dynamic: r(t) = parabolic input = p(t) - R(s) = S%
Error-type: acceleration error €steqqy = €q.

System Dynamic-System-Type:
The system type equals the number of zero-roots of the dynamic characteristic error gain function or equivalently the number
of the singularity points of the error-gain Laplace transfer function at the origin.
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Singularity points of f(x):
A point x, is said to be a singularity point for f(x) if lim |f(x)| — o
X—Xg

Error gain function-Laplace domain:
The error gain transfer function is the equivalent direct path gain function that sets the feedback control system in its unity

G
feedback form. Gg(s) = 1+G(S)[(;)(S)_1]
System of Type n:

Ge(s) = S:I(:&) with Gg(s) in its primitive form and b(s) = 0 has no solutions at s = 0.

Observation 1:

The error gain-function is used for error computation purposes and not used for stability analysis unless the complete closed
loop transfer function is computed.

Observation 2:

In a unity feedback system Gg(s) = G(s) as can be deduced by substituting H(s) = 1in Gg(s)

E,(s) G(s) Cl(s) R(s) + g E(s) G(s) C(s)
Y Lo L
’ 1 + G(s)H(5)— Gis)

—A

Ris) +

Ri: E, (5 Cl(s
5} + T al5) Ges) (5) .
H(s)
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Steady-State Error Computation (Error Static Gain):
e(t) =r(t) —c(t) » E(s) =R(s) = C(s) = R(s) — Gg(S)E(s) » E(s) =

R(s)
1+ Gg(s)

€steady = E_r)% SE(s)

o, . 1
Position-Error ey,: (R(s) = <)
1

= 1
= lims - S =
T 0 T ¥ G0 1+ 1im G (s)
S—

System type cases.

* TypeO: lirrcl) Gg(s) = constant =k, - e, = = finite, k, is called position static gain. (reference dynamic =type)
S—

1+kyp
. _ 1 _ .
Typel: ll—{r(} Gg(s) > o0 - ep = Tlim G2 = 0, (reference dynamic < type)
* Ingeneral Type(n)=1: lim Gg(s) » % - e, = — : = 0, (reference dynamic < type— system is faster than reference)
) 1+lim Gg(s)

Velocity-Error e,,: (R(s) = Siz)

1

2 _ 1 1

- l. . :l —_—
e = J05° 1+ Gg(s) sl—r>%s+sGE(s) li_r)résGE(s)
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System type cases.
* TypeO: lirr(} sGg(s) = 0 - e, = oo, (reference dynamic > system type)
S—

* Typel: lirr(} sGg(s) = finite =k, » e, = ki k., is called velocity static gain (reference dynamic =system type)
S—

v

* Ingeneral Type(n)>1: ling sGg(s) » o — e, = 0, (reference dynamic < system type— system is faster than reference)
S—

Acceleration-Error e,;: (R(s) = S%)
1

3 1 1
= l. . S— = I =
fa = 0% 1T+ Gg(s) 550 s2 + s2Gg(s) lin& s%2Gg(s)
Ss—

System type cases.
* TypeOand Type 1: lirr(% s2Gg(s) = 0 - ey > o, (reference dynamic > system type)
S—

* Type2: lir% s2Gg(s) = finite =k, > e, = ki, k, is called acceleration static gain (reference dynamic =system type)
S—

a

* Ingeneral Type(n)>2: lir% s2Gg(s) » o - e, = 0, (reference dynamic < system type— system is faster than reference)
S—

Example: Compute the position, velocity and acceleration errors of the following feedback system.
Exercise: prove that the system is stable using the RH criterion.
The error gain function of this asymptotically stable system is given by:

G(s) 100(s +5)

O S TTE@HE — 1] 5 + 1557 - 505 — 400

100 C(s)
sz + 10)

The error gain function has no roots at the origin — the system type is zero— e, = e, —

500 5 1 1 — 4 (s +5)

—400 4 P14k,

fep = lim Ge () = 5
-7
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Example2: Consider the following static gain and determine the type of the system and the system static gain so that the
steady state error = 10%.

Solution:
The system error gain function Gg(s) = G(s)the direct path gain function because of the unity feedback condition.

Accordingly the system is of typel— e, = 0 and e, — oo.

Thus, K should be computed using the velocity steady state error e, = m =0.1= 51k -k = % = 672.
E [E— .
5-0 6-7-8

Ris) + E(s) K(s+5) C(5)
E— Eam— -
% sis+6)s+THs+8)

Important Observation: The result is not valid until it is proved that the system is asymptotically stable fork = 672.

Exercisel:
Compute the system transfer function of the system, study the conditional stability of the system using RH, and prove that the

system is asymptotically stable for k = 672.

Exercisel:
Compute the velocity steady state error as a function of k and determine the minimum and maximum velocity errors in the

asymptotic stability interval of the parameter k.
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Steady state error in presence of disturbance:

Superposition is applied to compute the steady state error in presence of deterministic disturbance.

C(s) = Cr(s) + Cp(s)
E(s) =R(s) — C(s)

L Gi(8)G,(s)
Cr(s) = 3 G1()G,(s)H(s) R(s)
_ Gy (S)
Co(s) =17 G ()G, (s)H(s) D(s)
_ G1(5)G(s) G, (s)

E(s) =R(s) - [1 T 06OIE TP T ae6eHE P
G1(s)G,(s) G (s) _

R(s) [1 1606 1+66)6eHE P© =

_ 1+ G1(s)Go(s)(H(s) — 1) G, (s)

= REs) [ 1+ 6,006OHE) | 1+ 666eHE 2©
1+ G1(s)G,(s)(H(s) — 1) |

Er(s) = R(s) [ 1+ G,(5)G,(s)H(5) = €ref _steady = ll_r)% SER(s)

_ Gy (s) T
D) = T e mG@iE D) 7 Caststeary = {3 5Ep ()

etotal_steady = eref_steady - edist_steady

STUDENTS-HUB.com

is)

E-J"z'[.'i}

Ris) + . +
4%}—\ {ry(5) 4P®—P

His)

]

Y
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Observation 1:

The stability analysis must be done before error computation, and is done using the denominator of one of the transfer

functions <R oy EDE)
R(s) D(s)

Observation 2:

The type of the system is determined by the R(s) reference input that makes eyef steqay finite. That is if it is finite for

R(s) = éthen the system is typeO, for R(s) = Siz then the system is typel, and for R(s) = 513 the system is type2.
Observation 3:
The rules related to the comparison of the reference dynamic and system type continue to be valid also in this case. For

: e 1 .

example, if the error e,es seqay is finite for R(s) = i type0 then e,= finite, e, = e;—> ©

Observation 3:

€dist_steady '€Mains the same and computed one time whatever is the reference, that is independent of computing the

position, velocity, or acceleration errors. D(s)
Example: Compute the total steady state error for a unit step - N )
disturbance and k € R. ) i@ - - N | 190 s,
By 5+5 5+ 2
14 G1(s)Go(s)(H(s) — 1) 1
Er(s) = R(s) = R(s)

100k
(s+5)(s+2)

14 G1(s)G,(s)H(s) 1+

E.(s) = s24+7s+10 r
rRS) = 2 7s 10+ 100k )
100
B (s +2) B 100(s + 5)
Ep(s) = 100k D(s) = s2+7s+ 10+ 100k D(s)
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Stability analysis:
The characteristic equation is Dy (s) = s? + 7s + 10 + 100k

2 1 10 + 100k
1 7 0
0 10 + 100k

From the RH table the region of asymptotic stability is defined by 10 + 100k > 0 = k > —0.1
Error analysis:

1 s24+7s+10 10 1

position error: e, = lims - = = = :
P 550" s s2+7s+10+100k  10+100k  1+10k

Thus the system is of type zero for k > —0.1 —» e,= e;— 0.

] 100(s+5) 500 50
=80 s2+7s+10+100k 10 +100k 1+ 10k

The total error €tot stedy = €p — €p = 1ok 1110k = 110k

Exercise: Determine the absolute values of minimum and maximum total steady state error with k.
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