[12.4] Lecture Problems

[17]. Find Area of triangle determined by the points P(2,-2,1), Q(3,-1,2), R(3,-1,1) . Find unit vector I plane PQR

 $\overrightarrow{PQ} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ $\overrightarrow{PR} = \overrightarrow{i} + \overrightarrow{j}$ $\overrightarrow{PQ} \times \overrightarrow{PR} = |\overrightarrow{i}|$ $\overrightarrow{I} = -\overrightarrow{i} + \overrightarrow{j}$

Area of Triangle = $1PQ \times PR$ = $\sqrt{1+1} = \frac{1}{\sqrt{2}}$

unit vector 1 plane PQR is

 $\vec{n}_1 = \frac{\vec{PQ} \times \vec{PR}}{|\vec{PQ} \times \vec{PR}|} = \frac{1}{\sqrt{2}} \left(-\vec{i} + \vec{j} \right)$

n = - | (- i + j)
STUDENTS-HUB.com

Uploaded By: anonymous

33 If
$$\vec{u} \neq 0$$
 and $\vec{u} \times \vec{V} = \vec{u} \times \vec{w}$
then does $\vec{V} = \vec{w} ?$ Give reasons

$$No = \sum_{i=1}^{n} Exp \qquad \vec{u} = \vec{i} \qquad \vec{v} \neq 0$$

$$\vec{v} = -\vec{i} + \vec{j} \qquad \vec{v} \neq \vec{w}$$

$$\vec{u} \times \vec{w} = \vec{i} \times (\vec{i} + \vec{j})$$

$$= \vec{i} \times \vec{i} + \vec{i} \times \vec{j}$$

$$= \vec{v} \times \vec{v} + \vec{v} \times \vec{j}$$