Key Quiz#1 (Portz)

Exercise#1[3 marks].

(a) Find all $x \in \mathbb{R}$ that satisfy the inequality |x-1| > |x+1|.

$$|x-1|^{7}|x+1|$$
 $\Rightarrow |x-1|^{2}7|x+1|^{2}$
 $\Rightarrow x^{2}-2x+1>x^{2}+2x+1$
 $\Rightarrow x<0$

(b) If $\alpha, \beta \in \mathbb{R}$, show that $|\alpha + \beta| = |\alpha| + |\beta|$ iff $\alpha\beta \ge 0$.

$$||S|| = ||\alpha| + ||\beta| \implies (\alpha + \beta)^2 = (|\alpha| + ||\beta|)^2$$

$$||S|| \propto^2 + 2\alpha\beta + \beta^2 = \alpha^2 + 2||\alpha| + ||\beta| + \beta^2$$

$$||S|| \propto \beta = ||\alpha\beta||$$

$$||S|| \propto \beta > 0$$

Exercise#2 [2 marks]. Let a and b be any two real numbers such that a < b. Let p be a fixed positive irrational number. Show that there is a rational number q such that a < pq < b.

Since a < b, p > 0, then $\frac{a}{p} < \frac{b}{p}$. By density of rationals $f = \frac{a}{p} < \frac{b}{p} < \frac{b}{p}$ or a .

Exercise#3 [4 marks]. Let S be a set of honnegative real numbers that is bounded

Exercise#3 [4 marks]. Let S be a set of nonnegative real numbers that is bounded above and let $T := \{s^2 : s \in S\}$. Prove that if $\sup S = \beta$, then $\sup T = \beta^2$. What about the conclusion if the restriction against negative numbers is removed? Justify your answer.

If $S \in S$, then $0 \le S \le \beta$, so that $S^2 \le \beta^2$ which is implies that $S = \beta^2$ If δ is any upper bound of δ , then $\delta \in S = \delta^2 \le \alpha$ so that $\delta \in \delta$. If δ llows that $\delta \in \delta$ so that $\delta \in \delta$.

If δ llows that $\delta \in \delta$ so that $\delta \in \delta$.

Thus $\delta \in \delta$ supt For the Second question, is portable at $\delta \in \delta$.

NOT true. For example at $\delta \in \delta$.