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CHAPTER 15 MULTIPLE REGRESSION

Learning objectives

MULTIPLE REGRESSION MODEL

stastics in Practice

After reading this chapter and doing the exercises you should be able to:

Understand how multiple regression analysis 6 Determine how good a fit is provided by the

can be used to develop relationships involving

estimated regression equation.

one dependent variable and several independent

variables.

7 Test the significance of the regression equation.

Jura

ura is a large island (380 sq km) off the South West
of Scotland famous for its malt whisky and the large
deer population that wander the quartz mountains (‘the

data that also encompasses other inner Hebridean islands
of Arran, Bute, Mull and Skye he obtains the estimated
binary logistic regression model:

2 Interpret the coefficients in a multiple regression 8 Understand how multicollinearity affects multiple Paps’) that dominate the landscape. With a population i, .
analysis. regression analysis. of a mere 46! it has one of the lowest population Log, Q_: 648 — O.89P—
_ _ densities of any place in the UK. Currently Jura is only 2 r B, ]
3 Appreciate the background assumptions 9 Understand how residual analysis can be used to accessible via the adjoining island, lslay, which has three 018 s
necessary to conduct statistical tests involving the make a judgment as to the appropriateness of ferry services a day — crossings taking about two hours. Fa Ja

15.1

hypothesized regression model.

the model, identify outliers and determine which
observations are influential.

Understand the role of computer packages in

performing multiple regression analysis.

10 Understand how logistic regression is used for
regression analyses involving a binary dependent

Interpret and use computer output to develop the variable.
estimated regression equation.

In Chapter 14 we presented simple linear regression and demonstrated its use in
developing an estimated regression equation that describes the relationship between two
variables. Recall that the variable being predicted or explained is called the depend-
ent variable and the variable being used to predict or explain the dependent variable
is called the independent variable. In this chapter we continue our study of regression
analysis by considering situations involving two or more independent variables. This
subject area, called multiple regression analysis, enables us to consider more than one
potential predictor and thus obtain better estimates than are possible with simple linear
regression.

Multiple regression model

Multiple regression analysis is the study of how a dependent variable Y is related to two
or more independent variables. In the general case, we will use p to denote the number
of independent variables. \

Regression model and regressi/or#equation

The concepts of a regression model and a regression equation introduced in the preced-
ing chapter are applicable in the multiple regression case. The equation that describes
how the dependent variable Y is related to the independent variables X D, SR Xr _and an
error term is called the multiple regression model. We begin with the assumption that
the multiple regression model takes the following form.
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However, because Jura is only four miles from the
mainland it has been suggested that a direct car ferry
taking less than half an hour would be preferable and
more economical than existing provisions.

In exploring the case for an altemative service,
Riddington (1994) arrives at a number of alternative
mathematical formulations that essentially reduce to
multiple regression analysis. In particular using historical

Isle of Jura off the west coast of Scotland. The mountains in the distance are the
distinctive Paps of Jura. © Martin McCarthy.

Muitiple regression model

where
Q,/Q,, it is the number of cars travelling by route
| relative to the number travelling by route 2 to
island i in year t

P, /P, is the relative price between route | and

route 2 tojin yeart
F,/F,, is the relative frequency between route | and
route 2 to i in yeart

1,/ is the relative journey time between route |and
route 2 to j in yeart

Based on appropriate economic assumptions he
estimates from this that some 132 000 passengers and
38 000 cars would use the new service each year rising
over time. Initially this would yield a revenue of £426 000.
Allowing for annual running costs of £322 000, the
resuttant gross profit would therefore be of the order
of £100 000.

Source: Riddington, Geoff (1996) How many for the ferry boat? OR Insight Vol 9
Issue 2 pp 26-32.

Y=F+Bx+tBx,+ - +8x +e (15.1)

where X, = ¥, X, = %, 0

In the multiple regression model, 3, B
epsilon) is a random variable. A close examination of this model reveals that Y'is a linear
,x, (the i+ ﬁ]{cl +,62x2 +oeees i ﬁpxp part) Plus an error term
&. The error term accounts for the variability in Y that cannot be explained by the linear
effect of the p independent variables.

function of x, x,, . . .
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CHAPTER |5 MULTIPLE REGRESSION

In Section 15.4 we will discuss the assumptions for the multiple regression mgq
and & One of the assumptions is that the mean or expected value of £is zero. A COnSel
quence of this assumption is that the mean or expected value of Y, denoted E(Y), is eque‘
tof, +Bx +Bx A+ re- + B x . The equation that describes how the mean va]ual
of Yis related to x, x,, . . . x, is called the multiple regression equation .

Muiltiple regression equation

E(Y)=ﬁ0+ﬁlx\+ﬁ2'xl+---+ﬁxp (15.2)

P

Estimated multiple regression equation

If the valuesof B, 5., .. .. B, were known, equation (15.2) could be used to compute the
mean value of Y at given values of x, x,, . . . x . Unfortunately, these parameter valueg
will not, in general, be known and must be estimated from sample data. A simple ran-
dom sample is used to compute sample statistics by by, ..., b that are used as the point
estimators of the parameters 5, 3, . . ., ﬁp. These sample statistics provide the following
estimated multiple regression equation.

Estimated multiple regression equation
! ;’:bn+blxw+bix2+‘“+bpxp - £15-3)

where
{)O, By & bp are the estimates of §, B, .. ., ,[,v’IJ
y = estimated value of the dependent variable

The estimation process for multiple regression is shown in Figure 15.1.

15.2 Least squares method

In Chapter 14, we used the least squares method to develop the estimated regression
gquation that best approximated the straight-line relationship between the dependent and
mdepepdent variables. This same approach is used to develop the estimated multiple
regression equation. The least squares criterion is restated as follows.

Least squares criterion
min Z(y, — #)* (15.4)
where

y, = observed value of the dependent variable for the i th observation
y, = estimated value of the dependent variable for the | th observation
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A

Multiple Regression
Model

Y=,50+ﬁ1x1+32x2+----+5pxp+£

Sample Data:
i Xy K, ¥

Multiple Regression Equation
E(Y) = By+ 3 X + 8y %+ +BpX,

BolilBpeis ﬂp are

unknown parameters

Compute the Estimated
Multiple Regression

by .b,.b, ... b, Equation
provide the estimates of 9 =by+b, X, +by X, + - +by, i
BoB1-By s By byby.b; ..., b, are

sample statisties

The estimated values of the dependent variable are computed by using the estimated
multiple regression equation,

by + b, + by, ¥+ b

y
As expression (15.4) shows, the least squares method uses sample data to provide the
valuesof b, b, . . ., bp that make the sum of squared residuals {the deviations between
the observed values of the dependent variable (y,) and the estimated values of the depend-
ent variable y } a minimum.

In Chapter 14 we presented formulae for computing the lea st squares estimators b,
and b, for the estimated simple linear regression equation y = b, + b x. With relatively
small data sets, we were able to use those formulae to compute b, and b, by manual
calculations. In multiple regression, however, the presentation of the formulae for the
regression coefficients b, b,, . . ., b, involves the use of matrix algebra and is beyond
the scope of this text. Therefore, in presenting multiple regression, we focus on how
computer software packages can be used to obtain the estimated regression equation and
other information. The emphasis will be on how to interpret the computer output rather

than on how to make the multiple regression computations.

An example: Eurodistributor Company

As an illustration of multiple regression analysis, we will consider a problem faced by
the Eurodistributor Company, an independent distribution company in the Netherlands.
A major portion of Eurodistributor’s business involves deliveries throughout its local
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CHAPTER |5 MULTIPLE REGRESSION

EURODIS-
TRIBUTOR

~ Preliminary data for Eurodistributor

Driving X, = Distance Y = Travel

assignment travelled (kilometres) time (hours)
| 100 9.3
2 50 4.8
3 100 8.9
4 |00 65
5 50 42
6 80 6.2
7 75 74
8 65 6.0
9 90 76
|10 90 6.1

area. To develop better work schedules, the company’s managers want to estimate the
total daily travel time for their drivers.

Initially the managers believed that the total daily travel time would be closely related
to the distance travelled in making the daily deliveries. A simple random sample of
ten driving assignments provided the data shown in Table 15.1 and the scatter diagram
shown in Figure 15.2. After reviewing this scatter diagram, the managers hypothesized
that the simple linear regression model ¥ = f + fx + & could be used to describe the
relationship between the total travel time (¥) and the distance travelled (X,). To estimate
the parameters 3, and 3, the least squares method was used to develop the estimated
regression equation.

y=b,+ bx, (15.5)

In Figure 15.3, we show the MINITAB computer output from applying simple linear
regression to the data in Table 15.1. The estimated regression equation is

y = 1.27 + 0.06738x,

Total Travel Time (hours)

50 60 70 80 90 100
Distance
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LEAST SQUARES METHOD

561

MINITAB output for Eurodistributor with one inc
Regression Analysis: Time versus Distance

The regression equation is
Tine = 1.27 + 0.0678 Distance

Predictor Coef SE Coef T P
Constant 1.274 1.401 0.91 0.390
Distance 0.06783 0.01706 3.98 0.004

$ = 1.00179 R-Sq = 66.4% R-Sg{adj) = 62.2%

Analysis of Variance

Source DF 55 M5 F P
Regression 1 15.871 15.871 15.81 0.004
Residual Error 8 8.029 1.004

Total 9 23.900

At the 0.05 level of significance, the F value of 15.81 and its corresponding p-value
of 0.004 indicate that the relationship is significant; that is, we can reject H;: f, =0
because the p-value is less than o = 0.05. Thus, we can conclude that the relationship
between the total travel time and the distance travelled is significant; longer travel
times are associated with more distance. With a coefficient of determination (expressed
as a percentage) of R-sq = 66.4 per cent, we see that 66.4 per cent of the variability in
travel time can be explained by the linear effect of the distance travelled. This finding
is fairly good, but the managers might want to consider adding a second independent
variable to explain some of the remaining variability in the dependent variable.

In attempting to identify another independent variable, the managers felt that the
number of deliveries could also contribute to the total travel time. The Eurodistributor
data, with the number of deliveries added, are shown in Table 15.2. The MINITAB
computer solution with both distance (X)) and number of deliveries (X,) as independent
variables is shown in Figure 15.4. The estimated regression equation is

y=—0.869 + 0.0611x, + 0.923x, (15.6)

In the next section we will discuss the use of the coefficient of multiple determination
in measuring how good a fit is provided by this estimated regression equation. Before
doing so, let us examine more carefully the values of b, = 0.0611 and b, = 0.923 in
equation (15.6).

Note on interpretation of coefficients

One observation can be made at this point about the relationship between the estimated
regression equation with only the distance as an independent variable and the equation
that includes the number of deliveries as a second independent variable. The value of b,
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CHAPTER |15 MULTIPLE REGRESSION LEAST SQUARES METHOD

of the change in Y corresponding to a one-unit change in X, when all other independent
variables are held constant.
In the Eurodistributor example involving two independent variables, b, = 0.0611.

‘ Table 15.2 = istributor with distance (X,) and number of
‘ deliveries (Xz) as the Ihd;{)&’ldﬂh‘t variables

X, = Distance X, = Number of Y = Travel time Thus, 0.0611 hours is an estimate of the expected increase in travel time cmrespondmg
Driving assignment travelled (kilometres) deliveries (hours) to an increase of one kilometre in the distance travelled when the number of deliveries
is held constant. Similarly, because b, = 0.923, an estimate of the expected increase in
| 100 4 93 travel time corresponding to an increase of one delivery when the distance travelled is held
2 50 3 4.8 constant is 0.923 hours.
3 00 4 89
4 |00 2 6.5
5 50 2 47
6 80 L 6.2
. 75 ; | Exercises |
8 65 4 60
? A 3 76 Note to student: The exercises involving data in this and subsequent sections were designed to be
10 0 2 6. solved using a computer software package.

Methods

: 5 I The estimated regression equation for @ model involving two Independent variables and ten
is not the same in both cases. In simple linear regression, we interpret b, as an estimate of
the change in Y for a one-unit change in the independent variable. In multiple regression
analysis, this interpretation must be modified somewhat. That is, in multiple regression
analysis, we interpret each regression coefficient as follows: b, represents an estimate

observations follows.
y=29.1270 + 0.5906x, + 0.4980x,

a. Interpret b, and b, in this estimated regression equation.
b. Estimate Y when X, = 180 and X, = 310.

2 Consider the following data for a dependent variable Y and two independent variables,
X, and X,

1 Regression Analysis: Time versus Distance, Deliveries i £ 4
30 2 94
The regression ecquation is 47 10 108
Time = - 0.869 + 0.0611 Distance + 0.923 Deliveries 25 17 12
5] 16 178
Predictor Coet 3E Coef T P i - =
Constant -0.8687 0.9515 -0.91 0.392 2! ‘9 »
Distance 0.061135 0.0025385 6.18 0.000 74 i |70
Deliveries  0.9234  0.2211 4.18 0.004 36 12 L7
| 59 13 142
| 76 16 2101

5 = 0.573142 R-5gq = 90.4% R-3giadj) = 87.6%

a. Develop an estimated regression equation relating Y to X|. Estimate ¥ if X, = 45,

Anslysis of Farianee b. Develop an estimated regression equation relating Y to X,. Estimate HifH; = 15
Source DF 53 s F P c. Develop an estimated regression equation relating ¥ to X, and X, Estimate Yif X, = 45
Regression 2 21.601 10.800 32.88 0.000 and X, = 15.

R : d 3 . . . 3 . ' . v i
Tzizlual Frror ; 2§ ggg 0.328 3 Inaregression analysis involving 30 observations, the following estimated regression equation

was obtained.

f= 176 +038x, — 2.3x 765+ 2.7,
Source DF Seq 535
Distance 1l 15.871
Deliveries 1 5.729

a. Interpret b, b,, by, and b, in this estimated regression equation.
b. Estimate Y when X = WOX =5X,=land X, =2
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TOULON

Applications

A shoe store developed the following estimated regression equation relating sales to
inventory investment and advertising expenditures,
e dB 5t |0 5 B
where
X, = inventory investment (€000s)

X, = advertising expenditures (€000s)
Y = sales (€000s)

a. Estimate sales resulting from a €15 000 investment in inventory and an advertising budget
of €10 000.
b. Interpret b, and b, in this estimated regression equation.

The owner of Toulon Theatres would like to estimate weekly gross revenue as a function of
advertising expenditures. Historical data for a sample of eight weeks follow.

Weekly gross Television Newspaper
revenue advertising advertising
(€000s) (€000s) (€000s)

96 5.0 1.5
90 20 20
95 4.0 1.5
92 15 25
95 3.0 33
94 35 23
94 25 42
94 3.0 2.5

a. Develop an estimated regression equation with the amount of television advertising as
the independent variable.

b. Develop an estimated regression equation with both television advertizing and newspaper
advertising as the independent variables.

c. s the estimated regression equation coefficient for television advertising expenditures the
same in part (a) and in part (b)? Interpret the coefficient in each case.

d. What is the estimate of the weekly gross revenue for a week when €3500 is spent on
television advertising and €1800 is spent on newspaper advertising?

The following table gives the annual return, the safety rating (0 = riskiest, 10 = safest), and
the annual expense ratio for 20 foreign funds.

Annual Expense Annual
safety rating ratio (%) return (%)
Accessor Int'| Equity ‘Adv' il 1.59 49
Aetna 'l' International 72 IS5 52
Amer Century Int!l Discovery ‘Inv' 6.8 |.68 89
Columbia International Stock 7.1 1.56 58
Concert Inv ‘A’ Int'l Equity 6.2 2.16 131
Dreyfus Founders Int'l Equity 'F' T4 .80 59
Driehaus Intemational Growth 6.5 |.88 99
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FORFUNDS

MULTIPLE COEFFICIENT OF DETERMINATION

Annual Expense Annual
\ safety rating ratio (%) return (%)
Excelsior ‘Inst’ Int'l Equity 7.0 090 53
Julius Baer International Equity 69 1.79 Vi
Marshall International Stock Y’ i |49 54
MassMutual Int'l Equity 'S' 7l 1.05 57
Morgan Grenfell Int'l Sm Cap ‘Inst’ it [:45 6l
New England ‘A" Int'l Equity i |.83 88
Pilgrim Intl Small Cap ‘A’ 7.0 94 22
Republic International Equity 72 [.09 7l
St International Growth 69 530 5]
Smith Barney ‘A’ Int'l Equity 7.0 1.28 60
State St Research 'S' Int!l Equity 7. |.65 50
Strong International Stock 6.5 |6l 93
Vontobel International Equity 7.0 [.50 47

a. Develop an estimated regression equation relating the annual return to the safety rating
and the annual expense ratio.

b. Estimate the annual return for a firm that has a safety rating of 7.5 and annual expense
ratio of 2.

15.3 Multiple coefficient of determination

In simple linear regression we showed that the total sum of squares can be partitioned into
two components: the sum of squares due to regression and the sum of squares due to error.
The same procedure applies to the sum of squares in multiple regression.

Relationship among SST, SSR and SSE
SST = SSR + SSE (15.7)

where

SST = total sum of squares = Z(y, — )
SSR = sum of sguares due to regression = L(y, — ¥)*
SSE = sum of squares due to error = Z(y, — ¥)?

Because of the computational difficulty in computing the three sums of squares, we
rely on computer packages to determine those values. The analysis of variance part of the
MINITAB output in Figure 15.4 shows the three values for the Eurodistributor problem
with two independent variables: SST = 23.900, = SSR 21.601 and SSE = 2.299. With
only one independent variable (distance travelled), the MINITAB output in Figure 15.3
shows that SST = 23.900, SSR = 15.871 and SSE = 8.029. The value of SST is the same
in both cases because it does not depend on y but SSR increases and SSE decreases when
a second independent variable (number of deliveries) is added. The implication is that the
estimated multiple regression equation provides a better fit for the observed data.
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CHAPTER |5 MULTIPLE REGRESSION

In Chapter 14, we used the coefficient of determination, R*> = SSR/SST, to measure
the goodness of fit for the estimated regression equation. The same concept applies to
multiple regression. The term multiple coefficient of determination indicates that we
are measuring the goodness of fit for the estimated multiple regression equation. The
multiple coefficient of determination, denoted R?, is computed as follows.

Muitiple coefficient of determination

G (15.8)

T SST

The multiple coefficient of determination can be interpreted as the proportion of the
variability in the dependent variable that can be explained by the estimated multiple
regression equation. Hence, when multiplied by 100, it can be interpreted as the percent-
age of the variability in ¥ that can be explained by the estimated regression equation.

In the two-independent-variable Eurodistributor example, with SSR = 21.601 and
SST = 23.900, we have

_ 21601 _

904
23.900 0

R2

Therefore, 90.4 per cent of the variability in travel time Y is explained by the estimated
multiple regression equation with distance and number of deliveries as the independent
variables. In Figure 15.4, we see that the multiple coefficient of determination is also
provided by the MINITAB output; it is denoted by R-sq = 90.4 per cent.

Figure 15.3 shows that the R-sq value for the estimated regression equation with only one
independent variable, distance travelled (X)), is 66.4 per cent. Thus, the percentage of the
variability in travel times that is explained by the estimated regression equation increases
from 66.4 per cent to 90.4 per cent when number of deliveries is added as a second inde-
pendent variable. In general, R* increases as independent variables are added to the model.

Many analysts prefer adjusting R* for the number of independent variables to
avoid overestimating the impact of adding an independent variable on the amount
of variability explained by the estimated regression equation. With n denoting the
number of observations and p denoting the number of independent variables, the
adjusted multiple coefficient of determination is computed as follows.

Adjusted multiple coefficient of determination

adjRe =1 — (I — Rl)n%;%l (ha2)

For the Eurodistributor example with n = 10 and p = 2, we have

. 10-1
dirRr=1—-(01—-—0904)——=0.
adj R 1= 0.9 )10*2 1 0.88

Therefore, after adjusting for the two independent variables, we have an adjusted multi-

ple coefficient of determination of 0.88. This value, allowing for rounding, corresponds
with the value in the MINITAB output in Figure 15.4 of R-sq(adj) = 87.6 per cent.
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TOULON

MULTIPLE COEFFICIENT OF DETERMINATION

Methods

7

In exercise |, the following estimated regression equation based on ten observations was
presented.

y = 29.1270 + 0.5906x, + 0.4980x,

The values of SST and SSR are 6724.125 and 6216375, respectively.
Find SSE.

Compute R

Compute Adj R%.

Comment on the goodness of fit.

oAl g op

8  In exercise 2, ten observations were provided for a dependent variable Y and two
independent variables X, and X ; for these data SST = |5 182.9, and SSR = 14 052.2,
a. Compute R
b. Compute Adj R
¢. Does the estimated regression equation explain a large amount of the variability in the
data? Explain.
9  In exercise 3, the following estimated regression equation based on 30 observations was
presented.
=76t 38 = E3x = TF6x -+ D%,
The values of SST and SSR are 1805 and 1760, respectively.
a. Compute R%
b. Compute Adj R
¢. Comment on the goodness of fit.
Applications

10 In exercise 4, the following estimated regression equation relating sales to inventory

investment and advertising expenditures was given.
#=25+ 10x, + 8x,

The data used to develop the model came from a survey of ten stores; for those data,
SST = 16 000 and SSR = 12 000.

a. For the estimated regression equation given, compute R2
b. Compute Adj R%

¢. Does the model appear to explain a large amount of variability in the data? Explain.

In exercise 5, the owner of Toulon Theatres used multiple regression analysis to predict

gross revenue (Y) as a function of television advertising (X) and newspaper advertising (X,).
The estimated regression equation was ’

§ =832+ 229x, + 1.30x,

The computer solution provided SST = 25.5 and SSR = 23435,

a. Compute and interpret R? and Adj R?,
b. When television advertising was the only independent variable, R* = 0.653 and
Adj R? = 0.595. Do you prefer the multiple regression results? Explain.
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15.4 Model assumptions

In Section 15.1 we introduced the following multiple regression model.

Multiple regression model
Y=B+Bx +Bx,+ +Bx te (15.10)

The assumptions about the error term £ in the multiple regression model parallel those
for the simple linear regression model.

Assumptions about the error term in the multiple regression model
Y=B+Bx+Bx+ +Bx +e

| The error s a random variable with mean or expected value of zero; that is, E(g) = 0.
Implication: For given values of X, X, . .. X , the expected, or average, value of Y is given by

E( = B, + Bx + B, + o+ By, =i

Equation (15.11) is the multiple regression equation we introduced in Section |5.1. In this
equation, £(Y) represents the average of all possible values of Y that might occur for the given
values of X, X, ..., X..

2 The variance of €is denoted by o” and is the same for all values of the independent variables
Ky K w0y
Implication: The variance of Y about the regression line equals o* and is the same for all values
of X, Xy oo X,

3 The values of € are independent.
Implication: The size of the error for a particular set of values for the independent variables is
not related to the size of the error for any other set of values.

4 The error £is a normally distributed random variable reflecting the deviation between the
value and the expected value of Y given by B, + Bix, + Bx, + -+ + B,
Implication: Because B, B, . . ., ﬁp are constants for the given values of x, x,, . . . x,, the
dependent variable Y is also a normally distributed random variable.

To obtain more insight about the form of the relationship given by equation (15.11),
consider the following two-independent-variable multiple regression equation.

E(Y)= B, + Bx, + By,

The graph of this equation is a plane in three-dimensional space. Figure 15.5 provides
an example of such a graph. Note that the value of £ shown is the difference between the
actual ¥ value and the expected value of y, E(Y), when X, = x * and X, = x,*.

In regression analysis, the term response variable is often used in place of the term
dependent variable. Furthermore, since the multiple regression equation generates a
plane or surface, its graph is called a response surface.
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569

Value of Y when
| Xy = x* and X, = x,*

Bo

‘ E(Y) when
Plane corresponding Xy =x;*and Xy = x,*

; Point corresponding to ‘
l X1 =XT* andX2=X2*

15.5 Testing for significance

In this section we show how to conduct significance tests for a multiple regression
relationship.

The significance tests we used in simple linear regression were a ¢ test and an F test.
In simple linear regression, both tests provide the same conclusion; that is, if the null
hypothesis is rejected, we conclude that the slope parameter 3 # 0. In multiple regres-
sion, the 7 test and the F test have different purposes.

I The F test is used to determine whether a significant relationship exists between
the dependent variable and the set of all the independent variables; we will refer to
the F test as the test for overall significance.

2 If the F test shows an overall significance, the ¢ test is used to determine whether
each of the individual independent variables is significant. A separate ¢ test is
conducted for each of the independent variables in the model; we refer to each of
these f tests as a test for individual significance.

In the material that follows, we will explain the F test and the ¢ test and apply each to the
Eurodistributor Company example.

F test

Given the multiple regression model defined in (15.1)
Y:ﬁu+ﬁ1x|+ﬁzxz+ """ +ﬁvxp+8

the hypotheses for the F test can be written as follows:

HiB=B=...... =g =

H,: One or more of the parameters is not equal to zero
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If H, is rejected, the test gives us sufficient statistical evidence to conclude that one or
more of the parameters is not equal to zero and that the overall relationship between ¥
and the set of independent variables X,, X, . . . X is significant. However, if H can-
not be rejected, we deduce there is not sufficient evidence to conclude that a significant
relationship is present.

Before confirming the steps involved in performing the F test, it might be helpful if
we first review the concept of mean square. A mean square is a sum of squares divided
by its corresponding degrees of freedom. In the multiple regression case, the total sum
of squares has n — | degrees of freedom, the sum of squares due to regression (SSR)
has p degrees of freedom, and the sum of squares due to error has n — p — 1 degrees of
freedom. Hence, the mean square due to regression (MSR) is

Mean square regression

MSR =~ (15.12)

and

Mean square error

MSE = S o= (15.13)

As has already been acknowledged in Chapter 14, MSE provides an unbiased estimate
of o7 the variance of the error term e IfH: B, = B, = ... ... = f = 0is true, MSR
also provides an unbiased estimate of o2, and the value of MSR/MSE should be close
to 1. However, if H is false, MSR overestimates ¢~ and the value of MSR/MSE becomes
larger. To determine how large the value of MSR/MSE must be to reject H, we make
use of the fact that if H is true and the assumptions about the multiple regression model
are valid, the sampling distribution of MSR/MSE is an F distribution with p degrees of
freedom in the numerator and n — p — 1 in the denominator. A summary of the F test
for significance in multiple regression follows.

F test for overall significance

== 0

H,: One or more of the parameters is not equal to zero
Test statistic

_ MSR

= (15.14)

Rejection rule

p-value approach: Reject H, if p-value = «
Critical value approach: Reject H, ifF=F,

where F_ is based on an F distribution with p degrees of freedom in the numerator and
n — p — | degrees of freedom in the denominator.
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Applying the F test to the Eurodistributor Company multiple regression problem with
two independent variables, the hypotheses can be written as follows,

H:B=8=0
H: B, and/or B, is not equal to zero

Figure 15.6 shows the MINITAB output for the multiple regression model with distance
(X) and number of deliveries (X,) as the two independent variables. In the analysis of vari-
ance part of the output, we see that MSR = 10.8 and MSE = 0.328. Using equation (15.14),
we obtain the test statistic.

108

0.328 329
Note that the F value on the MINITAB output is F = 32.88; the value we calculated differs
because we used rounded values for MSR and MSE in the calculation. Using & = 0.01, the
p-value = 0.000 in the last column of the analysis of variance table (Figure 15.6) indicates
that we can reject H;: 5, = f3, = 0 because the p-value is less than & = 0.01. Alternatively,
Table 4 of Appendix B shows that with two degrees of freedom in the numerator and seven
degrees of freedom in the denominator, F,, = 9.55. With 32.9 > 9.55, we reject H:B =
B, = 0 and conclude that a significant relationship is present between travel time ¥ and the
two independent variables, distance and number of deliveries.

As noted previously, the mean square error provides an unbiased estimate of 62, the
variance of the error term & Referring to Figure 15.6, we see that the estimate of o7 is
MSE = 0.328. The square root of MSE is the estimate of the standard deviation of the
error term. As defined in Section 14.5, this standard deviation is called the standard error

Regression Analysis: Time versus Distance, Deliveries

The regression equation is

Time = - 0.869 + 0.0611 Distance + 0.923 Deliveries
Predictor Coef SE Coef T P
Constant -0.8687 0.9515 -0.91 0.392

Distance 0.061135 0.009888 6.18 0.000
Deliveries 0.9234 0.2211 4,18 0.004

‘ 5 = 0.573142 R-5g = 90.4% R-Sg(adj) = 87.6%

Analysis of Variance

Source DF 55 Jub] F P :
Regression 2 21.601 10.800 32.88 0.000 |
Residual Error 7 2.299 0.328 ‘
Total 9 23.900 |
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ANOVA table for a multiple regression model with p independent

variables
Degrees of Sum of
Source freedom squares Mean squares F
SSR ~ MSR

Regression 2 SSR MSR = T Fe MiSE

E MSE = e - L
Error e o=l SS e
Total n—1 §ST

of the estimate and is denoted s. Hence, we have s = VMSE = v0.328 = 0.573. Note
that the value of the standard error of the estimate appears in the MINITAB output in

Figure 15.6.
Table 15.3 is the general analysis of variance (ANOVA) table that provides the

test results for a multiple regression model. The value of the F test statistic appears in
the last column and can be compared to F_with p degrees of freedom in the numera-
tor and n — p — 1 degrees of freedom in the denominator to make the hypothesis test

conclusion.

By reviewing the MINITAB output for Eurodistributor Company in Figure 15.6, we
see that MINITAB’s analysis of variance table contains this information. In addition,
MINITAB provides the p-value corresponding to the F' test statistic.

t test

If the F test shows that the multiple regression relationship is significant, a f test can be
conducted to determine the significance of each of the individual parameters. The # test
for individual significance follows.

t test for individual significance

For any parameter 3

Test statistic

Rejection rule

p-value approach: Reject H, if p-value = o
Critical value approach: Reject H, ift = — t  orift =1t
where t_ is based on a t distribution with n — p — | degrees of freedom,

In the test statistic, s, is the estimate of the standard deviation of b, The value of 5, will
be provided by the computer software package.
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Let us conduct the 7 test for the Eurodistributor regression problem. Refer to the sec-
tion of Figure 15.6 that shows the MINITAB output for the #-ratio calculations. Values
ofb, b, s, and s, are as follows.

b, = 0.061135 5, = 0.009888
b, = 0.9234 5, = 0.2211

Using equation (15.15), we obtain the test statistic for the hypotheses involving param-
eters f3, and f3,.

t = 0.061135/0.009888 = 6.18
t = 0.9234/0.2211 = 4.18

Note that both of these -ratio values and the corresponding p-values are provided by the
MINITAB output in Figure 15.6. Using o = 0.01, the p-values of 0.000 and 0.004 from
the MINITAB output indicate that we can reject H,: f, = 0 and H: 3, = 0. Hence, both
parameters are statistically significant. Alternatively, Table 2 of Appendix B shows that
withn —p — 1 =10 — 2 — | = 7 degrees of freedom, 7, .. = 3.499. With 6.18 > 3.499,
we reject H: §, = 0. Similarly, with 4.18 > 3.499, we reject H: B, = 0.

Multicollinearity

In multiple regression analysis, multicollinearity refers to the correlation among the
independent variables. We used the term independent variable in regression analysis
to refer to any variable being used to predict or explain the value of the dependent
variable. The term does not mean, however, that the independent variables themselves
are independent in any statistical sense. On the contrary, most independent variables in a
multiple regression problem are correlated to some degree with one another. For exam-
ple, in the Eurodistributor example involving the two independent variables X (distance)
and X, (number of deliveries), we could treat the distance as the dependent variable and
the number of deliveries as the independent variable to determine whether those two
variables are themselves related. We could then compute the sample correlation coef-
ficient to determine the extent to which the variables are related. Doing so yields

Pearson correlation of Distance and Deliveries = 0.162

which suggests only a small degree of linear association exists between the two variables.
The implication from this would be that multicollinearity is not a problem for the data.
If however the association had been more pronounced the resultant multicollinearity
might seriously have jeopardized the estimation of the model.

To provide a better perspective of the potential problems of multicollinearity, let us
consider a modification of the Eurodistributor example. Instead of X, being the number
of deliveries, let X, denote the number of litres of petrol consumed. Clearly, X, (the dis-
tance) and X, are related; that is, we know that the number of litres of petrol used depends
on the distance travelled. Hence, we would conclude logically that X, and X, are highly
correlated independent variables.

Assume that we obtain the equation y = b, + b x + b,x, and find that the F test shows
the relationship to be significant. Then suppose we conduct a ¢ test on [, to determine
whether 8, = 0, and we cannot reject H,: f, = 0. Does this result mean that travel time is
not related to distance? Not necessarily. What it probably means is that with X, already in
the model, X, does not make a significant contribution to determining the value of Y. This
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interpretation makes sense in our example; if we know the amount of petrol consumed,
we do not gain much additional information useful in predicting ¥ by knowing the dis-
tance. Similarly, a 7 test might lead us to conclude 3, = 0 on the grounds that, with X in
the model, knowledge of the amount of petrol consumed does not add much.

One useful way of detecting multicollinearity is to calculate the variance inflation factor
(VIF) for each independent variable (Xj) in the model. The VIF is defined as

Variance inflation factor

VIF(X) (15.16)

I =R

I

where Rj? is the coefficient of determination obtained when X, (j=1,2,...,p)isregressed
on all remaining independent variables in the model. If X_ is not correlated with other pre-
dictors le. = () and VIF = I. Correspondingly if R? is close to 1 the VIF will be very large.
Typically VIF values of ten or more are regarded as problematic.

For the Eurodistributor data, the VIF for X, (and also X, by symmetry) would be

VIFX) = — 1+ = 1027
7 T 1= 0162

signifying as before there is no problem with multicollinearity.

To summarize, for ¢ tests associated with testing for the significance of individual
parameters, the difficulty caused by multicollinearity is that it is possible to conclude
that none of the individual parameters are significantly different from zero when an F
test on the overall multiple regression equation indicates there is a significant relation-
ship. This problem is avoided however when little correlation among the independent
variables exists.

If possible, every attempt should be made to avoid including independent variables
that are highly correlated. In practice, however, strict adherence to this policy is not
always possible. When decision-makers have reason to believe substantial multicolline-
arity is present, they must realize that separating the effects of the individual independent
variables on the dependent variable is difficult.

Methods

12 In exercise |, the following estimated regression equation based on ten observations was
presented.

j = 29.1270 + 0.5906x, + 0:4980x,
Here SST = 6724.125, SSR = 6216375, s, = 00813 and s, = 0.0567.

Compute MSR and MSE.

Compute F and perform the appropriate F test. Use a = 0.05.
Perform a t test for the significance of . Use & = 0.05.
Perform a t test for the significance of A, Use ar = 0.05.

(o M
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EXER2

USING THE ESTIMATED REGRESSION EQUATION FOR ESTIMATION AND PREDICTION

13 Refer to the data presented in exercise 2. The estimated regression equation for these data is
y = =184 +20|x, + 470
Here SST = |5 1829, S5R = 140522, s, = 0.247| and 5, = 0.9484.

i
a. Test for a significant relationship among X, X, and Y. Use & = 0.05.
b. Is B, significant? Use or = 0.05.
¢ Is A, significant? Use ez = 0.05.

14 The following estimated regression equation was developed for a model involving two
independent variables.
j =407 + 863x, + 271x,

After X, was dropped from the model, the least squares method was used to obtain an
estimated regression equation involving only X as an independent variable.

j =420+ 90lx,

a. Give an interpretation of the coefficient of X, in bath models.
b. Could multicollinearity explain why the coefficient of X, differs in the two models? If so, how?

Applications
15  In exercise 4 the following estimated regression equation relating sales to inventory
investment and advertizing expenditures was given.
y =25+ 10x, + 8x,

The data used to develop the model came from a survey of ten stores; for these data
SST = 16 000 and SSR = 12 000,

a. Compute SSE, MSE and MSR.
b. Use an F test and a 0.05 level of significance to determine whether there is a relationship
among the variables.

16 Referto exercise 5.
a. Use o= 00| to test the hypotheses
Hy B =8,=0
H,: B, and/or B, is not equal to zero
forthe model ¥ = 8, + Bx, + Bx, + & where

X, = television advertising (€1000s)
X, = newspaper advertising (€1 000s)

b. Use o = 0.05 to test the significance of f. Should X, be dropped from the model?
¢ Use o= 0.05 to test the significance of f,. Should X, be dropped from the model?

15.6 Using the estimated regression equation for

estimation and prediction

The procedures for estimating the mean value of ¥ and predicting an individual value of
Y in multiple regression are similar to those in regression analysis involving one inde-
pendent variable. First, recall that in Chapter 14 we showed that the point estimate of
the expected value of Y for a given value of X was the same as the point estimate of an
individual value of Y. In both cases, we used y = b, + b x as the point estimate.
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- The 95% confidence and prediction intervals for Eurodistributor

Confidence Interval Prediction Interval

Value of X| Value of X Lower Limit Upper Limit Lower Limit Upper Limit

50 2 3.146 4904 2414 5.656
50 3 4|2 5789 3368 6.548
50 4 4815 6.948 4.157 7.607
100 ! 6258 7926 5500 8.683
100 3 7.385 8.645 6.520 9.510
100 4 8.135 2747 7362 10515

In multiple regression we use the same procedure. That is, we substitute the given
values of X , X, . .. XF into the estimated regression equation and use the corresponding
value of y as the point estimate. Suppose that for the Eurodistributor example we want to
use the estimated regression equation involving X| (distance) and X, (number of deliver-
ies) to develop two interval estimates:

I A confidence interval of the mean travel time for all trucks that travel 100 kilome-
tres and make two deliveries.

2 A prediction interval of the travel time for one specific truck that travels 100 kilo-
metres and makes two deliveries.

Using the estimated regression equation y = —0.869 + 0.0611x, + 0.923x, with X| = 100
and X, = —2, we obtain the following value of y.

y = —0.869 + 0.0611(100) + 0.923(2) = 7.09

Hence, the point estimate of travel time in both cases is approximately seven hours.

To develop interval estimates for the mean value of ¥ and for an individual value of ¥, we
use a procedure similar to that for regression analysis involving one independent variable.

The formulae required are beyond the scope of the text, but computer packages for
multiple regression analysis will often provide confidence intervals once the values of
X, X, ... X are specified by the user. In Table 15.4 we show the 95 per cent confidence and
prediction intervals for the Eurodistributor example for selected values of X, and X; these
values were obtained using MINITAB. Note that the interval estimate for an individual value
of Y is wider than the interval estimate for the expected value of Y. This difference simply
reflects the fact that for given values of X, and X, we can estimate the mean travel time for
all trucks with more precision than we can predict the travel time for one specific truck.

Methods

17 In exercise |, the following estimated regression equation based on ten observations was
presented.

y = 29.1270 + 0.5906x, + 0.4980x,
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a. Develop a point estimate of the mean value of ¥ when X, = 180 and X, = 3|0,
b. Develop a point estimate for an individual value of Y when X = 180 and X, = 310,
18 Refer to the data in exercise 2. The estimated regression equation for those data is
p= =184 201x $-474x

a. Develop a 95 per cent confidence interval for the mean value of Y when X, = 45 and
X, =15,
b. Develop a 95 per cent prediction interval for Y when X, = 45 and X, = 15,

Applications

19 In exercise 5, the owner of Toulon Theatres used multiple regression analysis to predict
gross revenue (Y) as a function of television advertising (X,) and newspaper advertising (X,).
The estimated regression equation was

TOULON y= B2 -+ 229, + | 30k
a. What is the gross revenue expected for a week when €3500 is spent on television
o advertising (X, = 3.5) and €1800 is spent on newspaper advertising (X, = 1.8)?
‘ b. Provide a 95 per cent confidence interval for the mean revenue of all weeks with the

expenditures listed in part (a).
¢ Provide a 95 per cent prediction interval for next weelk's revenue, assuming that the
advertising expenditures will be allocated as in part (2).

15.7 Qualitative independent variables

Thus far, the examples we considered involved quantitative independent variables such
as distance travelled and number of deliveries. In many situations, however, we must
work with qualitative independent variables such as gender (male, female), method
of payment (cash, credit card, cheque) and so on. The purpose of this section is to show
how qualitative variables are handled in regression analysis. To illustrate the use and
interpretation of a qualitative independent variable, we will consider a problem facing the
managers of Johansson Filtration.

An example: Johansson Filtration

Johansson Filtration provides maintenance service for water-filtration systems through-
out southern Denmark. Customers contact Johansson with requests for maintenance sery-
ice on their water-filtration systems. To estimate the service time and the service cost,
Johansson’s managers wish to predict the repair time necessary for each maintenance
request. Hence, repair time in hours is the dependent variable. Repair time is believed to
be related to two factors, the number of months since the last maintenance service and
the type of repair problem (mechanical or electrical). Data for a sample of ten service
calls are reported in Table 15.5.

Let Y denote the repair time in hours and X, denote the number of months since the
last maintenance service. The regression model that uses only X to predict ¥ is

Y= ﬁu +ﬁ1x1 TE
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T
Months since Repair time
Service call last service Type of repair in hours
I % electrical 2.2
] 6 mechanical 3.0
3 8 electrical 48
4 3 mechanical [.8
5 2 electrical 2.8
6 7 electrical 49
7 9 mechanical 42
8 8 mechanical 4.8
9 4 electrical a
|10 6 electrical 4.5

Using MINITAB to develop the estimated regression equation, we obtained the output
shown in Figure 15.7. The estimated regression equation is

= 2.15 + 0.304x, (15.17)

At the 0.05 level of significance, the p-value of 0.016 for the ¢ (or F) test indicates
that the number of months since the last service is significantly related to repair time.
R-sq = 53.4 per cent indicates that X, alone explains 53.4 per cent of the variability in
repair time.

Figure 15.7

Regression Analysis: Time versus Months

The regression ecquation is ‘
Time = 2.15 + 0.304 Months 5

Predictor Coef SE Coef T P H
Constant  2.1473 0.6050 3.55 0.008 H
Months 0.3041 0.1004 3.03 0.016 |

§ = 0.781022 R-Sgq = 53.4% R-Sg(adi) = 47.6%

Analysis of Variance

Source DF 23 85 F P
Regression 1 5.5960 5.5%60 9.17 0.016
Residual Error 3 4.8800 0.6100

Total 9 10,4760
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To incorporate the type of failure into the regression model, we define the following
variable.

X, = 0 if the type of repair is mechanical
X, = 1if the type of repair is electrical

In regression analysis X, is called a dummy or indicator variable. Using this dummy
variable, we can write the multiple regression model as

Y:ﬁu+ﬁ1x| +ﬁ2x2+8

Table 15.6 is the revised data set that includes the values of the dummy variable. Using
MINITAB and the data in Table 15.6, we can develop estimates of the model param-
eters. The MINITAB output in Figure 15.8 shows that the estimated multiple regression
equation is

=093 + 0.388x, + 1.26x, (15.18)

At the 0.05 level of significance, the p-value of 0.001 associated with the F test (F =
21.36) indicates that the regression relationship is significant. The 7 test part of the printout
in Figure 15.8 shows that both months since last service (p-value = 0.000) and type of
repair (p-value = 0.005) are statistically significant. In addition, R-sq = 85.9 per cent and
R-sq(adj) = 81.9 per cent indicate that the estimated regression equation does a good job
of explaining the variability in repair times. Thus, equation (15.18) should prove helpful
in estimating the repair time necessary for the various service calls.

Interpreting the parameters

The multiple regression equation for the Johansson Filtration example is

ENY =8, F3x + Bx, (15.19)

Months since Type of Repair time
Customer last service (X)) repair (X,) in hours (Y)

[ 2.9
0 30
| 4.8
0 1.8
| 29
| 49
0 42
0 48
| 44
| 45

[a B Vo o o S N « S ¥ o S R B0 B R
Oy - 0O O N N W oo oy N
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Figure 15:8° [\ 7 -0

The regression equation is

Predictor Coef 3E Coef
Constant 0.9305 0.4670
Months 0.38762 0.06257
Type l.2627 0.3141

3 0= 0.453043 R-5q = 85.9%

Analysis of Variance

Source DF 58
Regression 2 2.0009
Residual Error 7 1.4751
Total 9 10,4760

Jource DF  Seq 33
Months 1 5.5360
Type 1 3.4049

Regression Analysis: Time versus Months, Type

Time = 0.930 + 0.388 Months + 1.26 Type

T F
1.9 0.0387
.20 0.000
4.02 0,005

E-Sg(adi) = 81.9%

n3 ¥ P
4.5005 21.36 0.001
0.2107

To understand how to interpret the parameters B, B, and 8, when a qualitative
variable is present, consider the case when X, = 0 (mechanical repair). Using
E(Y|mechanical) to denote the mean or expected value of repair time given a mechani-

cal repair, we have

E(Y|mechanical) =  + Bx, + B,(0) = B, + Bx,

Similarly, for an electrical repair (X, = 1), we have

E(Ylelectrical) = B, + Bx, + B(1) = B, + Bx + B

=B, +B) + Bx,

(15.20)

(15.21)

Comparing equations (15.20) and (15.21), we see that the mean repair time is a linear
function of X, for both mechanical and electrical repairs. The slope of both equations is
B, but the y-intercept differs. The y-intercept is f3, in equation (15.20) for mechanical
repairs and (f, + f3)) in equation (15.21) for electrical repairs. The interpretation of B, is
that it indicates the difference between the mean repair time for an electrical repair and

the mean repair time for a mechanical repair.

If B, is positive, the mean repair time for an electrical repair will be greater than that
for a mechanical repair; if 3, is negative, the mean repair time for an electrical repair will

STUDENTS-HUB.com
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be less than that for a mechanical repair. Finally, if 5, = 0, there is no difference in the
mean repair time between electrical and mechanical repairs and the type of repair is not
related to the repair time.

Using the estimated multiple regression equation y = 0.93 + 0.388x, + 1.26x,, we
see that 0.93 is the estimate of 3 and 1.26 is the estimate of f,. Thus, when X =0
(mechanical repair)

y =0.93 + 0.388x, (15.22)
and when X, = 1 (electrical repair)

vy =0.93 + 0.388x, + 1.26(1)
" 210+ 0.388x, (15a3)
In effect, the use of a dummy variable for type of repair provides two equations that can
be used to predict the repair time, one corresponding to mechanical repairs and one cor-
responding to electrical repairs. In addition, with b, = 1.26, we learn that, on average,
electrical repairs require 1.26 hours longer than mechanical repairs.

Figure 15.9 is the plot of the Johansson data from Table 15.6. Repair time in hours
(Y) is represented by the vertical axis and months since last service (X)) is represented
by the horizontal axis. A data point for a mechanical repair is indicated by an M and a
data point for an electrical repair is indicated by an E. Equations (15.22) and (15.23) are
plotted on the graph to show graphically the two equations that can be used to predict the
repair time, one corresponding to mechanical repairs and one corresponding to electrical
repairs.

Figure I5.

Repair Time (hours)

1 M = mechanical repair
E = electrical repair

i I I 1 | I I 1 L L x
0 1 2 3 4 5 6 7 8 9 10

Months Since Last Service
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More complex qualitative variables

Because the qualitative variable for the Johansson Filtration example had two levelg
(mechanical and electrical), defining a dummy variable with zero indicating a mechanicy]
repair and one indicating an electrical repair was easy. However, when a qualitative vari-
able has more than two levels, care must be taken in both defining and interpreting the
dummy variables. As we will show, if a qualitative variable has k levels, k — 1 dummy
variables are required, with each dummy variable being coded as 0 or 1.

For example, suppose a manufacturer of copy machines organized the sales territories
for a particular area into three regions: A, B and C. The managers want to use regression
analysis to help predict the number of copiers sold per week. With the number of unitg
sold as the dependent variable, they are considering several independent variables (the
number of sales personnel, advertising expenditures and so on). Suppose the managers
believe sales region is also an important factor in predicting the number of copiers sold.
Because sales region is a qualitative variable with three levels, A, B and C, we will need
3 — 1 = 2 dummy variables to represent the sales region. Each variable can be coded (
or 1 as follows.

W o | if sales region B
1 0 otherwise

Y = 1 if sales region C
2 |0 otherwise

With this definition, we have the following values of X, and X.

Region X, X
A 0 0
B I 0
C 0 I

Observations corresponding to region A would be coded X, = 0, X, = 0; observations
corresponding to region B would be coded X, = 1, X, = 0; and observations correspond-
ing to region C would be coded X, = 0, X, = L.

The regression equation relatmg the expected value of the number of units sold, E(Y),
to the dummy variables would be written as

E(Y) = ﬂO + B + Bx,

To help us interpret the parameters 3, B, and 3, consider the following three variations
of the regression equation.

E(Y | tegion A) = f, + B,(0) + B,(0) = B,
E(YlregionB) = f + B,(1) + B(0) = B, + B,
E(YlregionC) = f + B,(0) + B(1) = B, + B,

Therefore, /3 is the mean or expected value of sales for region A, B, is the difference
between the mean number of units sold in region B and the mean number of units sold
in region A; and 3, is the difference between the mean number of units sold in region C
and the mean number of units sold in region A.

Two dummy variables were required because sales region is a qualitative variable
with three levels. But the assignment of X, = 0, X, = 0 to indicate region A, X = I;
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X, = 0 to indicate region B, and X, = 0 X = 1 to indicate region C was arbitrary. For
example, we could have chosen X = = 0 to indicate region A, X, = (, X, =0to
indicate region B, and X, = 0, X, = 1 to mdlcate region C. In that case B would have
been interpreted as the mean dlfference between regions A and B and f3, as the mean
difference between regions C and B.

Methods

20 Consider a regression study involving a dependent variable Y, a quantitative independent
variable X and a gualitative variable with two levels (level | and level 2).

a. Write a multiple regression equation relating X, and the qualitative variable to Y.

b. What Is the expected value of Y corresponding to level | of the qualitative variable?
c. What s the expected value of Y corresponding to level 2 of the qualitative variable?
d. Interpret the parameters in your regression equation.

21 Consider a regression study involving a dependent variable Y, a quantitative independent
variable X, and a qualitative independent variable with three possible levels (level |, level 2
and level 3).

a. How many dummy variables are required to represent the qualitative variable!
b. Write a multiple regression equation relating X, and the qualitative variable to Y.
c. Interpret the parameters in your regression equation.

Applications

22 Management proposed the following regression model to predict sales at a fast-food outlet.

= ,60 + ,le‘ + B+ ,83x3 + &
where

= number of competitors within one kilometre
population within one kilometre (000s)
= | if drive-up window present
0 otherwise
Y = sales (€000s)

The following estimated regression equation was developed after 20 outlets were surveyed.
y= 101 —42x + 6.8, + 153x,

a. What is the expected amount of sales attributable to the drive-up window?

b. Predict sales for a store with two competitors, a population of 8000 within one kilometre
and no drive-up window.

c. Predict sales for a store with one competitor, a population of 3000 within one kilometre
and a drive-up window,

|

pa

X
X
X

2

23 Refer to the Johansson Filtration problem introduced in this section. Suppese that in addition
to information on the number of months since the machine was serviced and whether a
mechanical or an electrical failure had occurred, the managers obtained a list showing which
engineer performed the service. The revised data follow.
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QUALITATIVE INDEPENDENT VARIABLES

Repair time Months since Type of Brand Tar Nicotine Weight co
in hours last service repair Engineer L 149 | 02 08858 s
29 2 Electrical Heinz Kolb LarkLights [357 1.0l 0.9643 13.0
30 6 Mechanical Heinz Kalb Marboro 15z 050 09316 4.4
R 48 8 Electrical Wolfgang Linz Merit 7.8 057 09705 100
|.8 3 Mechanical Heinz Kolb MultiFilter 12 0.78 |.1240 10.2
2.8 2 Electrical Heinz Kolb Newportlights 9.0 074 08517 95
4.9 Vi Electrical Wolfgang Linz Now 1.0 0.13 0.7851 125
42 9 Mechanical Wolfgang Linz CldGold [7.0 |.26 09186 18.5
4.8 8 Mechanical Wolfgang Linz PallMallLight 12.8 1.08 1.0395 12.6
4:4 < Electrical Wolfgang Linz Raleigh 5.8 0.96 0.9573 |7.5
45 6 Electrical Heinz Kalb SalemUltra 45 042 09106 49
Tareyton [45 |01 1.0070 15.2
True i3 061 0.9806 85
a. Ignore for now the months since the last maintenance service (X|) and the engineer ViceroyRichLight 86 069 09693 [0.6
who performed the service. Develop the estimated simple linear regression equation to VirginiaSlims |52 |.02 09496 (3.9
predict the repair time () given the type of repair (X,). Recall that X, = O if the type of l WinstonLights 12.0 082 |.1184 149
repair is mechanical and | if the type of repair is electrical.
b. Does the equation that you developed in part (a) provide a good fit for the observed a. Examine correlations between variables in the study and hence assess the possibility
datal Explain. of problems of multicollinearity affecting any subsequent regression model invalving
¢. lgnore for now the months since the last maintenance service and the type of repair independent variables Tar and Nicotine.
associated with the machine. Develop the estimated simple linear regression equation b. Thus develop an estimated multiple regression equation using an appropriate number of
to predict the repair time given the engineer who performed the service. Let X, = 0 if the independent variables featured in the study.
Heinz Kolb performed the service and X, = | if Wolfgang Linz performed the service. c. Are your predictors statistically significant? Use oz = 0.05. What explanation can you give
d. Does the equation that you developed in part (c) provide a good fit for the observed for the results observed?
datal! Explain.

25 The data below (Dunn, 2007) come from a study investigating a new method of measuring body

24 In a multiple regression analysis by Mcintyre (1994), Tar, Nicotine and Weight are considered composition. Body fat percentage, age and gender is given for |8 adults aged between 23 and 61.

as possible predictors of Carbon Monoxide (CO) content for 25 different brands of

cigarette. Detalls of variables and data follow. Age PercentFat Gender
Brand The cigarette brand 23 9.5 M
Tar The tar content (in mg) 23 279 P
Nicotine The nicotine content (in mg) 2/ /8 M
Weight The weight (in g) 27 7.8 ™
coO The carbon monoxide (CO) 39 314 £
CGRtert (iﬂ mg) BODYFAT 4| 259 F
45 274 M
Brand Tar Nicotine Weight co :z i?f E
Alpine (4. 0.86 9853 [3.6 53 347 F
Benson&Hedges 16.0 1.06 1.0938 16.6 58 42 F
BullDurham 29.8 203 [.1650 23.5 54 75 F
Camellights 8.0 0.67 0.9280 10.2 56 325 F
Carlton 4.1 040 09462 54 57 30.3 i
Chesterfield 150 [.04 0.8885 15.0 58 43 F
.Goldenlights 8.8 0.76 |.0267 9.0 58 33.8 E
Kent 124 095 09225 [2:2 60 41.1 F
Kool 16,6 Il 03372 16.3 6l 345 E
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RESIDUAL ANALYSIS 587

Residuals and standardized residuals f
regr ession analysis

a. Develop an estimated regression equation that relates Age and Gender to Percent.Fat
b. Is Age a significant factor in predicting Percent.Fat? Explain. Use o = 0.05.

c. What is the estimated body fat percentage for a female aged 457 Distance
travelled Deliveries Travel Predicted Residual Standardized
x) (X) time (Y) value (y) y—9 residual
|00 4 93 8.93846 0.361540 0.78344
15.8 Residual analysis : 50 3 4.8 4.95830 —0.158305 —0.34962
100 4 8.9 893846 —0.038460 —0.08334
|00 2 6.5 709161 —0.591609 = [:30929
In Chapter 14 we pointed out that standardized residuals were frequently used in residu- 50 o) 42 4.03488 0.165121 0.38167
als plots and in the identification of outliers. The general formula for the standardized 80 2 6.2 5.86892 0331083 0.65431
residual for observation i follows. 75 3 74 648667 0913330 |.68917
65 4 6.0 6.79875 —0.,798749 —| BT
90 3 7.6 740369 0.19631 | 036703
Standardized residual for observation i 90 2 el A o9 —Eke S
h=¥
s}’ =4
where to question the assumption that the error term & is normally distributed. We conclude
T that the model assumptions are reasonable.

i A normal probability plot also can be used to determine whether the distribution of

€ appears to be normal. The procedure and interpretation for a normal probability plot

were discussed in Section 14.8. The same procedure is appropriate for multiple regres-

The general formula for the standard deviation of residual i is defined as follows. sion. Again, we would use a statistical software package to perform the computations and
provide the normal probability plot.

Standard deviation of residual

5-5=syT =h (15.25) ~ Standardized residual plot for t
where ' regressior aﬂal
s = standard error of the estimate
h, = leverage of observation i 2

Residuals Versus the Fitted Values
(response is Time)
L ]

The leverage of an observation is determined by how far the values of the independent 1
variables are from their means. The computation of hj, S, 3 and hence the standardized
residual for observation i in multiple regression analysis is too complex to be done by
hand. However, the standardized residuals can be easily obtained as part of the output
from statistical software packages. Table 15.7 lists the predicted values, the residuals,
and the standardized residuals for the Eurodistributor example presented previously in
this chapter; we obtained these values by using the MINITAB statistical software pack-
age. The predicted values in the table are based on the estimated regression equation

Standardized Residuals
[ ]

5= —0.869 + 0.0611x, + 0.923x, '

The standardized residuals and the predicted values of ¥ from Table 15.7 are used in
the standardized residual plot in Figure 15.10.

This standardized residual plot does not indicate any unusual abnormalities. Also, 5 Fitted Value
all of the standardized residuals are between —2 and +2; hence, we have no reason ' -
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Detecting outliers

An outlier is an observation that is unusual in comparison with the other data; in other
words, an outlier does not fit the pattern of the other data. In Chapter 14 we showed an exam-
ple of an outlier and discussed how standardized residuals can be used to detect outliers.

MINITAB classifies an observation as an outlier if the value of its standardized residual
is less than —2 or greater than +2. Applying this rule to the standardized residuals for the
Eurodistributor example (see Table 15.7), we do not detect any outliers in the data set.

In general, the presence of one or more outliers in a data set tends to increase s, the
standard error of the estimate, and hence increase s _., the standard deviation of residual
i. Because s _. appears in the denominator of the formula for the standardized residual

"(15.24), the size of the standardized residual will decrease as s increases.

As a result, even though a residual may be unusually large, the large denominator in
expression (15.24) may cause the standardized residual rule to fail to identify the obser-
vation as being an outlier. We can circumvent this difficulty by using a form of standard-
ized residuals called studentized deleted residuals.

Studentized deleted residuals and outliers

Suppose the ith observation is deleted from the data set and a new estimated regression
equation is developed with the remaining n — 1 observations. Let s, denote the standard
error of the estimate based on the data set with the ith observation deleted. If we com-
pute the standard deviation of residual i (15.25) using s, instead of s, and then compute
the standardized residual for observation i (15.24) using the revised value, the resulting
standardized residual is called a studentized deleted residual.

If the ith observation is an outlier, S will be less than s. The absolute value of the ith stu-
dentized deleted residual therefore will be larger than the absolute value of the standardized
residual. In this sense, studentized deleted residuals may detect outliers that standardized
residuals do not detect. Many statistical software packages provide an option for obtaining
studentized deleted residuals. Using MINITAB, we obtained the studentized deleted residu-
als for the Eurodistributor example; the results are reported in Table 15.8. The 1 distribution
can be used to determine whether the studentized deleted residuals indicate the presence

Studentized deleted residuals for Eurodistributor

Studentized
Distance Standardized deleted
travelled (X)) Deliveries (X,) Travel time (Y) residual residual
100 i 93 0.78344 0.75938
50 3 48 —0.34962 032654
100 4 89 —0.08334 —-0.0772
100 2 6.5 —|.30929 —1.39494
50 2 42 0.38167 035709
80 2 6.2 0.65431 062519
75 3 74 |.68917 203187
65 % 6.0 — | T 7372 —221314
90 3 7.6 0.36703 034312
90 2 6. —0.77639 —07519
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of outliers. Recall t-hat 2 denotgs the number of 1ndePende§nt variables and n denotes the
number of observations. Hence, if we delete the ith observation, the number of observatic
in the reduced data set is n — 1; in this case the error sum of squares has (n — 1) — 3 _ni
degrees of freedom. For the Eurodistributor example with n = 10 and p = 2, the degrees of
freedom for the error sum of squares with the ith observation deleted is 9 — 2 — 1 = 6. At
a 0.05 level of significance, the  distribution (Table 2 of Appendix B) shows that with six
degrees of freedom, £ ,. = 2.447. If the value of the ith studentized deleted residual is less
than —2.447 or greater than +2.447, we can conclude that the ith observation is an outlier.
The studentized deleted residuals in Table 15.8 do not exceed those limits; therefore, we
conclude that outliers are not present in the data set.

Influential observations

In Section 14.9 we discussed how the leverage of an observation can be used to identity
observations for which the value of the independent variable may have a strong influ-
ence on the regression results. As we acknowledged, the leverage (h,) of an observation,
measures how far the values of the independent variables are from their mean values. The
leverage values are easily obtained as part of the output from statistical software pack-
ages. MINITAB computes the leverage values and uses the rule of thumb

h > 3(p + Din

to identify influential observations. For the Eurodistributor example with p = 2
independent variables and n = 10 observations, the critical value for leverage is
3(2 + 1)/10 = 0.9. The leverage values for the Eurodistributor example obtained by
using MINITAB are reported in Table 15.9. As h, does not exceed 0.9, no influential
observations in the data set are detected.

Using Cook’s distance measure to identify
influential observations

A problem that can arise in using leverage to identify influential observations is that an
observation can be identified as having high leverage and not necessarily be influential in
terms of the resulting estimated regression equation. For example, Table 15.10 shows a

Leverage and Cook's distance measures for Eurodistributor

Distance
travelled (X ) Deliveries (X,) Travel time (Y) Leverage (h) Cook’s D (D)

100 4 93 0351704 0.110994
50 3 4.8 0375863 0.024536
100 4 89 0.351704 0.001256
100 2 6.5 0.378451 0.347923
50 2 4.2 0430220 0.036663
80 2 6.2 0.220557 0.040381
75 3 74 0.110009 0.11756l
65 & 6.0 0.382657 0.650029
90 3 7.6 0.129098 0.006656
90 2 6.1 0.269737 0.074217
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Data set illustrating potential problem using the leverage criterion

X, Y, Leverage h,
I 18 0.204170
I 21 0.204170
2 22 0.164205
3 21 0.138141
4 23 0.125977
4 24 0.125977
5 26 0.127715

15 39 0.909644

data set consisting of eight observations and their corresponding leverage values (obtained
by using MINITAB). Because the leverage for the eighth observation is 0.91 > 0.75 (the
critical leverage value), this observation is identified as influential. Before reaching any final
conclusions, however, let us consider the situation from a different perspective.

Figure 15.11 shows the scatter diagram and the estimated regression equation cor-
responding to the data set in Table 15.10. We used MINITAB to develop the following
estimated regression equation for these data.

5=182+ 1.39x

The straight line in Figure 15.11 is the graph of this equation. Now, let us delete the
observation X = 15, ¥ = 39 from the data set and fit a new estimated regression equa-
tion to the remaining seven observations; the new estimated regression equation is

=181+ 142x

We note that the y-intercept and slope of the new estimated regression equation are not
fundamentally different from the values obtained by using all the data. Although the
leverage criterion identified the eighth observation as influential, this observation clearly
had little influence on the results obtained. Thus, in some situations using only leverage
to identify influential observations can lead to wrong conclusions.

Cook’s distance measure uses both the leverage of observation i, h, and the residual
for observation i, (y, — ¥), to determine whether the observation is influential.

Coold’s distance measure
=W h,

D‘=4____
o= = hy

(15.26)

where

D, = Coolds distance measure for observation i
y, — V. = the residual for observation i

h, = the leverage for observation i

p = the number of independent variables

s = the standard error of the estimate
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¥
40 |-
B ® The estimated regression
- waﬂon with all the data is
B ¥ =182 + 1.39x |
35 “
30 — . |
L Note: If the point (15, 39) is deleted,
L the estimated regression
B equation is j = 18.1 + 1.42x
L . ‘
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The value of Cook’s distance measure will be large and indicate an influential observa-
tion if the residual or the leverage is large. As a rule of thumb, values of D, > 1 indicate
that the ith observation is influential and should be studied further. The last column of
Table 15.9 provides Cook’s distance measure for the Eurodistributor problem as given
by MINITAB. Observation 8 with D, = 0.650029 has the most influence. However,
applying the rule D, > 1, we should not be concerned about the presence of influential
observations in the Eurodistributor data set.

Methods

26 Data for two variables, X and Y, follow,
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GIGARETTES

@

Develop the estimated regression equation for these data.

Plot the standardized residuals versus y. Do there appear to be any outliers in these
datal? Explain.

Compute the studentized deleted residuals for these data. At the 0.05 level

of significance, can any of these observations be classified as an outlier?

Explain.

27 Data for two variables, X and Y, follow.

oo

22 24 26 28 40
¥, 2 2| 31 35 70

Develop the estimated regression equation for these data.

. Compute the studentized deleted residuals for these data. At the 0.05 level

of significance, can any of these observations be classified as an outlier?
Explain.

Compute the leverage values for these data, Do there appear to be any influential
observations in these data! Explain.

Compute Cook’s distance measure for these data. Are any observations influential?
Explain.

Applications

28

29

Exercise 5 gave data on weekly gross revenue, television advertising, and newspaper
advertising for Toulon theatres.

a.

e
d.

Find an estimated regression equation relating weekly gross revenue to television and
newspaper advertising,

Plot the standardized residuals against j. Does the residual plot support the assumptions

about & Explain.
Check for any outliers in these data. What are your conclusions?
Are there any influential observations? Explain.

Data (Tufte, 1974) on male deaths per million in 1950 for lung cancer (Y) and per capita
cigarette consumption in 1930 (X) are given below:

Country y X Country y X
Ireland 58 220 Norway 90 250
Sweden |15 310 Canada [50 510
Denmark |65 380 Australia |70 455
USA 190 1280 Holland 245 460
Switzerland 250 530 Finland 350 115
GB 465 | 145

Results from a simple regression analysis of this information are as follows:

STUDENTS-HUB.com

Regression Analysis: y versus x

The regression equation is
¥ = 65.7 + 0.229 x

Predictor Coef 3E Coef i P
Constant 65.75 48.96 1.34 0.212
X 0.22912 0.06921 3.31 0.009
5 = 84.1296 R-Sq = 54.9% R-3glady) =

Analysis of Variance

Source DF 38 s F
Regression 1L 77554 77554 10.96
Rezidual Error 9 63700 7075

Total 10 141255

Urmsual Observations

Obs X v Fit SE Fit Residual
4 1230 190.0 359.0 53.2 -163.0

Durbin-Watson statistic = 2.07188

Corresponding lererage and cook distance

HI1 COCK]1
0.191237 0.06985
0.149813 0.00694
0.125175 0.00172
0.399306 2.23320
0.094716 0.03222
0.288283 0.75365
0.176211 0.02001
0.097018 0.00893
0.10613% 0.00000
0.105140 0.05060
0.266962 0.02%09

LOGISTIC REGRESSION

49.9%

P
0.009

St Resid
-2.59R

R denotes an observation with a large standardized residual.

details are as follows.

Carry out any further statistical tests you deem appropriate, otherwise comment on the

effectiveness of the linear modes.

15.9 Logistic regression

In many regression applications the dependent variable may only assume two discr.ete
values. For instance, a bank might like to develop an estimated regression equation
for predicting whether a person will be approved for a credit card. The dependent
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variable can be coded as ¥ = 1 if the bank approves the request for a credit card ang
Y = 0 if the bank rejects the request for a credit card. Using logistic regression we can
estimate the probability that the bank will approve the request for a credit card given
a particular set of values for the chosen independent variables.

Consider an application of logistic regression involving a direct mail promotion
being used by Stamm Stores. Stamm owns and operates a national chain of women’s
fashion stores. Five thousand copies of an expensive four-colour sales catalogue have
been printed, and each catalogue includes a coupon that provides a €50 discount on
purchases of €200 or more.

The catalogues are expensive and Stamm would like to send them to only those
customers who have the highest probability of making a €200 purchase using the
discount coupons.

Management thinks that annual spending at Stamm Stores and whether a cus-
tomer has a Stamm credit card are two variables that might be helpful in predict-
ing whether a customer who receives the catalogue will use the coupon to make a
€200 purchase. Stamm conducted a pilot study using a random sample of 50 Stamm
credit card customers and 50 other customers who do not have a Stamm credit card.
Stamm sent the catalogue to each of the 100 customers selected. At the end of a
test period, Stamm noted whether the customer made a purchase (coded 1 if the
customer made a purchase and 0 if not). The sample data for the first ten catalogue
recipients are shown in Table 15.11. The amount each customer spent last year at
Stamm is shown in thousands of euros and the credit card information has been
coded as 1 if the customer has a Stamm credit card and O if not. In the Purchase
column, a 1 is recorded if the sampled customer used the €50 discount coupon to
make a purchase of €200 or more.

We might think of building a multiple regression model using the data in Table 15.11
to help Stamm predict whether a catalogue recipient will make a purchase. We would
use Annual Spending and Stamm Card as independent variables and Purchase as the
dependent variable.

Because the dependent variable may only assume the values of 0 or 1, however, the
ordinary multiple regression model is not applicable. This example shows the type of
situation for which logistic regression was developed. Let us see how logistic regression
can be used to help Stamm predict which type of customer is most likely to take advan-
tage of their promotion.

Sample data for Stamm Stores

Customer Annual spending (€000s) Stamm card Purchase
| 2291 | 0
2 3215 | 0
3 2,133 | 0
% 3924 0 0
5 2528 I 0
6 2473 0 |
7 2.384 0 0
8 7076 0 0
9 [.182 \ I

|0 3345 0 0
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Logistic regression equation

In many ways logistic regression is like ordinary regression. It requires a dependent vari-
able, ¥, and one or more independent variables. In multiple regression analysis, the mean
or expected value of Y, is referred to as the multiple regression equation.

EY)=8+Bx +Bx, + + Bx (15.27)

In logistic regression, statistical theory as well as practice has shown that the relationship
between E(¥) and X, X, . . . X[ 18 better described by the following nonlinear equation.

Logistic regression equation
ol B, + B+ B
E(Y)i | 4 et Ax +Ax+-+hx

(15.28)

If the two values of the dependent variable Y are coded as O or 1, the value of E(Y) in
equation (15.28) provides the probability that ¥ = 1 given a particular set of values for
the independent variables X, X, . . . Xp. Because of the interpretation of £(Y) as a prob-
ability, the logistic regression equation is often written as follows.

Interpretation of E(Y) as a probability in logistic regression

EQfy = Ply = oo o) (15.29)

To provide a better understanding of the characteristics of the logistic regression equa-
tion, suppose the model involves only one independent variable X and the values of the
model parameters are §, = —7 and 8, = 3. The logistic regression equation correspond-
ing to these parameter values is

eﬁ” + B B g Tt

E¥)=P¥=11x= =
(Y) ( x) 1+ eﬁnJr'wa 1+ e—7+3.\'

(15.30)

Figure 15.12 shows a graph of equation (15.30). Note that the graph is S-shaped. The
value of E(Y) ranges from 0 to 1, with the value of E(Y) gradually approaching 1 as the
value of X becomes larger and the value of E(Y) approaching 0 as the value of X becomes
smaller. Note also that the values of E(Y), representing probability, increase fairly rapidly
as X increases from 2 to 3. The fact that the values of E(Y) range from 0 to 1 and that
the curve is S-shaped makes equation (15.30) ideally suited to model the probability the
dependent variable is equal to 1.

Estimating the logistic regression equation

In simple linear and multiple regression the least squares method is used to compute
b, by, ..., b asestimates of the model parameters (8, B, . . ., ,BP). The nonlinear
form of the logistic regression equation makes the method of computing estimates
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for = ~7and =3

0.0 | S I I
0 1 2 3 4 5

Value of Independent Variable (X)

more complex and beyond the scope of this text. We will use computer software to
provide the estimates. The estimated logistic regression equation is

Estimated logistic regression equation

ehit b bt b

j = estimate of P(Y = | | x, %, ... x) (15.31)

T 4 ebetb b kb

Here y provides an estimate of the probability that ¥ = 1, given a particular set of values
for the independent variables.

Let us now return to the Stamm Stores example. The variables in the study are defined
as follows:

y — 0 if the customer made no purchase during the test period
1 if the customer made a purchase during the test period

X, = annual spending at Stamm Stores (€000s)

X, =

0 if the customer does not have a Stamm credit card
1 if the customer has a Stamm credit card

Therefore, we choose a logistic regression equation with two independent variables.

e,['lﬂ+—ﬁlj(1 o=

E(Y) = L+ eﬁu+ﬁ!x'+"'+ﬁ,-.x,. (|5_32)

Using the sample data (see Table 15.11), MINITAB’s binary logistic regression pro-
cedure was used to compute estimates of the model parameters 4, §,, and f,. A portion
of the output obtained is shown in Figure 15.13. We see that b, = —2.1464, b, = 0.3416,
and b, = 1.0987. Thus, the estimated logistic regression equation is
eb" e b”xﬂ e
- 1 + 6—2.14644-0.34161'[ + 1.0987x,

—2.1464 + 0.3416x, + 1.0987x,

y= 1 +ebﬂ+hix1+--‘+bx (I5.33)

e
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Partial logistic r

Logistic Regression Table

95% CI
Predictor Coef  B5E Coef z P Ratio Lower Upper
Constant  -2.14637 0.577245 -3.72 0.000 [
Spending  0.341643 0.128672 2.66 0.0068 1.4l 1.09 1.8l |
Card 1.09873 0.444696  2.47 0.013 3,00 1.25 7.17 [

Log-Likelihood = -60.487
Test that all slopes are zero: G = 13.626, DF = 2, F-Value = 0.001

We can now use equation (15.33) to estimate the probability of making a purchase
for a particular type of customer. For example, to estimate the probability of making a
purchase for customers that spend €2000 annually and do not have a Stamm credit card,
we substitute X, = 2 and X, = 0 into equation (15.33).

6_2' 1464 + 0.3416(2) + 1.0987(0) _ - 1.4632 . 02315

= (0.1880

y= 1 < 6,72.1464%0.3416(2}‘}1.0987(0) - 1+ 6_1'4632 - 1.2315

Thus, an estimate of the probability of making a purchase for this particular group of
customers is approximately 0.19. Similarly, to estimate the probability of making a
purchase for customers that spent €2000 last year and have a Stamm credit card, we
substitute X, = 2 and X, = 1 into equation (15.33).

6_2.1464 + 0.3416(2) + 1.0987(1) _ 6—0.3645 - 06945

5= - = = 0.4099
1 + 8_2'1464 + 0.3416(2) + 1.0987(1) 1 + 670.3645 16945

Thus, for this group of customers, the probability of making a purchase is approximately
0.41. Tt appears that the probability of making a purchase is much higher for customers
with a Stamm credit card. Before reaching any conclusions, however, we need to assess
the statistical significance of our model.

Testing for significance

Testing for significance in logistic regression is similar to testing for significance in mul-
tiple regression. First we conduct a test for overall significance. For the Stamm Stores
example, the hypotheses for the test of overall significance follow:

H:p =85=0
H: B, and/or 3, is not equal to zero

The test for overall significance is based upon the value of a G test statistic. This is
commonly referred to as the ‘Deviance Statistic’. If the null hypothesis is true, the sam-
pling distribution of G follows a chi-square distribution with degrees of freedom equal
to the number of independent variables in the model. Although the computation of G is
beyond the scope of the book, the value of G and its corresponding p-value are provided
as part of MINITAB’s binary logistic regression output. Referring to the last line in
Figure 15.13, we see that the value of G is 13.628, its degrees of freedom are 2, and its
p-value is 0.001. Thus, at any level of significance o= 0.001, we would reject the null
hypothesis and conclude that the overall model is significant.
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If the G test shows an overall significance, a z test can be used to determine whethe,
each of the individual independent variables is making a significant contribution to the
overall model. For the independent variables X, the hypotheses are

H:fB=0
H:B #0

If the null hypothesis is true, the value of the estimated coefficient divided by its stand.
ard error follows a standard normal probability distribution. The column labelled 7 iy
the MINITAB output contains the values of z, = b, /s, for each of the estimated coeffi-
cients and the column labelled p contains the correspondmg p-values. The z, ratio is alsg
known as a “Wald Statistic’. Suppose we use & = 0.05 to test for the mgmﬁcance of the
independent variables in the Stamm model. For the independent variable X| the z valye
is 2.66 and the corresponding p-value is 0.008. Thus, at the 0.05 level of significance
we can reject H: §, = 0. In a similar fashion we can also reject H: 3, = 0 because the
p-value corresponding to z = 2.47 is 0.013. Hence, at the 0.05 level of significance, both
independent variables are statistically significant.

Managerial use

We now use the estimated logistic regression equation to make a decision recommendation
concerning the Stamm Stores catalogue promotion. For Stamm Stores, we already computed

P(Y=11X,=2X,=1)=04099 and P(Y=11X, =2, X, =0)=0.1880

These probabilities indicate that for customers with annual spending of €2000 the presence
of a Stamm credit card increases the probability of making a purchase using the discount
coupon. In Table 15.12 we show estimated probabilities for values of annual spending rang-
ing from €1000 to €7000 for both customers who have a Stamm credit card and customers
who do not have a Stamm credit card. How can Stamm use this information to better target
customers for the new promotion? Suppose Stamm wants to send the promotional catalogue
only to customers who have a 0.40 or higher probability of making a purchase. Using the
estimated probabilities in Table 15.12, Stamm promotion strategy would be:

Customers who have a Stamm credit card: Send the catalogue to every customer
that spent €2000 or more last year.

Customers who do not have a Stamm credit card: Send the catalogue to every
customer that spent €6000 or more last year.

Looking at the estimated probabilities further, we see that the probability of making a
purchase for customers who do not have a Stamm credit card, but spend €5000 annually
15 0.3921. Thus, Stamm may want to consider revising this strategy by including those
customers who do not have a credit card as long as they spent €5000 or more last year.

Estimated probabilities for Stamm Stores

Annual spending

€1000  €2000 €3000 €4000 €5000 €6000  €7000

Credit card Yes 0.3305 04099 04943 05790 06593 07314 0793l
No 0.1413  0.1880 0.2457 03143 03921 04758 05609
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Interpreting the logistic regression equation

Interpreting a regression equation involves relating the independent variables to the business
question that the equation was developed to answer. With logistic regression, it is difficult to
interpret the relation between the independent variables and the probability that ¥ = 1 directly
because the logistic regression equation is nonlinear. However, statisticians have shown that
the relationship can be interpreted indirectly using a concept called the odds ratio.

The odds in favour of an event occurring is defined as the probability the event will
occur divided by the probability the event will not occur. In logistic regression the event
of interest is always ¥ = 1. Given a particular set of values for the independent variables,
the odds in favour of ¥ = 1 can be calculated as follows:

PY=11X,X,...X) P¥=11X,X,...X)

Odds = = 15.34
T PE=0IK,X,.. . X) 1-PE=11X,%,.:.X) R

The odds ratio measures the impact on the odds of a one-unit increase in only one
of the independent variables. The odds ratio is the odds that ¥ = 1 given that one of
the independent variables has been increased by one unit (odds,) divided by the odds
that ¥ = 1 given no change in the values for the independent variables (odds,).

Odds ratio
odds,

Odds ratio =
e odds

(15.35)

0

For example, suppose we want to compare the odds of making a purchase for custom-
ers who spend 2000 annually and have a Stamm credit card (X, = 2 and X, = 1) to the
odds of making a purchase for customers who spend €2000 annually and do not have a
Stamm credit card (X, = 2 and X, = 0). We are interested in interpreting the effect of a
one-unit increase in the mdependent variable X,. In this case

PY=11X =2,X,=1)

L—=i¥e= L|X=3X =1)
PY=11X =2,X,=0)
1 —Pyr=1I1X =2Z:& = 0]

Odds, =

and Odds0 =

Previously we showed that an estimate of the probability that ¥ = 1 given X = 2 and
X, = 115 0.4099, and an estimate of the probability that ¥ = 1 given X| = 2 and X, =0
is 0.1880. Thus,

0.4099

Estimate of OddS] = m = 0.6946
and
; 0.1880
Estimate of odds, = ———— = (.
stimate of odds, T 0.18%0 0.2315
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The estimated odds ratio is

0.6946

= 3.00
0.2315

Estimated odds ratio =

Thus, we can conclude that the estimated odds in favour of making a purchase for cus-
tomers who spent €2000 last year and have a Stamm credit card are three times greater
than the estimated odds in favour of making a purchase for customers who spent €2000
last year and do not have a Stamm credit card.

The odds ratio for each independent variable is computed while holding all the other
independent variables constant. But it does not matter what constant values are used
for the other independent variables. For instance, if we computed the odds ratio for the
Stamm credit card variable (X,) using €3000, instead of €2000, as the value for the annual
spending variable (X)), we would still obtain the same value for the estimated odds ratio
(3.00). Thus, we can conclude that the estimated odds of making a purchase for custom-
ers who have a Stamm credit card are three times greater than the estimated odds of
making a purchase for customers who do not have a Stamm credit card.

The odds ratio is standard output for logistic regression software packages. Refer to
the MINITAB output in Figure 15.13. The column with the heading Odds Ratio contains
the estimated odds ratios for each of the independent variables. The estimated odds
ratio for X, is 1.41 and the estimated odds ratio for X, is 3.00. We already showed how
to interpret the estimated odds ratio for the binary independent variable X,. Let us now
consider the interpretation of the estimated odds ratio for the continuous independent
variable X .

The value of 1.41 in the Odds Ratio column of the MINITAB output tells us that the
estimated odds in favour of making a purchase for customers who spent €3000 last year
is 1.41 times greater than the estimated odds in favour of making a purchase for cus-
tomers who spent €2000 last year. Moreover, this interpretation is true for any one-unit
change in X .

For instance, the estimated odds in favour of making a purchase for someone who
spent €5000 last year is 1.41 times greater than the odds in favour of making a purchase
for a customer who spent €4000 last year. But suppose we are interested in the change
in the odds for an increase of more than one unit for an independent variable. Note that
X, can range from 1 to 7. The odds ratio as printed by the MINITAB output does not
answer this question.

To answer this question we must explore the relationship between the odds ratio and
the regression coefficients.

A unique relationship exists between the odds ratio for a variable and its correspond-
ing regression coefficient. For each independent variable in a logistic regression equation
it can be shown that

Odds ratio = &%

To illustrate this relationship, consider the independent variable X, in the Stamm
example. The estimated odds ratio for X is

Estimated odds ratio = et = 0316 = 1 4]
Similarly, the estimated odds ratio for X, is

Estimated odds ratio = e?2 = ¢!9%7 = 3 00
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This relationship between the odds ratio and the coefficients of the independent vari-
ables makes it easy to compute estimates of the odds ratios once we develop estimates
of the model parameters. Moreover, it also provides us with the ability to investigate
changes in the odds ratio of more than or less than one unit for a continuous independ-
ent variable.

The odds ratio for an independent variable represents the change in the odds for a
one unit change in the independent variable holding all the other independent variables
constant. Suppose that we want to consider the effect of a change of more than one unit,
say ¢ units. For instance, suppose in the Stamm example that we want to compare the
odds of making a purchase for customers who spend €5000 annually (X, = 5) to the
odds of making a purchase for customers who spend €2000 annually (X, = 2). In this
case ¢ = 5 — 2 = 3 and the corresponding estimated odds ratio is

et = g303416) — L0248 — 7 7Q

This result indicates that the estimated odds of making a purchase for customers who
spend €5000 annually is 2.79 times greater than the estimated odds of making a purchase
for customers who spend €2000 annually. In other words, the estimated odds ratio for an
increase of €3000 in annual spending is 2.79.

In general, the odds ratio enables us to compare the odds for two different events.
If the value of the odds ratio is 1, the odds for both events are the same. Thus, if
the independent variable we are considering (such as Stamm credit card status) has
a positive impact on the probability of the event occurring, the corresponding odds
ratio will be greater than 1. Most logistic regression software packages provide a
confidence interval for the odds ratio. The MINITAB output in Figure 15.13 provides
a 95 per cent confidence interval for each of the odds ratios. For example, the point
estimate of the odds ratio for X, is 1.41 and the 95 per cent confidence interval is
1.09 to 1.81. Because the confidence interval does not contain the value of 1, we can
conclude that X, has a significant effect on the odds ratio. Similarly, the 95 per cent
confidence interval for the odds ratio for X, is 1.25 to 7.17. Because this interval
does not contain the value of 1, we can also conclude that X, has a significant effect
on the odds ratio.

Logit transformation

An interesting relationship can be observed between the odds in favour of ¥ = 1 and the
exponent for e in the logistic regression equation. It can be shown that

Inodds) = B, + Bx, + Bx, + - +hx

Pp

This equation shows that the natural logarithm of the odds in favour of ¥ = 1 is a linear
function of the independent variables. This linear function is called the logit. We will use
the notation g(x,, x,, . . . xp) to denote the logit.

Logit
Bl XN =B Bt B e B (15.36)
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Substituting g(x,, x,, ... x) for §, + Bx + B, x, + .- + B x, in equation (15.28) o

can write the logistic regression equation as

eg(,\", Tyl ..\',,)

E(Y) =

1 4 eg()r],xz,....xnj (Is.3 i

Once we estimate the parameters in the logistic regression equation, we can ¢

. . . ~ 0 3
an estimate of the logit. Using g (x, x, . .. x,) to denote the estimated logit, e

WE obtaip .

Estimated logit
8 (e Xy )= By B, b + 2o bx, (15.38)

Therefore, in terms of the estimated logit, the estimated regression equation is

ebn+wal+ng1+---+bx

]

ej; (£ 578 A A

y= 1 + ghotbrtomt.  +by - 1 4 pditpesit) (15.39)

For the Stamm Stores example, the estimated logit is
g (x;, x,) = — 2.1464 + 0.3416x, + 1.0987x,

and the estimated regression equation is

eé;("fl-xﬂ

y = = =
1 4+ eflam) ] + g 21464+ 03416x, + 1.098Tx,

6—2,1464 + 0.3416x, + 1.0987x,

Therefore, because of the unique relationship between the estimated logit and the

estimated logistic regression equation, we can compute the estimated probabilities for
Stamm Stores by dividing e? “»* by 1 + ef @5,

Applications

30 Referto the Stamm Stores example introduced in this section. The dependent variable is
coded as ¥ = | if the customer makes a purchase and 0 if not.
Suppose that the only information available to help predict whether the customer will
make a purchase is the customer's credit card status, coded as X = | if the customer has a
Stamm credit card and X = 0 if not.

a Write the logistic regression equation relating X to Y.
b. What is the interpretation of E(Y) when X = 07
¢. Forthe Stamm data in Table 15.11, use MINITAB to compute the estimated logit.
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d. Use the estimated logit computed in part (c) to compute an o stimate of the probabi“t)/ of
making a purchase for customers who do not have a Stamm credit card and an estimate
of the probability of making a purchase for customers who have a Stamm credit card.

e. What is the estimate of the odds ratio? What is its interpretation?

31 In Table 15.12 we provided estimates of the probability of a purchase in the Starmm Stores
catalogue promotion, A different value is obtained for each combination of values for the
independert variables.

a. Compute the odds in favour of a purchase for a customer with annual spending of €4000
who does not have a Stamm credit card (X, = 4, X, = 0).

b. Use the information in Table 15.12 and part (a) to compute the odds ratio for the Stamm
credit card variable X, holding annual spending constant at X, = 4.

¢ In the text, the odds ratio for the credit card variable was computed using the information in
the €2000 colurnn of Table 15.12. Did you get the same value for the odds ratio in part (b)?

32 Community Bank would like to increase the nurnber of customers who use payroll direct
deposit. Management is considering a new sales campaign that will require each branch manager
1o call each customer who does not currently use payroll direct deposit. As an incentive to
sign up for payroll direct deposit, each customer contacted wil be offered free banking for two
years, Because of the time and cost associated with the new campaign, management would like
+6 focus their efforts on customers who have the highest probability of signing up for payroll
direct deposit. Management believes that the average monthly balance in a customer's current
account may be a useful predictor of whether the customer will sign up for direct payroll
deposit, To investigate the relationship between these two varables, Community Bank tried the
new campaign using a sample of 50 current account customers that do not currently use payroll
direct deposit. The sample data show the average monthly current account balance (in hundreds
of euros) and whether the customer contacted signed up for payroll direct deposit (coded | if
the customer signed up for payroll direct deposit and O if not). The data are contained in the
data set named Bank; a portion of the data follows.

Customer X Monthly balance Y Direct deposit
I |22 0
2 1.56 0
3 2.10 0
& 225 0
5 2.89 0
6 3.55 0
7 356 0
8 3.65 |

48 18.45 !
49 2498 0
50 26,05 I

2. Write the logistic regression equation relating X to V.
b. For the Community Bank data, use MINITAB to compute the estimated logistic regression

equation.
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In this chapter, we introduced multiple regression analysis as an extension of simple
linear regression analysis presented in Chapter 14. Multiple regression analysis ena-
bles us to understand how a dependent variable is related to two or more independent
variables. The regression equation E(Y) =f§ + Bx, + Bx, + - + B x, shows that the
expected value or mean value of the dependent variable Y is related to the values of the
independent variables X , X, .. ., XP. Sample data and the least squares method are used
to develop the estimated regression equationy = b, + bx, + bx, +--- + b X In effect
bo, bw b,, ..., b are sample statistics used to estimate the unknown modef parameters

For additional online summary questions and answers go il o R ﬁp Computer printouts were used throughout the chapter to emphasize

the fact that statistical software packages are the only realistic means of performing the
numerous computations required in multiple regression analysis.

The multiple coefficient of determination was presented as a measure of the goodness
of fit of the estimated regression equation. It determines the proportion of the variation
of ¥ that can be explained by the estimated regression equation. The adjusted multiple
coefficient of determination is a similar measure of goodness of fit that adjusts for the

, number of independent variables and thus avoids overestimating the impact of adding
more independent variables. Model assumptions for multiple regression are shown to
parallel those for simple regression analysis.

An F test and a 1 test were presented as ways of determining statistically whether the
relationship among the variables is significant. The F test is used to determine whether
there is a significant overall relationship between the dependent variable and the set of
all independent variables. The 1 test is used to determine whether there is a significant
relationship between the dependent variable and an individual independent variable
given the other independent variables in the regression model. Correlation among the
independent variables, known as multicollinearity, was discussed.

The section on qualitative independent variables showed how dummy variables can
be used to incorporate qualitative data into multiple regression analysis. The section
on residual analysis showed how residual analysis can be used to validate the model
assumptions, detect outliers and identify influential observations. Standardized residuals,
leverage, studentized deleted residuals and Cook’s distance measure were discussed. The
chapter concluded with a section on how logistic regression can be used to model situa-
tions in which the dependent variable may only assume two values.

c. Conduct a test of significance using the G test statistic. Use e = 0.05.

d. Estimate the probability that customers with an average monthly balance of €1000 will
sign up for direct payroll deposit.

e. Suppose Community Bank only wants to contact customers who have a 0.50 or higher
probability of signing up for direct payroll deposit. What is the average monthly balance
required to achieve this level of probability!

f. What is the estimate of the odds ratio? What is its interpretation?

to the companion website at www.cengage.co.uk/aswsbe2
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Adjusted multiple coefficient of
determination

Cook’s distance measure

Dummy variable

Estimated logistic regression
equation

Estimated logit

Estimated multiple regression
equation

Influential observation

Least squares method

Leverage

Logistic regression equation
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Logit

Multicollinearity

Multiple coefficient of determination
Multiple regression analysis
Multiple regression equation
Multiple regression model

Odds in favour of an event occurring
Odds ratio

Outlier

Qualitative independent variable
Studentized deleted residuals
Variance inflation factor
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Key formulae

Multiple regression model
= Bk B +,B2x2+---+ﬁpxp+e

Multiple regression equation

E(Y)=ﬁo+l8\x|+ﬂlx2+”-+ﬁpxll

Estimated multiple regression equation

il e s A A

Least squares criterion

min Z(y, — )

Relationship among SST, SSR and SSE
S5T = SS5R + SSE

Multiple coefficient of determination

SR

2
i SST

Adjusted multiple coefficient of determination

| ] gy D
adj R == ey
Mean square regression
SSR
MSR = P
Mean square error
S
MSE = st = e
ni—=— |
F test statistic
ISR
MSE
t test statistic
bi
= g
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(15.1)

(15.2)

(15.3)

(15.4)

(15.7)

(15.8)

(15.9)

(15.12)

(15.13)

(15.14)

(15.15)

Variance Inflation Factor

VIF(XJ.) R
]
Standardized residual for observation i
Y= )}J
5 5
Y=
Standard deviation of residual i
5 h =Sl
Coolds distance measure
v, = v)?*h

BT e o= —hy

Logistic regression equation

eﬂﬂ+ B, + By, + o+ Bx,

E(Y) = 1 +eﬁu+_ﬂlxl+,ﬁ1x]+‘“+ﬂllxb

Interpretation of E(Y) as a probability in logistic regression
E(r) = POY = Iy o %)

Estimated logistic regression equation

ekt b 4 by == b

j = estimate of P(Y = | | Xp Xoro e 'Xp) = | 4 ght bt o+ tbx
Odds ratio
. odds,
Odds ratio = oads,
Logit

gl s s k) = B B G + R

Estimated logits

& ey %y oo ) = by F by, +by, + -t bx
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(15.24)

i

(15.25)

(15.26)

(15.28)

(15.29)

(15.31)

(15.35)

(15.36)

(15.38)
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Case problem Consumer Research

Comsumer Research is an independent agency that 2 Develop estimated regression equations, first

©00090000090000089 080900009 00822000800080200809008000000000000000 8000080
Sessensse

Software Section

conducts research on consumer attitudes and using annual income as the independent variable
behaviours for a variety of firms. In one study, a client and then using household size as the independent
asked for an investigation of consumer characteristics variable. Which variable is the better predictor O r a Pte r
that tend to be used to predict the amount charged of annual credit card charges? Discuss your findings.
by credit card users. Data were collected on annual 3 Develop an estimated regression equation with

income, household size and annual credit card charges
for a sample of 50 consumers. The following data are

on the CD accompanying the text in the data set named
Consumer. 4 What is the predicted annual credit card charge for

annual income and household size as the independent
variables, Discuss your findings.

a three-person household with an annual income of Multiple regression using MINITAB
€40 000¢

Managerial report 5 Discuss the need for other independent variables that In this section we show how MINITAB can be used to model multiple regression prob-
I Use methods of descriptive statistics to summarize could be added to the model. lems using data for the Eurodistributor Company. First, the data must be entered in a
the data. Comment on the findings. What additional variables might be helpfull MINITAB worksheet. The distances are entered in column C1, the number of deliveries
are entered in column C2, and the travel times (hours) are entered in column C3. The
variable names Distance, Deliveries and Time are entered as the column headings on
eome Lloisehold oy e Fiausehold N the worksheet. In subsequent steps, we refer to the data by using the variable names

(€000s) e charged (€) (€000s) Sl charged (€) Distance, Deliveries and Time. The steps involved in using MINITAB to produce the
regression results shown in Figure 15.4 follow.

B 3 4016 o4 6 5573
EDRNHER 30 2 3159 30 | 2583 Step | Stat > Regression > Regression [Main menu bar]
32 4 5100 48 2 3866 TE;':;T,‘;::R
50 > 4742 34 > 3586 Step 2 Enter Time in the Response box [Regression panel]
’ ’ ; Enter Distance and Deliveries in the Predictors box
Click OK
42 2 3020 46 5 4820 Step 3 Click OK [Regression panel]
41 i 4828 66 4 Sla%

Shopper paying for purchase with a credit card. © Marcus Clackson. Logl stic regre SSion usin g M I N I TAB

MINITAB calls logistic regression with a dependent variable that can only assume
the values 0 and | Binary Logistic Regression. In this section we describe the steps
required to use MINITAB’s Binary Logistic Regression procedure to generate the
computer output for the Stamm Stores problem shown in Figure 15.13. First, the data
must be entered in a MINITAB worksheet. The amounts customers spent last year at
Stamm (in thousands of euros) are entered into column C2, the credit card data (1 if
a Stamm card; 0 otherwise) are entered into column C3, and the purchase data (1 if
the customer made a purchase; O otherwise) are entered in column C4. The variable
names Spending, Card and Purchase are entered as the column headings on the work-
sheet. In subsequent steps, we refer to the data by using the variable names Spending,
Card and Purchase. The steps involved in using MINITAB to generate the logistic
regression output follow.

609
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Step | Regression > Binary Logistic Regression i : e ; :
p g ry Log gressio [Main menu bar] Figure 15.15 EXCEL output for Eurodistributor with two independent variables
; . | | c | 5] | F R
Step 2 Enter Purchase in the Response box [Binary Logistic Regression panel] 1] Beclpmment | Distance. . Defivsries | Tima : ——
Enter Spending and Card in the Model box i o = |
Click OK 5] 4 w00 2 65
6| 5 50 2 42
7 ] 80, 2 62
a 7 75| 3 7.4
Step 3 Click OK i 91 8 g5 4 60
P [Regression panel] i S =
I O @ 2 5.1
13 | SUMMARY OUTPUT
i B o , . ) 14 [
Figure 15.4 PASW output for Eurodistributor with two independent variables e e
|16 Multiple R 9507
Model Sumimary %Eﬂ?d‘;::ﬁ Sq g:gggg )
|19 |Standard Emor  0.5731
Adusted R | Std. Error of the | 20 | Observations 10
W el R R Square Square Estimate %ANOW\ [ |
23 dr S5 MS = Significance F |
1 8517 904 876 ATH 24 [Regression | 7 21 6006 T T 0.0003,
25 |Residual 7 2.2904 0.3285
a. Predictors: (Constant), Deliveries, Distance g‘;‘ Total 9 FEE] -
F ~ |Coefficients |Standard Enor 1 Stal Poalue  Lowerd5%  Upper95%  Lower99.0% Upper 99.0%
29 |Intercept -0.8867 0.9515 09129 03916 -3.1188 13814 -4.1986 2.4612)
|30 |Distance 00611 0.0099 6.1824 0.0005 00378 00845 00266 0.0957
|31 Deliveries | 0.9234 0.2211 41783 00042 04006 1.4483 0,149 1.6972
ANOVA® 2 -
li odel Sumn of Squares af M ean Square F Sig.
1 Regression 21.601 2 10.800 32.878 Ralilig
Residual 2.299 7 28 F Step | Select Data > Data Analysis > Regression [Main menu bar]
Total 23.900 g TRIBUTOR Click OK
a. Predictors: (Congant), Deliveri i i .
{ Y BeIeER, INctancs Step 2 Enter DI:D! | inthe Input Y Range box [Regression panel]
RO e T Enter BI:CI | in the Input X Range box
Select Labels
Select Confidence Level. Enter 99 in the Confidence Level box
Coefficients’ Select Output Range
Standardized Enter Al3 in the Output Range box (to identify the upper left cormer of the
Unstandardzed Coefiicients | Coefficients section of the worksheet where the output will appear)
Model B Std. Enor . t Sig Click OK
1 5 ] _— , .
(Constant) 809 952 813 .392 In the EXCEL output shown in Figure 15.14 the label for the independent variable X
Distance 081 010 735 5.182 000 is Distance (see cell A30), and the label for the independent variable X, is Deliveries (see
Deliveries 923 2 496 4176 004 cell A31). The estimated regression equation is

a. Dependent Yariable: Time

= —0.8687 + 0.0611x + 0.9234x,

: . . Note that using EXCEL’s Regression tool for multiple regression is almost the same
Mu“:lple LESLERSION UsIng EXCEL as using it for simple linear regression. The major difference is that in the multiple
regression case a larger range of cells is required in order to identify the independent

variables.

In Section 15.2 we discussed the computer solution of multiple regression prob- Note that Logistic Regression is not a standard analysis feature of EXCEL.

lems by showing MINITAB’s output for the Eurodistributor Company problem.
In this section we describe how to use EXCEL’s Regression tool to develop the
estimated multiple regression equation for the Eurodistributor problem. Refer
to Figure 15.14 as we describe the tasks involved. First, the labels Assignment,
Distance, Deliveries and Time are entered into cells A1:D1 of the worksheet, and
the sample data into cells B2:D11. The numbers 1-10 in cells A2:A11 identify each
observation. The steps involved in using the Regression tool for multiple regres- First, the data must be entered in a PASW worksheet. In ‘Data View” mode, distances
sion analysis follow. are entered in rows 1 to 10 of the leftmost column. This is automatically labelled by the
system V1. Similarly the number of deliveries and travel times are entered in the two

Multiple regression using PASW
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immediately adjacent columns to the right and are labelled V2 and V3 respectively. The
latter variable names can then be changed to Distance, Deliveries and Time in “Variab]e
View’” mode. The steps involved in using PASW to produce the regression results showp
in Figure 15.4 follow.

Step | Analyze > Regression > Linear [Main menu bar]
Step 2 Enter Time in the Dependent box [Linear pane|]
Enter Distance and Deliveries in the Independent(s) box
Click OK

Logistic regression using PASW

First, the data must be entered in a PASW worksheet in Data View mode. The amounts
customers spent last year at Stamm (in thousands of euros) are entered into rows 1 to 100
of the leftmost column. Corresponding credit card details (1 if a Stamm card; 0 other-
wise) and purchase data (1 if the customer made a purchase; 0 otherwise) are entered into
the immediately adjacent columns to the right. The system automatically assigns head-
ings V1, V2 and V3 to these columns but these can be easily changed to Spending, Card
and Purchase in Variable View mode. The following command sequence will generate
the logistic regression output.

Step | Analyze > Regression > Binary Logistic Select the menubar item

Step 2 Enter Purchase in the Dependent box
Enter Spending and Card in the Covariates box
Click OK
Click OK

[Logistic Regression panel]

Selective output is as follows:

Classification Table?®

Predicted
Purchase Percentage
Observed 0 1 Correct
Step1 Purchase 0 52 8 86.7
1 20 20 50.0
Overall Percentage 72.0

a. The cut value is 500

Variables in the Equation

B SE. Wald df Sig. | Exp®)
Step 1°  Spending 342 429 7.050 1 008  1.407
Card 1.099 445 6105 1 013[  3.000
Constant -2.146 577 13.826 1 .000 117

a. Variable(s) entered on step 1: Spending, Card.

Chapter 16

Regression Analysis:
Model Building

Statistics in practice: Selecting a university

16.1 General linear model
Modelling curvilinear relationships
Interaction
Transformations involving the dependent variable
Nonlinear models that are intrinsically linear

16.2 Determining when to add or delete variables
General case
Use of p-values

16.3 Analysis of a larger problem

16.4 Variable selection procedures
Stepwise regression
Forward selection
Backward elimination
Best-subsets regression
Making the final choice
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