Question 1

Correct

Mark 1.00 out of 1.00

▼ Flag question If the matrices A and B are nonsingular then A+B is nonsingular.

Select one:

- False ✓
- True

The correct answer is: False

Question **2**

Correct

Mark 1.00 out of 1.00

▼ Flag

question

For which value of z, will the matrix $\begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 5 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 4 & z & 0 & 0 \end{bmatrix}$ become singular?

Select one:

- 0 21
- 20

If E,F and G are n imes n elementary matrices of type I, II and III respectively. If $\det(F)=4$ and $\det(A) = 3 \text{ then } \det(FEFGA) =$ Select one:

-48 ✓ -47

-43

-51

STUDENTS-HUB.com

The correct answer is: -48

Uploaded By: anonymous

The correct answer is: -12

0 -11

-7

Question
$${\bf 5}$$

Incorrect

Mark 0.00 out of 1.00

ℙ Flag question

Let
$$A = egin{bmatrix} 1 & 1 & 1 & 1 \ 1 & 1 & 1 & 0 \ 4 & 3 & 1 & 0 \ 5 & 3 & 1 & 0 \end{bmatrix}$$
 . The entry $(3,2)$ of $\mathrm{adj}(A)$ is

Select one:

- 4 x
- 0
- 0 3
- 0 8

The correct answer is: 3

Question 6

Correct

Mark 5 00 out of 5.00

ℙ Flag *auestion* Choose the correct answers to solve the linear system Ax=b using Cramer's rule where

$$A=egin{bmatrix}1&1&0\1&0&1\0&1&1\end{bmatrix}$$
 , and $b=egin{bmatrix}5\5\5\end{bmatrix}$.

$$\det(A) = \begin{bmatrix} -2 & \bigstar & \det(A_1) = \begin{bmatrix} -5 & \bigstar & \det(A_2) = \begin{bmatrix} -5 & \bigstar & \det(A_3) = \begin{bmatrix} -5 & \bigstar & \star \\ 2.5 & \bigstar & \star \end{bmatrix} & x_1 = \begin{bmatrix} 2.5 & \bigstar & \star \end{bmatrix} \\ x_2 = \begin{bmatrix} 2.5 & \bigstar & \star \end{bmatrix} & x_3 = \begin{bmatrix} 2.5 & \bigstar & \star \end{bmatrix}$$

$$x_2 = \left[\begin{array}{cc} 2.5 & \updownarrow\end{array}\right] \checkmark x_3 = \left[\begin{array}{cc} 2.5 & \updownarrow\end{array}\right] \checkmark$$

Question **7**

Incorrect

Mark 0.00 out of 1.00

▼ Flag

question

The AB is nonsingular then at least on of the matrices A and B is singular.

Select one:

- False
- True x

The correct answer is: False

Question **8**

Correct

Mark 1.00 out of 1.00

 If A is a 2 imes 2 matrix such that $\det(A)=3$, then $\detig(2A^4A^{-1}A^Tig)=$

Select one:

- 0 321
- 0 329
- 325
- 324

 ✓

The correct answer is: 324