
1

20
24

Mohammed Khalil

Digital Systems
Section 2

Chapter (4)

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

2

ENCS
2340

20
24

Mohammed Khalil

Logic Circuits

֍ In Digital Systems, Logic circuits can be categorized as combinational or sequential

֍ Combinational Circuit
ↇ Circuit made of logic gates only and perform an operation that can be specified

logically by a set of Boolean functions.
ↇ Circuit output at any time are determined only by the current combination

(current state/value) of inputs.

֍ Sequential Circuit
ↇ Circuit is made of storage/memory elements and logic gates.
ↇ Circuit output depend on the current combination of inputs and previously

stored values.

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

3

ENCS
2340

20
24

Mohammed Khalil

Combinational Circuits

֍ A logic circuit is combinational if its outputs at any time are a function of only the
present inputs

֍ A combinational circuit is an interconnection of logic gates only

֍ A combinational circuit does NOT have memory elements or feedback loops

Block diagram of a combinational circuit

ↇ A combinational circuit is a block of logic gates having:
1) 𝑛 inputs: 𝑥1, 𝑥2 … , 𝑥n

2) 𝑚 outputs: 𝑓1, 𝑓2 … , 𝑓m

3) Logic Gates and wires
ↇ For n-input variables, there are 2n possible input combinations.
ↇ There are m-outputs, and m can be greater than n.
ↇ Each output variable can be described with a Boolean function expressed in terms of n or less input variables

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

4

ENCS
2340

20
24

Mohammed Khalil

Combinational Circuit Analysis & Design

֍ For any logic circuit, there are two main activities: analysis and design.

֍ Analysis: Examine how the circuit behaves by determining the outputs based on
given inputs and logic gates.

ↇ Circuit/Logic Gate → Boolean Expression/Truth Table

֍ Design: Construct circuits that deliver the desired outputs by using logic gates and
Boolean expressions.

ↇ Desired Outputs/Truth Table → Boolean Expression → Circuit/Logic Gates

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

5

ENCS
2340

20
24

Mohammed Khalil

Analysis of Combinational Circuits

Analysis determines the logic function that a circuit implements

֍ Given: a logic circuit

֍ Desired: A description of the circuit either in the form of:
ↇ Boolean functions
ↇ Truth tables
ↇ Simply an explanation of the circuit

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

6

ENCS
2340

20
24

Mohammed Khalil

Analysis Procedure

1) Make sure that the given circuit is combinational and NOT sequential. The diagram of a
combinational circuit has logic gates with NO feedback paths or memory elements.

2) Label all gate outputs that are a function of input variables.
ↇ Obtain Boolean function for each gate.

3) Label all gate outputs that are a function of input variables and previously labeled gates.
ↇ Obtain Boolean function for each of these gates.

4) Repeat step (3) until the outputs of the circuit are obtained.

5) Substitute of previously defined variables to obtain the output Boolean functions in terms of
input variables only

6) Convert and/or simplify the resultant Output functions to the required final form (SOP, POS,
SOM,POM) using previously explained methods (Algebraic Manipulation, Expansion, K-Map)

I. Obtain Boolean expression/function from logic diagram

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

7

ENCS
2340

20
24

Mohammed Khalil

Analysis Procedure

Example:

1) Combinational ✓

2) Label all gate outputs that are a function of input
variables. (T1,T2,F2)

3) Label all gate outputs that are a function of input
variables and previously labeled gates. (T3)

4) Repeat step (3) until the outputs of the circuit are
obtained. (F1)

5) Substitute → F1 (A,B,C)

Two outputs of this combinational circuit F1, F2

First find T1 , T2 , F2

Next find T3

Finally, find F1

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

8

ENCS
2340

20
24

Mohammed Khalil

Analysis Procedure

Example Cont.:

No need to find T1 as a function of
input variables only, because it is
an intermediate gate output

✓

✓

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

9

ENCS
2340

20
24

Mohammed Khalil

Analysis Procedure

Extra Example:

✓

✓

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

10

ENCS
2340

20
24

Mohammed Khalil

Analysis Procedure

1) Prepare the truth table for n input variables and 2n input combinations

2) Label all gate outputs that are a function of input variables
ↇ Fill in the truth table for these outputs

3) Label all gate outputs that are functions of input variables and previously labeled gates
ↇ Fill in the truth table columns for these outputs

4) Repeat step (3) until the columns for all the outputs are obtained

5) Simplify the obtained Output Function using K-Map (if required)

II. Obtain the Truth Table from the Logic Diagram

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

11

ENCS
2340

20
24

Mohammed Khalil

Analysis Procedure

Example:

Analyze the below logic circuit by establishing the
truth table for F1 and F2.

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

12

ENCS
2340

20
24

Mohammed Khalil

Analysis Procedure

Extra Example:

Analyze the below logic circuit by establishing the
truth table for F and G.

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

13

ENCS
2340

20
24

Mohammed Khalil

Design of Combinational Circuits

Design involves the specifications of design objectives and the creation of the logic circuit
diagram according to these specifications

1) Specification
ↇ Describe the problem
ↇ Specify the number of inputs and outputs
ↇ Assign a letter symbol to each input/output

2) Formulation
ↇ Convert the specification into truth tables for outputs

3) Logic Minimization
ↇ Derive a Boolean function for each output as a function of inputs and minimize these

functions using K-map or Boolean algebra

4) Technology Mapping
ↇ Draw a logic diagram using logic gates/functional blocks

5) Verification
ↇ Verify the correctness of the design, either manually or using simulation

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

14

ENCS
2340

20
24

Mohammed Khalil

Design of Combinational Circuits

1) Specification
ↇ Describe: Convert BCD code to Excess-3 code.
ↇ Specify: Input: 4-bit BCD code , Output: 4-bit Excess-3 code
ↇ Assign: BCD input: A, B, C, D , Excess-3 output: 𝑤, 𝑥, 𝑦, 𝑧

Example: Design a circuit that takes BCD and convert it to excess-3

2) Formulation
ↇ Done easily with a truth table
ↇ Note: Output is don't care for 1010 to 1111

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

15

ENCS
2340

20
24

Mohammed Khalil

Design of Combinational Circuits

Example Cont.: Design a circuit that takes BCD and convert it to excess-3

3) Logic Minimization using K-maps
ↇ 4 outputs → 4 K-Maps

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

16

ENCS
2340

20
24

Mohammed Khalil

Design of Combinational Circuits

Example Cont.:

Double
DeMorgan’s Law

(in x , y)

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

17

ENCS
2340

20
24

Mohammed Khalil

Design of Combinational Circuits

Example Cont.:

4) Technology Mapping (Draw a logic diagram using ANDs, ORs, and inverters)

Design a circuit that takes BCD and convert it to excess-3

When multiple outputs exist, it is common
practice to optimize their functions to create
common gates across them, even if this
leads to nonstandard forms.

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

18

ENCS
2340

20
24

Mohammed Khalil

Design of Combinational Circuits

Example Cont.:

5) Verification

֍ Can be done manually

ↇ Extract output functions from circuit diagram

ↇ Find the truth table of the circuit diagram

ↇ Match it against the specification truth table

֍ Verification process can be automated

ↇ Using a simulator for complex designs

Design a circuit that takes BCD and convert it to excess-3

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

19

ENCS
2340

20
24

Mohammed Khalil

Standard Logic Circuits

֍ There are several combinational circuits that are employed extensively
in the design of digital systems.

֍ These circuits are available in integrated circuits and are classified as
standard components. They perform specific digital functions
commonly needed in the design of digital systems.

֍ Most important standard combinational circuits
ↇ Adders and Subtractors
ↇ Comparators
ↇ Decoders
ↇ Encoders
ↇ Multiplexers

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

20

ENCS
2340

20
24

Mohammed Khalil

Half Adder (HA)

֍ A combinational circuit that performs the addition of two bits is called a Half Adder

֍ Recall that
ↇ 0+0 = 0 and carry of 0
ↇ 0+1= 1 and carry of 0
ↇ 1+0= 1 and carry of 0
ↇ 1+1= 0 and carry of 1

֍ Inputs: 2 bits (x, y)
֍ Outputs: 2 bits (Sum, Carry)

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

21

ENCS
2340

20
24

Mohammed Khalil

Full Adder (FA)

֍ A full adder is a combinational circuit that forms the arithmetic sum of three bits

֍ Inputs: 3 bits
ↇ Two bits → significant input

bits to be added
ↇ Third bit → carry from the

previous stage

֍ Outputs: 2 bits
ↇ Sum (S)
ↇ Carry (C)

1

2

3

4Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

22

ENCS
2340

20
24

Mohammed Khalil

Full Adder (FA)

֍ Manipulate the expressions of S,C to get more familiar forms

HA-2HA-1

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

23

ENCS
2340

20
24

Mohammed Khalil

Full Adder (FA)

֍ Utilize the Standard HA circuit to build FA

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

24

ENCS
2340

20
24

Mohammed Khalil

Functional Blocks (Cells)

֍ Practical Arithmetic/Logical Functions

ↇ Bitwise Operations: Perform operations on binary bit vectors (e.g., adding,
subtracting, multiplying). Each bit position can utilize the same basic sub-
function, allowing for consistency across operations.

ↇ Modular Design Approach: To simplify the complexity of handling large
inputs and outputs, design a reusable sub-function block (cell) for each
bit. This block can be replicated (iterative array) to create larger functional
blocks for overall operations, facilitating more manageable and efficient circuit
design across various arithmetic and logical functions.

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

25

ENCS
2340

20
24

Mohammed Khalil

Binary Addition (Recap)

֍ The process of addition proceeds on a bit-by-bit basis, right to left, beginning with the
least significant bit (LSB)

֍ Include the carry in the addition

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

26

ENCS
2340

20
24

Mohammed Khalil

Parallel Binary Adder

֍ A Parallel Binary Adder is a digital circuit that produces the
arithmetic sum of two binary numbers

֍ We can construct it by cascading FAs. We need n-FA for an n-bit
number
ↇ Each FA adds 3 bits: Ai , Bi , Ci → producing: Si and Ci+1

 (Ci : Carry in, Ci+1 : Carry out)

right to left

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

27

ENCS
2340

20
24

Mohammed Khalil

Parallel Binary Adder

Example:

right to left

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

28

ENCS
2340

20
24

Mohammed Khalil

Parallel Binary Adder

֍ The four-bit Parallel Adder is a typical example of a standard component. It
can be used in many applications involving arithmetic operations

֍ Observe that the design of this circuit by the classical method would require a
truth table with 29 = 512 entries (n=9 : A0A1A2A3 B0B1B2B3 C0)

֍ It becomes possible to obtain a simple and straightforward implementation by using

the previously mentioned Modular Design Approach to construct iteratively the 4-bit
Parallel Binary Adder using sub-function blocks/cells of the Full Adder (FA)

֍ This Parallel Binary Adder is commonly known as Ripple-Carry Binary Adder

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

29

ENCS
2340

20
24

Mohammed Khalil

Binary Adder & Carry Propagation

֍ The sum bits are readily available

֍ We need to wait for the last carry bit (C4) to be calculated (Propagated)

֍ Each gate needs some time to produce output

֍ Two gates (one AND & one OR) are used to generate each carry bit

ↇ For a four-bits Adder, C4 is generated using (2 × 4) gates

֍ This Carry waiting time is called Carry propagation and it limits the speed of overall

computations

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

30

ENCS
2340

20
24

Mohammed Khalil

Carry Propagation

֍ The most widely used method to reducing the carry propagation in a parallel binary adder is called

the Carry Lookahead Logic.

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

31

ENCS
2340

20
24

Mohammed Khalil

Carry Lookahead Logic

֍ Write the Boolean functions for the Carry outputs of each stage

֍ Note that P’s and G’s are functions of only A’s and B’s (inputs)

֍ ALL carries are dependent on the inputs only (C3 does not have to wait for C2 and C1 to become

available; C3 is propagated at the SAME TIME as C2 and C1).

֍ This SPEED GAIN is traded off with increase in COMPLEXITY (No. of Gates)

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

32

ENCS
2340

20
24

Mohammed Khalil

Carry Lookahead Generator

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

33

ENCS
2340

20
24

Mohammed Khalil

4-bit Carry Lookahead Adder

֍Each sum output requires two XOR
gates.

֍All output carries are generated after
exactly a delay through two levels of
gates.

֍The delay of the carry lookahead adder
is constant.

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

34

ENCS
2340

20
24

Mohammed Khalil

Binary Subtractor

֍Recall: A − B = A + 2’s (B)
ↇ 2’s complement of B is taken by first finding the 1’s complement (inverting each bit

of B), then a 1 is added.
֍This implies that, Subtraction can be performed using an adder by:

1) Invert the bits of input B (→ 1’s complement of B)
2) Change C0 to 1 (→ +1)
3) Add A & 2’s (B) (→ A-B)

֍Binary subtractor can be used to perform subtraction for both signed and unsigned
number systems

2’s complement of B

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

35

ENCS
2340

20
24

Mohammed Khalil

Binary Adder-Subtractor

֍A four-bit adder can be used to design a circuit that can perform both the addition and
subtraction operations by Introducing a Mode Bit (M) and 4 XOR Gates

֍ Recall: B⊕1 = B’ (→ B can be inverted if Xored with 1)

The mode bit: M = 0 for adder
The mode bit: M = 1 for subtractor

1) M = 1 → (A + 1’s compliment B + 1)
 I) Unsigned numbers Case:
 if A ≥ B → A - B
 if A < B → 2’s compliment of (B - A).
 II) Signed numbers Case:
 → A - B if there is no overflow (V)

2) M = 0 → Adder → (A + B)

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

36

ENCS
2340

20
24

Mohammed Khalil

Binary Adder-Subtractor

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

37

ENCS
2340

20
24

Mohammed Khalil

Overflow Review

֍ Overflow occurred when two numbers with n digits each are added/subtracted and the result is a
number with n+1 digits

1) For Unsigned numbers an overflow is detected from the end carry out of the most
significant position.

֍ In a 4-bit adder, A=1111, B=0001 → A+B=1 0000 [S = 0000 , C = 1 → Overflow]

2) For Signed Numbers:
֍ The leftmost bit represents the sign
֍ When two signed numbers are added, the sign bit is treated as part of the number and the

end carry does NOT indicate an overflow.
֍ An overflow may occur if the two numbers added are both positive or both negative.

֍ An overflow condition can be detected by observing the carry into the sign bit position and
the carry out of the sign bit position

֍ If these two carries are NOT equal, an overflow has occurred → XOR gate function

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

38

ENCS
2340

20
24

Mohammed Khalil

Binary Adder-Subtractor

1) M = 1 → (A + 1’s compliment B + 1)

 I) Unsigned numbers Case:
 if A ≥ B → A - B
 if A < B → 2’s compl. of (B - A)

 II) Signed numbers Case:
 → A - B if there is NO overflow (V)

2) M = 0 → Adder → (A + B)

I. Unsigned numbers Case: C bit detects a carry after addition or a borrow after subtraction
II. Signed numbers Case: V bit detects an overflow

1) V = 0 means NO overflow occurred and the n-bit result is correct
2) V = 1 means overflow has occurred and the result needs n + 1 bits to fit→ The n-bit result is incorrect

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

39

ENCS
2340

20
24

Mohammed Khalil

BCD Adder

֍ Used to add two decimal digits in BCD
֍ This adder is present in systems used to perform decimal addition directly (e.g. calculators, etc.)

֍ This adder accepts two decimal numbers (A and B) in coded form (BCD) and one carry digit from
the previous stage

֍ The carry digit from the previous stage could be either 0 or 1. → need just one-bit for the carry digit

֍ The minimum possible sum at any stage could be 0 + 0 + 0 = 0
֍ The maximum possible sum at any stage could be 9 + 9 + 1 = 19

֍ Requires a minimum of 9 inputs and 5 outputs
ↇ Input (A: 4 Bits , B: 4 Bits, Carry in: 1 Bit) Output (Result: 4 Bits, Carry out: 1 Bit)

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

40

ENCS
2340

20
24

Mohammed Khalil

BCD Adder

Recall: a correction in the sum
is needed when the sum is greater
than 9. The correction is adding 6 to
the sum.

→ The BCD adder will then consist of

the 4-bit binary adder. A second 4-
bit binary adder is needed to add 6 to
the sum when it is greater than 9.

When C = 1, Add 0110
to the binary sum and
provide an output carry
for the next stage.

When C = 0,
Do Nothing!

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

41

ENCS
2340

20
24

Mohammed Khalil

BCD Adder

Correction
Decision

0 0C C

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

42

ENCS
2340

20
24

Mohammed Khalil

Binary Multiplier

֍ Recall: Binary multiplication is done in the same way as decimal multiplication
֍ When multiplying two binary numbers, A and B, the multiplicand is multiplied by each bit of the

multiplier starting from the least significant bit.
֍ Each such multiplication forms a partial product.
֍ Successive partial products are shifted one position to the left.
֍ The final product is obtained from the sum of the partial products.

Multiplicand

Multiplier

Partial
products

Final
product

Observe: The multiplication of two bits such as A0 and B0
produces a 1 if both bits are 1; otherwise, it produces a 0.
This is identical to an AND operation.

Implementation could be done using Half adders & AND gates

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

43

ENCS
2340

20
24

Mohammed Khalil

Binary Multiplier

֍ For J-bits Multiplier and K-bits multiplicand we need:
ↇ J x K AND gates, and
ↇ (J – 1) K-bit adders
ↇ The result will be a product of (J + K) bits.

Example:

K=4

J=3

JxK=3x4 =12 AND Gates

J-1=3-1 =2 (4-bit) Adders

J+K=3+4 =7 bits Result

+

+

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

44

ENCS
2340

20
24

Mohammed Khalil

Binary Multiplier

֍ Design a 4-bit by 3-bit Binary Multiplier

Example:

K=4

J=3

12 AND Gates

2 (4-Bit) Adders

7 bits Result

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

45

ENCS
2340

20
24

Mohammed Khalil

Magnitude Comparator

֍ A magnitude Comparator: a combinational circuit that compares two unsigned
numbers A and B and determines their relative magnitudes.

ↇ Two Inputs:
1) Unsigned integer A (m-bit number)
2) Unsigned integer B (m-bit number)

ↇ Three outputs:
1) A > B (GT output)
2) A = B (EQ output)
3) A < B (LT output)

ↇ Exactly one of the three outputs must be equal to 1 while the remaining
two outputs must be equal to 0

A (m-1 : 0)

B (m-1 : 0)

A > B

A = B

A < B

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

46

ENCS
2340

20
24

Mohammed Khalil

Magnitude Comparator

֍ Consider: a circuit to compare two 4-bit numbers A and B
ↇ Input/output: 8 inputs, 3 outputs ⇒ huge truth table (256 Rows)

֍ A better method to design this circuit is to follow the systematic way of comparison, where we
compare each pair of bits starting from the most significant bit.

ↇ If all pairs are equal → A=B.
ↇ If we find a difference in the compared bits (i.e. one is 1 and the other is 0), → the number

containing the 1 is larger

Case 1 (A = B):
 All pairs of bits should be equal

 (Ai= Bi , i = {0, 1, 2, 3})
 Equality using XNOR operation
 xi = Ai Bi + Ai’ Bi’ , i = {0, 1, 2, 3}
 A = B only if all xi’s are 1

 → (A = B) = x3x2x1x0

Case 2 and 3 (A < B or A > B):
 Compare the most-significant bits (A3 & B3)
 If the two bits are equal, Compare the next pair of bits (A2 & B2)
 Continue comparing the subsequent pairs of bits if the previous
 comparisons are equal (A1 & B1) and (A0 & B0)
 If Ai≠Bi at any stage, then:

 A < B if Ai = 0 and Bi = 1 or, simply, if Ai’ Bi = 1

 OR A > B if Ai = 1 and Bi = 0 or, simply, if Ai Bi’ = 1

→ In logical expressions:

1 bit Comparator

=

>

<

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

47

ENCS
2340

20
24

Mohammed Khalil

Magnitude Comparator

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

48

ENCS
2340

20
24

Mohammed Khalil

Decoders

֍ Imagine that we have a circuit with a 3-bit input A and a single-bit output X. The circuit should
 indicate when a particular code of 110 appears at the input. In other words, the circuit should give

X=1 at its output when binary number A2A1A0 = 110 occurs at its inputs
֍ This called a decoding process as the circuit indicates when a particular code appears at the inputs
→ that’s why we may call it a decoder

֍ This could be extended to consider all possible combinations of the input bits

֍ Recall: A binary code of n bits is capable of representing up to 2n distinct elements
֍ A decoder is a combinational circuit that converts binary information from n input lines to a

maximum of 2n unique output lines
ↇ This is called an n-to-m line decoder. (m ≤ 2n , with m = 2n we call it a Full Decoder)

֍ The output whose value is 1 represents the minterm equivalent to the binary input.
֍ Each combination of inputs will activate a unique output

Binary decoder has n inputs and 2n outputs
All 2n minterms are generated

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

49

ENCS
2340

20
24

Mohammed Khalil

Decoders

֍ The 3 inputs are decoded into 8 outputs, each representing one of the minterms of the three input
variables (Minterms Indicator)

֍ Could be considered as Binary-to-Octal Decoder

Example: 3x8 Decoder

ONLY ONE Output is Activated (=1)

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

50

ENCS
2340

20
24

Mohammed Khalil

Decoders

Example: 3x8 Decoder

This decoder can be implemented
using three inverters and eight
AND gates

Only one output is 1
while the other seven are 0

The output whose value = 1
represents the minterm
equivalent of the binary number
currently available in the input
lines

Block
Diagram

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

51

ENCS
2340

20
24

Mohammed Khalil

Decoders

֍ Decoders may constructed using NAND gates (Inverted Output Decoders)
֍ Decoders may include one or more enable inputs to control the circuit operation (Demultiplexer)

ↇ An enable is an extra input that will activate or shut off the Decoder

Inverted Output 2 x 4 Decoder with Enable

Active High: When Outputs are 1 (Normal Output, AND Gates Used)
Active Low: When Outputs are 0 (Inverted Output, NAND Gates Used)

Active High → minterms Generator
Active Low → maxterms Generator

The bubble indicates that the
decoder is enabled when E=0
Sometime denoted as E

E

A

B

E

D0

D1

D2

D3

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

52

ENCS
2340

20
24

Mohammed Khalil

Decoders

֍ Decoders with enable inputs can be connected together to form a larger decoder circuit

Active high 3x8 Decoder using 2x4 Decoders

Enable

Enable

No bubble → the decoder is

enabled when E=1

Be careful: Don’t get confused
between E and the input variable (A2) Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

53

ENCS
2340

20
24

Mohammed Khalil

Combinational Logic with Decoders

֍ Recall: A decoder provides the 2n minterms of n input variables.

֍ Recall: Any Boolean function can be expressed in sum-of-minterms form.

֍ A decoder together with an external OR gate provides a logic implementation of the function
ↇ Since all the minterms of the function are available at the output then there is NO need for simplification
ↇ Inputs to each OR gate are selected from the decoder outputs according to the list of minterms of

each function

A combinational circuit with n inputs and m outputs can
be implemented with an n-to-2n decoder and m OR gates

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

54

ENCS
2340

20
24

Mohammed Khalil

Combinational Logic with Decoders

Full Adder Implementation Using Active High (And) DecodersExample:

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

55

ENCS
2340

20
24

Mohammed Khalil

Combinational Logic with Decoders

Implementation of F = (3, 5, 6, 7) , Using Active Low (NAND) DecodersExample:

Active High Active Low

F = (3, 5, 6, 7) F = Π(0, 1, 2, 4)

F=0, if any of these terms is selected
Remember: Selected in Active Low → 0

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

56

ENCS
2340

20
24

Mohammed Khalil

Combinational Logic with Decoders

General Considerations

֍ A function with a long list of minterms requires an OR gate with a large number of inputs.

֍ A function having a list of k minterms can be expressed in its complemented form F’ with (2n – k) minterms

֍ If the number of minterms in the function is greater than 2n/2 → F’ can be expressed with fewer minterms

֍ Same Applied in the case of maxterms

֍ Recall: Active-High Decoder: minterm generator & Active-Low Decoder: maxterm generator

Steps for Optimized Implementation Using Decoders

1) Select Simplest/Minimal Form:

֍ Evaluate both F and F’ → choose the one with the fewest terms

2) Choose Decoder and External Gate

֍ Minterm Generation (Active-High Decoder): Use OR with F, NOR with F'

֍ Maxterm Generation (Active-Low Decoder): Use AND with F, NAND with F'

3) Optimize with Smaller Decoders (if needed/required)

֍ Assign the most significant variable as an enable input for smaller decoders.

֍ Share remaining inputs across the decoders.

Important!!

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

57

ENCS
2340

20
24

Mohammed Khalil

Combinational Logic with Decoders

Function Type/Form Decoder Type Combining Gate Explanation

F (fewest minterms)
Active-High

(Minterm Generator)

OR Gate to combine minterm

outputs (of F)

OR gate groups outputs

representing F minterms

F' (fewest minterms)
Active-High

(Minterm Generator)

NOR Gate to combine

minterm outputs of (F’)

NOR gate groups outputs for

F' minterms → F

F (fewest maxterms)
Active-Low

(Maxterm Generator)

AND Gate to combine

maxterm outputs (of F)

AND gate groups outputs

representing F maxterms

F' (fewest maxterms)
Active-Low

(Maxterm Generator)

NAND Gate to combine

maxterm outputs (of F’)

NAND gate groups outputs for

F' maxterms, → F

Decoder Type Selection and External Gate Combination

Step Description

1. Simple Form Determine whether F or F' has fewer terms (minterms/maxterms).

2. Select Decoder Choose Active-High for minterms, Active-Low for maxterms.

3. Combine with Gate Use OR/NOR for Active-High (F/F’), AND/NAND for Active-Low (F/F’)

4. Smaller Decoders Enable input used for MSB, others shared among decoders (As Required)

Summary

Example:

𝐹1(𝐴, 𝐵, 𝐶) = ∑(3, 5)

𝐹2(𝐴, 𝐵, 𝐶) = ∑(2, 4, 5, 6, 7)

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

58

ENCS
2340

20
24

Mohammed Khalil

Decoders

Construct a 4-to-16 decoder with Five 2-to-4 decoders with enableExtra Example:

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

59

ENCS
2340

20
24

Mohammed Khalil

Decoders

Construct a 5-to-32 decoder with four 3-to-8 decoders with
enable and a 2-to-4 decoder

Extra Example:

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

60

ENCS
2340

20
24

Mohammed Khalil

Encoder

֍ An Encoder is a digital circuit that performs the inverse operation of
a Decoder

ↇ It has maximum of 2n input lines and n output lines
ↇ Output lines give the binary code of the input lines
ↇ Only 1 input line should be active at a time

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

61

ENCS
2340

20
24

Mohammed Khalil

Encoder

֍ Limitations

1) If two inputs are active simultaneously (say D3=D6= 1), then the output = 111 which does NOT
represent either binary 3 or binary 6 (Wrong Code)
 Encoder circuits must establish an input priority to ensure that only one input is encoded

2) If ALL Input = 0s → ALL output = 0s which is the same output when D0=1

 This discrepancy can be resolved by providing one more output to indicate whether at least one
input is equal to 1

Design an Octal to Binary Encoder (8-to-3 Encoder)Example:

To overcome these limitations, we may use a priority encoderUploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

62

ENCS
2340

20
24

Mohammed Khalil

Priority Encoder

֍ A priority encoder is an encoder circuit that includes the priority function

֍ if two or more inputs are equal to 1 at the same time →

ↇ the input having the highest priority will take precedence

֍ A valid bit (v) is introduced at output to indicate the invalid all 0s input combination

4-to-2 Priority Encoder

In place of the ‘X’, you substitute ‘1’ then a ‘0’:
X → 2 minterms (0,1)
XX → 4 minterms (00,01,10,11)
XXX → 8 minterms (000,001,010,011,100,101,110,111) Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

63

ENCS
2340

20
24

Mohammed Khalil

Priority Encoder

4-to-2 Priority Encoder

V is 0 only when all Inputs are 0 (Inactive)

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

64

ENCS
2340

20
24

Mohammed Khalil

Encoder/Decoder

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

65

ENCS
2340

20
24

Mohammed Khalil

Multiplexer

֍ A multiplexer (MUX) is a combinational circuit that selects binary information from one of many
input lines and directs it to a single output line.

֍ The selection is performed using selection control lines.

֍ Normally, there are 2n input lines and n selection lines.

֍ A MUX acts as an electronic switch that selects one of several sources.

inputs

Output

Selection

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

66

ENCS
2340

20
24

Mohammed Khalil

Multiplexer

֍ Applications of MUX

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

67

ENCS
2340

20
24

Mohammed Khalil

Multiplexer

Example: 4-to-1 MUX

Function Table

Block Diagram

Logic Diagram

Expression

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

68

ENCS
2340

20
24

Mohammed Khalil

Multiplexer

֍ A multiplexer is also called a data selector, since it selects one of many inputs and steers the
binary information to the single output line

֍ The AND gates and inverters in the multiplexer resemble a decoder circuit, and they decode the
selection input lines.

֍ In general, for 2n-to-1 multiplexer
ↇ Data selection lines → n
ↇ Input lines → 2n

ↇ Output lines → always 1

֍ 2n-to-1 multiplexer is constructed from
ↇ n-to-2n Decoder
ↇ 2n input lines connected to the AND gates.
ↇ The outputs of the AND gates are applied to a single OR gate

MUX Output
(General)

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

69

ENCS
2340

20
24

Mohammed Khalil

Multi-bit Multiplexer

֍ Multiplexers may have an enable input, similar to
decoders, to control the operation of the unit

֍ M-bit (2-to-1) multiplexer is equivalent to M parallel
mux’s share a common selection line

ↇ It is viewed as a circuit that selects one of two
M-bit sets of data lines

A

B

Y

/ → M-bit
Remember: The bubble indicates that
the mux is enabled when E=0 Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

70

ENCS
2340

20
24

Mohammed Khalil

Multiplexers

֍ Muxes can be connected together to form a larger Mux circuit

4x1 MUX

S0

S0

S0

S0

S1

S1

S2

𝑁

21
𝑁

22
𝑁

23

L1 L2 L3

֍ N → No. of Inputs (2n)

֍ Required Levels using 2x1 Mux = log2(N)

֍ No. of Muxes in level (i) =
𝑵

𝒊
 , i=0,1,2…

S0

S1

𝑁

21
𝑁

22

L1 L2

8x1 MUX

N=8 N=4

S0

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

71

ENCS
2340

20
24

Mohammed Khalil

Multiplexers

֍ Muxes can be connected together to form a larger Mux circuit 8x1 MUX

S0

S0

S0

S0

S1

S1

S2

𝑁

21
𝑁

22
𝑁

23

L1 L2 L3

S0

S0

S0

S0

𝑁

21

L1

S2 S1

0

1

2

3

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

72

ENCS
2340

20
24

Mohammed Khalil

Multiplexers

֍ Muxes can be connected together to form a larger Mux circuit 8x1 MUX

0

1

0

3

0

3

Always Follow/Consider the internal Labels To
determine MSB & LSB (Connection Order)

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

73

ENCS
2340

20
24

Mohammed Khalil

Multiplexers

֍ Muxes can be connected together to
form a larger Mux circuit

16x1 MUX

0

1

0

7

0

7

Always Follow/Consider the internal Labels
To determine MSB & LSB (Connection
Order)

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

74

ENCS
2340

20
24

Mohammed Khalil

Multiplexers

֍ Muxes can be connected together to
form a larger Mux circuit

16x1 MUX

0

3

0

3

0

3

0

3

0

3
Always Follow/Consider the internal Labels To
determine MSB & LSB (Connection Order)

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

75

ENCS
2340

20
24

Mohammed Khalil

Function Implementation using MUXs

֍ RECALL: We learned how to implement Boolean functions using decoders, by adding external OR
gate

֍ RECALL: A multiplexer is a decoder and an OR gate that provides the output
 Multiplexer inputs are the minterms

We can implement any n variable Boolean function using a MUX with n select lines (2n input lines)

֍ The n variables are connected to the n selection lines.
֍ Each input of the multiplexer is set to 0 or 1, depending on which minterm of the function is

present.

Input→ Selection

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

76

ENCS
2340

20
24

Mohammed Khalil

Function Implementation using MUXs

Example: Implement F(x,y,z) = Σ(1,2,6,7) using 8-to-1 multiplexer. n Variables → (2n x 1)Mux

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

77

ENCS
2340

20
24

Mohammed Khalil

Function Implementation using MUXs

֍ We can efficiently implement any n variable Boolean function using a MUX with (n-1) select lines
(2n-1 input lines)

1) Connect the first (n-1) variables to the select lines
2) The remaining single variable of the function is used for the data inputs (x, x’, 1, 0)

Example: Implement F(x,y,z) = Σ(1,2,6,7) using 4-to-1 multiplexer. n Variables → (2n-1 x 1) Mux

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

78

ENCS
2340

20
24

Mohammed Khalil

Function Implementation using MUXs

֍ Alternative Method : Implementation Table [Simpler for 2n-1 x 1 Mux]
A. List the input of the multiplexer (z)

B. List under it all the minterms in (2) Rows and (4) Columns

C. The first half of the minterms is associated with the Primed Variable (z’) and the second half with the
Normal Variable (z)

D. The given function is implemented by circling the minterms of the function and applying the following rules
to find the values for the inputs of the multiplexer

1) If both the minterms in the column are not circled, apply 0 to the corresponding input
2) If both the minterms in the column are circled, apply 1 to the corresponding input
3) If the bottom minterm is circled and the top is not circled, apply z to the input
4) If the top minterm is circled and the bottom is not circled, apply z’ to the input

Z’ 0 2 4 6

Z 1 3 5 7

Z Z’ 0 1

I0 I1 I2 I3

Don’t Get Confused
It has NO relation to K-Map

No need for TT
Could be derived

directly from minterms

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

79

ENCS
2340

20
24

Mohammed Khalil

Function Implementation using MUXs

Extra Example: Implement F(A,B,C) = Σ(3,5,6,7) using 4-to-1 multiplexer.

A B C

0

0

1

0

1

0

1

1

F=0

F=C

F=C

F=1

n Variables → (2n-1 x 1) Mux

C’ 0 2 4 6

C 1 3 5 7

0 C C 1

I0 I1 I2 I3

F

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

80

ENCS
2340

20
24

Mohammed Khalil

Function Implementation using MUXs

Extra Example: Implement F (A, B , C , D) = Σ(1, 3, 4, 11, 12, 13, 14, 15) using 8-to-1 multiplexer

n Variables → (2n-1 x 1) Mux

0

1

2

3

4

5

6

7

ABC

D’ 0 2 4 6 8 10 12 14

D 1 3 5 7 9 11 13 15

D D D’ 0 0 D 1 1

I0 I1 I2 I3 I4 I5 I6 I7

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

81

ENCS
2340

20
24

Mohammed Khalil

Function Implementation using MUXs

Extra Example: Implement F (A, B , C , D) = Σ(3, 5, 10, 11, 12, 15) + Σ(4, 8, 14) using 8-to-1
multiplexer (Use A,C,D as selection lines)

A B C D F

0 0 0 0 0 I0

0 0 0 1 0 I1

0 0 1 0 0 I2

0 0 1 1 1 I3

0 1 0 0 X I0

0 1 0 1 1 I1

0 1 1 0 0 I2

0 1 1 1 0 I3

1 0 0 0 X I4

1 0 0 1 0 I5

1 0 1 0 1 I6

1 0 1 1 1 I7

1 1 0 0 1 I4

1 1 0 1 0 I5

1 1 1 0 X I6

1 1 1 1 1 I7

F

Both Values Similar → Constant (0,1)

Different → Check B

n Variables → (2n-1 x 1) Mux

B’ 0 1 2 3 8 9 10 11

B 4 5 6 7 12 13 14 15

0 B 0 B’ 1 0 1 1

I0 I1 I2 I3 I4 I5 I6 I7

ONLY Consider Don’t Care, when
other circles exist in the same Column

Be Carful about the Order

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

82

ENCS
2340

20
24

Mohammed Khalil

Function Implementation using MUXs

Extra Example: Implement F (A, B , C , D) = Σ(3, 5, 10, 11, 12, 15) + Σ(4, 8, 14) using 4-to-1
multiplexer (Use C,D as selection lines)

A B C D F

0 0 0 0 0 I0

0 0 0 1 0 I1

0 0 1 0 0 I2

0 0 1 1 1 I3

0 1 0 0 X I0

0 1 0 1 1 I1

0 1 1 0 0 I2

0 1 1 1 0 I3

1 0 0 0 X I0

1 0 0 1 0 I1

1 0 1 0 1 I2

1 0 1 1 1 I3

1 1 0 0 1 I0

1 1 0 1 0 I1

1 1 1 0 X I2

1 1 1 1 1 I3

F

Both Values Similar → Constant (0,1)

Different → Check A,B

A B C D F

0 0 0 1 0 I1

0 1 0 1 1 I1

1 0 0 1 0 I1

1 1 0 1 0 I1

A B C D F

0 0 1 1 1 I3

0 1 1 1 0 I3

1 0 1 1 1 I3

1 1 1 1 1 I3

A’B

A+B’

n Variables → (2n-2 x 1) Mux

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

83

ENCS
2340

20
24

Mohammed Khalil

Demultiplexer

֍ Recall: A decoder with enable input can function as a demultiplexer

֍ Demultiplexer (Demux): It is a circuit that receives information from a single line and directs it to ONE of 2n output
lines.

֍ The selection of a specific output is controlled by the bit combination of n selection lines.

֍ A demultiplexer of 2n outputs has n selection lines, which are used to select which output line to send the input.

֍ A demultiplexer is also called a data distributor.

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

84

ENCS
2340

20
24

Mohammed Khalil

Demultiplexer

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

85

ENCS
2340

20
24

Mohammed Khalil

Demultiplexer

1:8 DeMux with Enable ֍ A 1:8 DEMUX takes a single data input D, enables it through an Enable signal
E, and sends the data to one of the eight outputs Y0–Y7 based on the 3-bit
selection lines 𝑆0,𝑆1,𝑆2

8 Outputs → 3 Selection Lines

E S₂ S₁ S₀ Y₀ Y₁ Y₂ Y₃ Y₄ Y₅ Y₆ Y₇

0 X X X 0 0 0 0 0 0 0 0

1 0 0 0 D 0 0 0 0 0 0 0

1 0 0 1 0 D 0 0 0 0 0 0

1 0 1 0 0 0 D 0 0 0 0 0

1 0 1 1 0 0 0 D 0 0 0 0

1 1 0 0 0 0 0 0 D 0 0 0

1 1 0 1 0 0 0 0 0 D 0 0

1 1 1 0 0 0 0 0 0 0 D 0

1 1 1 1 0 0 0 0 0 0 0 D

E = 0: All outputs are 0, regardless of selection lines.
E = 1: Data D is routed to the output selected by 𝑆2𝑆1𝑆0

E

D

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

86

ENCS
2340

20
24

Mohammed Khalil

Demultiplexer

֍ DeMuxes can be connected together to form a larger DeMux circuit

1x8 DEMUX Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

87

ENCS
2340

20
24

Mohammed Khalil

Demultiplexer

֍ DeMuxes can be connected together to
form a larger DeMux circuit

1x16 DEMUX
Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

88

ENCS
2340

20
24

Mohammed Khalil

Function Implementation using DeMux

Example: Implement F1(A,B,C) = Σ(0,3,7) , F2(A,B,C) = Σ(1,2,5) using 1-to-8 demultiplexer.

n Variables → (1-to-2n) DeMux

Din

C B A

F1

F2

Same as Decoder with:
Decoder Inputs → Selection Lines

DeMux Input → 1

What About Using
1-to-4 DeMux??

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

89

ENCS
2340

20
24

Mohammed Khalil

Mux/DeMux

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

90

ENCS
2340

20
24

Mohammed Khalil

Three State Gates (Buffers)

֍ These gates can be in one of 2 possible states
1) An enabled state where the output may assume one of two possible values (0, 1)
2) A disabled state where the gate output is in a the Hi-impedance (Hi-Z) state

 The circuit behaves like an open circuit, which means that the output appears to be disconnected
 The circuit has NO logic significance
 The circuit connected to the output of the three-state gate is NOT affected by the inputs to the gate

֍ A control input (C) is used to control the gate into either the enabled or disabled state.
֍ C could be Normal (Active High) or Inverted (Active Low)
֍ Output could be Normal (Buffer) or Complemented (Inverter)

Three State or Tri-State or 3-State

‘

‘

0

1

0

1

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

91

ENCS
2340

20
24

Mohammed Khalil

MUX with Three-States Gates

It is possible to implement multiplexers using 3-state buffers

A 4-to-1 multiplexer may be constructed using four 3-state buffers and a 2-to-4 decoder

2-to-1 Mux

4-to-1 Mux

Problem: Direct Connected/Wired Outputs →
Short Circuit → Damage (Burn)

Solution: Make sure ONLY ONE Input is
enabled by utilizing the 3-States Buffer

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

92

ENCS
2340

20
24

Mohammed Khalil

Exercises

Implement the following Boolean functions (Together): (With minimum number of inputs in the external gates)

𝐹1(𝐴, 𝐵, 𝐶) = ∑(3, 5)

𝐹2(𝐴, 𝐵, 𝐶) = ∑(2, 4, 5, 6, 7)

Using:

A. 3x8 decoder constructed with AND gates.

B. 3x8 decoder constructed with NAND gates.

C. 2x4 decoders constructed with NAND gates.

Implement each of the following Boolean functions (Separately):

F1 (A, B, C) = ∑ (0, 1, 3, 5), F2 (A, B, C) = ∑ (0, 1, 4, 5)

Using:

A. 4-to-1 MUX.

B. 1-to-4 DEMUX with one external gate.

Implement the following Boolean function:

F1 (A, B, C, D) = ∑ (0, 1, 2, 4, 6, 9, 12, 14)

Using:

A. 8-to-1 MUX.

B. 4-to-1 MUXes, with minimum external gates.

Uploaded By: 1230358@student.birzeit.eduSTUDENTS-HUB.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92

