Fourier Transform of Useful Functions x(+) X(3) S(+) 1

8(+)	
u(+)	$\frac{1}{j^{2}\pi^{2}}$ + $\frac{1}{2}$ S(\$)
sgn((+)	<u>1</u> jπ≯
-at e u(t)	$\frac{1}{a+j2\pi f}$
(os (211,f.+)	$\frac{1}{2}S(f-f_{0}) + \frac{1}{2}S(f+f_{0})$

STUDENTS-HUB.com

Uploaded By: Mohammed Saada

Fourier Transform Theorem:		
() superposition		
3 Delay	$F[x(t-\tau)] = e \times (f)$	
3 Scaling	$F[x(\alpha t)] = \frac{1}{ \alpha } X(t/\alpha)$	
@ Inversion	F[x(-4)] = X(-f)	
3 Duality	F[X(t)] = x(-f) if F[x(t)] = X(f)	
6 Frequency shift	$F[x(t)e^{je\pi f_e t}] = \chi(f_e f_e)$	
(7) Convolution	$F[\mathcal{H},\mathcal{H}) * \mathcal{H}_{2}(\mathcal{H})] = X_{1}(\mathcal{H}) \times (\mathcal{H})$	
1 Mutiplication	$F[X_{1}(+)X_{2}(+)] = X_{1}(+) + X_{2}(+)$	

STUDENTS-HUB.com

Uploaded By: Mohammed Saada

Fourier Transform Theorem,	
(9) Differentiation	$\mathcal{F}\left[\frac{dx}{d+m}\right] = (j_2\pi f)^m X(f)$
1 Integration	$F\left[\int_{-\infty}^{\infty} x(\lambda) d\lambda\right] = \frac{1}{j_{2\pi}} \frac{\chi(t)}{t_{2\pi}} \frac{1}{2} S(t_{2\pi}) \chi(0)$
1) Modulation	$F\left[x(t) + c(t)\right] = \frac{A_e}{2} X(f - f_e) + \frac{A_e}{2} X(f + f_e)$ where $c(t) = A_e \cos(x\pi f_e t)$

STUDENTS-HUB.com

Uploaded By: Mohammed Saada