
COMP338:	ARTIFICIAL	
INTELLIGENCE
AI & Games

Dr. Radi Jarrar
Department of Computer Science

1

Uploaded By: anonymousSTUDENTS-HUB.com



AI	&	Games
• Competitive	environment	in	a	multi-agent	environment	

• There	is	an	opponent,	we	can’t	control,	planning	againus!

• Each	agent	needs	to	consider	actions	of	other	agents	and	they	
might	affect	its	own	welfare

•The	unpredictability	of	the	other	agents	might	introduce	some	
contingencies	into	the	agent's	problem-solving	process
• In	competitive	environments,	the	goals	are	in	conflict

2

Uploaded By: anonymousSTUDENTS-HUB.com



AI	&	Games
• Game	vs.	search:	optimal	solution	is	not	a	sequence	of	actions	but	a	
strategy	(policy)	

• If	opponent	does	a,	agent	does	b,	else		if	opponent	does	c,	agent	
does	d, etc.

• Tedious	and	fragile	if	hard-coded	(i.e.,	implemented	with rules)

• Good news:	games	are	modeled	as	search	problems	anduse
heuristic	evaluation functions.

• Heuristic	evaluation	functions	allow	us	to	approximate	the	true	utility	
of	a	state	without	doing	a	complete	search.

3

Uploaded By: anonymousSTUDENTS-HUB.com



Games
•Games	are	a	big	deal	in AI

•Games	are	interesting	to	AI	because	they	are	too	hard	to
solve

•We	need	to	make	some	decision	even	when	the	optimal	
decision		is infeasible

4

Uploaded By: anonymousSTUDENTS-HUB.com



Games
•Adversarial	search	(which	is	known	as	Games)

•Mathematical	game	theory,	a	branch	of	economics,	views	

any	multiagent	environment	as	a	game,	provided	that	the	

impact	of	each	agent	on	the	others	is	“significant,”	regardless	

of	whether	the	agents	are	cooperative	or	competitive

5

Uploaded By: anonymousSTUDENTS-HUB.com



Games
• Chinook	(a	computer	program	that	plays	checkers)	ended	40-
year-reign	of	human	world	champion	Marion	Tinsley	in 1994.

• Used	an	endgame	database	defining	
perfect	play	for	all	positions	involving	8	
or	fewer	pieces	on	the	board,	a	total	of		
443,748,401,247 positions.

6

Uploaded By: anonymousSTUDENTS-HUB.com



Games
• In	1949,	Claude	E.	Shannon	in	his	paper	“Programming a	Computer	for	
Playing	Chess”,	suggested	Chess	as	an	AI	problem	for	the community
• Deep	Blue	defeated	human	world	
champion	Gary	Kasparov	in		a	six-game	
match	in	1997
• In	2006,	Vladmir	Kramnik,	the	undisputed	
world	champion,	was	defeated	4-2	by	Deep	
Fritz

7

Uploaded By: anonymousSTUDENTS-HUB.com



Games
• Google	Deep	mind	through	its	Project	
AlphaGo could	beat	both	Fan	Hui,	the	
European	Go	champion	and	Lee	Sedol
the	worlds	best player	in	the	game	Go	in	
the	year	2016

•Othello: human champions refuse 
to compete against computers. 
Computers are too good.

8

Uploaded By: anonymousSTUDENTS-HUB.com



Types	of	Games

•We	are	mostly	interested	in	deterministic	games,	fully	
observable	environments,	zero-sum,	where	two	agents	act	
alternately.

9

Uploaded By: anonymousSTUDENTS-HUB.com



Games
•For	example,	if	one	player	wins	a	game	of	chess,	the	other	
player	necessarily	loses.	It	is	this	opposition	between	the	
agents’	utility	functions	that	makes	the	situation	adversarial
•A	zero-sum	game	is	one	in	which	the	gain	of	one	player	is	
balanced	exactly	by	the	loss	of	the	other	player

10

Uploaded By: anonymousSTUDENTS-HUB.com



Games
•Games	are	interesting	because	they	are	hard	to	solve (too	
hard,	for	that	matter!)
• E.g.,	chess	has	a	branching	factor	of	average	of	35
• A	game	often	go	to	50	moves	by	each	player
• The	search	space	has	35100	nodes	

•Games,	like	the	real	world,	therefore	require	the	ability	to	
make	some	decision	even	when	calculating	the	optimal	
decision	is	infeasible
•Games also penalize inefficiency

11

Uploaded By: anonymousSTUDENTS-HUB.com



Games
• How	would	a	computer	play	a	game?
• Consider	all	legal	moves	you	can	make
• Compute	new	positions	that	would	result	from	each	
new	moves
• Evaluate	each	new	position	and	determine	the	best
•Move!
•Wait	for	the	opponent’s	move,	and	repeat

• Issues	to	be	considered
• Representing	the	game	(i.e.,	board)
• Generating	all	next	legal	moves	and	evaluating	the	
moves

12

Uploaded By: anonymousSTUDENTS-HUB.com



Games

13

Uploaded By: anonymousSTUDENTS-HUB.com



Games
•Consider	the	two-player	game	Tic-Tac-Toe
•Players	alternate	moves,	and	as	each	move	is	made,	the	
possible	moves	are	constrained

14

Uploaded By: anonymousSTUDENTS-HUB.com



Games

15

Uploaded By: anonymousSTUDENTS-HUB.com



Games

•The game is seen as a tree
•The values at the bottom are calculated by a utility function, 
based on the game.

16

Uploaded By: anonymousSTUDENTS-HUB.com



Games
•A	move	is	selected	such	that	it	leads	to	a	win	by	traversing	all	
moves	that	are	constrained	by	this	move
•Also,	by	traversing	the	tree	for	a	given	move,	we	can	choose	
the	move	that	leads	to	the	win	in	the	shallowest	depth	
(minimal	number	of	moves)
• In	Tic-Tac-Toe,	the	maximum	number	of	moves	is	small	in	
comparison	to	other	more	complex	games	(such	as	checkers	
or	chess)

17

Uploaded By: anonymousSTUDENTS-HUB.com



Games
• So,	games	can	be	formulated	as	search	problems
•The	zero-sum	utility	function	leads	to	an	adversarial	
situation:	for	one	agent	to	win,	the	other	necessarily	has	to	
lose	
•Factors	that	make	the	search	complicated:
• Potentially	huge	search	space
• Time	limits
•Multi-player	games	(teams)
• Elements	of	chance

19

Uploaded By: anonymousSTUDENTS-HUB.com



Games
• In	single-person	games,	a	sequence	of	moves	that	lead	to	a	
win	is	identified
•Easier	than	two	player	games
•Traditional	search	methods	only	consider	how	close	the	
agent	to	the	goal	state	(i.e.,	BFS,	DFS,	…)
• In	two	player	games,	decisions	of	both	agents	should	be	
taken	into	account	as	the	decision	of	one	agent	will	affect	the	
resulting	search	space	that	the	other	agent	would	further	
explore

20

Uploaded By: anonymousSTUDENTS-HUB.com



Minimax
• The	search	space	of	a	two	player	game	can	be	formalised through	an	
agent	that	is	called	MAX	and	the	opponent	is	called	MIN
• Players	alternate	turns
•Max	moves	first
•Max	maximizes	results
•Min	minimizes	the	result
• Compute	each	node’s	minimax	value’s	the	best	achievable	utility	
against	an	optimal	adversary
•Minimax	value	=		best	achievable	payoff	against	best	play

22

Uploaded By: anonymousSTUDENTS-HUB.com



Minimax – Problem	Formulation

• Initial	state:	board	configurations	and	the	player	to	move.	

• Successor	function:	list	of	pairs	(move,	e)	specifying	legal	moves	and	

their	resulting	states.	(moves	+	initial	state	=	game	tree)	

• A	terminal	test:		true	when	the	game	is	over	and	false	otherwise.	

• A	utility	function:	a	utility	function	(an	objective	function)	that	

defines	the	final	numeric	value	for	a	game	that	ends	in	terminal	state	.	

For	example	(Chess)	the	outcome	=	win/loss/draw,	with	values	+1,	-1,	

0.

23

Uploaded By: anonymousSTUDENTS-HUB.com



Minimax – Problem	Formulation
•The	initial	state,	Actions	function,	and	Result	function	define	
the	game	tree
• In	the	game	tree,	the	nodes	are	states	and	the	edges	are	moves

24

Uploaded By: anonymousSTUDENTS-HUB.com



Minimax

25

-From the initial state, MAX has nine moves 
-MAX places X while MIN places O (alternating 
their movements)
-Each level of the tree corresponds to the possible 
movement (board configurations) for MAX or 
MIN
-The tree is deepened until reaching leaf nodes 
that correspond to terminal states (a player has 
three in a row or all squares are filled)
-The number on each leaf node indicates the 
utility value of the terminal state from the point 
of view of MAX; high values are assumed to be 
good for MAX and bad for MIN (which is how the 
players get their names) Uploaded By: anonymousSTUDENTS-HUB.com



MiniMax	Algorithm
• Create	a	start	node	and	as	the	MAX	node	with	the	initial	configurations

• Expand	nodes	down	to	some	depth	in	the	game

• Apply	the	evaluation	function	to	each	leaf	node

• Propagate	the	values	of	non-leaf	nodes	until	a	value	is	computed	for	the	root	node

• At	MAX	nodes,	the	propagated	value	is	the	maximum	of	the	values	associated	with	its	children

• At	MIN	nodes,	the	propagated	value	is	the	minimum	of	the	values	associated	with	its	children

• Select	the	operator	that	associated	with	the	child	node	whose	propagated	value	

determined	the	value	at	the	root

31

Uploaded By: anonymousSTUDENTS-HUB.com



MiniMax	Algorithm
• Find	the	optimal	strategy	for Max:

– Depth-first search of the game tree

– An optimal leaf node could appear at any depth of the tree
– Minimax principle: compute the utility of being in a state assuming both players
play optimally from there until the end of the game

– Propagate minimax values up the tree once terminal nodes are discovered
• If	state		is terminal node:	Value	is utility(state)

• If		state		isMAX node:	Value	is	highest	value	of	all	successor		node	values (children)

• If	state	is MIN node: Value	is	lowest	value	of	all	successor	node		values (children)

32

Uploaded By: anonymousSTUDENTS-HUB.com



Algorithm	of	Minimax game	tree	search

35

Uploaded By: anonymousSTUDENTS-HUB.com



MiniMax	Algorithm

36

Uploaded By: anonymousSTUDENTS-HUB.com



MiniMax - Example
Here is a search tree. We want to select the best moves
to make Max win the game.

Uploaded By: anonymousSTUDENTS-HUB.com



MiniMax - Example
The terminal values are some heuristic values that 
evaluate the game if we go through that path 
(values calculated from the utility function)

Start from the Root, DFS, and Evaluate. 

Uploaded By: anonymousSTUDENTS-HUB.com



MiniMax - Example

Uploaded By: anonymousSTUDENTS-HUB.com



MiniMax - Example

Uploaded By: anonymousSTUDENTS-HUB.com



MiniMax - Example

Uploaded By: anonymousSTUDENTS-HUB.com



MiniMax	- Example

Uploaded By: anonymousSTUDENTS-HUB.com



MiniMax	- Example

28

Uploaded By: anonymousSTUDENTS-HUB.com



Properties	of	MinimaxAlgorithm
• Complete:	Yes	(if	tree	is	finite)	
• Optimal:	Yes	(against	an	optimal	opponent)	
• Time	complexity:	A	complete	evaluation	takes	time	bm

• Space	complexity:	A	complete	evaluation	takes	space	bm
(depth-first	exploration)	
• For	example,	in	chess,	b	≈	35,	m	≈100	for	"reasonable"	games	
• The	exact	solution	completely	infeasible,	since	it	is	too	big	
Instead,	we	limit	the	depth	based	on	various	factors,	including	
time	available.

44

*	b	is	the	number	of	legal	moves	at	each	point
*	m	is	the	maximum	depth	of	the	tree

Uploaded By: anonymousSTUDENTS-HUB.com



Case	of	Limited	Resources
• Problem:	In	real	games,	we	are	limited	in	time,	so	we	can’t	
search	the	leaves.	
• To	be	practical	and	run	in	a	reasonable	amount	of	time,	
minimax	can	only	search	to	some	depth	(especially	with	
complex	games)
• Solution:
1.	Replace	terminal	utilities	with	an	evaluation	function	for	non-
terminal	positions.
2.	Use	Iterative	Deepening	Search	(IDS).
3.	Use	pruning:	eliminate	large	parts	of	the	tree.	

46

Uploaded By: anonymousSTUDENTS-HUB.com



ALPHA-BETA PRUNING ALGORITHM

47

Uploaded By: anonymousSTUDENTS-HUB.com



MiniMaxwith	Alpha-Beta	Pruning
•A	modification	over	Minimax	algorithm
•The	goal	is	to	find	a	solution	without	expanding	the	entire	
tree.	Thus	it	requires	less	memory	and	should	be	faster
•You	don’t	need	to	examine	all	branches	of	the	tree	to	find	the	
solution
•The	higher	the	number	of	pruned	branches,	the	greater	effect	
in	minimizing	the	search	space	of	the	tree

48

Uploaded By: anonymousSTUDENTS-HUB.com



MiniMaxwith	Alpha-Beta	Pruning
• During	the	(DFS)	of	the	game	tree,	two	variables	are	calculated:	alpha	
and	beta
• The	alpha	variable	defines	the	best	move	that	can	be	made	to	maximize	
(our	best	move)	
• Beta	variable	defines	the	best	move	that	can	be	made	to	minimize	(the	
opposing	best	move)

• Prune	the	tree	where	𝛼 ≥𝛽

49

Uploaded By: anonymousSTUDENTS-HUB.com



MiniMaxwith	Alpha-Beta	Pruning
• Strategy:	Just	like	minimax,	it	performs	a	DFS.	

• Parameters:	Keep	track	of	two	bounds

• 𝛼:	largest	value	for	Max	across	seen	children	(current	lower	bound	on	MAX’s	outcome)

• 𝛽:	lowest	value	for	MIN	across	seen	children	(current	upper	bound	on	MIN’s	outcome)	

• Initialization: 𝛼=−∞, 𝛽=∞

• Propagation:	Send 𝜶 and	𝜷 values	down	during	the	search	to	be	used	for pruning.

– Update	𝜶 and	𝜷 values	by	propagating	upwards	values	of	terminal	nodes.

– Update 𝜶 only	at	Max	nodes	and	update	𝜷only	at	Min	nodes.

• Pruning:	Prune any	remaining	branches	whenever	𝛼≥𝛽

50

Uploaded By: anonymousSTUDENTS-HUB.com



MiniMaxwith	Alpha-Beta	Pruning

• If	𝛼 is	better	than	node	a	for	Max,	then	Max	will	avoid	it,	that	is	prune	that	branch.	
• If	𝛽 is	better	than	node	b	for	Min,	then	Min	will	avoid	it,	that	is	prune	that	branch.	

51

Uploaded By: anonymousSTUDENTS-HUB.com



Alpha-Beta	Pruning	- Algorithm

53

Uploaded By: anonymousSTUDENTS-HUB.com



Alpha-Beta	– Example

Uploaded By: anonymousSTUDENTS-HUB.com



Alpha-Beta	– Example

Uploaded By: anonymousSTUDENTS-HUB.com



Alpha-Beta	– Example

Uploaded By: anonymousSTUDENTS-HUB.com



Alpha-Beta	– Example

Uploaded By: anonymousSTUDENTS-HUB.com



Alpha-Beta	– Example

Uploaded By: anonymousSTUDENTS-HUB.com



Alpha-Beta	– Example

Uploaded By: anonymousSTUDENTS-HUB.com



Alpha-Beta	– Example

Uploaded By: anonymousSTUDENTS-HUB.com



Alpha-Beta	– Example

Uploaded By: anonymousSTUDENTS-HUB.com



Move Order

• It	does	matter	as	it	affects	the	effectiveness	of	𝜶−𝜷 pruning.	
• Example:	We	could	not	prune	any	successor	of	D	because	the	worst	successors	for	
Min	were	generated	first.	If	the	third	one	(leaf	2)	was	generated	first	we	would	have	
pruned	the	two	others	(14	and	5).	
• Idea	of	ordering:	examine	first	successors	that	are	likely	best	 Uploaded By: anonymousSTUDENTS-HUB.com



Move Order
• Worst	ordering:	no	pruning	happens	(best	moves	are	on	the	right	of	the	game	tree).	
Complexity	O(bm).	
• Ideal	ordering:	lots	of	pruning	happens	(best	moves	are	on	the	left	of	the	game	
tree).	This	solves	tree	twice	as	deep	as	minimax	in	the	same	amount	of	time.	
Complexity	O(bm/2)	(in	practice).	The	search	can	go	deeper	in	the	game	tree.	
• How	to	find	a	good	ordering?	
• Remember	the	best	moves	from	shallowest	nodes.	
• Order	the	nodes	so	as	the	best	are	checked	first.	
• Use	domain	knowledge:	e.g.,	for	chess,	try	order:	captures	first,	then	threats,	then	
forward	moves,	backward	moves.	
• Bookkeeping	the	states,	they	may	repeat!	

Uploaded By: anonymousSTUDENTS-HUB.com



Alpha-Beta	– Example

Uploaded By: anonymousSTUDENTS-HUB.com



Real-Time	Decision
• Minimax: generates	the	entire	game	search	space

• Alpha-Beta	algorithm:	prune	large	chunks	of	the	trees

• Alpha-Beta	still	has	to	go	all	the	way	to	the	leaves

• Impractical in real-time (moves has to be done in a reasonable
amount of time)

• Solution:

• bound the depth of search (cut search) and

• replace utiliy(s) with eval(s), an evaluation function to estimate value of
current board configurations

67

Uploaded By: anonymousSTUDENTS-HUB.com



Real-Time	Decision
• eval(s)	is	a	heuristic	at	state	s
• E.g.,	Chess:	Value	of	all	white	pieces	Value	of	all	black	pieces	turn	non-
terminal	nodes	into	terminal	leaves!	
• An	ideal	evaluation	function	would	rank	terminal	states	in	the	same	
way	as	the	true	utility	function;	but	must	be	fast	
• Typical	to	define	features,	make	the	function	a	linear	weighted	sum	of	
the	features	
• Use	domain	knowledge	to	craft	the	best	and	useful	features.	

68

Uploaded By: anonymousSTUDENTS-HUB.com



Real-Time	Decision

• How	does	it	works?	
• Select	useful	features	f1,	.	.	.	,	fn
e.g.,	Chess:	#	pieces	on	board,	value	of	
pieces	(1	for	pawn,	3	for	bishop,	etc.)	
•Weighted	linear	function: eval(s) =	w1 f1 +	w2 f2 +	…	+	wn fn ,	which is	a	
combination	of	features	and	are	weighted	by	their	relevance	
•Weights	are	learnt	from	the	examples
• Deep	blue	uses	about	6,000	features!	
• This	is	referred	to	as	Utility	Evaluation	Function

69

Uploaded By: anonymousSTUDENTS-HUB.com



Utility	Evaluation	Function
• Determines	the	performance	of	a	game-playing	program	
• Game-specific!
• Values	for	terminal	nodes	(or	at	least	their	order)	must	be	the	same	
• The	function	should	reflect	the	actual	chances	of	winning	
• Notice:	quality	of	utility	function	is	based	on:
•What	features	are	evaluated	
• How	those	features	are	scored	
• How	the	scores	are	weighted/combined	

• Absolute	utility	value	doesn’t	matter	– relative	value	does.

Uploaded By: anonymousSTUDENTS-HUB.com



Stochastic	Games
• Include	a	random	element	(e.g.,	throwing	a	die).	
• Include	chance	nodes.	
• Backgammon:	old	board	game	combining	skills	and	chance.	
• The	goal	is	that	each	player	tries	to	move	all	of	his	pieces	off	he	board	
before	his	opponent	does.	

Uploaded By: anonymousSTUDENTS-HUB.com



Stochastic	Games

• Partial	game	tree	for	Backgammon.	
Uploaded By: anonymousSTUDENTS-HUB.com



Stochastic	Games	- Algorithm

• Expectminimax generalized	Minimax	to	handle	chance	nodes	as	follows:	
• If	state	is	a	Max	node	then
return	the	highest	Expectminimax-Value of	Successors(state)	
• If	state	is	a	Min	node	then
return	the	lowest	Expectminimax-Value of	Successors(state)	
• If	state	is	a	chance	node	then
return	average	of	Expectminimax-Value of	Successors(state)	

Uploaded By: anonymousSTUDENTS-HUB.com



• Games	are	modeled	in	AI	as	a	search	problem	and	use	heuristic	to	evaluate	the	
game.

• Minimax	algorithm	choses	the	best	most	given	an	optimal	play	from	the	opponent.

• Minimax	goes	all	the	way	down	the	tree	which	is	not	practical		give	game	time	
constraints.

• Alpha-Beta pruning can reduce the game tree search which		allow	to	go	deeper	in	
the	tree	within	the	time	constraints.

• Pruning,	bookkeeping,	evaluation	heuristics,	node	re-ordering		and	IDS	are	effective	
in	practice.

Conclusion

Uploaded By: anonymousSTUDENTS-HUB.com


