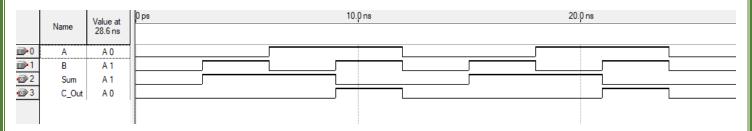
Experiment #8

Pre Lab

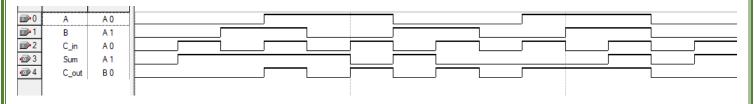

Name: Mohammed Jamil Saada

Number: 1221972

A) Build half adder on data flow.

Code:

Wave form:



B) Build full adder using half adder structural.

Code:

```
1  module Full_Adder(input A, B, C_in, output Sum, C_out);
2
3  //Mohammed Jamil Saada - 1221972
4  //Full Adder using Half Adder Structural
5
6  wire w1, w2, w3;
7  Half_Adder(A,B,w1,w2);
8  Half_Adder(C_in,w1,Sum,w3);
9  or gate(C_out,w2,w3);
10
11  endmodule
```

Wave form:

C) Build a 2-bit counter on behavioral.

Code:

Wave form:

D) Build an 8x1 Multiplexer on behavioral.

Code:

```
1 =module Mux 8to1(output reg F, input [7:0] I, input [2:0] selection);
   //Mohammed Jamil Saada - 1221972
4 // 8x1 Multiplexer on behavioral
6 =always @(*) begin
7 = case (selection)
   3'b000 : F = I[0];
   3'b001 : F = I[1];
10 3'b010 : F = I[2];
11 3'b011 : F = I[3];
12 3'b100 : F = I[4];
13 3'b101 : F = I[5];
14 3'b110 : F = I[6];
15 3'b111 : F = I[7];
16 endcase
17 end
18 endmodule
```

Wave form:

		680 _, 0 ns			690,0 ns		700	700 _. 0 ns		710 _, 0 ns		720 _i 0 ns				
	Name															
™ 0	H I	X 010	01010100		01010101		(01010110)		01010111		01011000		01011001		X 01011010 X	
™ 9	± selection	000	001	010	011	100	101	110	111	000	001	010	011	100	(101)	
⊚ 13	F		0	1	(O	X 1	0	1		()		((0)	

E) Build a 2x4 Decoder using basic gates (structural).

Code:

```
1 =module Decoder 2to4(output D0, D1, D2, D3, input I0, I1);
 3 //Mohammed Jamil Saada - 1221972
 4 //2x4 Decoder using basic gates (stuctural)
 6 wire i0, i1;
 7 not gate1(i0, I0);
 8 not gate2(i1,I1);
   //i0 = I0' ,, i1 = I1'
9
10 and gate3(D0,i0,i1);
11 and gate4(D1, I0, i1);
    and gate5(D2,i0,I1);
12
13
    and gate6(D3, I0, I1);
14
15 endmodule
```

Wave form:

	Name	value at	0 ps	10.	Ons	Ons	
		30.0 ns					
№ 0	11	A1		0		1)
⊪ 1	10	A 0	0	1	0	1	0
⊚ 2	D0	A 0	1	X	0		1
⊚ 3	D1	A 0	0	1		0	
₫ 4	D2	A1		0	1	X	0
⊚ 5	D3	A 0		0		1	

F) Show the wave form for above parts.

I have attached the wave form for each part above.