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541

C H A P T E R  2 1

Coulomb’s Law

21-1 COULOMB’S LAW

After reading this module, you should be able to . . .

21.01 Distinguish between being electrically neutral, negatively
charged, and positively charged and identify excess charge.

21.02 Distinguish between conductors, nonconductors (insu-
lators), semiconductors, and superconductors.

21.03 Describe the electrical properties of the particles in-
side an atom.

21.04 Identify conduction electrons and explain their role in
making a conducting object negatively or positively charged.

21.05 Identify what is meant by “electrically isolated” and by
“grounding.”

21.06 Explain how a charged object can set up induced
charge in a second object.

21.07 Identify that charges with the same electrical sign repel
each other and those with opposite electrical signs attract
each other.

21.08 For either of the particles in a pair of charged particles,
draw a free-body diagram, showing the electrostatic force
(Coulomb force) on it and anchoring the tail of the force
vector on that particle.

21.09 For either of the particles in a pair of charged particles,
apply Coulomb’s law to relate the magnitude of the electro-
static force, the charge magnitudes of the particles, and the
separation between the particles.

21.10 Identify that Coulomb’s law applies only to (point-like)
particles and objects that can be treated as particles.

21.11 If more than one force acts on a particle, find the net
force by adding all the forces as vectors, not scalars.

21.12 Identify that a shell of uniform charge attracts or repels
a charged particle that is outside the shell as if all the
shell’s charge were concentrated as a particle at the
shell’s center.

21.13 Identify that if a charged particle is located inside a shell
of uniform charge, there is no net electrostatic force on the
particle from the shell.

21.14 Identify that if excess charge is put on a spherical conduc-
tor, it spreads out uniformly over the external surface area.

21.15 Identify that if two identical spherical conductors touch
or are connected by conducting wire, any excess charge
will be shared equally.

21.16 Identify that a nonconducting object can have any given
distribution of charge, including charge at interior points.

21.17 Identify current as the rate at which charge moves
through a point.

21.18 For current through a point, apply the relationship be-
tween the current, a time interval, and the amount of charge
that moves through the point in that time interval.

● The strength of a particle’s electrical interaction with ob-
jects around it depends on its electric charge (usually repre-
sented as q), which can be either positive or negative.
Particles with the same sign of charge repel each other, and
particles with opposite signs of charge attract each other.

● An object with equal amounts of the two kinds of charge is
electrically neutral, whereas one with an imbalance is electri-
cally charged and has an excess charge.

● Conductors are materials in which a significant number of
electrons are free to move. The charged particles in noncon-
ductors (insulators) are not free to move.

● Electric current i is the rate dq/dt at which charge passes a
point:

● Coulomb’s law describes the electrostatic force (or electric

i !
dq
dt

.

force) between two charged particles. If the particles have
charges q1 and q2, are separated by distance r, and are at rest
(or moving only slowly) relative to each other, then the magni-
tude of the force acting on each due to the other is given by

(Coulomb’s law),

where is the permittivity con-
stant. The ratio 1/4p´0 is often replaced with the electrostatic
constant (or Coulomb constant) .
● The electrostatic force vector acting on a charged particle
due to a second charged particle is either directly toward the
second particle (opposite signs of charge) or directly away
from it (same sign of charge).
● If multiple electrostatic forces act on a particle, the net force
is the vector sum (not scalar sum) of the individual forces.

k ! 8.99 " 109 N #m2/C2

´0 ! 8.85 " 10$12 C2/N #m2

F !
1

4p´0

!q1! !q2!
r2

Key Ideas

Learning Objectives
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542 CHAPTER 21 COULOMB’S LAW

What Is Physics?
You are surrounded by devices that depend on the physics of electromagnetism,
which is the combination of electric and magnetic phenomena. This physics is at
the root of computers, television, radio, telecommunications, household lighting,
and even the ability of food wrap to cling to a container. This physics is also the
basis of the natural world. Not only does it hold together all the atoms and
molecules in the world, it also produces lightning, auroras, and rainbows.

The physics of electromagnetism was first studied by the early Greek
philosophers, who discovered that if a piece of amber is rubbed and then brought
near bits of straw, the straw will jump to the amber.We now know that the attrac-
tion between amber and straw is due to an electric force.The Greek philosophers
also discovered that if a certain type of stone (a naturally occurring magnet) is
brought near bits of iron, the iron will jump to the stone. We now know that the
attraction between magnet and iron is due to a magnetic force.

From these modest origins with the Greek philosophers, the sciences of
electricity and magnetism developed separately for centuries—until 1820, in fact,
when Hans Christian Oersted found a connection between them: an electric cur-
rent in a wire can deflect a magnetic compass needle. Interestingly enough,
Oersted made this discovery, a big surprise, while preparing a lecture demonstra-
tion for his physics students.

The new science of electromagnetism was developed further by workers in
many countries. One of the best was Michael Faraday, a truly gifted experimenter
with a talent for physical intuition and visualization. That talent is attested to by
the fact that his collected laboratory notebooks do not contain a single equation.
In the mid-nineteenth century, James Clerk Maxwell put Faraday’s ideas into
mathematical form, introduced many new ideas of his own, and put electromag-
netism on a sound theoretical basis.

Our discussion of electromagnetism is spread through the next 16 chapters.
We begin with electrical phenomena, and our first step is to discuss the nature of
electric charge and electric force.

Electric Charge
Here are two demonstrations that seem to be magic, but our job here is to make
sense of them. After rubbing a glass rod with a silk cloth (on a day when the
humidity is low), we hang the rod by means of a thread tied around its center
(Fig. 21-la). Then we rub a second glass rod with the silk cloth and bring it near
the hanging rod. The hanging rod magically moves away. We can see that a force
repels it from the second rod, but how? There is no contact with that rod, no
breeze to push on it, and no sound wave to disturb it.

In the second demonstration we replace the second rod with a plastic rod
that has been rubbed with fur. This time, the hanging rod moves toward the
nearby rod (Fig. 21-1b). Like the repulsion, this attraction occurs without any
contact or obvious communication between the rods.

In the next chapter we shall discuss how the hanging rod knows of the pres-
ence of the other rods, but in this chapter let’s focus on just the forces that are in-
volved. In the first demonstration, the force on the hanging rod was repulsive, and

● Shell theorem 1: A charged particle outside a shell with charge
uniformly distributed on its surface is attracted or repelled as if
the shell's charge were concentrated as a particle at its center.
● Shell theorem 2: A charged particle inside a shell with

charge uniformly distributed on its surface has no net force
acting on it due to the shell.
● Charge on a conducting spherical shell spreads uniformly
over the (external) surface.

Figure 21-1 (a) The two glass rods were each
rubbed with a silk cloth and one was sus-
pended by thread.When they are close to
each other, they repel each other. (b) The
plastic rod was rubbed with fur.When
brought close to the glass rod, the rods
attract each other.

Glass 

Glass 

(a) 
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54321-1 COULOMB’S LAW

in the second, attractive. After a great many investigations, scientists figured out
that the forces in these types of demonstrations are due to the electric charge that
we set up on the rods when they are in contact with silk or fur. Electric charge is
an intrinsic property of the fundamental particles that make up objects such as
the rods, silk, and fur. That is, charge is a property that comes automatically with
those particles wherever they exist.

Two Types. There are two types of electric charge, named by the American
scientist and statesman Benjamin Franklin as positive charge and negative
charge. He could have called them anything (such as cherry and walnut), but us-
ing algebraic signs as names comes in handy when we add up charges to find the
net charge. In most everyday objects, such as a mug, there are about equal num-
bers of negatively charged particles and positively charged particles, and so the
net charge is zero, the charge is said to be balanced, and the object is said to be
electrically neutral (or just neutral for short).

Excess Charge. Normally you are approximately neutral. However, if you live in
regions where the humidity is low, you know that the charge on your body can be-
come slightly unbalanced when you walk across certain carpets. Either you gain neg-
ative charge from the carpet (at the points of contact between your shoes with the
carpet) and become negatively charged,or you lose negative charge and become pos-
itively charged. Either way, the extra charge is said to be an excess charge.You proba-
bly don’t notice it until you reach for a door handle or another person.Then, if your
excess charge is enough, a spark leaps between you and the other object, eliminating
your excess charge. Such sparking can be annoying and even somewhat painful. Such
charging and discharging does not happen in humid conditions because the water in
the air neutralizes your excess charge about as fast as you acquire it.

Two of the grand mysteries in physics are (1) why does the universe have par-
ticles with electric charge (what is it, really?) and (2) why does electric charge
come in two types (and not, say, one type or three types). We just do not know.
Nevertheless, with lots of experiments similar to our two demonstrations scien-
tists discovered that

Particles with the same sign of electrical charge repel each other, and particles
with opposite signs attract each other.

In a moment we shall put this rule into quantitative form as Coulomb’s law of
electrostatic force (or electric force) between charged particles. The term electro-
static is used to emphasize that, relative to each other, the charges are either sta-
tionary or moving only very slowly.

Demos. Now let’s get back to the demonstrations to understand the motions
of the rod as being something other than just magic. When we rub the glass rod
with a silk cloth, a small amount of negative charge moves from the rod to the silk
(a transfer like that between you and a carpet), leaving the rod with a small
amount of excess positive charge. (Which way the negative charge moves is not
obvious and requires a lot of experimentation.) We rub the silk over the rod to in-
crease the number of contact points and thus the amount, still tiny, of transferred
charge.We hang the rod from the thread so as to electrically isolate it from its sur-
roundings (so that the surroundings cannot neutralize the rod by giving it enough
negative charge to rebalance its charge). When we rub the second rod with the
silk cloth, it too becomes positively charged. So when we bring it near the first
rod, the two rods repel each other (Fig. 21-2a).

Next, when we rub the plastic rod with fur, it gains excess negative charge
from the fur. (Again, the transfer direction is learned through many experiments.)
When we bring the plastic rod (with negative charge) near the hanging glass rod
(with positive charge), the rods are attracted to each other (Fig. 21-2b). All this is
subtle.You cannot see the charge or its transfer, only the results.

Figure 21-2 (a) Two charged rods of the same
sign repel each other. (b) Two charged rods
of opposite signs attract each other. Plus
signs indicate a positive net charge, and mi-
nus signs indicate a negative net charge.
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544 CHAPTER 21 COULOMB’S LAW

Conductors and Insulators
We can classify materials generally according to the ability of charge to move
through them. Conductors are materials through which charge can move rather
freely; examples include metals (such as copper in common lamp wire), the human
body, and tap water. Nonconductors—also called insulators—are materials
through which charge cannot move freely; examples include rubber (such as the
insulation on common lamp wire), plastic, glass, and chemically pure water.
Semiconductors are materials that are intermediate between conductors and
insulators; examples include silicon and germanium in computer chips. Super-
conductors are materials that are perfect conductors, allowing charge to move with-
out any hindrance. In these chapters we discuss only conductors and insulators.

Conducting Path. Here is an example of how conduction can eliminate excess
charge on an object. If you rub a copper rod with wool, charge is transferred from the
wool to the rod. However, if you are holding the rod while also touching a faucet, you
cannot charge the rod in spite of the transfer.The reason is that you, the rod, and the
faucet are all conductors connected, via the plumbing, to Earth’s surface, which is a
huge conductor. Because the excess charges put on the rod by the wool repel one an-
other, they move away from one another by moving first through the rod, then
through you, and then through the faucet and plumbing to reach Earth’s surface,
where they can spread out.The process leaves the rod electrically neutral.

In thus setting up a pathway of conductors between an object and Earth’s
surface, we are said to ground the object, and in neutralizing the object (by elimi-
nating an unbalanced positive or negative charge), we are said to discharge the
object. If instead of holding the copper rod in your hand, you hold it by an
insulating handle, you eliminate the conducting path to Earth, and the rod can
then be charged by rubbing (the charge remains on the rod), as long as you do
not touch it directly with your hand.

Charged Particles. The properties of conductors and insulators are due to
the structure and electrical nature of atoms. Atoms consist of positively charged
protons, negatively charged electrons, and electrically neutral neutrons. The pro-
tons and neutrons are packed tightly together in a central nucleus.

The charge of a single electron and that of a single proton have the same
magnitude but are opposite in sign. Hence, an electrically neutral atom contains
equal numbers of electrons and protons. Electrons are held near the nucleus
because they have the electrical sign opposite that of the protons in the nucleus
and thus are attracted to the nucleus. Were this not true, there would be no
atoms and thus no you.

When atoms of a conductor like copper come together to form the solid,
some of their outermost (and so most loosely held) electrons become free to
wander about within the solid, leaving behind positively charged atoms ( positive
ions). We call the mobile electrons conduction electrons. There are few (if any)
free electrons in a nonconductor.

Induced Charge. The experiment of Fig. 21-3 demonstrates the mobility of
charge in a conductor. A negatively charged plastic rod will attract either end of
an isolated neutral copper rod. What happens is that many of the conduction
electrons in the closer end of the copper rod are repelled by the negative charge
on the plastic rod. Some of the conduction electrons move to the far end of the
copper rod, leaving the near end depleted in electrons and thus with an unbal-
anced positive charge. This positive charge is attracted to the negative charge in
the plastic rod. Although the copper rod is still neutral, it is said to have an
induced charge, which means that some of its positive and negative charges have
been separated due to the presence of a nearby charge.

Similarly, if a positively charged glass rod is brought near one end of a
neutral copper rod, induced charge is again set up in the neutral copper rod but
now the near end gains conduction electrons, becomes negatively charged, and is
attracted to the glass rod, while the far end is positively charged.

Neutral copper 

Charged plastic

+ + + + + + + + + + 

–– – – – – – 

– – – – – – – – – 
– 

– – – – – – – – 
F –F

Figure 21-3 A neutral copper rod is electri-
cally isolated from its surroundings by be-
ing suspended on a nonconducting thread.
Either end of the copper rod will be at-
tracted by a charged rod. Here, conduction
electrons in the copper rod are repelled to
the far end of that rod by the negative
charge on the plastic rod.Then that nega-
tive charge attracts the remaining positive
charge on the near end of the copper rod,
rotating the copper rod to bring that near
end closer to the plastic rod.
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54521-1 COULOMB’S LAW

Note that only conduction electrons, with their negative charges, can move;
positive ions are fixed in place. Thus, an object becomes positively charged only
through the removal of negative charges.

Blue Flashes from a Wintergreen LifeSaver
Indirect evidence for the attraction of charges with opposite signs can be seen
with a wintergreen LifeSaver (the candy shaped in the form of a marine 
lifesaver). If you adapt your eyes to darkness for about 15 minutes and then have
a friend chomp on a piece of the candy in the darkness, you will see a faint blue
flash from your friend’s mouth with each chomp. Whenever a chomp breaks a
sugar crystal into pieces, each piece will probably end up with a different number
of electrons. Suppose a crystal breaks into pieces A and B, with A ending up with
more electrons on its surface than B (Fig. 21-4). This means that B has positive
ions (atoms that lost electrons to A) on its surface. Because the electrons on A
are strongly attracted to the positive ions on B, some of those electrons jump
across the gap between the pieces.

As A and B move away from each other, air (primarily nitrogen, N2) flows
into the gap, and many of the jumping electrons collide with nitrogen molecules
in the air, causing the molecules to emit ultraviolet light. You cannot see this type
of light. However, the wintergreen molecules on the surfaces of the candy pieces
absorb the ultraviolet light and then emit blue light, which you can see—it is the
blue light coming from your friend’s mouth.

Figure 21-4 Two pieces of a wintergreen
LifeSaver candy as they fall away from
each other. Electrons jumping from the
negative surface of piece A to the positive
surface of piece B collide with nitrogen
(N2) molecules in the air.

A 

B + + +
+ +++

–
– –

– –
–

–

N2 

Checkpoint 1
The figure shows five
pairs of plates: A, B, and
D are charged plastic
plates and C is an elec-
trically neutral copper
plate.The electrostatic
forces between the pairs
of plates are shown for
three of the pairs. For the remaining two pairs, do the plates repel or attract each other? 

A C C D B

B A D A D

Coulomb’s Law
Now we come to the equation for Coulomb’s law, but first a caution. This equa-
tion works for only charged particles (and a few other things that can be treated
as particles). For extended objects, with charge located in many different places,
we need more powerful techniques. So, here we consider just charged particles
and not, say, two charged cats.

If two charged particles are brought near each other, they each exert an elec-
trostatic force on the other. The direction of the force vectors depends on the
signs of the charges. If the particles have the same sign of charge, they repel each
other. That means that the force vector on each is directly away from the other
particle (Figs. 21-5a and b). If we release the particles, they accelerate away from
each other. If, instead, the particles have opposite signs of charge, they attract
each other. That means that the force vector on each is directly toward the other
particle (Fig. 21-5c). If we release the particles, they accelerate toward each other.

The equation for the electrostatic forces acting on the particles is called
Coulomb’s law after Charles-Augustin de Coulomb, whose experiments in 1785 led
him to it. Let’s write the equation in vector form and in terms of the particles shown
in Fig. 21-6, where particle 1 has charge q1 and particle 2 has charge q2. (These sym-
bols can represent either positive or negative charge.) Let’s also focus on particle 1
and write the force acting on it in terms of a unit vector that points along a radialr̂

(a) 

(b)

(c)

Always draw the force
vector with the tail on
the particle.

The forces push the
particles apart.

But here the forces
pull the particles
together.

Here too.

Figure 21-5 Two charged particles repel each
other if they have the same sign of charge,
either (a) both positive or (b) both negative.
(c) They attract each other if they have op-
posite signs of charge.

Figure 21-6 The electrostatic force on parti-
cle 1 can be described in terms of a unit
vector along an axis through the two
particles, radially away from particle 2.

r̂

r
q1 

q2 

F 

ˆ r 
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546 CHAPTER 21 COULOMB’S LAW

axis extending through the two particles, radially away from particle 2. (As with
other unit vectors, has a magnitude of exactly 1 and no unit; its purpose is to
point, like a direction arrow on a street sign.) With these decisions, we write the
electrostatic force as

(Coulomb’s law), (21-1)

where r is the separation between the particles and k is a positive constant called
the electrostatic constant or the Coulomb constant. (We’ll discuss k below.)

Let’s first check the direction of the force on particle 1 as given by Eq. 21-1. If
q1 and q2 have the same sign, then the product q1q2 gives us a positive result. So,
Eq. 21-1 tells us that the force on particle 1 is in the direction of .That checks, be-
cause particle 1 is being repelled from particle 2. Next, if q1 and q2 have opposite
signs, the product q1q2 gives us a negative result. So, now Eq. 21-1 tells us that the
force on particle 1 is in the direction opposite . That checks because particle 1 is
being attracted toward particle 2.

An Aside. Here is something that is very curious. The form of Eq. 21-1 is the
same as that of Newton’s equation (Eq. 13-3) for the gravitational force between
two particles with masses m1 and m2 and separation r:

(Newton’s law), (21-2)

where G is the gravitational constant.Although the two types of forces are wildly
different, both equations describe inverse square laws (the 1/r2 dependences)
that involve a product of a property of the interacting particles—the charge in
one case and the mass in the other. However, the laws differ in that gravitational
forces are always attractive but electrostatic forces may be either attractive or re-
pulsive, depending on the signs of the charges.This difference arises from the fact
that there is only one type of mass but two types of charge.

Unit. The SI unit of charge is the coulomb. For practical reasons having to do
with the accuracy of measurements, the coulomb unit is derived from the SI unit am-
pere for electric current i. We shall discuss current in detail in Chapter 26, but here
let’s just note that current i is the rate dq/dt at which charge moves past a point or
through a region:

(electric current). (21-3)

Rearranging Eq. 21-3 and replacing the symbols with their units (coulombs C,
amperes A,and seconds s) we see that

1 C ! (1 A)(1 s).

Force Magnitude. For historical reasons (and because doing so simplifies
many other formulas), the electrostatic constant k in Eq. 21-1 is often written as
1/4p´0. Then the magnitude of the electrostatic force in Coulomb’s law becomes

(Coulomb’s law). (21-4)

The constants in Eqs. 21-1 and 21-4 have the value

(21-5)

The quantity ´0, called the permittivity constant, sometimes appears separately in
equations and is

´0 ! 8.85 " 10$12 C2/N # m2. (21-6)

Working a Problem. Note that the charge magnitudes appear in Eq. 21-4,
which gives us the force magnitude. So, in working problems in this chapter, we
use Eq. 21-4 to find the magnitude of a force on a chosen particle due to a second

k !
1

4p´0
! 8.99 " 109 N #m2/C2.

F !
1

4p´0

!q1!!q2!
r2

i !
dq
dt

F
:

! G 
m1m2

r2  r̂

r̂

r̂

F
:

! k 
q1q2

r2  r̂

r̂
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54721-1 COULOMB’S LAW

particle and we separately determine the direction of the force by considering the
charge signs of the two particles.

Multiple Forces. As with all forces in this book, the electrostatic force obeys
the principle of superposition. Suppose we have n charged particles near a chosen
particle called particle 1; then the net force on particle 1 is given by the vector sum

(21-7)

in which, for example, is the force on particle 1 due to the presence of particle 4.
This equation is the key to many of the homework problems, so let’s state it

in words. If you want to know the net force acting on a chosen charged particle
that is surrounded by other charged particles, first clearly identify that chosen
particle and then find the force on it due to each of the other particles. Draw
those force vectors in a free-body diagram of the chosen particle, with the tails
anchored on the particle. (That may sound trivial, but failing to do so easily leads
to errors.) Then add all those forces as vectors according to the rules of Chapter 3,
not as scalars. (You cannot just willy-nilly add up their magnitudes.) The result is
the net force (or resultant force) acting on the particle.

Although the vector nature of the forces makes the homework problems
harder than if we simply had scalars, be thankful that Eq. 21-7 works. If two force
vectors did not simply add but for some reason amplified each other, the world
would be very difficult to understand and manage.

Shell Theories. Analogous to the shell theories for the gravitational force
(Module 13-1), we have two shell theories for the electrostatic force:

F
:

14

F
:

1,net ! F
:

12 % F
:

13 % F
:

14 % F
:

15 % # # # % F
:

1n,

Shell theory 1. A charged particle outside a shell with charge uniformly distrib-
uted on its surface is attracted or repelled as if the shell’s charge were concentrated
as a particle at its center.

Shell theory 2. A charged particle inside a shell with charge uniformly distributed
on its surface has no net force acting on it due to the shell.

(In the first theory, we assume that the charge on the shell is much greater than
the particle’s charge.Thus the presence of the particle has negligible effect on the
distribution of charge on the shell.)

Spherical Conductors
If excess charge is placed on a spherical shell that is made of conducting material, the
excess charge spreads uniformly over the (external) surface. For example, if we place
excess electrons on a spherical metal shell, those electrons repel one another and
tend to move apart, spreading over the available surface until they are uniformly dis-
tributed. That arrangement maximizes the distances between all pairs of the excess
electrons. According to the first shell theorem, the shell then will attract or repel an
external charge as if all the excess charge on the shell were concentrated at its center.

If we remove negative charge from a spherical metal shell, the resulting pos-
itive charge of the shell is also spread uniformly over the surface of the shell. For
example, if we remove n electrons, there are then n sites of positive charge (sites
missing an electron) that are spread uniformly over the shell. According to the
first shell theorem, the shell will again attract or repel an external charge as if all
the shell’s excess charge were concentrated at its center.

Checkpoint 2
The figure shows two protons
(symbol p) and one electron
(symbol e) on an axis.On the central proton,what is the direction of (a) the force due to the
electron,(b) the force due to the other proton,and (c) the net force?

e p p
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548 CHAPTER 21 COULOMB’S LAW

Thus, force has the following magnitude and direction
(relative to the positive direction of the x axis):

1.15 " 10$24 N and 180&. (Answer)

We can also write in unit-vector notation as

. (Answer)

(b) Figure 21-7c is identical to Fig. 21-7a except that particle 3
now lies on the x axis between particles 1 and 2. Particle 3
has charge q3 ! $3.20 " 10$19 C and is at a distance from3

4 R

F
:

12 ! $(1.15 " 10 $24 N)î

F
:

12

F
:

12

 ! 1.15 " 10 $24 N.

"
(1.60 " 10 $19 C)(3.20 " 10 $19 C)

(0.0200 m)2

 ! (8.99 " 10 9 N #m2/C2)

 F12 !
1

4p´0

!q1!!q2!
R2

Sample Problem 21.01 Finding the net force due to two other particles

This sample problem actually contains three examples, to
build from basic stuff to harder stuff. In each we have the
same charged particle 1. First there is a single force acting
on it (easy stuff).Then there are two forces, but they are just
in opposite directions (not too bad). Then there are again
two forces but they are in very different directions (ah, now
we have to get serious about the fact that they are vectors).
The key to all three examples is to draw the forces correctly
before you reach for a calculator, otherwise you may be cal-
culating nonsense on the calculator. (Figure 21-7 is available
in WileyPLUS as an animation with voiceover.)

(a) Figure 21-7a shows two positively charged particles fixed in
place on an x axis. The charges are q1 ! 1.60 " 10$19 C and
q2 ! 3.20 " 10$19 C, and the particle separation is R ! 0.0200 m.
What are the magnitude and direction of the electrostatic force

on particle 1 from particle 2?

KEY IDEAS

Because both particles are positively charged, particle 1 is re-
pelled by particle 2, with a force magnitude given by Eq. 21-4.
Thus, the direction of force on particle 1 is away from parti-
cle 2, in the negative direction of the x axis, as indicated in the
free-body diagram of Fig. 21-7b.

Two particles: Using Eq. 21-4 with separation R substituted
for r, we can write the magnitude F12 of this force as

F
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12
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Figure 21-7 (a) Two charged particles of charges q1 and q2 are fixed in place on an x axis. (b) The free-body 
diagram for particle 1, showing the electrostatic force on it from particle 2. (c) Particle 3 included. (d) Free-body
diagram for particle 1.(e) Particle 4 included.(f ) Free-body diagram for particle 1.

particle 1.What is the net electrostatic force on particle 1
due to particles 2 and 3?

KEY IDEA

The presence of particle 3 does not alter the electrostatic force
on particle 1 from particle 2.Thus, force still acts on particle
1. Similarly, the force that acts on particle 1 due to particle 3
is not affected by the presence of particle 2. Because particles 1

F
:

13

F
:

12

F
:

1,net
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54921-1 COULOMB’S LAW

Then from Eq. 21-7, we can write the net force on parti-
cle 1 as

Because the forces and are not directed along the
same axis, we cannot sum simply by combining their mag-
nitudes. Instead, we must add them as vectors, using one of
the following methods.

Method 1. Summing directly on a vector-capable calculator.
For , we enter the magnitude and the angle1.15 " 10$24F

:
12

F
:

14F
:

12

F
:

1,net ! F
:

12 % F
:

14.

F
:

1,netand 3 have charge of opposite signs, particle 1 is attracted
to particle 3.Thus, force is directed toward particle 3, as in-
dicated in the free-body diagram of Fig. 21-7d.

Three particles: To find the magnitude of , we can
rewrite Eq. 21-4 as

We can also write in unit-vector notation:

The net force on particle 1 is the vector sum of F
:

12F
:

1,net

F
:

13 ! (2.05 " 10 $24 N)î .

F
:

13

! 2.05 " 10 $24 N.

"
(1.60 " 10 $19 C)(3.20 " 10 $19 C)

(3
4)

2(0.0200 m)2

! (8.99 " 10 9 N #m2/C2)

F13 !
1

4p´0

!q1!!q3!
(3

4R)2

F
:

13

F
:

13

and ; that is, from Eq. 21-7, we can write the net force
on particle 1 in unit-vector notation as

. (Answer)

Thus, has the following magnitude and direction (relative
to the positive direction of the x axis):

9.00 " 10$25 N and 0&. (Answer)

(c) Figure 21-7e is identical to Fig. 21-7a except that particle 4
is now included. It has charge q4 ! $3.20 " 10$19 C, is at a
distance from particle 1, and lies on a line that makes an3

4 R

F
:

1,net

! (9.00 " 10 $25 N)î
! $(1.15 " 10 $24 N)î % (2.05 " 10 $24 N)î

F
:

1,net ! F
:

12 % F
:

13

F
:

1,net

F
:

13

angle u ! 60& with the x axis. What is the net electrostatic
force on particle 1 due to particles 2 and 4?

KEY IDEA

The net force is the vector sum of and a new forceF
:

12F
:

1,net

F
:

1,net

acting on particle 1 due to particle 4. Because particles 1
and 4 have charge of opposite signs, particle 1 is attracted to
particle 4. Thus, force on particle 1 is directed towardF

:
14

F
:

14

particle 4, at angle 60&, as indicated in the free-body dia-
gram of Fig. 21-7f.

Four particles: We can rewrite Eq. 21-4 as

 ! 2.05 " 10 $24 N. 

"
(1.60 " 10 $19 C)(3.20 " 10 $19 C)

(3
4)

2(0.0200 m)2

 ! (8.99 " 10 9 N #m2/C2)

 F14 !
1

4p´0

!q1!!q4!
(3

4R)2

u !

180&. For , we enter the magnitude and the 2.05 " 10$24F
:

14

angle 60&.Then we add the vectors.

Method 2. Summing in unit-vector notation. First we
rewrite as

Substituting N for F14 and 60& for u, this becomes

.

Then we sum:

(Answer)

Method 3. Summing components axis by axis. The sum of
the x components gives us

The sum of the y components gives us

The net force has the magnitude

(Answer)

To find the direction of , we take

u ! tan$1 
F1,net,y

F1,net,x
! $86.0&.

F
:

1,net

F1,net ! 2F 2
1,net,x % F 2

1,net,y ! 1.78 " 10 $24 N.

F
:

1,net

! 1.78 " 10 $24 N. 
! (2.05 " 10 $24 N)(sin 60&)

F1,net,y ! F12,y % F14,y ! 0 % F14 sin 60&

 ! $1.25 " 10 $25 N. 

 ! $1.15 " 10 $24 N % (2.05 " 10 $24 N)(cos 60&)

 F1,net,x ! F12,x % F14,x ! F12 % F14 cos 60&

" ($1.25 " 10 $25 N)î % (1.78 " 10 $24 N)ĵ.

% (1.025 " 10 $24 N)î % (1.775 " 10 $24 N)ĵ

 ! $(1.15 " 10 $24 N)î

 F
:

1,net ! F
:

12 % F
:

14

F
:

14 ! (1.025 " 10 $24 N)î % (1.775 " 10 $24 N)ĵ

2.05 " 10$24

F
:

14 ! (F14 cos u)î % (F14 sin u)ĵ .

F
:

14

However, this is an unreasonable result because mustF
:

1,net

Additional examples, video, and practice available at WileyPLUS

have a direction between the directions of and . To
correct u, we add 180&, obtaining

$86.0& % 180& ! 94.0&. (Answer)

F
:

14F
:

12
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550 CHAPTER 21 COULOMB’S LAW

Checkpoint 3
The figure here shows three arrangements of an electron e and two
protons p.(a) Rank the arrangements according to the magnitude of the
net electrostatic force on the electron due to the protons, largest first.(b) In
situation c, is the angle between the net force on the electron and the line
labeled d less than or more than 45&?

D 
d 

e p p 

D d 

p e p 

D 

d 

e 

p 

p 

(a) (b) (c) 

Calculations: With Eq.21-4,we can now rewrite Eq.21-9:

(21-10)

(Note that only the charge magnitudes appear in Eq.
21-10. We already decided about the directions of the forces
in drawing Fig. 21-8d and do not want to include any posi-
tive or negative signs here.) Rearranging Eq. 21-10 gives us

After taking the square roots of both sides, we find

x ! 2L. (Answer)

The equilibrium at x ! 2L is unstable; that is, if the proton is
displaced leftward from point R, then F1 and F2 both increase
but F2 increases more (because q2 is closer than q1), and a net
force will drive the proton farther leftward. If the proton is dis-
placed rightward, both F1 and F2 decrease but F2 decreases
more, and a net force will then drive the proton farther right-
ward. In a stable equilibrium, if the proton is displaced slightly, it
returns to the equilibrium position.

x $ L
x

!
1
2

# x $ L
x $2

!
1
4

.

1
4p´0

8qqp

x2 !
1

4p´0

2qqp

(x $ L)2 .

Sample Problem 21.02 Equilibrium of two forces on a particle

Figure 21-8a shows two particles fixed in place: a particle of
charge q1 ! %8q at the origin and a particle of charge q2 ! $2q
at x ! L. At what point (other than infinitely far away) can a
proton be placed so that it is in equilibrium (the net force on it is
zero)? Is that equilibrium stable or unstable? (That is, if the pro-
ton is displaced, do the forces drive it back to the point of equi-
librium or drive it farther away?)

KEY IDEA

If is the force on the proton due to charge q1 and is the
force on the proton due to charge q2, then the point we seek is
where Thus,

(21-8)
This tells us that at the point we seek, the forces acting on
the proton due to the other two particles must be of equal
magnitudes,

F1 ! F2, (21-9)
and that the forces must have opposite directions.

Reasoning: Because a proton has a positive charge, the pro-
ton and the particle of charge q1 are of the same sign, and
force on the proton must point away from q1. Also, the
proton and the particle of charge q2 are of opposite signs, so
force on the proton must point toward q2. “Away from q1”
and “toward q2” can be in opposite directions only if the pro-
ton is located on the x axis.

If the proton is on the x axis at any point between q1 and
q2, such as point P in Fig. 21-8b, then and are in the
same direction and not in opposite directions as required.
If the proton is at any point on the x axis to the left of q1,
such as point S in Fig. 21-8c, then and are in opposite
directions. However, Eq. 21-4 tells us that and can-
not have equal magnitudes there: F1 must be greater than F2,
because F1 is produced by a closer charge (with lesser r) of
greater magnitude (8q versus 2q).

Finally, if the proton is at any point on the x axis to the
right of q2, such as point R in Fig. 21-8d, then and are
again in opposite directions. However, because now the
charge of greater magnitude (q1) is farther away from the pro-
ton than the charge of lesser magnitude, there is a point at
which F1 is equal to F2. Let x be the coordinate of this point,
and let qp be the charge of the proton.
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:
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Figure 21-8 (a) Two particles of charges q1 and q2 are fixed in place on
an x axis, with separation L. (b) – (d) Three possible locations P, S,
and R for a proton.At each location, is the force on the protonF

:
1

from particle 1 and is the force on the proton from particle 2.F
:

2

Additional examples, video, and practice available at WileyPLUS

and
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55121-2 CHARGE IS QUANTIZED

(Answer)

The spheres, now positively charged, repel each other.

(b) Next, suppose sphere A is grounded momentarily, and
then the ground connection is removed. What now is the
electrostatic force between the spheres?

Reasoning: When we provide a conducting path between a
charged object and the ground (which is a huge conductor),
we neutralize the object. Were sphere A negatively charged,
the mutual repulsion between the excess electrons would
cause them to move from the sphere to the ground.
However, because sphere A is positively charged, electrons
with a total charge of $Q/2 move from the ground up onto
the sphere (Fig. 21-9d), leaving the sphere with a charge of 0
(Fig. 21-9e).Thus, the electrostatic force is again zero.

F !
1

4p´0

(Q/2)(Q/2)
a2 !

1
16p´0

# Q
a $2

.

Sample Problem 21.03 Charge sharing by two identical conducting spheres

In Fig. 21-9a, two identical, electrically isolated conducting
spheres A and B are separated by a (center-to-center) dis-
tance a that is large compared to the spheres. Sphere A has
a positive charge of %Q, and sphere B is electrically neutral.
Initially, there is no electrostatic force between the spheres.
(The large separation means there is no induced charge.)

(a) Suppose the spheres are connected for a moment by a
conducting wire. The wire is thin enough so that any net
charge on it is negligible. What is the electrostatic force
between the spheres after the wire is removed?

KEY IDEAS

(1) Because the spheres are identical, connecting them means
that they end up with identical charges (same sign and same
amount). (2) The initial sum of the charges (including the
signs of the charges) must equal the final sum of the charges.

Reasoning: When the spheres are wired together, the (nega-
tive) conduction electrons on B, which repel one another,
have a way to move away from one another (along the wire
to positively charged A, which attracts them—Fig. 21-9b). As
B loses negative charge, it becomes positively charged, and as
A gains negative charge, it becomes less positively charged.
The transfer of charge stops when the charge on B has in-
creased to %Q/2 and the charge on A has decreased to %Q/2,
which occurs when $Q/2 has  shifted from B to A.

After the wire has been removed (Fig. 21-9c), we can
assume that the charge on either sphere does not disturb the
uniformity of the charge distribution on the other sphere,
because the spheres are small relative to their separation.Thus,
we can apply the first shell theorem to each sphere. By Eq. 21-4
with q1 ! q2 ! Q/2 and r ! a,

Figure 21-9 Two small conducting spheres A and B. (a) To start, sphere A
is charged positively. (b) Negative charge is transferred from B to A
through a connecting wire. (c) Both spheres are then charged posi-
tively. (d) Negative charge is transferred through a grounding wire to
sphere A. (e) Sphere A is then neutral.

q = 0 
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+Q 
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+Q/2 
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Additional examples, video, and practice available at WileyPLUS

21-2 CHARGE IS QUANTIZED

After reading this module, you should be able to . . .

21.19 Identify the elementary charge.
21.20 Identify that the charge of a particle or object must be a

positive or negative integer times the elementary charge.

● Electric charge is quantized (restricted to certain values).
● The charge of a particle can be written as ne, where n is a
positive or negative integer and e is the elementary charge,

which is the magnitude of the charge of the electron and
proton (" 1.602 " 10$19 C).

Learning Objectives

Key Ideas

Charge Is Quantized
In Benjamin Franklin’s day, electric charge was thought to be a continuous
fluid—an idea that was useful for many purposes. However, we now know that
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552 CHAPTER 21 COULOMB’S LAW

Table 21-1 The Charges of Three
Particles

Particle Symbol Charge

Electron e or e$ $e
Proton p %e
Neutron n 0

Checkpoint 4
Initially, sphere A has a charge of $50e and sphere B has a charge of %20e.The
spheres are made of conducting material and are identical in size. If the spheres then
touch, what is the resulting charge on sphere A?

No explosion: This is a small force to be acting on a macro-
scopic object like a cantaloupe, but an enormous force to be
acting on a proton. Such forces should explode the nucleus
of any element but hydrogen (which has only one proton in
its nucleus). However, they don’t, not even in nuclei with a
great many protons. Therefore, there must be some enor-
mous attractive force to counter this enormous repulsive
electrostatic force.

(b) What is the magnitude of the gravitational force
between those same two protons?

KEY IDEA

Because the protons are particles, the magnitude of the
gravitational force on one from the other is given by
Newton’s equation for the gravitational force (Eq. 21-2).

Calculation: With mp (! 1.67 " 10$27 kg) representing the

Sample Problem 21.04 Mutual electric repulsion in a nucleus

The nucleus in an iron atom has a radius of about 4.0 "
10$15 m and contains 26 protons.

(a) What is the magnitude of the repulsive electrostatic force be-
tween two of the protons that are separated by 4.0 " 10$15 m?

KEY IDEA

The protons can be treated as charged particles, so the mag-
nitude of the electrostatic force on one from the other is
given by Coulomb’s law.

Calculation: Table 21-1 tells us that the charge of a proton is
%e.Thus, Eq. 21-4 gives us

. (Answer)!  14 N

!
(8.99 " 10 9 N #m2/C2)(1.602 " 10 $19 C)2

(4.0 " 10 $15 m)2

F !
1

4p´0

e2

r2

fluids themselves, such as air and water, are not continuous but are made up of
atoms and molecules; matter is discrete. Experiment shows that “electrical fluid”
is also not continuous but is made up of multiples of a certain elementary charge.
Any positive or negative charge q that can be detected can be written as

q ! ne, n ! '1, '2, '3, . . . , (21-11)

in which e, the elementary charge, has the approximate value

e ! 1.602 " 10$19 C. (21-12)

The elementary charge e is one of the important constants of nature.The electron
and proton both have a charge of magnitude e (Table 21-1). (Quarks, the con-
stituent particles of protons and neutrons, have charges of 'e/3 or '2e/3, but they
apparently cannot be detected individually. For this and for historical reasons, we
do not take their charges to be the elementary charge.)

You often see phrases—such as “the charge on a sphere,” “the amount of
charge transferred,” and “the charge carried by the electron”—that suggest that
charge is a substance. (Indeed, such statements have already appeared in this
chapter.) You should, however, keep in mind what is intended: Particles are the
substance and charge happens to be one of their properties, just as mass is.

When a physical quantity such as charge can have only discrete values rather
than any value, we say that the quantity is quantized. It is possible, for example, to
find a particle that has no charge at all or a charge of %10e or $6e, but not a parti-
cle with a charge of, say, 3.57e.

The quantum of charge is small. In an ordinary 100 W lightbulb, for example,
about 1019 elementary charges enter the bulb every second and just as many
leave. However, the graininess of electricity does not show up in such large-scale
phenomena (the bulb does not flicker with each electron).
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Additional examples, video, and practice available at WileyPLUS

21-3 CHARGE IS CONSERVED

After reading this module, you should be able to . . .

21.21 Identify that in any isolated physical process, the net
charge cannot change (the net charge is always conserved).

21.22 Identify an annihilation process of particles and a pair
production of particles.

21.23 Identify mass number and atomic number in terms of
the number of protons, neutrons, and electrons.

● The net electric charge of any isolated system is always
conserved.
● If two charged particles undergo an annihilation process,

they have opposite signs of charge.
● If two charged particles appear as a result of a pair produc-
tion process, they have opposite signs of charge.

Learning Objectives

Key Ideas

mass of a proton, Eq. 21-2 gives us

. (Answer)

Weak versus strong: This result tells us that the (attractive)
gravitational force is far too weak to counter the repulsive
electrostatic forces between protons in a nucleus. Instead,
the protons are bound together by an enormous force called

! 1.2 " 10 $35 N

!
(6.67 " 10 $11 N #m2/kg2)(1.67 " 10 $27 kg)2

(4.0 " 10 $15 m)2

  F ! G 
mp

2

r2

(aptly) the strong nuclear force—a force that acts between
protons (and neutrons) when they are close together, as in a
nucleus.

Although the gravitational force is many times weaker
than the electrostatic force, it is more important in large-
scale situations because it is always attractive.This means that
it can collect many small bodies into huge bodies with huge
masses, such as planets and stars, that then exert large gravita-
tional forces. The electrostatic force, on the other hand, is re-
pulsive for charges of the same sign, so it is unable to collect
either positive charge or negative charge into large concen-
trations that would then exert large electrostatic forces.

Charge Is Conserved
If you rub a glass rod with silk, a positive charge appears on the rod. Measure-
ment shows that a negative charge of equal magnitude appears on the silk. This
suggests that rubbing does not create charge but only transfers it from one body
to another, upsetting the electrical neutrality of each body during the process.
This hypothesis of conservation of charge, first put forward by Benjamin
Franklin, has stood up under close examination, both for large-scale charged
bodies and for atoms, nuclei, and elementary particles. No exceptions have ever
been found. Thus, we add electric charge to our list of quantities—including
energy and both linear momentum and angular momentum—that obey a con-
servation law.

Important examples of the conservation of charge occur in the radioactive
decay of nuclei, in which a nucleus transforms into (becomes) a different type of
nucleus. For example, a uranium-238 nucleus (238U) transforms into a thorium-
234 nucleus (234Th) by emitting an alpha particle. Because that particle has the
same makeup as a helium-4 nucleus, it has the symbol 4He. The number used in
the name of a nucleus and as a superscript in the symbol for the nucleus is called
the mass number and is the total number of the protons and neutrons in the
nucleus. For example, the total number in 238U is 238. The number of protons in
a nucleus is the atomic number Z, which is listed for all the elements in Appendix F.
From that list we find that in the decay

238U : 234Th % 4He, (21-13)

halliday_c21_541-557v3.0.1.qxd  3/3/14  5:25 PM  Page 553

Uploaded By: anonymousSTUDENTS-HUB.com



554 CHAPTER 21 COULOMB’S LAW

the parent nucleus 238U contains 92 protons (a charge of %92e), the daughter
nucleus 234Th contains 90 protons (a charge of %90e), and the emitted alpha parti-
cle 4He contains 2 protons (a charge of %2e).We see that the total charge is %92e
before and after the decay; thus, charge is conserved. (The total number of pro-
tons and neutrons is also conserved: 238 before the decay and 234 % 4 ! 238
after the decay.)

Another example of charge conservation occurs when an electron e$ (charge
$e) and its antiparticle, the positron e% (charge %e), undergo an annihilation
process, transforming into two gamma rays (high-energy light):

e$ % e% : g % g (annihilation). (21-14)

In applying the conservation-of-charge principle, we must add the charges alge-
braically, with due regard for their signs. In the annihilation process of Eq. 21-14
then, the net charge of the system is zero both before and after the event. Charge
is conserved.

In pair production, the converse of annihilation, charge is also conserved. In
this process a gamma ray transforms into an electron and a positron:

g : e$ % e% (pair production). (21-15)

Figure 21-10 shows such a pair-production event that occurred in a bubble cham-
ber. (This is a device in which a liquid is suddenly made hotter than its boiling
point. If a charged particle passes through it, tiny vapor bubbles form along the
particle’s trail.) A gamma ray entered the chamber from the bottom and at one
point transformed into an electron and a positron. Because those new particles
were charged and moving, each left a trail of bubbles. (The trails were curved
because a magnetic field had been set up in the chamber.) The gamma ray, being
electrically neutral, left no trail. Still, you can tell exactly where it underwent pair
production—at the tip of the curved V, which is where the trails of the electron
and positron begin.

Figure 21-10 A photograph of trails of bub-
bles left in a bubble chamber by an electron
and a positron.The pair of particles was
produced by a gamma ray that entered the
chamber directly from the bottom. Being
electrically neutral, the gamma ray did not
generate a telltale trail of bubbles along its
path, as the electron and positron did.
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Electric Charge The strength of a particle’s electrical interaction
with objects around it depends on its electric charge (usually repre-
sented as q), which can be either positive or negative. Particles with
the same sign of charge repel each other, and particles with opposite
signs of charge attract each other. An object with equal amounts of
the two kinds of charge is electrically neutral, whereas one with an
imbalance is electrically charged and has an excess charge.

Conductors are materials in which a significant number of
electrons are free to move. The charged particles in nonconductors
(insulators) are not free to move.

Electric current i is the rate dq/dt at which charge passes a point:

(electric current). (21-3)

Coulomb’s Law Coulomb’s law describes the electrostatic
force (or electric force) between two charged particles. If the parti-
cles have charges q1 and q2, are separated by distance r, and are at
rest (or moving only slowly) relative to each other, then the magni-
tude of the force acting on each due to the other is given by

(Coulomb’s law), (21-4)

where is the permittivity constant. The
ratio 1/4p´0 is often replaced with the electrostatic constant (or
Coulomb constant) .k ! 8.99 " 109 N #m2/C2

´0 ! 8.85 " 10$12 C2/N #m2

F !
1

4p´0

!q1! !q2!
r2

i !
dq
dt

Review & Summary

The electrostatic force vector acting on a charged particle due
to a second charged particle is either directly toward the second
particle (opposite signs of charge) or directly away from it (same
sign of charge).As with other types of forces, if multiple electrostatic
forces act on a particle, the net force is the vector sum (not scalar
sum) of the individual forces.

The two shell theories for electrostatics are 

Shell theorem 1: A charged particle outside a shell with charge
uniformly distributed on its surface is attracted or repelled as if
the shell’s charge were concentrated as a particle at its center.

Shell theorem 2: A charged particle inside a shell with charge
uniformly distributed on its surface has no net force acting on it
due to the shell.

Charge on a conducting spherical shell spreads uniformly over the
(external) surface.

The Elementary Charge Electric charge is quantized (re-
stricted to certain values). The charge of a particle can be written
as ne, where n is a positive or negative integer and e is the elemen-
tary charge, which is the magnitude of the charge of the electron
and proton (" 1.602 " 10$19 C).

Conservation of Charge The net electric charge of any iso-
lated system is always conserved.
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555PROBLEMS

1 Identify X in the following nuclear reactions: (a) 1H % 13Al :
X % n; (b) 29Cu % 1H : X; (c) 15N % 1H : 4He % X. Appendix F
will help.

2 In Fig. 21-11, four particles form a
square. The charges are q1 ! q4 ! Q
and q2 ! q3 ! q. (a) What is Q/q if the
net electrostatic force on particles 2 and
3 is zero? (b) Is there any value of q
that makes the net electrostatic force on
each of the four particles zero? Explain.

3 In Fig. 21-11, the particles have
charges q1 ! $q2 ! 300 nC and 
q3 ! $q4 ! 200 nC, and distance a ! 5.0
cm. What are the (a) magnitude and (b)
angle (relative to the %x direction) of the
net force on particle 3?

4 (a) What is the magnitude of the electrostatic force between a
singly charged sodium ion (Na%, of charge %e) and an adjacent
singly charged chlorine ion (Cl$, of charge $e) in a salt crystal if
their separation is 2.82 " 10$10 m? (b) What is the force magni-
tude if radiation removes another electron from the sodium ion? 

5 In Fig. 21-12, particle 1 of charge
%6.0 mC and particle 2 of charge $2.0
mC are held at separation L ! 10.0 cm
on an x axis. If particle 3 of unknown
charge q3 is to be located such that the
net electrostatic force on it from parti-
cles 1 and 2 is zero, what must be the (a)
x and (b) y coordinates of particle 3?

6 Three particles are fixed on an x axis. Particle 1 of charge q1 is at 
x ! $a, and particle 2 of charge q2 is at x ! %a. If their net electro-
static force on particle 3 of charge %Q is to be zero, what must be the
ratio q1/q2 when particle 3 is at (a) x ! %0.750a and (b) x ! %1.50a?

7 In Fig. 21-12, particle 1 of charge %q and particle 2 of charge
%9.00q are held at separation L ! 8.00 cm on an x axis. If particle 3
of charge q3 is to be located such that the three particles remain in
place when released, what must be the (a) x and (b) y coordinates
of particle 3, and (c) the ratio q3 /q?

8 In Fig. 21-12, particles 1 and 2 are fixed in place on an x axis, at a
separation of L ! 6.00 cm.Their charges are q1 ! %e and q2 ! $27e.
Particle 3 with charge q3 ! %4e is to be placed on the line between
particles 1 and 2, so that they produce a net electrostatic force on
it. (a) At what coordinate should particle 3 be placed to minimize the
magnitude of that force? (b) What is that minimum magnitude?

9 As a cat rubs its back along a carpet, it acquires a charge of
%8.2 " 10$7 C. How many elec-
trons did it lose to the carpet? 

10 Figure 21-13 shows electrons
1 and 2 on an x axis and charged
ions 3 and 4 of identical charge
$q and at identical angles u.
Electron 2 is free to move; the
other three particles are fixed in
place at horizontal distances R
from electron 2 and are intended
to hold electron 2 in place. For

F
:

3,net

Problems

physically possible values of q ( 5e, what are the (a) largest, (b) sec-
ond largest, and (c) third largest values of u for which electron 2 is
held in place?

11 The magnitude of the electrostatic force between point
charges q1 ! 26.0 mC and q2 ! 47.0 mC is initially 5.70 N. The sepa-
ration is then changed such that the force magnitude is then 0.570
N. (a) What is the ratio of the new separation to the initial separa-
tion? (b) What is the new separation?

12 In the return stroke of a typical lightning bolt, a current of 
2.8 " 104 A exists for 20 ms. How much charge is transferred in this
event?

13 A nonconducting spherical shell, with an inner radius of 4.0
cm and an outer radius of 5.0 cm, has charge spread nonuniformly
through its volume between its inner and outer surfaces. The vol-
ume charge density r is the charge per unit volume, with the unit
coulomb per cubic meter. For this shell r ! b/r, where r is the distance
in meters from the center of the shell and b ! 3.0 mC/m2.What is the
net charge in the shell?

14 A current of 0.300 A through your chest can send your heart
into fibrillation, ruining the normal rhythm of heartbeat and dis-
rupting the flow of blood (and thus oxygen) to your brain. If that
current persists for 1.50 min, how many conduction electrons pass
through your chest?

15 In Fig. 21-14a, particles 1 and 2
have charge 20.0 mC each and are held
at separation distance d ! 0.75 m. (a)
What is the magnitude of the electro-
static force on particle 1 due to parti-
cle 2? In Fig. 21-14b, particle 3 of
charge 20.0 mC is positioned so as to
complete an equilateral triangle. (b)
What is the magnitude of the net elec-
trostatic force on particle 1 due to particles 2 and 3?

16 In Fig. 21-15, three identical conducting spheres initially have
the following charges: sphere A, 4Q; sphere B, $12Q; and sphere
C, 0. Spheres A and B are fixed in place, with a center-to-center
separation that is much larger than the spheres. Two experiments
are conducted. In experiment 1,
sphere C is touched to sphere A,
then (separately) to sphere B, and
then (separately) to sphere A
again, and then it is removed. In
experiment 2, starting with the
same initial states, the procedure is
changed: Sphere C is touched to
sphere B and then (separately) to
sphere A, and then it is removed.
What is the ratio of the electrostatic force between A and B at the
end of experiment 2 to that at the end of experiment 1?

17 Earth’s atmosphere is constantly bombarded by cosmic ray
protons that originate somewhere in space. If the protons all
passed through the atmosphere, each square meter of Earth’s sur-
face would intercept protons at the average rate of 1500 protons
per second. (a) What would be the electric current intercepted by
the total surface area of the planet? (b) How much charge would
be collected per day?

Figure 21-11
Problems 2 and 3.
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25 In Fig. 21-18, particles 2 and
4, of charge $e, are fixed in place
on a y axis, at y2 ! $10.0 cm and
y4 ! 5.00 cm. Particles 1 and 3, of
charge $e, can be moved along
the x axis. Particle 5, of charge
%e, is fixed at the origin. Initially
particle 1 is at x1 ! $10.0 cm and
particle 3 is at x3 ! 10.0 cm. (a)
To what x value must particle 1 be
moved to rotate the direction of
the net electric force on particle 5 by 60& counterclockwise?
(b) With particle 1 fixed at its new position, to what x value must
you move particle 3 to rotate back to its original direction?

26 In Fig. 21-19a, three posi-
tively charged particles are fixed
on an x axis. Particles B and C are
so close to each other that they
can be considered to be at the
same distance from particle A.
The net force on particle A
due to particles B and C is 
2.310 " 10$23 N in the negative
direction of the x axis. In Fig. 21-19b, particle B has been moved
to the opposite side of A but is still at the same distance from it.
The net force on A is now 2.877 " 10$24 N in the negative direc-
tion of the x axis.What is the ratio qC/qB?

27 In crystals of the salt cesium chloride, cesium ions Cs% form
the eight corners of a cube and a chlorine ion Cl$ is at the cube’s
center (Fig. 21-20). The edge length of the cube is 0.40 nm. The

F
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Figure 21-16 Problem 20.

21 Two identical conducting spheres, fixed in place, attract each
other with an electrostatic force of 0.108 N when their center-to-center
separation is 50.0 cm. The spheres are then connected by a thin con-
ducting wire. When the wire is removed, the spheres repel each other
with an electrostatic force of 0.144 N. Of the initial charges on the
spheres, with a positive net charge, what was (a) the negative charge
on one of them and (b) the positive charge on the other?

22 Two equally charged particles are held 3.2 " 10 $3 m apart and
then released from rest. The initial acceleration of the first particle
is observed to be 6.0 m/s2 and that of the second to be 9.0 m/s2. If
the mass of the first particle is 6.3 " 10 $7 kg, what are (a) the mass
of the second particle and (b) the magnitude of the charge of each
particle?

23 The charges and coordinates of two charged particles held 
fixed in an xy plane are q1 ! %3.0 mC, x1 ! 3.5 cm, y1 ! 0.50 cm, and
q2 ! $4.0 mC, x2 ! $2.0 cm, y2 ! 1.5 cm. Find the (a) magnitude and
(b) direction of the electrostatic force on particle 1 due to particle 2.
At what (c) x and (d) y coordinates should a third particle of charge 
q3 ! %6.0 mC be placed such that the net electrostatic force on parti-
cle 1 due to particles 2 and 3 is zero?

24 Identical isolated conducting spheres 1 and 2 have equal charges
and are separated by a distance that is large compared with their 
diameters (Fig. 21-17a). The electrostatic force acting on sphere 2 due
to sphere 1 is . Suppose now that a third identical sphere 3, having an
insulating handle and initially neutral, is touched first to sphere 1 
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Figure 21-19 Problem 26.
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Figure 21-20 Problem 27.

18 Two tiny, spherical water drops, with identical charges of
$1.00 " 10$16 C, have a center-to-center separation of 1.20 cm. (a)
What is the magnitude of the electrostatic force acting between them?
(b) How many excess electrons are on each drop, giving it its charge
imbalance?

19 The magnitude of the electrostatic force between two identical ions
that are separated by a distance of 10.0 " 10$10 m is 9.25 " 10$10 N. (a)
What is the charge of each ion? (b) How many electrons are “missing”
from each ion (thus giving the ion its charge imbalance)? (c) What is the
force magnitude if the separation is halved?

20 Figure 21-16a shows charged particles 1 and 2 that are fixed in
place on an x axis. Particle 1 has a charge with a magnitude of |q1| !
8.00e. Particle 3 of charge q3 ! %7.00e is initially on the x axis near
particle 2. Then particle 3 is gradually moved in the positive direction
of the x axis. As a result, the magnitude of the net electrostatic force

on particle 2 due to particles 1 and 3 changes. Figure 21-16b
gives the x component of that net force as a function of the position x
of particle 3. The scale of the x axis is set by xs ! 0.80 m. The plot has
an asymptote of F2,net ! 1.5 " 10 $25 N as x : ). As a multiple of e
and including the sign, what is the charge q2 of particle 2?

F
:

2,net

(Fig. 21-17b), then to sphere 2 (Fig. 21-17c), then to sphere 1
again (not shown), and then finally removed (Fig. 21-17d). The
electrostatic force that now acts on sphere 2 has magnitude F*.
What is the ratio F*/F?
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557PROBLEMS

Cs% ions are each deficient by one electron (and thus each has a
charge of %e), and the Cl$ ion has one excess electron (and thus
has a charge of $e). (a) What is the magnitude of the net electro-
static force exerted on the Cl$ ion by the eight Cs% ions at the cor-
ners of the cube? (b) If one of the Cs% ions is missing, the crystal is
said to have a defect; what is the magnitude of the net electrostatic
force exerted on the Cl$ ion by the seven remaining Cs% ions?

28 Two particles are fixed on an x axis. Particle 1 of charge 50 mC is
located at x ! $2.0 cm; particle 2 of charge Q is located at x ! 3.0 cm.
Particle 3 of charge magnitude 20 mC is released from rest on the y
axis at y ! 2.0 cm. What is the value of Q if the initial acceleration of
particle 3 is in the positive direction of (a) the x axis and (b) the y axis?

29 Calculate the number of coulombs of positive charge in 500
cm3 of (neutral) water. (Hint: A hydrogen atom contains one pro-
ton; an oxygen atom contains eight protons.)

30 Electrons and positrons are produced by the nuclear transforma-
tions of protons and neutrons known as beta decay. (a) If a proton trans-
forms into a neutron, is an electron or a positron produced? (b) If a
neutron transforms into a proton, is an electron or a positron produced?

31 In Fig. 21-21, particles 1 and 2 of
charge q1 ! q2 ! %4e are on a y axis at
distance d ! 17.0 cm from the origin.
Particle 3 of charge q3 ! %8e is moved
gradually along the x axis from x ! 0 to
x ! %5.0 m.At what values of x will the
magnitude of the electrostatic force on
the third particle from the other two
particles be (a) minimum and (b) maxi-
mum? What are the (c) minimum and (d) maximum magnitudes?

32 In Fig. 21-22a, particle 1 (of charge q1) and particle 2 (of charge
q2) are fixed in place on an x axis, 8.00 cm apart. Particle 3 (of charge
q3 ! %6.00 " 10$19 C) is to be placed on the line between particles 1
and 2 so that they produce a net electrostatic force on it. Figure
21-22b gives the x component of that force versus the coordinate x at
which particle 3 is placed.The scale of the x axis is set by xs ! 8.0 cm.
What are (a) the sign of charge q1 and (b) the ratio q2/q1?

F
:

3,net

34 Figure 21-23 shows an arrange-
ment of four charged particles, with
angle u ! 35.0& and distance d ! 2.00
cm. Particle 2 has charge q2 !
%8.00 " 10$19 C;particles 3 and 4 have
charges q3 ! q4 ! $1.60 " 10 $19 C.
(a) What is distance D between the
origin and particle 2 if the net elec-
trostatic force on particle 1 due to
the other particles is zero? (b) If par-
ticles 3 and 4 were moved closer to the x axis but maintained their 
symmetry about that axis, would the required value of D be greater
than, less than, or the same as in part (a)?

35 In Fig. 21-24, three charged particles lie on an x axis. Particles
1 and 2 are fixed in place. Particle
3 is free to move, but the net elec-
trostatic force on it from particles
1 and 2 happens to be zero. If
2.0L23 ! L12, what is the ratio
q1/q2?

36 Figure 21-25a shows an arrangement of three charged parti-
cles separated by distance d. Particles A and C are fixed on the x
axis, but particle B can be moved along a circle centered on parti-
cle A. During the movement, a radial line between A and B
makes an angle u relative to the positive direction of the x axis
(Fig. 21-25b). The curves in Fig. 21-25c give, for two situations, the
magnitude Fnet of the net electrostatic force on particle A due to the
other particles.That net force is given as a function of angle u and as
a multiple of a basic amount F0. For example on curve 1, at u ! 180&,
we see that Fnet ! 2F0. (a) For the situation corresponding to curve 1,
what is the ratio of the charge of particle C to that of particle B (in-
cluding sign)? (b) For the situation corresponding to curve 2, what is
that ratio?
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33 A particle of charge 3.00 mC is separated by 0.120 m from a
particle of charge $1.50 mC. (a) What is the magnitude of the elec-
trostatic force between them? (b) What must their separation be to
reduce that force by an order of magnitude?

37 Of the charge Q initially on a tiny sphere, a portion q is to be
transferred to a second, nearby sphere. Both spheres can be treated
as particles and are fixed with a certain separation. (a) For what
value of q/Q will the electrostatic force between the two spheres be
maximized? What are the (b) smaller and (c) larger values of q/Q
that give a force magnitude that is 75% of that maximum?
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Figure 21-23 Problem 34.
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C H A P T E R  2 2

Electric Fields

22-1 THE ELECTRIC FIELD

After reading this module, you should be able to . . .

22.01 Identify that at every point in the space surrounding
a charged particle, the particle sets up an electric field ,
which is a vector quantity and thus has both magnitude
and direction.

22.02 Identify how an electric field can be used to explain
how a charged particle can exert an electrostatic force F

:
E
:

E
:

on a second charged particle even though there is no con-
tact between the particles.

22.03 Explain how a small positive test charge is used (in
principle) to measure the electric field at any given point.

22.04 Explain electric field lines, including where they
originate and terminate and what their spacing represents.

Key Ideas

Learning Objectives

558

● A charged particle sets up an electric field (a vector quantity)
in the surrounding space. If a second charged particle is
located in that space, an electrostatic force acts on it due to
the magnitude and direction of the field at its location.
● The electric field at any point is defined in terms of the elec-
trostatic force that would be exerted on a positive test charge
q0 placed there:

E
:

!
F
:

q0

.

F
:

E
:

● Electric field lines help us visualize the direction and
magnitude of electric fields. The electric field vector at any
point is tangent to the field line through that point. The density
of field lines in that region is proportional to the magnitude of
the electric field there. Thus, closer field lines represent a
stronger field.
● Electric field lines originate on positive charges and
terminate on negative charges. So, a field line extending from
a positive charge must end on a negative charge.

What Is Physics?
Figure 22-1 shows two positively charged particles. From the preceding chapter we
know that an electrostatic force acts on particle 1 due to the presence of particle 2.
We also know the force direction and, given some data, we can calculate the force
magnitude. However, here is a leftover nagging question. How does particle 1
“know” of the presence of particle 2? That is, since the particles do not touch, how
can particle 2 push on particle 1—how can there be such an action at a distance?

One purpose of physics is to record observations about our world, such as
the magnitude and direction of the push on particle 1. Another purpose is to
provide an explanation of what is recorded. Our purpose in this chapter is to
provide such an explanation to this nagging question about electric force at a
distance.

The explanation that we shall examine here is this: Particle 2 sets up an
electric field at all points in the surrounding space, even if the space is a vac-
uum. If we place particle 1 at any point in that space, particle 1 knows of the
presence of particle 2 because it is affected by the electric field particle 2 has al-
ready set up at that point. Thus, particle 2 pushes on particle 1 not by touching it
as you would push on a coffee mug by making contact. Instead, particle 2
pushes by means of the electric field it has set up.

+ +
q1 q2

Figure 22-1 How does charged particle 2
push on charged particle 1 when they have
no contact?
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Our goals in this chapter are to (1) define electric field, (2) discuss how to cal-
culate it for various arrangements of charged particles and objects, and (3) dis-
cuss how an electric field can affect a charged particle (as in making it move).

The Electric Field
A lot of different fields are used in science and engineering. For example, a tem-
perature field for an auditorium is the distribution of temperatures we would find
by measuring the temperature at many points within the auditorium. Similarly,
we could define a pressure field in a swimming pool. Such fields are examples of
scalar fields because temperature and pressure are scalar quantities, having only
magnitudes and not directions.

In contrast, an electric field is a vector field because it is responsible for con-
veying the information for a force, which involves both magnitude and direction.
This field consists of a distribution of electric field vectors , one for each point
in the space around a charged object. In principle, we can define at some point
near the charged object, such as point P in Fig. 22-2a, with this procedure: At P,
we place a particle with a small positive charge q0, called a test charge because we
use it to test the field. (We want the charge to be small so that it does not disturb
the object’s charge distribution.) We then measure the electrostatic force that
acts on the test charge.The electric field at that point is then

(electric field). (22-1)

Because the test charge is positive, the two vectors in Eq. 22-1 are in the same
direction, so the direction of is the direction we measure for .The magnitude of

at point P is F/q0. As shown in Fig. 22-2b, we always represent an electric field
with an arrow with its tail anchored on the point where the measurement is made.
(This may sound trivial, but drawing the vectors any other way usually results in
errors.Also, another common error is to mix up the terms force and field because
they both start with the letter f. Electric force is a push or pull. Electric field is an
abstract property set up by a charged object.) From Eq. 22-1, we see that the SI
unit for the electric field is the newton per coulomb (N/C).

We can shift the test charge around to various other points, to measure the
electric fields there, so that we can figure out the distribution of the electric field
set up by the charged object. That field exists independent of the test charge. It is
something that a charged object sets up in the surrounding space (even vacuum),
independent of whether we happen to come along to measure it.

For the next several modules, we determine the field around charged parti-
cles and various charged objects. First, however, let’s examine a way of visualizing
electric fields.

Electric Field Lines
Look at the space in the room around you. Can you visualize a field of vectors
throughout that space—vectors with different magnitudes and directions? As im-
possible as that seems, Michael Faraday, who introduced the idea of electric fields
in the 19th century, found a way. He envisioned lines, now called electric field
lines, in the space around any given charged particle or object.

Figure 22-3 gives an example in which a sphere is uniformly covered with
negative charge. If we place a positive test charge at any point near the sphere
(Fig. 22-3a), we find that an electrostatic force pulls on it toward the center of the
sphere. Thus at every point around the sphere, an electric field vector points
radially inward toward the sphere. We can represent this electric field with 
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F
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Figure 22-2 (a) A positive test charge q0

placed at point P near a charged object.An
electrostatic force acts on the test charge.
(b) The electric field at point P produced
by the charged object.
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Figure 22-3 (a) The electrostatic force 
acting on a positive test charge near a
sphere of uniform negative charge.
(b) The electric field vector at the
location of the test charge, and the electric
field lines in the space near the sphere.
The field lines extend toward the negative-
ly charged sphere. (They originate on
distant positive charges.)
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In Fig. 22-3b, they originate on distant positive charges that are not shown.
For another example, Fig. 22-4a shows part of an infinitely large, nonconduct-

ing sheet (or plane) with a uniform distribution of positive charge on one side. If
we place a positive test charge at any point near the sheet (on either side), we
find that the electrostatic force on the particle is outward and perpendicular to
the sheet. The perpendicular orientation is reasonable because any force compo-
nent that is, say, upward is balanced out by an equal component that is down-
ward.That leaves only outward, and thus the electric field vectors and the electric
field lines must also be outward and perpendicular to the sheet, as shown in
Figs. 22-4b and c.

Because the charge on the sheet is uniform, the field vectors and the field
lines are also. Such a field is a uniform electric field, meaning that the electric field
has the same magnitude and direction at every point within the field. (This is a lot
easier to work with than a nonuniform field, where there is variation from point
to point.) Of course, there is no such thing as an infinitely large sheet. That is just
a way of saying that we are measuring the field at points close to the sheet rela-
tive to the size of the sheet and that we are not near an edge.

Figure 22-5 shows the field lines for two particles with equal positive charges.
Now the field lines are curved, but the rules still hold: (1) the electric field vector
at any given point must be tangent to the field line at that point and in the same
direction, as shown for one vector, and (2) a closer spacing means a larger field
magnitude. To imagine the full three-dimensional pattern of field lines around
the particles, mentally rotate the pattern in Fig. 22-5 around the axis of symmetry,
which is a vertical line through both particles.

electric field lines as in Fig. 22-3b. At any point, such as the one shown, the direc-
tion of the field line through the point matches the direction of the electric vector
at that point.

The rules for drawing electric fields lines are these: (1) At any point, the elec-
tric field vector must be tangent to the electric field line through that point and in
the same direction. (This is easy to see in Fig. 22-3 where the lines are straight, but
we’ll see some curved lines soon.) (2) In a plane perpendicular to the field lines,
the relative density of the lines represents the relative magnitude of the field
there, with greater density for greater magnitude.

If the sphere in Fig. 22-3 were uniformly covered with positive charge, the
electric field vectors at all points around it would be radially outward and thus so
would the electric field lines. So, we have the following rule:

560 CHAPTER 22 ELECTRIC FIELDS

Electric field lines extend away from positive charge (where they originate) and
toward negative charge (where they terminate).

F 

E 
+ + + + 

+ + + + 

+ + + + 

+ + + + 

Positive test 
charge 

(a) (b) 

+ + + 

+ + + + 

+ + + 

+ 
+ ++ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

(c) 

+ + 

+ 

Figure 22-4 (a) The force on a positive test charge near a very large, nonconducting sheet
with uniform positive charge on one side. (b) The electric field vector at the test
charge’s location, and the nearby electric field lines, extending away from the sheet.
(c) Side view.

E
:

Figure 22-5 Field lines for two particles with
equal positive charge. Doesn’t the pattern
itself suggest that the particles repel each
other?

E 

+ 

+ 
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56122-2 THE ELECTRIC FIELD DUE TO A CHARGED PARTICLE

22-2 THE ELECTRIC FIELD DUE TO A CHARGED PARTICLE

After reading this module, you should be able to . . .

22.05 In a sketch, draw a charged particle, indicate its sign,
pick a nearby point, and then draw the electric field vector

at that point, with its tail anchored on the point.
22.06 For a given point in the electric field of a charged particle,

identify the direction of the field vector when the particle is
positively charged and when it is negatively charged.

22.07 For a given point in the electric field of a charged
particle, apply the relationship between the field

E
:

E
:

magnitude E, the charge magnitude , and the distance r
between the point and the particle.

22.08 Identify that the equation given here for the magnitude
of an electric field applies only to a particle, not an extended
object.

22.09 If more than one electric field is set up at a point, draw
each electric field vector and then find the net electric field by
adding the individual electric fields as vectors (not as scalars).

!q!

● The magnitude of the electric field set up by a particle
with charge q at distance r from the particle is

● The electric field vectors set up by a positively charged
particle all point directly away from the particle. Those set up

E !
1

4p´0

!q!
r2 .

E
:

by a negatively charged particle all point directly toward the
particle.

● If more than one charged particle sets up an electric field
at a point, the net electric field is the vector sum of the
individual electric fields—electric fields obey the superposition
principle.

Learning Objectives

Key Ideas

The Electric Field Due to a Point Charge
To find the electric field due to a charged particle (often called a point charge),we place
a positive test charge at any point near the particle, at distance r. From Coulomb’s law
(Eq.21-4),the force on the test charge due to the particle with charge q is

As previously, the direction of is directly away from the particle if q is positive (be-
cause q0 is positive) and directly toward it if q is negative. From Eq. 22-1, we can now
write the electric field set up by the particle (at the location of the test charge) as

(charged particle). (22-2)

Let’s think through the directions again. The direction of matches that of the
force on the positive test charge: directly away from the point charge if q is
positive and directly toward it if q is negative.

So, if given another charged particle, we can immediately determine the
directions of the electric field vectors near it by just looking at the sign of
the charge q. We can find the magnitude at any given distance r by converting
Eq. 22-2 to a magnitude form:

(charged particle). (22-3)

We write to avoid the danger of getting a negative E when q is negative, and
then thinking the negative sign has something to do with direction. Equation 22-3
gives magnitude E only.We must think about the direction separately.

Figure 22-6 gives a number of electric field vectors at points around a
positively charged particle, but be careful. Each vector represents the vector

!q!

E !
1

4p´0

!q!
r2

E
:

E
:

!
F
:

q0
!

1
4p´0

q
r2 r̂

F
:

F
:

!
1

4p´0

qq0

r2 r̂ .

+ 

Figure 22-6 The electric field vectors at
various points around a positive point
charge.
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562 CHAPTER 22 ELECTRIC FIELDS

Checkpoint 1
The figure here shows a proton p and an electron e on an x axis.What is the direction of
the electric field due to the electron at (a) point
S and (b) point R? What is the direction of the
net electric field at (c) point R and (d) point S?

x 
S e pR 

Sample Problem 22.01 Net electric field due to three charged particles

Figure 22-7a shows three particles with charges q1 ! "2Q,
q2 ! #2Q, and q3 ! #4Q, each a distance d from the origin.
What net electric field is produced at the origin?

KEY IDEA

Charges q1, q2, and q3 produce electric field vectors 
and respectively, at the origin, and the net electric field
is the vector sum To find this sum, we
first must find the magnitudes and orientations of the three
field vectors.

Magnitudes and directions: To find the magnitude of 
which is due to q1, we use Eq. 22-3, substituting d for r and
2Q for q and obtaining

Similarly, we find the magnitudes of  and to be

E2 !
1

4p´0

2Q
d2   and  E3 !

1
4p´0

4Q
d2 .

E
:

3E
:

2

E1 !
1

4p´0

2Q
d2 .

E
:

1,

E
:

! E
:

1 " E
:

2 " E
:

3.
E
:

3,
E
:

2,E
:

1,

E
:

Figure 22-7 (a) Three particles with charges q1, q2, and q3 are at the
same distance d from the origin. (b) The electric field vectors 

and at the origin due to the three particles. (c) The electric
field vector and the vector sum at the origin.E

:
1 " E

:
2E

:
3

E
:

3,E
:

2,
E
:

1,

y 

x 

d d 

d 

30° 
30° 

30° 

30° 
30° 

y 

x 30° 
30° 

y 

x 

(a) 

(b) (c)
+ 

q1 q3 

q2 

E1 
E2 

E1 
E2 

E3 E3 

Find the net field
at this empty point.

Field toward

Field toward
Field away

quantity at the point where the tail of the arrow is anchored. The vector is not
something that stretches from a “here” to a “there” as with a displacement vector.

In general, if several electric fields are set up at a given point by several
charged particles, we can find the net field by placing a positive test particle at
the point and then writing out the force acting on it due to each particle, such
as due to particle 1. Forces obey the principle of superposition, so we just
add the forces as vectors:

To change over to electric field, we repeatedly use Eq. 22-1 for each of the indi-
vidual forces:

(22-4)

This tells us that electric fields also obey the principle of superposition. If you want
the net electric field at a given point due to several particles, find the electric field
due to each particle (such as due to particle 1) and then sum the fields as vectors.
(As with electrostatic forces, you cannot just willy-nilly add up the magnitudes.)
This addition of fields is the subject of many of the homework problems.

E1
:

! E
:

1 " E
:

2 " $ $ $ " E
:

n.

E
:

!
F
:

0

q0
!

F
:

01

q0
"

F
:

02

q0
" $ $ $ "

F
:

0n

q0

F
:

0 ! F
:

01 " F
:

02 " $ $ $ " F
:

0n.

F
:

01
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56322-3 THE ELECTRIC FIELD DUE TO A DIPOLE

which happens to equal the magnitude of field 
We must now combine two vectors, and the vector

sum that have the same magnitude and that are
oriented symmetrically about the x axis, as shown in Fig. 22-7c.
From the symmetry of Fig. 22-7c, we realize that the equal y
components of our two vectors cancel (one is upward and
the other is downward) and the equal x components add
(both are rightward). Thus, the net electric field at the
origin is in the positive direction of the x axis and has the
magnitude

(Answer) ! (2) 
1

4p´0

4Q
d2  (0.866) !

6.93Q
4p´0d2 .

 E ! 2E3x ! 2E3 cos 30%

E
:

E
:

1 " E
:

2,
E
:

3

E
:

3.

 !
1

4p´0

4Q
d2 ,

 E1 " E2 !
1

4p´0

2Q
d2 "

1
4p´0

2Q
d2

We next must find the orientations of the three electric
field vectors at the origin. Because q1 is a positive charge,
the field vector it produces points directly away from it,
and because q2 and q3 are both negative, the field vectors
they produce point directly toward each of them. Thus, the
three electric fields produced at the origin by the three
charged particles are oriented as in Fig. 22-7b. (Caution:
Note that we have placed the tails of the vectors at the
point where the fields are to be evaluated; doing so de-
creases the chance of error. Error becomes very probable
if the tails of the field vectors are placed on the particles
creating the fields.)

Adding the fields: We can now add the fields vectorially just
as we added force vectors in Chapter 21. However, here we
can use symmetry to simplify the procedure. From Fig. 22-7b,
we see that electric fields and have the same direction.
Hence, their vector sum has that direction and has the
magnitude

E
:

2E
:

1

Additional examples, video, and practice available at WileyPLUS

22-3 THE ELECTRIC FIELD DUE TO A DIPOLE

After reading this module, you should be able to . . .

22.10 Draw an electric dipole, identifying the charges
(sizes and signs), dipole axis, and direction of the elec-
tric dipole moment.

22.11 Identify the direction of the electric field at any
given point along the dipole axis, including between the
charges.

22.12 Outline how the equation for the electric field due
to an electric dipole is derived from the equations for
the electric field due to the individual charged particles
that form the dipole.

22.13 For a single charged particle and an electric dipole,
compare the rate at which the electric field magnitude

decreases with increase in distance. That is, identify
which drops off faster.

22.14 For an electric dipole, apply the relationship be-
tween the magnitude p of the dipole moment, the sepa-
ration d between the charges, and the magnitude q of 
either of the charges.

22.15 For any distant point along a dipole axis, apply the
relationship between the electric field magnitude E, the
distance z from the center of the dipole, and either the
dipole moment magnitude p or the product of charge
magnitude q and charge separation d.

● An electric dipole consists of two particles with charges of
equal magnitude q but opposite signs, separated by a small
distance d.
● The electric dipole moment has magnitude qd and
points from the negative charge to the positive charge.
● The magnitude of the electric field set up by an electric
dipole at a distant point on the dipole axis (which runs
through both particles) can be written in terms of either the
product qd or the magnitude p of the dipole moment:

p: where z is the distance between the point and the center of
the dipole.
● Because of the 1/z3 dependence, the field magnitude of
an electric dipole decreases more rapidly with distance
than the field magnitude of either of the individual charges
forming the dipole, which depends on 1/r2.

!
1

2p´0

p
z3 ,E !

1
2p´0

qd
z3

Learning Objectives

Key Ideas
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The Electric Field Due to an Electric Dipole
Figure 22-8 shows the pattern of electric field lines for two particles that have
the same charge magnitude q but opposite signs, a very common and important
arrangement known as an electric dipole. The particles are separated by dis-
tance d and lie along the dipole axis, an axis of symmetry around which you can
imagine rotating the pattern in Fig. 22-8. Let’s label that axis as a z axis. Here
we restrict our interest to the magnitude and direction of the electric field at
an arbitrary point P along the dipole axis, at distance z from the dipole’s
midpoint.

Figure 22-9a shows the electric fields set up at P by each particle. The nearer
particle with charge "q sets up field E(") in the positive direction of the z axis (di-
rectly away from the particle). The farther particle with charge #q sets up a
smaller field E(#) in the negative direction (directly toward the particle).We want
the net field at P, as given by Eq. 22-4. However, because the field vectors are
along the same axis, let’s simply indicate the vector directions with plus and mi-
nus signs, as we commonly do with forces along a single axis. Then we can write
the magnitude of the net field at P as

(22-5)

After a little algebra, we can rewrite this equation as

(22-6)

After forming a common denominator and multiplying its terms, we come to

(22-7)

We are usually interested in the electrical effect of a dipole only at distances
that are large compared with the dimensions of the dipole—that is, at distances such
that z & d.At such large distances, we have d/2z ' 1 in Eq. 22-7.Thus, in our approx-
imation, we can neglect the d/2z term in the denominator, which leaves us with

(22-8)

The product qd, which involves the two intrinsic properties q and d of the
dipole, is the magnitude p of a vector quantity known as the electric dipole moment

of the dipole. (The unit of is the coulomb-meter.) Thus, we can write Eq. 22-8 as

(electric dipole). (22-9)

The direction of is taken to be from the negative to the positive end of the
dipole, as indicated in Fig. 22-9b. We can use the direction of to specify the
orientation of a dipole.

Equation 22-9 shows that, if we measure the electric field of a dipole only at
distant points, we can never find q and d separately; instead, we can find only
their product. The field at distant points would be unchanged if, for example, q

p:
p:

E !
1

2p´0

p
z3

p:p:

E !
1

2p´0

qd
z3 .

!
q

2p´0z3

d

"1 # " d
2z #

2#2 .E !
q

4p´0z2

2d/z

"1 # " d
2z #
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E !
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1
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Figure 22-9 (a) An electric dipole.The elec-
tric field vectors and at point P on
the dipole axis result from the dipole’s two
charges. Point P is at distances r(") and r(#)

from the individual charges that make up
the dipole. (b) The dipole moment of the
dipole points from the negative charge to
the positive charge.

p:

E
:

(#)E
:

(")

z 

r(–) 

r(+)

E(+) 

d 

z 

–q

+q 

P 

(a) (b) 

+ + 

– – 

p 

E(–)

Dipole 
center 

Up here the +q
field dominates.

Down here the –q
field dominates.

Figure 22-8 The pattern of electric field lines
around an electric dipole, with an electric
field vector shown at one point (tangent
to the field line through that point).

E
:

+ 

– 
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56522-3 THE ELECTRIC FIELD DUE TO A DIPOLE

were doubled and d simultaneously halved. Although Eq. 22-9 holds only for dis-
tant points along the dipole axis, it turns out that E for a dipole varies as 1/r 3 for
all distant points, regardless of whether they lie on the dipole axis; here r is the
distance between the point in question and the dipole center.

Inspection of Fig. 22-9 and of the field lines in Fig. 22-8 shows that the direc-
tion of for distant points on the dipole axis is always the direction of the dipole
moment vector .This is true whether point P in Fig. 22-9a is on the upper or the
lower part of the dipole axis.

Inspection of Eq. 22-9 shows that if you double the distance of a point from a
dipole, the electric field at the point drops by a factor of 8. If you double the distance
from a single point charge, however (see Eq. 22-3), the electric field drops only by a
factor of 4. Thus the electric field of a dipole decreases more rapidly with distance
than does the electric field of a single charge. The physical reason for this rapid
decrease in electric field for a dipole is that from distant points a dipole looks like
two particles that almost—but not quite—coincide. Thus, because they have
charges of equal magnitude but opposite signs, their electric fields at distant points
almost—but not quite—cancel each other.

p:
E
:

KEY IDEA

We can approximate the magnitude E of an electric dipole’s elec-
tric field on the dipole axis with Eq.22-8.

Calculations: We write that equation as

where 2h is the separation between #q and "q in Fig. 22-10c.
For the electric field at altitude z1 ! 30 km,we find

(Answer)

Similarly, for altitude z2 ! 60 km, we find
E ! 2.0 ( 102 N/C. (Answer)

As we discuss in Module 22-6, when the magnitude of

 ! 1.6 ( 103 N/C.

E !
1

2p´0

(200 C)(2)(6.0 ( 103 m)
(30 ( 103 m)3

E !
1

2p´0

q(2h)
z3 ,

Sample Problem 22.02 Electric dipole and atmospheric sprites

Sprites (Fig. 22-10a) are huge flashes that occur far above a
large thunderstorm. They were seen for decades by pilots
flying at night, but they were so brief and dim that most pi-
lots figured they were just illusions.Then in the 1990s sprites
were captured on video. They are still  not well understood
but are believed to be produced when especially powerful
lightning occurs between the ground and storm clouds, par-
ticularly when the lightning transfers a huge amount of neg-
ative charge #q from the ground to the base of the clouds
(Fig. 22-10b).

Just after such a transfer, the ground has a complicated
distribution of positive charge. However, we can model the
electric field due to the charges in the clouds and the ground
by assuming a vertical electric dipole that has charge #q at
cloud height h and charge "q at below-ground depth h
(Fig. 22-10c). If q ! 200 C and h ! 6.0 km, what is the magni-
tude of the dipole’s electric field at altitude z1 ! 30 km some-
what above the clouds and altitude z2 ! 60 km somewhat
above the stratosphere?

(a) 

Figure 22-10 (a) Photograph of a sprite. (b) Lightning in which a large amount of negative charge is transferred from ground to cloud base.
(c) The cloud–ground system modeled as a vertical electric dipole.

Charge 
transfer 

Ground 

Cloud 

– – – – – – (b) (c)

h

h

z

–q

+qCourtesy NASA
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The Electric Field Due to a Line of Charge
So far we have dealt with only charged particles, a single particle or a simple col-
lection of them. We now turn to a much more challenging situation in which a
thin (approximately one-dimensional) object such as a rod or ring is charged with
a huge number of particles, more than we could ever even count. In the next
module, we consider two-dimensional objects, such as a disk with charge spread
over a surface. In the next chapter we tackle three-dimensional objects, such as a
sphere with charge spread through a volume.

Heads Up. Many students consider this module to be the most difficult in
the book for a variety of reasons. There are lots of steps to take, a lot of vector
features to keep track of, and after all that, we set up and then solve an integral.
The worst part, however, is that the procedure can be different for different
arrangements of the charge. Here, as we focus on a particular arrangement (a
charged ring), be aware of the general approach, so that you can tackle other
arrangements in the homework (such as rods and partial circles).

Figure 22-11 shows a thin ring of radius R with a uniform distribution of posi-
tive charge along its circumference. It is made of plastic, which means that the
charge is fixed in place. The ring is surrounded by a pattern of electric field lines,
but here we restrict our interest to an arbitrary point P on the central axis (the
axis through the ring’s center and perpendicular to the plane of the ring), at dis-
tance z from the center point.

The charge of an extended object is often conveyed in terms of a charge
density rather than the total charge. For a line of charge, we use the linear charge

566 CHAPTER 22 ELECTRIC FIELDS

22-4 THE ELECTRIC FIELD DUE TO A LINE OF CHARGE

After reading this module, you should be able to . . .

22.16 For a uniform distribution of charge, find the linear charge
density l for charge along a line, the surface charge density
s for charge on a surface, and the volume charge density r
for charge in a volume.

22.17 For charge that is distributed uniformly along a line, find
the net electric field at a given point near the line by

splitting the distribution up into charge elements dq and
then summing (by integration) the electric field vectors 
set up at the point by each element.

22.18 Explain how symmetry can be used to simplify the
calculation of the electric field at a point near a line of
uniformly distributed charge.

dE
:

● The equation for the electric field set up by a particle does
not apply to an extended object with charge (said to have a
continuous charge distribution).
● To find the electric field of an extended object at a point, we
first consider the electric field set up by a charge element dq in
the object, where the element is small enough for us to apply

the equation for a particle. Then we sum, via integration, com-
ponents of the electric fields from all the charge elements.
● Because the individual electric fields have different
magnitudes and point in different directions, we first see if
symmetry allows us to cancel out any of the components of
the fields, to simplify the integration.

dE
:

dE
:

Learning Objectives

Key Ideas

an electric field exceeds a certain critical value Ec, the
field can pull electrons out of atoms (ionize the atoms),
and then the freed electrons can run into other atoms,
causing those atoms to emit light. The value of Ec depends
on the density of the air in which the electric field exists.
At altitude z2 ! 60 km the density of the air is so low that

E ! 2.0 ( 102 N/C exceeds Ec, and thus light is emitted by
the atoms in the air. That light forms sprites. Lower down,
just above the clouds at z1 ! 30 km, the density of the air
is much  higher, E ! 1.6 ( 103 N/C does not exceed Ec,
and no light is emitted. Hence, sprites occur only far
above storm clouds.

Additional examples, video, and practice available at WileyPLUS
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56722-4 THE ELECTRIC FIELD DUE TO A LINE OF CHARGE

Figure 22-11 A ring of uniform positive
charge. A differential element of charge 
occupies a length ds (greatly exaggerated for
clarity).This element sets up an electric field

at point P.dE
:
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+ + + 
+ 
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θ 
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dE 

density l (the charge per unit length), with the SI unit of coulomb per meter.
Table 22-1 shows the other charge densities that we shall be using for charged
surfaces and volumes.

First Big Problem. So far, we have an equation for the electric field of a par-
ticle. (We can combine the field of several particles as we did for the electric di-
pole to generate a special equation, but we are still basically using Eq. 22-3).
Now take a look at the ring in Fig. 22-11. That clearly is not a particle and so Eq.
22-3 does not apply. So what do we do?

The answer is to mentally divide the ring into differential elements of charge
that are so small that we can treat them as though they are particles. Then we can
apply Eq. 22-3.

Second Big Problem. We now know to apply Eq. 22-3 to each charge ele-
ment dq (the front d emphasizes that the charge is very small) and can write an
expression for its contribution of electric field (the front d emphasizes that
the contribution is very small). However, each such contributed field vector at P
is in its own direction. How can we add them to get the net field at P?

The answer is to split the vectors into components and then separately
sum one set of components and then the other set. However, first we check to
see if one set simply all cancels out. (Canceling out components saves lots of
work.)

Third Big Problem. There is a huge number of dq elements in the ring and
thus a huge number of components to add up, even if we can cancel out one
set of components. How can we add up more components than we could even
count? The answer is to add them by means of integration.

Do It. Let’s do all this (but again, be aware of the general procedure, not just
the fine details). We arbitrarily pick the charge element shown in Fig. 22-11. Let
ds be the arc length of that (or any other) dq element. Then in terms of the linear
density l (the charge per unit length), we have

dq ! l ds. (22-10)

An Element’s Field. This charge element sets up the differential electric
field at P, at distance r from the element, as shown in Fig. 22-11. (Yes, we are
introducing a new symbol that is not given in the problem statement, but soon we
shall replace it with “legal symbols.”) Next we rewrite the field equation for a
particle (Eq. 22-3) in terms of our new symbols dE and dq, but then we replace dq
using Eq. 22-10.The field magnitude due to the charge element is

(22-11)

Notice that the illegal symbol r is the hypotenuse of the right triangle dis-
played in Fig. 22-11.Thus, we can replace r by rewriting Eq. 22-11 as

(22-12)

Because every charge element has the same charge and the same distance
from point P, Eq. 22-12 gives the field magnitude contributed by each of them.
Figure 22-11 also tells us that each contributed leans at angle u to the cen-
tral axis (the z axis) and thus has components perpendicular and parallel to
that axis.

Canceling Components. Now comes the neat part, where we eliminate one
set of those components. In Fig. 22-11, consider the charge element on the oppo-
site side of the ring. It too contributes the field magnitude dE but the field vector
leans at angle u in the opposite direction from the vector from our first charge

dE
:

dE !
1

4p´0

l ds
(z2 " R2)

.

dE !
1

4p´0

dq
r2 !

1
4p´0

l ds
r2 .

dE
:

dE
:

dE
:

Table 22-1 Some Measures of Electric
Charge

Name Symbol SI Unit

Charge q C
Linear charge 
density l C/m

Surface charge 
density s C/m2

Volume charge 
density r C/m3
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element, as indicated in the side view of Fig. 22-12. Thus the two perpendicular
components cancel. All around the ring, this cancelation occurs for every charge
element and its symmetric partner on the opposite side of the ring. So we can neg-
lect all the perpendicular components.

Adding Components. We have another big win here. All the remaining
components are in the positive direction of the z axis, so we can just add them
up as scalars. Thus we can already tell the direction of the net electric field at
P: directly away from the ring. From Fig. 22-12, we see that the parallel com-
ponents each have magnitude dE cos u, but u is another illegal symbol. We can
replace cos u with legal symbols by again using the right triangle in Fig. 22-11
to write

(22-13)

Multiplying Eq. 22-12 by Eq. 22-13 gives us the parallel field component from
each charge element:

(22-14)

Integrating. Because we must sum a huge number of these components, each
small, we set up an integral that moves along the ring, from element to element,
from a starting point (call it s ! 0) through the full circumference (s ! 2pR). Only
the quantity s varies as we go through the elements; the other symbols in Eq. 22-14
remain the same, so we move them outside the integral.We find

(22-15)

This is a fine answer, but we can also switch to the total charge by using l ! q/(2pR):

(charged ring). (22-16)

If the charge on the ring is negative, instead of positive as we have assumed, the
magnitude of the field at P is still given by Eq. 22-16. However, the electric field
vector then points toward the ring instead of away from it.

Let us check Eq. 22-16 for a point on the central axis that is so far away that 
z & R. For such a point, the expression z2 " R2 in Eq. 22-16 can be approximated
as z2, and Eq. 22-16 becomes

(charged ring at large distance). (22-17)

This is a reasonable result because from a large distance, the ring “looks like”
a point charge. If we replace z with r in Eq. 22-17, we indeed do have the magni-
tude of the electric field due to a point charge, as given by Eq. 22-3.

Let us next check Eq. 22-16 for a point at the center of the ring — that is, for 
z ! 0. At that point, Eq. 22-16 tells us that E ! 0. This is a reasonable result
because if we were to place a test charge at the center of the ring, there would
be no net electrostatic force acting on it; the force due to any element of the
ring would be canceled by the force due to the element on the opposite side of
the ring. By Eq. 22-1, if the force at the center of the ring were zero, the electric
field there would also have to be zero.

E !
1

4p´0

q
z2

E !
qz

4p´0(z2 " R2)3/2

 !
zl(2pR)

4p´0(z2 " R2)3/2  .

E ! $dE cos u !
zl

4p´0(z2 " R2)3/2 $2pR

0
ds

dE cos u !
1

4p)0

zl

(z2 " R2)3/2  ds.

cos u !
z
r

!
z

(z2 " R2)1/2  .
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z
dE cos u

u u

dEdE

Figure 22-12 The electric fields set up at P
by a charge element and its symmetric
partner (on the opposite side of the ring).
The components perpendicular to the z
axis cancel; the parallel components add.
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56922-4 THE ELECTRIC FIELD DUE TO A LINE OF CHARGE

Sample Problem 22.03 Electric field of a charged circular rod

60°
60°P

y

xr

Plastic rod
of charge –Q

(a)

This negatively charged rod
is obviously not a particle.

P

y

x

(g)

θ

ds

rd

We use this to 
relate the element’s 
arc length to the 
angle that it subtends.x

P

y

(e)

θ
θ

ds

dEy

Symmetric
element ds'

dE

dE'

These y components just
cancel, so neglect them.

P

y

x

(b)

ds

But we can treat this
element as a particle.

Here is the field created by 
the symmetric element, same 
size and angle.

P

y

x

(d)

θ
θ

ds

Symmetric
element ds'

dE

dE'

P

y

x

(c)

θ

ds

dE

Here is the field the
element creates.

x
P

y

( f )

θ
θ

ds

dEx

Symmetric
element ds'

dE

dE'

These x components add.
Our job is to add all such
components.

Figure 22-13 Available in
WileyPLUS as an animation
with voiceover. (a) A plastic
rod of charge #Q is a circular
section of radius r and central
angle 120%; point P is the center
of curvature of the rod. (b)–(c)
A differential element in the
top half of the rod, at an angle
u to the x axis and of arc length
ds, sets up a differential
electric field at P. (d) An el-
ement ds*, symmetric to ds
about the x axis, sets up a field

at P with the same magni-
tude. (e)–(f ) The field compo-
nents. (g) Arc length ds makes
an angle du about point P.

dE
:

*

dE
:

A

Figure 22-13a shows a plastic rod with a uniform charge
#Q. It is bent in a 120° circular arc of radius  r and symmet-
rically paced across an x axis with the origin at the center of
curvature P of the rod. In terms of Q and r, what is the elec-
tric field due to the rod at point P?

KEY IDEA

Because the rod has a continuous charge distribution, we must
find an expression for the electric fields due to differential ele-
ments of the rod and then sum those fields via calculus.

An element: Consider a differential element having arc
length ds and located at an angle u above the x axis (Figs.
22-13b and c). If we let l represent the linear charge density of
the rod,our element ds has a differential charge of magnitude

dq ! l ds. (22-18)

The element’s field: Our element produces a differential
electric field at point P, which is a distance r from the 
element. Treating the element as a point charge, we can

dE
:

E
:

rewrite Eq. 22-3 to express the magnitude of as

(22-19)

The direction of is toward ds because charge dq is negative.

Symmetric partner: Our element has a symmetrically 
located (mirror image) element ds* in the bottom half of the
rod. The electric field set up at P by ds* also has the
magnitude given by Eq. 22-19, but the field vector points to-
ward as shown in Fig. 22-13d. If we resolve the electric
field vectors of ds and into x and y components as shown
in Figs. 22-13e and f, we see that their y components cancel
(because they have equal magnitudes and are in opposite
directions). We also see that their x components have equal
magnitudes and are in the same direction.

Summing: Thus, to find the electric field set up by the rod,
we need sum (via integration) only the x components of the
differential electric fields set up by all the differential ele-
ments of the rod. From Fig. 22-13f and Eq. 22-19, we can write

ds*
ds*

dE
:

*

dE
:

dE !
1

4p´0

dq
r2 !

1
4p´0

l ds
r2 .

dE
:
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570 CHAPTER 22 ELECTRIC FIELDS

duces and resolve it into components. One of the com-
ponents produced by dq is a canceling component; it is
canceled by the corresponding component produced by
dq* and needs no further attention.The other compo-
nent produced by dq is an adding component; it adds to
the corresponding component produced by dq*.Add the
adding components of all the elements via integration.

Step 5. Here are four general types of uniform charge
distributions, with strategies for the integral of step 4.

Ring, with point P on (central) axis of symmetry, as
in Fig. 22-11. In the expression for dE, replace r 2 with
z2 " R2, as in Eq. 22-12. Express the adding component
of in terms of u.That introduces cos u, but u is identi-
cal for all elements and thus is not a variable. Replace
cos u as in Eq. 22-13. Integrate over s, around the cir-
cumference of the ring.

Circular arc, with point P at the center of curva-
ture, as in Fig. 22-13. Express the adding component of

in terms of u. That introduces either sin u or cos u.
Reduce the resulting two variables s and u to one, u, by
replacing ds with r du. Integrate over u from one end
of the arc to the other end.

Straight line, with point P on an extension of the
line, as in Fig. 22-14a. In the expression for dE, replace
r with x. Integrate over x, from end to end of the line of
charge.

dE
:

dE
:

Problem-Solving Tactics A Field Guide for Lines of Charge

Here is a generic guide for finding the electric field pro-
duced at a point P by a line of uniform charge, either circu-
lar or straight.The general strategy is to pick out an element
dq of the charge, find due to that element, and integrate

over the entire line of charge.

Step 1. If the line of charge is circular, let ds be the arc
length of an element of the distribution. If the line is
straight, run an x axis along it and let dx be the length of
an element. Mark the element on a sketch.

Step 2. Relate the charge dq of the element to the length of
the element with either dq ! l ds or dq ! l dx. Consider
dq and l to be positive, even if the charge is actually nega-
tive. (The sign of the charge is used in the next step.)

Step 3. Express the field produced at P by dq with
Eq. 22-3, replacing q in that equation with either l ds or
l dx. If the charge on the line is positive, then at P draw a
vector that points directly away from dq. If the charge
is negative, draw the vector pointing directly toward dq.

Step 4. Always look for any symmetry in the situation. If
P is on an axis of symmetry of the charge distribution,
resolve the field produced by dq into components
that are perpendicular and parallel to the axis of symme-
try.Then consider a second element dq* that is located
symmetrically to dq about the line of symmetry.At P
draw the vector that this symmetrical element pro-dE

:
*

dE
:

dE
:

dE
:

dE
:

dE
:

E
:

the component dEx set up by ds as

(22-20)

Equation 22-20 has two variables, u and s. Before we can
integrate it, we must eliminate one variable. We do so by
replacing ds, using the relation

ds ! r du,

in which du is the angle at P that includes arc length ds
(Fig. 22-13g). With this replacement, we can integrate
Eq. 22-20 over the angle made by the rod at P, from u ! #60%
to u ! 60%; that will give us the field magnitude at P:

(22-21) !
1.73l

4p´0r
.

 !
l

4p´0r
 [sin 60% # sin(#60%)]

 !
l

4p´0r
$60%

#60%
 cos u du !

l

4p´0r %sin u&60%

#60%

E ! $ dEx ! $60%

#60%

1
4p´0

l

r2  cos u r du

dEx ! dE cos u !
1

4p´0

l

r2  cos u ds.

(If we had reversed the limits on the integration, we would
have gotten the same result but with a minus sign. Since the
integration gives only the magnitude of , we would then
have discarded the minus sign.)

Charge density: To evaluate l, we note that the full rod
subtends an angle of 120% and so is one-third of a full circle.
Its arc length is then 2pr/3, and its linear charge density
must be

Substituting this into Eq. 22-21 and simplifying give us

(Answer)

The direction of is toward the rod,along the axis of symmetry
of the charge distribution. We can write in unit-vector nota-
tion as

.E
:

!
0.83Q
4p´0r2  î

E
:

E
:

 !
0.83Q
4p´0r2 .

E !
(1.73)(0.477Q)

4p´0r2

l !
charge
length

!
Q

2pr/3
!

0.477Q
r

.

E
:
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57122-5 THE ELECTRIC FIELD DUE TO A CHARGED DISK

Additional examples, video, and practice available at WileyPLUS

x 
P 

(a) 

x 
(b) 

P 

y 

x 
(c) 

P 

y 

+ + + + + + + + + 

+ + + + + + + + + 

+ + + + + + + + + 

Figure 22-14 (a) Point P is on an extension of the line of charge.
(b) P is on a line of symmetry of the line of charge, at perpendicu-
lar distance y from that line. (c) Same as (b) except that P is not on
a line of symmetry.

Checkpoint 2
The figure here shows three nonconducting rods, one circular and
two straight. Each has a uniform charge of magnitude Q along its top
half and another along its bottom half. For each rod, what is the
direction of the net electric field at point P?

x x x

y y y 

–Q

+Q 

P P 

+Q 

+Q 

+Q 

–Q

P 

(a) (b) (c)

Straight line, with point P at perpendicular dis-
tance y from the line of charge, as in Fig. 22-14b. In the
expression for dE, replace r with an expression involving x
and y. If P is on the perpendicular bisector of the line of
charge, find an expression for the adding component of 
That will introduce either sin u or cos u. Reduce the result-
ing two variables x and u to one, x, by replacing the
trigonometric function with an expression (its definition)
involving x and y. Integrate over x from end to end of the
line of charge. If P is not on a line of symmetry, as in
Fig. 22-14c, set up an integral to sum the components dEx,
and integrate over x to find Ex. Also set up an integral
to sum the components dEy, and integrate over x again to
find Ey. Use the components Ex and Ey in the usual way to
find the magnitude E and the orientation of .

Step 6. One arrangement of the integration limits gives a
positive result.The reverse gives the same result with a mi-

E
:

dE
:

.

nus sign; discard the minus sign. If the result is to be stated
in terms of the total charge Q of the distribution, replace l
with Q/L, in which L is the length of the distribution.

22-5 THE ELECTRIC FIELD DUE TO A CHARGED DISK

After reading this module, you should be able to . . .

22.19 Sketch a disk with uniform charge and indicate the di-
rection of the electric field at a point on the central axis if
the charge is positive and if it is negative.

22.20 Explain how the equation for the electric field on the
central axis of a uniformly charged ring can be used to find

the equation for the electric field on the central axis of a
uniformly charged disk.

22.21 For a point on the central axis of a uniformly charged
disk, apply the relationship between the surface charge den-
sity s, the disk radius R, and the distance z to that point.

● On the central axis through a uniformly charged disk,

E !
s

2´0
"1 #

z2z2 " R2 #
gives the electric field magnitude. Here z is the distance
along the axis from the center of the disk, R is the radius of
the disk, and s is the surface charge density.

Learning Objectives

Key Idea

The Electric Field Due to a Charged Disk
Now we switch from a line of charge to a surface of charge by examining the elec-
tric field of a circular plastic disk, with a radius R and a uniform surface charge
density s (charge per unit area, Table 22-1) on its top surface. The disk sets up a
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572 CHAPTER 22 ELECTRIC FIELDS

pattern of electric field lines around it, but here we restrict our attention to the
electric field at an arbitrary point P on the central axis, at distance z from the cen-
ter of the disk, as indicated in Fig. 22-15.

We could proceed as in the preceding module but set up a two-dimensional in-
tegral to include all of the field contributions from the two-dimensional distribu-
tion of charge on the top surface. However, we can save a lot of work with a neat
shortcut using our earlier work with the field on the central axis of a thin ring.

We superimpose a ring on the disk as shown in Fig. 22-15, at an arbitrary ra-
dius The ring is so thin that we can treat the charge on it as a charge ele-
ment dq. To find its small contribution dE to the electric field at point P, we
rewrite Eq. 22-16 in terms of the ring’s charge dq and radius r :

(22-22)

The ring’s field points in the positive direction of the z axis.
To find the total field at P, we are going to integrate Eq. 22-22 from the cen-

ter of the disk at r ! 0 out to the rim at r ! R so that we sum all the dE contribu-
tions (by sweeping our arbitrary ring over the entire disk surface). However, that
means we want to integrate with respect to a variable radius r of the ring.

We get dr into the expression by substituting for dq in Eq. 22-22. Because the ring
is so thin, call its thickness dr.Then its surface area dA is the product of its circumfer-
ence 2pr and thickness dr.So, in terms of the surface charge density s,we have

dq ! s dA ! s (2pr dr). (22-23)

After substituting this into Eq. 22-22 and simplifying slightly, we can sum all the
dE contributions with

(22-24)

where we have pulled the constants (including z) out of the integral. To solve
this integral, we cast it in the form by setting X ! (z2 " r 2), ,m ! #3

2$ Xm dX

E ! $ dE !
sz
4´0

$R

0
(z2 " r2)#3/2(2r) dr,

dE !
dq z

4p´0(z2 " r2)3/2 .

r + R.

Figure 22-15 A disk of radius R and uniform
positive charge.The ring shown has radius r
and radial width dr. It sets up a differential
electric field at point P on its central
axis.

dE
:

R 

P 

dE 

dr r 

z 

and dX ! (2r) dr. For the recast integral we have

and so Eq. 22-24 becomes

(22-25)

Taking the limits in Eq. 22-25 and rearranging, we find

(charged disk) (22-26)

as the magnitude of the electric field produced by a flat, circular, charged disk at
points on its central axis. (In carrying out the integration, we assumed that z , 0.)

If we let R : ` while keeping z finite, the second term in the parentheses in
Eq. 22-26 approaches zero, and this equation reduces to

(infinite sheet). (22-27)

This is the electric field produced by an infinite sheet of uniform charge located
on one side of a nonconductor such as plastic. The electric field lines for such
a situation are shown in Fig. 22-4.

We also get Eq. 22-27 if we let z : 0 in Eq. 22-26 while keeping R finite. This
shows that at points very close to the disk, the electric field set up by the disk is
the same as if the disk were infinite in extent.

E !
s

2´0

E !
s

2´0
"1 #

z2z2 " R2 #

E !
sz
4´0

% (z2 " r2)#1/2

#1
2

&R

0
.

$ Xm dX !
Xm"1

m " 1
,
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57322-6 A POINT CHARGE IN AN ELECTRIC FIELD

22-6 A POINT CHARGE IN AN ELECTRIC FIELD

After reading this module, you should be able to . . .

22.22 For a charged particle placed in an external electric
field (a field due to other charged objects), apply the rela-
tionship between the electric field at that point, the parti-
cle’s charge q, and the electrostatic force that acts on
the particle, and identify the relative directions of the force

F
:

E
:

and the field when the particle is positively charged and
negatively charged.

22.23 Explain Millikan’s procedure of measuring the elemen-
tary charge.

22.24 Explain the general mechanism of ink-jet printing.

● If a particle with charge q is placed in an external electric
field , an electrostatic force acts on the particle:

.F
:

! qE
:

F
:

E
:

● If charge q is positive, the force vector is in the same direc-
tion as the field vector. If charge q is negative, the force vec-
tor is in the opposite direction (the minus sign in the equation
reverses the force vector from the field vector).

Learning Objectives

Key Ideas

A Point Charge in an Electric Field
In the preceding four modules we worked at the first of our two tasks: given a
charge distribution, to find the electric field it produces in the surrounding space.
Here we begin the second task: to determine what happens to a charged particle
when it is in an electric field set up by other stationary or slowly moving charges.

What happens is that an electrostatic force acts on the particle, as given by

(22-28)

in which q is the charge of the particle (including its sign) and is the electric
field that other charges have produced at the location of the particle. (The field is
not the field set up by the particle itself; to distinguish the two fields, the field
acting on the particle in Eq. 22-28 is often called the external field. A charged
particle or object is not affected by its own electric field.) Equation 22-28 tells us

E
:

F
:

! qE
:

,

The electrostatic force acting on a charged particle located in an external electric
field has the direction of if the charge q of the particle is positive and has the
opposite direction if q is negative.

E
:

E
:

F
:

Figure 22-16 The Millikan oil-drop apparatus
for measuring the elementary charge e.
When a charged oil drop drifted into cham-
ber C through the hole in plate P1, its mo-
tion could be controlled by closing and
opening switch S and thereby setting up or
eliminating an electric field in chamber C.
The microscope was used to view the drop,
to permit timing of its motion.

Insulating 
chamber 
wall 

+ – 
B 

S 

P2 

C Oil 
drop 

P1 

A 

Microscope 

Oil 
spray 

Measuring the Elementary Charge
Equation 22-28 played a role in the measurement of the elementary charge e by
American physicist Robert A. Millikan in 1910–1913. Figure 22-16 is a represen-
tation of his apparatus. When tiny oil drops are sprayed into chamber A, some of
them become charged, either positively or negatively, in the process. Consider a
drop that drifts downward through the small hole in plate P1 and into chamber C.
Let us assume that this drop has a negative charge q.

If switch S in Fig. 22-16 is open as shown, battery B has no electrical effect on
chamber C. If the switch is closed (the connection between chamber C and the
positive terminal of the battery is then complete), the battery causes an excess
positive charge on conducting plate P1 and an excess negative charge on conduct-
ing plate P2. The charged plates set up a downward-directed electric field in
chamber C. According to Eq. 22-28, this field exerts an electrostatic force on any
charged drop that happens to be in the chamber and affects its motion. In partic-
ular, our negatively charged drop will tend to drift upward.

By timing the motion of oil drops with the switch opened and with it closed
and thus determining the effect of the charge q, Millikan discovered that the

E
:
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574 CHAPTER 22 ELECTRIC FIELDS

Figure 22-18 The metal wires are so charged
that the electric fields they produce in the
surrounding space cause the air there to un-
dergo electrical breakdown.

Adam Hart-Davis/Photo Researchers, Inc.

values of q were always given by

q ! ne, for n ! 0, -1, -2, -3, . . . , (22-29)

in which e turned out to be the fundamental constant we call the elementary
charge, 1.60 ( 10#19 C. Millikan’s experiment is convincing proof that charge is
quantized, and he earned the 1923 Nobel Prize in physics in part for this work.
Modern measurements of the elementary charge rely on a variety of interlocking
experiments, all more precise than the pioneering experiment of Millikan.

Ink-Jet Printing
The need for high-quality, high-speed printing has caused a search for an
alternative to impact printing, such as occurs in a standard typewriter. Building
up letters by squirting tiny drops of ink at the paper is one such alternative.

Figure 22-17 shows a negatively charged drop moving between two conduct-
ing deflecting plates, between which a uniform, downward-directed electric field 
has been set up. The drop is deflected upward according to Eq. 22-28 and then
strikes the paper at a position that is determined by the magnitudes of and the
charge q of the drop.

In practice, E is held constant and the position of the drop is determined by
the charge q delivered to the drop in the charging unit, through which the drop
must pass before entering the deflecting system. The charging unit, in turn, is
activated by electronic signals that encode the material to be printed.

Electrical Breakdown and Sparking
If the magnitude of an electric field in air exceeds a certain critical value Ec, the
air undergoes electrical breakdown, a process whereby the field removes elec-
trons from the atoms in the air. The air then begins to conduct electric current
because the freed electrons are propelled into motion by the field. As they
move, they collide with any atoms in their path, causing those atoms to emit
light. We can see the paths, commonly called sparks, taken by the freed elec-
trons because of that emitted light. Figure 22-18 shows sparks above charged
metal wires where the electric fields due to the wires cause electrical break-
down of the air.

E
:

E
:

Checkpoint 3
(a) In the figure, what is the direction of the electro-
static force on the electron due to the external
electric field shown? (b) In which direction will the
electron accelerate if it is moving parallel to the y axis
before it encounters the external field? (c) If, instead,
the electron is initially moving rightward, will its
speed increase, decrease, or remain constant?

x 
e 

y 

E 

Input 
signals 

Deflecting plate 

G C 
Deflecting 

plate 

E 

Figure 22-17 Ink-jet printer. Drops shot from generator G receive a charge in charging unit
C.An input signal from a computer controls the charge and thus the effect of field on
where the drop lands on the paper.

E
:
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57522-7 A DIPOLE IN AN ELECTRIC FIELD

magnitude QE acts upward on the charged drop. Thus, as the
drop travels parallel to the x axis at constant speed vx, it
accelerates upward with some constant acceleration ay.

Calculations: Applying Newton’s second law (F ! ma) for
components along the y axis, we find that

Sample Problem 22.04 Motion of a charged particle in an electric field

Figure 22-19 shows the de-
flecting plates of an ink-jet
printer, with superimposed
coordinate axes. An ink drop
with a mass m of 1.3 ( 10#10

kg and a negative charge of
magnitude Q ! 1.5 ( 10#13

C enters the region between
the plates, initially moving
along the x axis with speed 
vx ! 18 m/s. The length L of
each plate is 1.6 cm. The
plates are charged and thus
produce an electric field at all
points between them. Assume that field is downward
directed, is uniform, and has a magnitude of 1.4 ( 106 N/C.
What is the vertical deflection of the drop at the far edge
of the plates? (The gravitational force on the drop is small
relative to the electrostatic force acting on the drop and
can be neglected.)

KEY IDEA

The drop is negatively charged and the electric field is directed
downward. From Eq. 22-28, a constant electrostatic force of

E
:

Additional examples, video, and practice available at WileyPLUS

Figure 22-19 An ink drop of
mass m and charge magnitude
Q is deflected in the electric
field of an ink-jet printer.

22-7 A DIPOLE IN AN ELECTRIC FIELD
Learning Objectives

22.27 For an electric dipole in an external electric field, relate
the potential energy of the dipole to the work done by a
torque as the dipole rotates in the electric field.

22.28 For an electric dipole in an external electric field, calcu-
late the potential energy by taking a dot product of the dipole
moment vector and the electric field vector, in magnitude-
angle notation and unit-vector notation.

22.29 For an electric dipole in an external electric field, iden-
tify the angles for the minimum and maximum potential en-
ergies and the angles for the minimum and maximum
torque magnitudes.

● The torque on an electric dipole of dipole moment when
placed in an external electric field is given by a cross product:

● A potential energy U is associated with the orientation of
the dipole moment in the field, as given by a dot product:

U ! #p: ! E
:

.

t: ! p: ( E
:

.

E
:

p: ● If the dipole orientation changes, the work done by the
electric field is

If the change in orientation is due to an external agent, the
work done by the agent is Wa ! #W.

W ! #.U.

After reading this module, you should be able to . . . 

22.25 On a sketch of an electric dipole in an external electric
field, indicate the direction of the field, the direction of the
dipole moment, the direction of the electrostatic forces on
the two ends of the dipole, and the direction in which
those forces tend to rotate the dipole, and identify the
value of the net force on the dipole.

22.26 Calculate the torque on an electric dipole in an exter-
nal electric field by evaluating a cross product of the dipole
moment vector and the electric field vector, in magnitude-
angle notation and unit-vector notation.

Key Ideas

y 

x 
x = L 

m,Q

0 
E

Plate 

Plate

(22-30)

Let t represent the time required for the drop to pass
through the region between the plates. During t the vertical
and horizontal displacements of the drop are

(22-31)

respectively. Eliminating t between these two equations and
substituting Eq. 22-30 for ay, we find

(Answer) ! 0.64 mm.

 ! 6.4 ( 10#4 m

 !
(1.5 ( 10#13 C)(1.4 ( 106 N/C)(1.6 ( 10#2 m)2

(2)(1.3 ( 10#10 kg)(18 m/s)2

y !
QEL2

2mvx
2

y ! 1
2ayt2 and L ! vxt,

ay !
F
m

!
QE
m

.
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576 CHAPTER 22 ELECTRIC FIELDS

A Dipole in an Electric Field
We have defined the electric dipole moment of an electric dipole to be a vector that
points from the negative to the positive end of the dipole.As you will see, the behavior
of a dipole in a uniform external electric field can be described completely in terms
of the two vectors and ,with no need of any details about the dipole’s structure.

A molecule of water (H2O) is an electric dipole; Fig. 22-20 shows why. There
the black dots represent the oxygen nucleus (having eight protons) and the two
hydrogen nuclei (having one proton each). The colored enclosed areas represent
the regions in which electrons can be located around the nuclei.

In a water molecule, the two hydrogen atoms and the oxygen atom do not
lie on a straight line but form an angle of about 105%, as shown in Fig. 22-20. As
a result, the molecule has a definite “oxygen side” and “hydrogen side.”
Moreover, the 10 electrons of the molecule tend to remain closer to the oxygen
nucleus than to the hydrogen nuclei. This makes the oxygen side of the molecule
slightly more negative than the hydrogen side and creates an electric dipole
moment that points along the symmetry axis of the molecule as shown.
If the water molecule is placed in an external electric field, it behaves as would be
expected of the more abstract electric dipole of Fig. 22-9.

To examine this behavior, we now consider such an abstract dipole in a uniform
external electric field , as shown in Fig. 22-21a.We assume that the dipole is a rigid
structure that consists of two centers of opposite charge, each of magnitude q, sepa-
rated by a distance d.The dipole moment makes an angle u with field .

Electrostatic forces act on the charged ends of the dipole. Because the
electric field is uniform, those forces act in opposite directions (as shown in
Fig. 22-21a) and with the same magnitude F ! qE. Thus, because the field is
uniform, the net force on the dipole from the field is zero and the center of mass
of the dipole does not move. However, the forces on the charged ends do produce
a net torque t: on the dipole about its center of mass. The center of mass lies on
the line connecting the charged ends, at some distance x from one end and thus
a distance d # x from the other end. From Eq. 10-39 (t ! rF sin f), we can write
the magnitude of the net torque t: as

t ! Fx sin u " F(d # x) sin u ! Fd sin u. (22-32)

We can also write the magnitude of t: in terms of the magnitudes of the elec-
tric field E and the dipole moment p ! qd. To do so, we substitute qE for F and
p/q for d in Eq. 22-32, finding that the magnitude of t: is

t ! pE sin u. (22-33)

We can generalize this equation to vector form as

(torque on a dipole). (22-34)

Vectors p: and are shown in Fig. 22-21b. The torque acting on a dipole tends to
rotate p: (hence the dipole) into the direction of field , thereby reducing u. In
Fig. 22-21, such rotation is clockwise. As we discussed in Chapter 10, we can rep-
resent a torque that gives rise to a clockwise rotation by including a minus sign
with the magnitude of the torque.With that notation, the torque of Fig. 22-21 is

t ! #pE sin u. (22-35)

Potential Energy of an Electric Dipole
Potential energy can be associated with the orientation of an electric dipole in
an electric field. The dipole has its least potential energy when it is in its equi-
librium orientation, which is when its moment p: is lined up with the field 
(then . It has greater potential energy in all other orientations.
Thus the dipole is like a pendulum, which has its least gravitational potential

t: ! p: ( E
:

! 0)
E
:

E
:

E
:

t: ! p: ( E
:

E
:

p:

E
:

p:

p:E
:

E
:

p:

Figure 22-20 A molecule of H2O, showing the
three nuclei (represented by dots) and the
regions in which the electrons can be lo-
cated.The electric dipole moment p: points
from the (negative) oxygen side to the (pos-
itive) hydrogen side of the molecule.

105° 

Hydrogen Hydrogen

Oxygen 

Positive side 

Negative side 

p 
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57722-7 A DIPOLE IN AN ELECTRIC FIELD

energy in its equilibrium orientation—at its lowest point. To rotate the dipole or
the pendulum to any other orientation requires work by some external agent.

In any situation involving potential energy, we are free to define the zero-
potential-energy configuration in an arbitrary way because only differences in po-
tential energy have physical meaning.The expression for the potential energy of an
electric dipole in an external electric field is simplest if we choose the potential en-
ergy to be zero when the angle u in Fig. 22-21 is 90%. We then can find the potential
energy U of the dipole at any other value of u with Eq. 8-1 (.U ! #W) by calculat-
ing the work W done by the field on the dipole when the dipole is rotated to that
value of u from 90%. With the aid of Eq. 10-53 (W ! 't du) and Eq. 22-35, we find
that the potential energy U at any angle u is

(22-36)

Evaluating the integral leads to

U ! #pE cos u. (22-37)

We can generalize this equation to vector form as

(potential energy of a dipole). (22-38)

Equations 22-37 and 22-38 show us that the potential energy of the dipole is least
( ) when ( and are in the same direction); the potential energy is
greatest ( ) when 180 ( and are in opposite directions).

When a dipole rotates from an initial orientation ui to another orientation uf,
the work W done on the dipole by the electric field is

W ! #.U ! #(Uf # Ui), (22-39)

where Uf and Ui are calculated with Eq. 22-38. If the change in orientation is
caused by an applied torque (commonly said to be due to an external agent), then
the work Wa done on the dipole by the applied torque is the negative of the work
done on the dipole by the field; that is,

Wa ! #W ! (Uf # Ui). (22-40)

Microwave Cooking
Food can be warmed and cooked in a microwave oven if the food contains water
because water molecules are electric dipoles. When you turn on the oven, the mi-
crowave source sets up a rapidly oscillating electric field within the oven and
thus also within the food. From Eq. 22-34, we see that any electric field pro-
duces a torque on an electric dipole moment to align with . Because the
oven’s oscillates, the water molecules continuously flip-flop in a frustrated at-
tempt to align with .

Energy is transferred from the electric field to the thermal energy of the water
(and thus of the food) where three water molecules happened to have bonded to-
gether to form a group. The flip-flop breaks some of the bonds. When the mole-
cules reform the bonds, energy is transferred to the random motion of the group
and then to the surrounding molecules. Soon, the thermal energy of the water is
enough to cook the food.

E
:

E
:

E
:

p:p:
E
:

E
:

E
:

p:%u !U ! pE
E
:

p:/ ! 0U ! #pE

U ! #p:
 
! E

:

U ! #W ! #$u

90%

 t du ! $u

90%
 pE sin u du.

Figure 22-21 (a) An electric dipole in a
uniform external electric field E

:
.Two cen-

ters of equal but opposite charge are sepa-
rated by distance d. The line between them
represents their rigid connection. (b) Field
E
:

causes a torque t: on the dipole.The di-
rection of t: is into the page, as represented
by the symbol !.

The dipole is being 
torqued into alignment.

(a) 

(b)

p 
d 

θ 

+q 

–q

θτ

com 

F 

p

–F

E 

E

Checkpoint 4
The figure shows four orientations of an electric di-
pole in an external electric field. Rank the orienta-
tions according to (a) the magnitude of the torque
on the dipole and (b) the potential energy of the di-
pole, greatest first.

E θ 
θ 

(1) 

(3) 

(2) 

(4) 

+ + 

+ + 

θ 
θ 
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578 CHAPTER 22 ELECTRIC FIELDS

Electric Field To explain the electrostatic force between two
charges, we assume that each charge sets up an electric field in the
space around it. The force acting on each charge is then due to the
electric field set up at its location by the other charge.

Definition of Electric Field The electric field at any point
is defined in terms of the electrostatic force that would be ex-
erted on a positive test charge q0 placed there:

(22-1)

Electric Field Lines Electric field lines provide a means for visu-
alizing the direction and magnitude of electric fields.The electric field
vector at any point is tangent to a field line through that point. The
density of field lines in any region is proportional to the magnitude of
the electric field in that region. Field lines originate on positive
charges and terminate on negative charges.

Field Due to a Point Charge The magnitude of the electric
field set up by a point charge q at a distance r from the charge is

(22-3)E !
1

4p´0

!q!
r2 .

E
:

E
:

!
F
:

q0

.

F
:

E
:

Review & Summary

The direction of is away from the point charge if the charge is
positive and toward it if the charge is negative.

Field Due to an Electric Dipole An electric dipole consists
of two particles with charges of equal magnitude q but opposite
sign, separated by a small distance d. Their electric dipole moment

has magnitude qd and points from the negative charge to the
positive charge. The magnitude of the electric field set up by the
dipole at a distant point on the dipole axis (which runs through
both charges) is

(22-9)

where z is the distance between the point and the center of the
dipole.

Field Due to a Continuous Charge Distribution The
electric field due to a continuous charge distribution is found by
treating charge elements as point charges and then summing, via
integration, the electric field vectors produced by all the charge el-
ements to find the net vector.

E !
1

2p´0

p
z3 ,

p:

E
:

KEY IDEA

The torque on a dipole is maximum when the angle u be-
tween and is 90%.

Calculation: Substituting u ! 90% in Eq. 22-33 yields

(Answer)

(c) How much work must an external agent do to rotate this
molecule by 180% in this field, starting from its fully aligned
position, for which u ! 0?

KEY IDEA

The work done by an external agent (by means of a
torque applied to the molecule) is equal to the change in
the molecule’s potential energy due to the change in
orientation.

Calculation: From Eq. 22-40, we find

(Answer) ! 1.9 ( 10#25 J.
 ! 2pE ! (2)(6.2 ( 10#30 C $m)(1.5 ( 104 N/C)
 ! (#pE cos 180%) # (#pE cos 0)

Wa ! U180% # U 0

 ! 9.3 ( 10#26 N $m.
 ! (6.2 ( 10#30 C $m)(1.5 ( 104 N/C)(sin 90%)

t ! pE sin u

E
:

p:

Sample Problem 22.05 Torque and energy of an electric dipole in an electric field

A neutral water molecule (H2O) in its vapor state has an
electric dipole moment of magnitude 6.2 ( 10#30 C $m.
(a) How far apart are the molecule’s centers of positive and
negative charge?

KEY IDEA

A molecule’s dipole moment depends on the magnitude q
of the molecule’s positive or negative charge and the charge
separation d.

Calculations: There are 10 electrons and 10 protons in a
neutral water molecule; so the magnitude of its dipole mo-
ment is

p ! qd ! (10e)(d),

in which d is the separation we are seeking and e is the ele-
mentary charge.Thus,

(Answer)

This distance is not only small, but it is also actually smaller
than the radius of a hydrogen atom.

(b) If the molecule is placed in an electric field of 1.5 (
104 N/C, what maximum torque can the field exert on it?
(Such a field can easily be set up in the laboratory.)

 ! 3.9 ( 10#12 m ! 3.9 pm.

d !
p

10e
!

6.2 ( 10#30 C $m
(10)(1.60 ( 10#19 C)

Additional examples, video, and practice available at WileyPLUS
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579PROBLEMS

Field Due to a Charged Disk The electric field magnitude
at a point on the central axis through a uniformly charged disk is
given by

(22-26)

where z is the distance along the axis from the center of the disk, R
is the radius of the disk, and s is the surface charge density.

Force on a Point Charge in an Electric Field When a
point charge q is placed in an external electric field , the electro-
static force that acts on the point charge is

. (22-28)F
:

! qE
:

F
:

E
:

E !
s

2´0
"1 #

z2z2 " R2 #,

Force has the same direction as if q is positive and the
opposite direction if q is negative.

Dipole in an Electric Field When an electric dipole of dipole
moment is placed in an electric field , the field exerts a torque 
on the dipole:

(22-34)

The dipole has a potential energy U associated with its orientation
in the field:

(22-38)

This potential energy is defined to be zero when is perpendicular
to ; it is least ( ) when is aligned with and greatest
( ) when is directed opposite .E

:
p:U ! pE

E
:

p:U ! #pEE
:

p:
U ! #p: ! E

:
.

t: ! p: ( E
:

.

t:E
:

p:

E
:

F
:

1 Two charged particles are fixed to an x axis: Particle 1 of charge
q1 ! 2.1 ( 10#8 C is at position x ! 20 cm and particle 2 of charge 
q2 ! #4.00q1 is at position x ! 70 cm. (a) At what coordinate on the
axis (other than at infinity) is the net electric field produced by the
two particles equal to zero? (b) What is the zero-field coordinate if
the particles are interchanged?

2 The electric field of an electric dipole along the dipole axis is
approximated by Eqs. 22-8 and 22-9. If a binomial expansion is
made of Eq. 22-7, what is the next term in the expression for the di-
pole’s electric field along the dipole axis? That is, what is Enext in
the expression

3 At what distance along the central perpendicular axis of a uni-
formly charged plastic disk of radius 0.600 m is the magnitude of
the electric field equal to 25% of the magnitude of the field at the
center of the surface of the disk?

4 Density, density, density. (a) A charge #300e is uniformly dis-
tributed along a circular arc of radius 4.00 cm, which subtends an
angle of 40%. What is the linear charge density along the arc? (b) A
charge #300e is uniformly distributed over one face of a circular
disk of radius 2.00 cm. What is the surface charge density over that
face? (c) A charge #300e is uniformly distributed over the surface
of a sphere of radius 4.00 cm. What is the surface charge density
over that surface? (d) A charge #300e is uniformly spread through
the volume of a sphere of radius 2.00 cm. What is the volume
charge density in that sphere?

5 Assume that a honeybee is a sphere of diameter 1.000 cm with a
charge of 60.0 pC uniformly spread over its surface. Assume also
that a spherical pollen grain of diameter 40.0 mm is electrically held
on the surface of the bee because the bee’s charge induces a charge 
of #1.00 pC on the near side of the grain and a charge of "1.00 pC
on the far side. (a) What is the magnitude of the net electrostatic
force on the grain due to the bee? Next, assume that the bee brings
the grain to a distance of 1.000 mm from the tip of a flower’s stigma
and that the tip is a particle of charge #60.0 pC. (b) What is the mag-
nitude of the net electrostatic force on the grain due to the stigma?
(c) Does the grain remain on the bee or move to the stigma?

6 A thin nonconducting rod with a uniform distribution of posi-
tive charge Q is bent into a complete circle of radius R (Fig. 22-22).

"

E !
1

2p´0

qd
z3 " Enext?

Problems

The central perpendicular axis through
the ring is a z axis, with the origin at the
center of the ring.What is the magnitude
of the electric field due to the rod at (a)
z ! 0 and (b) z ! 0? (c) In terms of R,
at what positive value of z is that magni-
tude maximum? (d) If R ! 2.00 cm and
Q ! 5.00 mC, what is the maximum
magnitude?

7 Two large parallel copper plates
are 8.0 cm apart and have a uniform
electric field between them as de-
picted in Fig. 22-23.An electron is re-
leased from the negative plate at the
same time that a proton is released
from the positive plate. Neglect the
force of the particles on each other
and find their distance from the pos-
itive plate when they pass each
other. (Does it surprise you that you
need not know the electric field to
solve this problem?)

8 Figure 22-24 shows an uneven
arrangement of electrons (e) and
protons (p) on a circular arc of ra-
dius r ! 2.50 cm, with angles 
u1 ! 30.0%, u2 ! 50.0%, u3 ! 30.0%,
and u4 ! 20.0%. What are the (a)
magnitude and (b) direction (rela-
tive to the positive direction of the
x axis) of the net electric field pro-
duced at the center of the arc?

9 Figure 22-25 shows two paral-
lel nonconducting rings with their
central axes along a common line.
Ring 1 has uniform charge q1 and
radius R; ring 2 has uniform
charge q2 and the same radius R.
The rings are separated by dis-
tance d ! 4.00R. The net electric
field at point P on the common line, at distance R from ring 1, is
zero. What is the ratio q1/q2?

Figure 22-22 Problem 6.

z 

R 

p p 

e 

p 
e 

y 

x 
1 θ 

2 θ 
3 θ 

4 θ 

Figure 22-24 Problem 8.

Figure 22-23 Problem 7.

Positive 
plate 

Negative 
plate p 

e 

E 

Ring 1 Ring 2 

P

q1 q2 

R 

R

d 

R 

Figure 22-25 Problem 9.
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16 Two charged particles are attached to an x axis: Particle 1 of
charge #4.00 ( 10#7 C is at position x ! #5.00 cm and particle 2 of
charge "4.00 ( 10#7 C is at position x ! 10.0 cm. Midway between
the particles, what is their net electric field in unit-vector notation?

17 Suppose you design an appara-
tus in which a uniformly charged
disk of radius R is to produce an
electric field. The field magnitude is
most important along the central
perpendicular axis of the disk, at a
point P at distance 2.00R from the
disk (Fig. 22-31a). Cost analysis sug-
gests that you switch to a ring of the
same outer radius R but with inner
radius R /4.00 (Fig. 22-31b). Assume
that the ring will have the same sur-
face charge density as the original
disk. If you switch to the ring, by what percentage will you decrease
the electric field magnitude at P?

18 A certain electric dipole is
placed in a uniform electric field of
magnitude 50 N/C. Figure 22-32 gives
the potential energy U of the dipole
versus the angle between and the
dipole moment . The vertical axis
scale is set by Us 100 10#28 J.
What is the magnitude of ?

19 In Fig. 22-33, the four particles
form a square of edge length a ! 5.00
cm and have charges q1 ! "30 nC, q2 !
#15 nC, q3 ! "15 nC, and q4 ! #30
nC. In unit-vector notation, what net
electric field do the particles produce at
the square’s center?

20 An electron with a speed of 
2.60 ( 108 cm/s enters an electric field
of magnitude 1.00 ( 103 N/C, traveling
along a field line in the direction that
retards its motion. (a) How far will the
electron travel in the field before stopping momentarily, and (b)
how much time will have elapsed? (c) If the region containing the
electric field is 8.00 mm long (too short for the electron to stop
within it), what fraction of the electron’s initial kinetic energy will
be lost in that region?

21 An electron is released from rest on the axis of an electric dipole
is 25 nm from the center of the dipole. What is the magnitude of the
electron’s acceleration if the dipole moment is 3.6 ( 10#29 C $m?
Assume that 25 nm is much larger than the separation of the charged
particles that form the dipole.

22 In Fig. 22-34 the electric field
lines on the left have twice the sepa-
ration of those on the right. (a) If the
magnitude of the field at A is 60
N/C, what is the magnitude of the
force on a proton at A?(b) What is
the magnitude of the field at B?

23 A 10.0 g block with a charge of "8.00 ( 10#5 C is placed in an
electric field What are the (a) magnitudeE

:
! (3000î # 6000ĵ ) N/C.

p:
(!

p:
E
:

u

E
:

580 CHAPTER 22 ELECTRIC FIELDS

10 In Fig. 22-26, positive charge 
q ! 9.25 pC is spread uniformly
along a thin nonconducting rod of
length L ! 16.0 cm. What are the
(a) magnitude and (b) direction
(relative to the positive direction of
the x axis) of the electric field pro-
duced at point P, at distance R !
6.00 cm from the rod along its per-
pendicular bisector?

11 In Fig. 22-27, two curved
plastic rods, one of charge "q and
the other of charge #q, form a circle of ra-
dius R ! 4.25 cm in an xy plane. The x axis
passes through both of the connecting
points, and the charge is distributed uni-
formly on both rods. If q ! 15.0 pC, what
are the (a) magnitude and (b) direction
(relative to the positive direction of the x
axis) of the electric field produced at P,
the center of the circle?

12 A charged particle creates an electric field of magnitude 300
N/C at a point 0.800 m away. What is the difference in the field
magnitude between that point and one at 0.400 m?

13 In Fig. 22-28, a nonconducting
rod of length L ! 8.15 cm has a
charge #q ! #4.23 fC uniformly
distributed along its length. (a)
What is the linear charge density
of the rod? What are the (b) mag-
nitude and (c) direction (relative to the positive direction of the x
axis) of the electric field produced at point P, at distance a ! 6.00
cm from the rod? What is the electric field magnitude produced at
distance a !50 m by (d) the rod and (e) a particle of charge #q !
#4.23 fC that we use to replace the rod? (At that distance, the rod
“looks” like a particle.)

14 In Fig. 22-29, a thin glass rod forms a
semicircle of radius r ! 3.00 cm. Charge is
uniformly distributed along the rod, with 
"q ! 4.50 pC in the upper half and
#q ! #4.50 pC in the lower half. What are
the (a) magnitude and (b) direction (rela-
tive to the positive direction of the x axis)
of the electric field at P, the center of
the semicircle?

15 Electric quadrupole.Figure 22-30
shows a generic electric quadrupole.
It consists of two dipoles with dipole
moments that are equal in magnitude
but opposite in direction. Show that
the value of E on the axis of the
quadrupole for a point P a distance z
from its center (assume z d) is
given by

in which Q (! 2qd 2) is known as the quadrupole moment of the
charge distribution.

E !
3Q

4p´0z4 ,

&

E
:

E
:

A 
B 

Figure 22-34 Problem 22.
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x 

Figure 22-29
Problem 14.

Figure 22-33 Problem 19.

a

a 

q4 q3 

q1 q2 

x

y Figure 22-28 Problem 13.
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Figure 22-31 Problem 17.
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Figure 22-30 Problem 15.

Figure 22-27
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Figure 22-26 Problem 10.
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Figure 22-39 Problem 34.

and (b) direction (relative to the positive direction of the x axis) of
the electrostatic force on the block? If the block is released from
rest at the origin at time t ! 0, then at t = 3.00 s what are its (c) x
and (d) y coordinates and (e) its speed?

24 Figure 22-35 shows a plastic
ring of radius R ! 43.0 cm.Two small
charged beads are on the ring: Bead
1 of charge "2.00 mC is fixed in
place at the left side; bead 2 of
charge "6.00 mC can be moved
along the ring. The two beads pro-
duce a net electric field of magnitude
E at the center of the ring. At what
(a) positive and (b) negative value of
angle u should bead 2 be positioned
such that E ! 2.00 ( 105 N/C?

25 The nucleus of a gold-197 atom contains 79 protons. Assume
that the nucleus is a sphere with radius 6.98 fm and with the charge
of the protons uniformly spread through the sphere.At the surface of
the nucleus, what are the (a) magnitude and (b) direction (radially
inward or outward) of the electric
field produced by the protons?

26 Figure 22-36 shows two con-
centric rings, of radii R and
R* ! 4.00R, that lie on the same
plane. Point P lies on the central z
axis, at distance D ! 2.00R from
the center of the rings. The smaller
ring has uniformly distributed
charge "Q. In terms of Q, what is
the uniformly distributed charge on
the larger ring if the net electric
field at P is zero?

27 Beams of high-speed protons can be produced in “guns” us-
ing electric fields to accelerate the protons. (a) What acceleration
would a proton experience if the gun’s electric field were 
2.00 ( 104 N/C? (b) What speed would the proton attain if the
field accelerated the proton through a distance of 1.00 cm? (c)
How much time would be required?

28 A circular plastic disk with radius R ! 2.00 cm has a uniformly
distributed charge Q ! "(2.00 ( 106)e on one face. A circular ring
of width 40 mm is centered on that face, with the center of that
width at radius r ! 0.50 cm. In coulombs, what charge is contained
within the width of the ring?

29 A charged cloud system produces an electric field in the air
near Earth’s surface.A particle of charge #2.0 ( 10#9 C is acted on
by a downward electrostatic force of 6.0 ( 10#6 N when placed in
this field. (a) What is the magnitude of the electric field? What are
the (b) magnitude and (c) direction of the electrostatic force on
a proton placed in this field? (d) What is the magnitude of the grav-
itational force on the proton? (e) What is the ratio Fel /Fg in this
case? (f) If the proton is released, what is the magnitude of its 
acceleration?

30 Charge is uniformly distributed around a ring of radius
R ! 4.60 cm, and the resulting electric field magnitude E is meas-
ured along the ring’s central axis (perpendicular to the plane of
the ring). At what distance from the ring’s center is E maximum?

F
:

g

F
:

el

31 In Fig. 22-37, the three particles are fixed
in place and have charges q1 ! q2 ! "5e
and q3 ! "2e. Distance a ! 3.00 mm. What
are the (a) magnitude and (b) direction of
the net electric field at point P due to the
particles?

32 In Fig. 22-38, the four particles are fixed
in place and have charges q1 ! q2 ! "5e,
q3 ! "3e, and q4 ! #12e. Distance d ! 8.0
mm. What is the magnitude of the net elec-
tric field at point P due to the particles?

33 In Millikan’s experiment, an oil drop
of radius 1.64 mm and density 0.851 g/cm3

is suspended in chamber C (Fig. 22-16)
when a downward electric field of 
3.20 ( 105 N/C is applied. (a) Find the
charge on the drop, in terms of e. (b) If
the drop had an additional electron,
would it move upward or downward?

34 Figure 22-39a shows two charged
particles fixed in place on an x axis with
separation L. The ratio q1/q2 of their charge magnitudes is 4.00.
Figure 22-39b shows the x component Enet,x of their net electric
field along the x axis just to the right of particle 2.The x axis scale is
set by xs ! 15.0 cm. (a) At what value of x 1 0 is Enet,x maximum?
(b) If particle 2 has charge #q2 ! #3e, what is the value of that
maximum? 

Figure 22-38 Problem 32.
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Figure 22-36 Problem 26.
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Figure 22-37
Problem 31.

Figure 22-35 Problem 24.
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R 

x 

Ring 

θ 

35 An electric dipole consisting of charges of magnitude 1.50 nC
separated by 6.20 mm is in an electric field of strength 300 N/C.What
are (a) the magnitude of the electric dipole moment and (b) the dif-
ference between the potential energies for dipole orientations par-
allel and perpendicular to ?

36 Equations 22-8 and 22-9 are approximations of the magnitude
of the electric field of an electric dipole, at points along the dipole
axis. Consider a point P on that axis at distance z ! 6.00d from the di-
pole center (d is the separation distance between the particles of the
dipole). Let Eappr be the magnitude of the field at point P as approxi-
mated by Eqs. 22-8 and 22-9. Let Eact be the actual magnitude.What is
the ratio Eappr/Eact?

37 An electron is released from rest in a uniform electric field of
magnitude 2.00 ( 104 N/C. (a) Calculate the acceleration of the
electron. (Ignore gravitation.) (b) How much time does the elec-
tron take to reach 1.00% of the speed of light?

38 An electron enters a region of uniform electric field with an
initial velocity of 30 km/s in the same direction as the electric field,

E
:
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50 In Fig. 22-44, an electron is shot
at an initial speed of v0 ! 4.00 ( 106

m/s, at angle u0 ! 40.0% from an x
axis. It moves through a uniform
electric field . A
screen for detecting electrons is po-
sitioned parallel to the y axis, at dis-
tance x ! 3.00 m. In unit-vector notation, what is the velocity of
the electron when it hits the screen?

51 The smaller of two concentric conducting shells has a uni-
form positive charge q1. The larger shell has a uniform negative
charge #q2. Sketch the electric field lines between and outside
the shells and give the direction of the external field lines as be-
ing either radially inward, radially outward, or nonexistent for
these cases: (a) q1 ! q2, (b) q1 1 q2, and (c) q1 2 q2.

52 An electron is accelerated eastward at 3.40 ( 109 m/s2 by an
electric field. Determine the field (a) magnitude and (b) direction.

53 Two charged beads are on the plastic ring in Fig. 22-45a.
Bead 2, which is not shown, is fixed in place on the ring, which
has radius R ! 40.0 cm. Bead 1, which is not fixed in place, is 
initially on the x axis at angle u ! 0%. It is then moved to the 
opposite side, at angle u ! 180%, through the first and second
quadrants of the xy coordinate system. Figure 22-45b gives the x
component of the net electric field produced at the origin by the
two beads as a function of u, and Fig. 22-45c gives the y
component of that net electric field. The vertical axis scales are
set by Exs ! 5.0 ( 104 N/C and Eys ! #9.0 ( 104 N/C. (a) At what
angle u is bead 2 located? What are the charges of (b) bead 1 and
(c) bead 2?

E
:

! (5.00 N/C)ĵ

582 CHAPTER 22 ELECTRIC FIELDS

independent of the distance R. (Hint: Separately find the compo-
nent of parallel to the rod and the component perpendicular
to the rod.) (b) Find the field magnitude for linear charge den-
sity 4.52 nC/m and R = 3.80 cm.

48 A disk of radius 2.5 cm has a surface charge density of 7.0
mC/m2 on its upper face. What is the magnitude of the electric field
produced by the disk at a point on its central axis at distance z ! 12
cm from the disk?

49 Figure 22-43 shows two charged particles on an x axis: #q !
#3.20 ( 10#19 C at x ! #3.00 m and q ! 3.20 ( 10#19 C at x ! "3.00
m.What are the (a) magnitude and (b) direction (relative to the posi-
tive direction of the x axis) of the net electric field produced at point
P at y ! 4.00 m? (c) What is the magnitude of the net field if y is
doubled?

E
:

p

which has magnitude E ! 50 N/C. (a) What is the speed of the
electron 1.5 ns after entering this region? (b) How far does the
electron travel during the 1.5 ns interval?

39 A uniform electric field exists in a region between two oppo-
sitely charged plates. An electron is released from rest at the 
surface of the negatively charged plate and strikes the surface of
the opposite plate, 3.0 cm away, in a time 1.5 ( 10#8 s. Just as the
electron strikes the second plate, what are its (a) momentum 
magnitude and (b) kinetic energy? (c)  What is the magnitude of
the electric field ?

40 An electric dipole consists of charges "2e and #2e separated
by 0.85 nm. It is in an electric field of strength 3.4 ( 106 N/C.
Calculate the magnitude of the torque on the dipole when the di-
pole moment is (a) parallel to, (b) perpendicular to, and 
(c) antiparallel to the electric field.

41 How much work is required to turn an electric dipole 180% in a
uniform electric field of magnitude E ! 46.0 N/C if the dipole mo-
ment has a magnitude of p ! 3.02 ( 10#25 and the initial angle
is 23%?

42 In Fig. 22-40, particle 1 of charge
q1 ! #4.00q and particle 2 of charge 
q2 ! "2.00q are fixed to an x axis. (a) As
a multiple of distance L, at what coordi-
nate on the axis is the net electric field of
the particles zero? (b) Sketch the net
electric field lines between and around
the particles.

43 Find an expression for the oscillation frequency of an electric
dipole of dipole moment and rotational inertia I for small ampli-
tudes of oscillation about its equilibrium position in a uniform
electric field of magnitude E.

44 At some instant the velocity components of an electron mov-
ing between two charged parallel plates are vx ! 2.5 ( 105 m/s and
vy ! 5.0 ( 103 m/s. Suppose the electric field between the plates is
uniform and given by . In unit-vector notation, what
are (a) the electron’s acceleration in that field and (b) the electron’s
velocity when its x coordinate has changed by 2.0 cm?

45 A charged particle produces an electric field with a magnitude
of 2.0 N/C at a point that is 50 cm away from the particle. What is
the magnitude of the field at an additional distance of 25 cm?

46 A certain electric dipole is placed
in a uniform electric field of magni-
tude 40 N/C. Figure 22-41 gives the
magnitude t of the torque on the dipole
versus the angle u between field and
the dipole moment . The vertical axis
scale is set by 
What is the magnitude of ?

47 In Fig. 22-42, a “semi-infinite”
nonconducting rod (that is, infi-
nite in one direction only) has

p:
ts ! 80 ( 10#28 N $m.

p:
E
:

E
:

E
:

! (120 N/C)ĵ

p:

C $m

E
:
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Figure 22-44 Problem 50.
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Figure 22-41 Problem 46.
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Figure 22-40 Problem 42.
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P 

Figure 22-42 Problem 47.

uniform linear charge density l.
(a) Show that the electric field E

:
p

at point P makes an angle of 45%
with the rod and that this result is
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58 In Fig. 22-49, an electron (e) is to be released from rest on
the central axis of a uniformly charged disk of radius R. The sur-
face charge density on the disk is "5.00 mC/m2. What is the mag-
nitude of the electron’s initial acceleration if it is released at a
distance (a) R, (b) R/100, and (c) R/1000 from the center of the
disk? (d) Why does the acceleration magnitude increase only
slightly as the release point is moved closer to the disk?

57 Figure 22-48 shows a proton (p) on the central axis through a
disk with a uniform charge density due to excess electrons. The
disk is seen from an edge-on view. Three of those electrons are
shown: electron ec at the disk center and electrons es at opposite
sides of the disk, at radius R from the center. The proton is initially
at distance z ! R ! 2.00 cm from the disk. At that location, what
are the magnitudes of (a) the electric field due to electron ec and
(b) the net electric field due to electrons es? The proton isE

:
s,net

E
:

c

583PROBLEMS

Figure 22-45 Problem 53.
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54 Figure 22-46a shows a circular disk that is uniformly charged.
The central z axis is perpendicular to the disk face, with the origin
at the disk. Figure 22-46b gives the magnitude of the electric field
along that axis in terms of the maximum magnitude Em at the disk
surface.The z axis scale is set by zs ! 16.0 cm.What is the radius of
the disk?

Figure 22-50 Problem 59.
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Figure 22-46 Problem 54.
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Figure 22-47 Problem 55.

55 Figure 22-47 shows an electric dipole. What are the (a) mag-
nitude and (b) direction (relative to the positive direction of the x
axis) of the dipole’s electric field at point P, located at distance
r d?&

56 Humid air breaks down (its molecules become ionized) in an
electric field of 3.0 ( 106 N/C. In that field, what is the magnitude
of the electrostatic force on (a) an electron and (b) an ion with a
single electron missing, and (c) what is the acceleration magnitude
of a free electron?

then moved to z ! R/20.0. What then are the magnitudes of
(c) at the proton’s location? (e) From (a) and (c)
we see that as the proton gets nearer to the disk, the magnitude of

increases, as expected. Why does the magnitude of from
the two side electrons decrease, as we see from (b) and (d)?

E
:

s,netE
:

c

Ec
:

 and (d) E
:

s,net

59 Figure 22-50 shows three circular arcs centered on the origin
of a coordinate system. On each arc, the uniformly distributed
charge is given in terms of Q ! 4.00 mC. The radii are given in
terms of R ! 5.00 cm. What are the (a) magnitude and (b) direc-
tion (relative to the positive x direction) of the net electric field at
the origin due to the arcs?
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584 CHAPTER 22 ELECTRIC FIELDS

60 An alpha particle (the nucleus of a helium atom) has a mass of
6.64 ( 10#27 kg and a charge of "2e.What are the (a) magnitude and
(b) direction of the electric field that will balance the gravitational
force on the particle? (c) If the field magnitude is then doubled, what
is the magnitude of the particle's acceleration?

61 Figure 22-51a shows a nonconducting rod with a uniformly dis-
tributed charge Q. The rod forms a half-circle with radius R and
produces an electric field of magnitude Earc at its center of curvature
P. If the arc is collapsed to a point at distance R from P (Fig. 22-51b),
by what factor is the magnitude of the electric field at P multiplied?

"

Figure 22-51 Problem 61.
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585

C H A P T E R  2 3

Gauss’ Law

23-1 ELECTRIC FLUX

After reading this module, you should be able to . . .

23.01 Identify that Gauss’ law relates the electric field at points
on a closed surface (real or imaginary, said to be a Gaussian
surface) to the net charge enclosed by that surface.

23.02 Identify that the amount of electric field piercing a sur-
face (not skimming along the surface) is the electric flux !
through the surface.

23.03 Identify that an area vector for a flat surface is a vector
that is perpendicular to the surface and that has a magni-
tude equal to the area of the surface.

23.04 Identify that any surface can be divided into area ele-
ments (patch elements) that are each small enough and
flat enough for an area vector to be assigned to it, with
the vector perpendicular to the element and having a mag-
nitude equal to the area of the element.

dA
:

23.05 Calculate the flux ! through a surface by integrating the
dot product of the electric field vector and the area vec-
tor (for patch elements) over the surface, in magnitude-
angle notation and unit-vector notation.

23.06 For a closed surface, explain the algebraic signs associ-
ated with inward flux and outward flux.

23.07 Calculate the net flux ! through a closed surface, alge-
braic sign included, by integrating the dot product of the
electric field vector and the area vector (for patch ele-
ments) over the full surface.

23.08 Determine whether a closed surface can be broken
up into parts (such as the sides of a cube) to simplify
the integration that yields the net flux through the
surface.

dA
:

E
:

dA
:

E
:

● The electric flux ! through a surface is the amount of electric
field that pierces the surface.
● The area vector for an area element (patch element) on
a surface is a vector that is perpendicular to the element and
has a magnitude equal to the area dA of the element.
● The electric flux d! through a patch element with area
vector is given by a dot product:

● The total flux through a surface is given by
d! " E

:
! dA

:
.

dA
:

dA
:

Key Ideas

Learning Objectives

(total flux),

where the integration is carried out over the surface.
● The net flux through a closed surface (which is used in
Gauss’ law) is given by

(net flux),

where the integration is carried out over the entire surface.

! " !E
:

! dA
:

! " "E
:

! dA
:

What Is Physics?
In the preceding chapter we found the electric field at points near extended
charged objects, such as rods. Our technique was labor-intensive: We split the
charge distribution up into charge elements dq, found the field due to an ele-
ment, and resolved the vector into components.Then we determined whether the
components from all the elements would end up canceling or adding. Finally we
summed the adding components by integrating over all the elements, with several
changes in notation along the way.

One of the primary goals of physics is to find simple ways of solving such
labor-intensive problems. One of the main tools in reaching this goal is the use of
symmetry. In this chapter we discuss a beautiful relationship between charge and

dE
:
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586 CHAPTER 23 GAUSS’ LAW

electric field that allows us, in certain symmetric situations, to find the electric
field of an extended charged object with a few lines of algebra.The relationship is
called Gauss’ law, which was developed by German mathematician and physicist
Carl Friedrich Gauss (1777–1855).

Let’s first take a quick look at some simple examples that give the spirit of
Gauss’ law. Figure 23-1 shows a particle with charge #Q that is surrounded by an
imaginary concentric sphere.At points on the sphere (said to be a Gaussian surface),
the electric field vectors have a moderate magnitude (given by E " kQ/r2) and point
radially away from the particle (because it is positively charged). The electric field
lines are also outward and have a moderate density (which, recall, is related to the
field magnitude).We say that the field vectors and the field lines pierce the surface.

Figure 23-2 is similar except that the enclosed particle has charge #2Q.
Because the enclosed charge is now twice as much, the magnitude of the field
vectors piercing outward through the (same) Gaussian surface is twice as much
as in Fig. 23-1, and the density of the field lines is also twice as much. That sen-
tence, in a nutshell, is Gauss’ law.

Guass’ law relates the electric field at points on a (closed) Gaussian surface to the
net charge enclosed by that surface.

Let’s check this with a third example with a particle that is also enclosed by the
same spherical Gaussian surface (a Gaussian sphere, if you like, or even the catchy
G-sphere) as shown in Fig. 23-3. What is the amount and sign of the enclosed
charge? Well, from the inward piercing we see immediately that the charge must be
negative. From the fact that the density of field lines is half that of Fig. 23-1, we also
see that the charge must be 0.5Q. (Using Gauss’ law is like being able to tell what is
inside a gift box by looking at the wrapping paper on the box.)

The problems in this chapter are of two types. Sometimes we know the
charge and we use Gauss’ law to find the field at some point. Sometimes we know
the field on a Gaussian surface and we use Gauss’ law to find the charge enclosed
by the surface. However, we cannot do all this by simply comparing the density of
field lines in a drawing as we just did. We need a quantitative way of determining
how much electric field pierces a surface. That measure is called the electric flux.

Electric Flux
Flat Surface, Uniform Field. We begin with a flat surface with area A in a uni-
form electric field . Figure 23-4a shows one of the electric field vectors pierc-
ing a small square patch with area $A (where $ indicates “small”). Actually, only
the x component (with magnitude Ex " E cos u in Fig. 23-4b) pierces the patch.
The y component merely skims along the surface (no piercing in that) and does
not come into play in Gauss’ law.The amount of electric field piercing the patch is
defined to be the electric flux "# through it:

$! " (E cos u) $A.

E
:

E
:

Gaussian
surface

Field line

E

Figure 23-4 (a) An electric field vector pierces
a small square patch on a flat surface. (b)
Only the x component actually pierces the
patch; the y component skims across it. (c)
The area vector of the patch is perpendicu-
lar to the patch, with a magnitude equal to
the patch’s area.

Figure 23-1 Electric field vectors and field
lines pierce an imaginary, spherical
Gaussian surface that encloses a particle
with charge #Q.

(a) (b) (c)

y

x

y

u

E

A
!A!A

y

x
Ex

Ey

!A
x

Figure 23-2 Now the enclosed particle has
charge #2Q.

Figure 23-3 Can you tell what the enclosed
charge is now?
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58723-1 ELECTRIC FLUX

An inward piercing field is negative flux. An outward piercing field is positive
flux. A skimming field is zero flux.

Net Flux. In principle, to find the net flux through the surface in Fig. 23-5, we
find the flux at every patch and then sum the results (with the algebraic signs in-
cluded). However, we are not about to do that much work. Instead, we shrink the
squares to patch elements with area vectors and then integrate:

(net flux). (23-4)! " ! E
:

! dA
:

dA
:

There is another way to write the right side of this statement so that we have only
the piercing component of .We define an area vector that is perpendicular to
the patch and that has a magnitude equal to the area $A of the patch (Fig. 23-4c).
Then we can write

and the dot product automatically gives us the component of that is parallel to
and thus piercing the patch.
To find the total flux ! through the surface in Fig. 23-4, we sum the flux

through every patch on the surface:

(23-1)

However, because we do not want to sum hundreds (or more) flux values, we trans-
form the summation into an integral by shrinking the patches from small squares
with area $A to patch elements (or area elements) with area dA.The total flux is then

(total flux). (23-2)

Now we can find the total flux by integrating the dot product over the full surface.
Dot Product. We can evaluate the dot product inside the integral by writing the

two vectors in unit-vector notation. For example, in Fig. 23-4, " dA and mightE
:

îdA
:

! " "E
:

! dA
:

! " # E
:

! $A
:

.

$A
:

E
:

$! " E
:

! $A
:

,

$A
:

E
:

notation: E cos u dA. When the electric field is uniform and the surface is flat, the
product E cos u is a constant and comes outside the integral. The remaining is
just an instruction to sum the areas of all the patch elements to get the total area, but
we already know that the total area is A. So the total flux in this simple situation is

! " (E cos u)A (uniform field, flat surface). (23-3)

Closed Surface. To use Gauss’ law to relate flux and charge, we need a closed
surface. Let’s use the closed surface in Fig. 23-5 that sits in a nonuniform electric
field. (Don’t worry.The homework problems involve less complex surfaces.) As be-
fore, we first consider the flux through small square patches. However, now we are
interested in not only the piercing components of the field but also on whether the
piercing is inward or outward (just as we did with Figs. 23-1 through 23-3).

Directions. To keep track of the piercing direction, we again use an area vec-
tor that is perpendicular to a patch, but now we always draw it pointing outward
from the surface (away from the interior). Then if a field vector pierces outward, it
and the area vector are in the same direction, the angle is u " 0, and cos u " 1.
Thus, the dot product is positive and so is the flux. Conversely, if a field vec-
tor pierces inward, the angle is u " 180% and cos u " &1. Thus, the dot product is
negative and so is the flux. If a field vector skims the surface (no piercing), the dot
product is zero (because cos 90% " 0) and so is the flux. Figure 23-5 gives some
general examples and here is a summary:

$A
:

E
:

'

$A
:

"dA

Gaussian 
surface 
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1 
Φ < 0 

Φ = 0 

Φ > 0 
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A 

∆ A 

∆ A 
E 
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E 

Pierce 
inward:
negative 
flux

Pierce 
outward:
positive 
flux

Skim: zero flux

Figure 23-5 A Gaussian surface of arbitrary
shape immersed in an electric field.The
surface is divided into small squares of area
$A.The electric field vectors and the
area vectors for three representative
squares, marked 1, 2, and 3, are shown.

$A
:

E
:

be, say, (4 # 4 ) N/C. Instead, we can evaluate the dot product in magnitude-angleĵî
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The loop on the integral sign indicates that we must integrate over the entire closed
surface, to get the net flux through the surface (as in Fig. 23-5, flux might enter on
one side and leave on another side). Keep in mind that we want to determine the
net flux through a surface because that is what Gauss’ law relates to the charge en-
closed by the surface. (The law is coming up next.) Note that flux is a scalar (yes, we
talk about field vectors but flux is the amount of piercing field, not a vector itself).
The SI unit of flux is the newton–square-meter per coulomb .(N 'm2/C)

588 CHAPTER 23 GAUSS’ LAW

Checkpoint 1
The figure here shows a Gaussian cube of face area A
immersed in a uniform electric field that has the positive
direction of the z axis. In terms of E and A, what is the flux
through (a) the front face (which is in the xy plane), (b) the
rear face, (c) the top face, and (d) the whole cube?

E
:

y 

x 

z 

A 

E 

where gives the cap’s area A (" pR2). Similarly, for the
right cap, where 0 for all points,

Finally, for the cylindrical surface, where the angle u is 90% at
all points,

Substituting these results into Eq. 23-5 leads us to
! " &EA # 0 # EA " 0. (Answer)

The net flux is zero because the field lines that represent the
electric field all pass entirely through the Gaussian surface,
from the left to the right.

"
b

 E
:

! dA
:

" " E(cos 90%) dA " 0.

"
c

 E
:

! dA
:

" " E(cos 0) dA " EA.

u "
" dA

"
a

 E
:

! dA
:

" "E(cos 180%) dA " &E " dA " &EA,

Sample Problem 23.01 Flux through a closed cylinder, uniform field

Figure 23-6 shows a Gaussian surface in the form of a
closed cylinder (a Gaussian cylinder or G-cylinder) of
radius R. It lies in a uniform electric field with the
cylinder’s central axis (along the length of the cylinder)
parallel to the field. What is the net flux ! of the electric
field through the cylinder?

KEY IDEAS

We can find the net flux ! with Eq. 23-4 by integrating the
dot product over the cylinder’s surface. However,
we cannot write out functions so that we can do that with
one integral. Instead, we need to be a bit clever: We break
up the surface into sections with which we can actually eval-
uate an integral.

Calculations: We break the integral of Eq. 23-4 into three
terms: integrals over the left cylinder cap a, the curved cylin-
drical surface b, and the right cap c:

(23-5)

Pick a patch element on the left cap. Its area vector 
must be perpendicular to the patch and pointing away from
the interior of the cylinder. In Fig. 23-6, that means the angle
between it and the field piercing the patch is 180%.Also, note
that the electric field through the end cap is uniform and
thus E can be pulled out of the integration. So, we can write the
flux through the left cap as

dA
:

" "
a

 E
:

! dA
:

# "
b

 E
:

! dA
:

# "
c

 E
:

! dA
:

.

! " ! E
:

! dA
:

E
:

! dA
:

E
:

Additional examples, video, and practice available at WileyPLUS

Figure 23-6 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field.The cylinder axis is parallel to
the field direction.

Gaussian 
surface 

θ 

a c 

θ 

b 

dA 

dA 

dA 
E 

E 

E 
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58923-1 ELECTRIC FLUX

We are about to integrate over the right face, but we note
that x has the same value everywhere on that face—namely,
x " 3.0 m. This means we can substitute that constant value
for x. This can be a confusing argument. Although x is cer-
tainly a variable as we move left to right across the figure,
because the right face is perpendicular to the x axis, every
point on the face has the same x coordinate. (The y and z co-
ordinates do not matter in our integral.) Thus, we have

The integral merely gives us the area A 4.0 m2 of the
right face, so

!r " (9.0 N/C)(4.0 m2) " 36 N 'm2/C. (Answer)

Left face: We repeat this procedure for the left face. However,

"" dA

!r "  3.0 " (3.0) dA " 9.0 " dA.

" " (3.0x dA # 0) " 3.0 " x dA.

" " [(3.0x)(dA)î ! î # (4.0)(dA)ĵ ! î]

!r " " E
:

! dA
:

" " (3.0xî # 4.0ĵ) ! (dAî)

Sample Problem 23.02 Flux through a closed cube, nonuniform field

A nonuniform electric field given by 
pierces the Gaussian cube shown in Fig. 23-7a. (E is in
newtons per coulomb and x is in meters.) What is the
electric flux through the right face, the left face, and the top
face? (We consider the other faces in another sample
problem.)

KEY IDEA

We can find the flux ! through the surface by integrating
the scalar product over each face.

Right face: An area vector is always perpendicular to its
surface and always points away from the interior of a
Gaussian surface. Thus, the vector for any patch element
(small section) on the right face of the cube must point in
the positive direction of the x axis. An example of such an
element is shown in Figs. 23-7b and c, but we would have an
identical vector for any other choice of a patch element
on that face. The most convenient way to express the vector
is in unit-vector notation,

From Eq. 23-4, the flux !r through the right face is then

dA
:

" dAî.

dA
:

A
:

E
:

! dA
:

E
:

" 3.0xî # 4.0ĵ

A

Figure 23-7 (a) A Gaussian cube with one edge on the x
axis lies within a nonuniform electric field that de-
pends on the value of x. (b) Each patch element has an
outward vector that is perpendicular to the area. (c)
Right face: the x component of the field pierces the
area and produces positive (outward) flux.The y com-
ponent does not pierce the area and thus does not
produce any flux. (Figure continues on following page)

y

x

z
x = 1.0 m x = 3.0 m

E

Ex

Ey
Gaussian
surface

The y component
is a constant.

The x component
depends on the
value of x.

Ex

Ey

y

x

z

dA

The y component of the
field skims the surface
and gives no flux. The
dot product is just zero.

The x component of the
field pierces the surface
and gives outward flux.
The dot product is positive.(c)

y

x

z

dA

dA

dA

dA

dA
The element area vector
(for a patch element) is
perpendicular to the surface
and outward.

(b)(a)
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Gauss’ Law
Gauss’ law relates the net flux ! of an electric field through a closed surface
(a Gaussian surface) to the net charge qenc that is enclosed by that surface. It tells us that

´0! " qenc (Gauss’ law). (23-6)

590 CHAPTER 23 GAUSS’ LAW

Figure 23-7 (Continued from previous page) (d) Left face: the x component of the
field produces negative (inward) flux. (e) Top face: the y component of the field
produces positive (outward) flux.

23-2 GAUSS’ LAW
Learning Objectives

no contribution to the net flux through the closed surface.
23.12 Derive the expression for the magnitude of the electric

field of a charged particle by using Gauss’ law.
23.13 Identify that for a charged particle or uniformly charged

sphere, Gauss’ law is applied with a Gaussian surface that
is a concentric sphere.

● Gauss’ law relates the net flux ! penetrating a closed sur-
face to the net charge qenc enclosed by the surface:

(Gauss’ law).´0! " qenc

● Gauss’ law can also be written in terms of the electric field
piercing the enclosing Gaussian surface:

(Gauss’ law).´0 !E
:

! dA
:

" qenc

After reading this module, you should be able to . . . 

23.09 Apply Gauss’ law to relate the net flux ! through a
closed surface to the net enclosed charge qenc.

23.10 Identify how the algebraic sign of the net enclosed
charge corresponds to the direction (inward or outward)
of the net flux through a Gaussian surface.

23.11 Identify that charge outside a Gaussian surface makes

Key Ideas

Additional examples, video, and practice available at WileyPLUS

two factors change. (1) The element area vector points in
the negative direction of the x axis, and thus 
(Fig. 23-7d). (2) On the left face, x " 1.0 m. With these
changes, we find that the flux through the left face is

!l " &12 N 'm2/C. (Answer)

Top face: Now points in the positive direction of the y
axis, and thus (Fig. 23-7e).The flux is!tdA

:
" dAĵ

dA
:

!l

dA
:

" &dAî
dA

:

(Answer) " 16 N 'm2/C.

 " "  (0 # 4.0 dA) " 4.0 " dA

 " " [(3.0x)(dA)î ! ĵ # (4.0)(dA)ĵ ! ĵ]

 !t " "(3.0xî # 4.0ĵ) ! (dAĵ)

y

x

z

dA

Ex

Ey

The y component of the
field pierces the surface
and gives outward flux.
The dot product is positive.

The x component of the
field skims the surface
and gives no flux. The
dot product is just zero.

(e)

y

x

z

dA Ex

Ey

The y component of the
field skims the surface
and gives no flux. The
dot product is just zero.

The x component of the
field pierces the surface
and gives inward flux. The
dot product is negative.

(d )
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59123-2 GAUSS’ LAW

By substituting Eq. 23-4, the definition of flux, we can also write Gauss’ law as

(Gauss’ law). (23-7)

Equations 23-6 and 23-7 hold only when the net charge is located in a vacuum or
(what is the same for most practical purposes) in air. In Chapter 25,we modify Gauss’
law to include situations in which a material such as mica,oil,or glass is present.

In Eqs. 23-6 and 23-7, the net charge qenc is the algebraic sum of all the enclosed
positive and negative charges, and it can be positive, negative, or zero. We include
the sign, rather than just use the magnitude of the enclosed charge, because the sign
tells us something about the net flux through the Gaussian surface: If qenc is posi-
tive, the net flux is outward; if qenc is negative, the net flux is inward.

Charge outside the surface, no matter how large or how close it may be, is not in-
cluded in the term qenc in Gauss’ law.The exact form and location of the charges in-
side the Gaussian surface are also of no concern; the only things that matter on the
right side of Eqs. 23-6 and 23-7 are the magnitude and sign of the net enclosed
charge.The quantity on the left side of Eq.23-7,however, is the electric field result-
ing from all charges, both those inside and those outside the Gaussian surface. This
statement may seem to be inconsistent, but keep this in mind: The electric field due
to a charge outside the Gaussian surface contributes zero net flux through the sur-
face,because as many field lines due to that charge enter the surface as leave it.

Let us apply these ideas to Fig. 23-8, which shows two particles, with charges
equal in magnitude but opposite in sign, and the field lines describing the electric
fields the particles set up in the surrounding space. Four Gaussian surfaces are
also shown, in cross section. Let us consider each in turn.
Surface S1. The electric field is outward for all points on this surface. Thus, the

flux of the electric field through this surface is positive, and so is the net
charge within the surface, as Gauss’ law requires. (That is, in Eq. 23-6, if ! is
positive, qenc must be also.)

Surface S2. The electric field is inward for all points on this surface.Thus, the flux
of the electric field through this surface is negative and so is the enclosed charge,
as Gauss’ law requires.

Surface S3. This surface encloses no charge, and thus qenc " 0. Gauss’ law
(Eq. 23-6) requires that the net flux of the electric field through this surface
be zero. That is reasonable because all the field lines pass entirely through
the surface, entering it at the top and leaving at the bottom.

Surface S4. This surface encloses no net charge, because the enclosed positive
and negative charges have equal magnitudes. Gauss’ law requires that the net
flux of the electric field through this surface be zero. That is reasonable
because there are as many field lines leaving surface S4 as entering it.

What would happen if we were to bring an enormous charge Q up close to sur-
face S4 in Fig. 23-8? The pattern of the field lines would certainly change, but the
net flux for each of the four Gaussian surfaces would not change. Thus, the value
of Q would not enter Gauss’ law in any way, because Q lies outside all four of the
Gaussian surfaces that we are considering.

E
:

´0 ! E
:

! dA
:

" qenc

Figure 23-8 Two charges, equal in magnitude
but opposite in sign, and the field lines that
represent their net electric field. Four
Gaussian surfaces are shown in cross sec-
tion. Surface S1 encloses the positive
charge. Surface S2 encloses the negative
charge. Surface S3 encloses no charge.
Surface S4 encloses both charges and thus
no net charge.

S1

S4

S2

S3

– 

+ 

Checkpoint 2
The figure shows three situations in which a Gaussian cube sits in
an electric field.The arrows and the values indicate the directions
of the field lines and the magnitudes (in N ?m2/C) of the flux
through the six sides of each cube. (The lighter arrows are for the
hidden faces.) In which situation does the cube enclose (a) a posi-
tive net charge, (b) a negative net charge, and (c) zero net charge? 7

2

7

5 3

4

(1)

4

6

5

33

10

(2)
5 

7 

2 
6 8 

5 

(3)
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592 CHAPTER 23 GAUSS’ LAW

Calculations: To find the field at point P1, we construct a
Gaussian sphere with P1 on its surface and thus with a radius
of r1. Because the charge enclosed by the Gaussian sphere is
positive, the electric flux through the surface must be positive
and thus outward. So, the electric field pierces the surface
outward and, because of the spherical symmetry, must be radi-
ally outward, as drawn in Fig. 23-10b. That figure does not in-
clude the plastic shell because the shell is not enclosed by the
Gaussian sphere.

Consider a patch element on the sphere at P1. Its area vec-
tor is radially outward (it must always be outward from a
Gaussian surface).Thus the angle u between and is zero.
We can now rewrite the left side of Eq.23-7 (Gauss’ law) as

´0 ! E
:

! dA
:

" ´0 ! E cos 0 dA " ´0 ! E dA " ´0 E !dA,

dA
:

E
:

dA
:

E
:

Sample Problem 23.03 Using Gauss’ law to find the electric field

Figure 23-10a shows, in cross section, a plastic, spherical shell
with uniform charge Q " &16e and radius R " 10 cm.A parti-
cle with charge q " #5e is at the center.What is the electric field
(magnitude and direction) at (a) point P1 at radial distance r1 "
6.00 cm and (b) point P2 at radial distance r2 " 12.0 cm?

KEY IDEAS

(1) Because the situation in Fig. 23-10a has spherical symmetry,
we can apply Gauss’ law (Eq. 23-7) to find the electric field at a
point if we use a Gaussian surface in the form of a sphere con-
centric with the particle and shell. (2) To find the electric field
at a point, we put that point on a Gaussian surface (so that the

we want is the in the dot product inside the integral in
Gauss’ law). (3) Gauss’ law relates the net electric flux through
a closed surface to the net enclosed charge. Any external
charge is not included.

E
:

E
:

Gauss’ Law and Coulomb’s Law
One of the situations in which we can apply Gauss’ law is in finding the electric
field of a charged particle. That field has spherical symmetry (the field depends
on the distance r from the particle but not the direction). So, to make use of that
symmetry, we enclose the particle in a Gaussian sphere that is centered on the
particle, as shown in Fig. 23-9 for a particle with positive charge q. Then the elec-
tric field has the same magnitude E at any point on the sphere (all points are at
the same distance r).That feature will simplify the integration.

The drill here is the same as previously. Pick a patch element on the surface and
draw its area vector perpendicular to the patch and directed outward. From the
symmetry of the situation, we know that the electric field at the patch is also radi-E

:
dA

:

Figure 23-9 A spherical Gaussian surface
centered on a particle with charge q.

r 

q 

Gaussian 
surface 

+ 
E 

Checkpoint 3
There is a certain net flux !i through a Gaussian sphere of radius r enclosing an iso-
lated charged particle. Suppose the enclosing Gaussian surface is changed to (a) a
larger Gaussian sphere, (b) a Gaussian cube with edge length equal to r, and (c) a
Gaussian cube with edge length equal to 2r. In each case, is the net flux through the
new Gaussian surface greater than, less than, or equal to !i?

ally outward and thus at angle u " 0 with .So,we rewrite Gauss’ law as

(23-8)

Here qenc " q. Because the field magnitude E is the same at every patch element, E
can be pulled outside the integral:

(23-9)

The remaining integral is just an instruction to sum all the areas of the patch elements
on the sphere,but we already know that the total area is 4pr2.Substituting this,we have

´0E(4pr 2) " q

or (23-10)

This is exactly Eq. 22-3, which we found using Coulomb’s law.

E "
1

4p´0

q
r2 .

´0E ! dA " q . 

´0 ! E
:

! dA
:

" ´0 ! E dA " qenc 

.

dA
:
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59323-2 GAUSS’ LAW

Figure 23-10 (a) A charged plastic spherical shell encloses a 
charged particle. (b) To find the electric field at P1, arrange for
the point to be on a Gaussian sphere. The electric field pierces
outward. The area vector for the patch element is outward. (c) P2

is on a Gaussian sphere, is inward, and is still outward.dA
:

E
:

The only charge enclosed by the Gaussian surface through P1

is that of the particle. Solving for E and substituting qenc " 5e
and r " r1 " 6.00 ( 10&2 m, we find that the magnitude of the
electric field at P1 is

" 2.00 ( 10&6 N/C. (Answer)

To find the electric field at P2, we follow the same pro-
cedure by constructing a Gaussian sphere with P2 on its sur-
face.This time, however, the net charge enclosed by the sphere
is qenc " q # Q " 5e # (&16e) " &11e. Because the net
charge is negative, the electric field vectors on the sphere’s
surface pierce inward (Fig. 23-10c), the angle u between 
and is 180%, and the dot product is E (cos 180%) dA "dA

:
E
:

"
5(1.60 ( 10&19 C)

4p(8.85 ( 10&12 C2/N 'm2)(0.0600 m)2

E "
qenc

4p´0r2

where in the last step we pull the field magnitude E out of
the integral because it is the same at all points on the
Gaussian sphere and thus is a constant. The remaining inte-
gral is simply an instruction for us to sum the areas of all the
patch elements on the sphere, but we already know that the
surface area of a sphere is 4pr2. Substituting these results,
Eq. 23-7 for Gauss’ law gives us

´0E4pr2 " qenc.

and we find
!b " &16 N ?m2/C.

For the front face we have , and for the back face,
.When we take the dot product of the given elec-

tric field with either of these expressions for
, we get 0 and thus there is no flux through those faces. We

can now find the total flux through the six sides of the cube:

Enclosed charge: Next, we use Gauss’ law to find the
charge qenc enclosed by the cube:

(Answer)
Thus, the cube encloses a net positive charge.

 " 2.1 ( 10&10 C.
 qenc " )0! " (8.85 ( 10&12 C2/N 'm2)(24 N 'm2/C)

 " 24 N 'm2/C.
 ! " (36 & 12 # 16 & 16 # 0 # 0) N 'm2/C

dA
:

E
:

" 3.0 xî # 4.0 ĵ
dA

:
" &dAk̂

dA
:

" dAk̂

dA
:

" &dAĵ ,

Sample Problem 23.04 Using Gauss’ law to find the enclosed charge

What is the net charge enclosed by the Gaussian cube of
Sample Problem 23.02? 

KEY IDEA

The net charge enclosed by a (real or mathematical) closed
surface is related to the total electric flux through the
surface by Gauss’ law as given by Eq. 23-6 (´0! " qenc).

Flux: To use Eq. 23-6, we need to know the flux through all
six faces of the cube. We already know the flux through the
right face (!r " 36 N 'm2/C), the left face (!l " &12
N ?m2/C), and the top face (!t " 16 N ?m2/C).

For the bottom face, our calculation is just like that for
the top face except that the element area vector is
now directed downward along the y axis (recall, it must be
outward from the Gaussian enclosure). Thus, we have

dA
:

Additional examples, video, and practice available at WileyPLUS

&E dA. Now solving Gauss’ law for E and substituting r "
r2 " 12.00 ( 10&2 m and the new qenc, we find

" 1.10 ( 10&6 N/C. (Answer) 

Note how different the calculations would have been if
we had put P1 or P2 on the surface of a Gaussian cube in-
stead of mimicking the spherical symmetry with a Gaussian
sphere. Then angle u and magnitude E would have varied
considerably over the surface of the cube and evaluation of
the integral in Gauss’ law would have been difficult.

"
& [&11(1.60 ( 10&19 C)]

4p(8.85 ( 10&12 C2/N 'm2)(0.120 m)2

E "
&qenc

4p´0r2

r1

P1 P2q

Q

r2
(a)

q

Q
r2

E dA

(c)

r1

q

E

dA

(b)
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594 CHAPTER 23 GAUSS’ LAW

Figure 23-11 (a) A lump of copper with a
charge q hangs from an insulating thread.
A Gaussian surface is placed within the
metal, just inside the actual surface. (b) The
lump of copper now has a cavity within it.
A Gaussian surface lies within the metal,
close to the cavity surface.

Copper 
surface 

Gaussian 
surface 

(a) 

(b) 

Copper 
surface 

Gaussian 
surface 

23-3 A CHARGED ISOLATED CONDUCTOR
Learning Objectives

object, determine the charge on the cavity wall and on the
external surface.

23.18 Explain how Gauss’ law is used to find the electric field
magnitude E near an isolated conducting surface with a
uniform surface charge density s.

23.19 For a uniformly charged conducting surface, apply the
relationship between the charge density s and the electric
field magnitude E at points near the conductor, and iden-
tify the direction of the field vectors.

● An excess charge on an isolated conductor is located
entirely on the outer surface of the conductor.
● The internal electric field of a charged, isolated conductor
is zero, and the external field (at nearby points) is perpendicu-

lar to the surface and has a magnitude that depends on the
surface charge density s:

.E "
s

´0

After reading this module, you should be able to . . . 

23.14 Apply the relationship between surface charge density
s and the area over which the charge is uniformly spread.

23.15 Identify that if excess charge (positive or negative) is
placed on an isolated conductor, that charge moves to the
surface and none is in the interior.

23.16 Identify the value of the electric field inside an isolated
conductor.

23.17 For a conductor with a cavity that contains a charged

Key Ideas

A Charged Isolated Conductor
Gauss’ law permits us to prove an important theorem about conductors:

If an excess charge is placed on an isolated conductor, that amount of charge will
move entirely to the surface of the conductor. None of the excess charge will be
found within the body of the conductor.

This might seem reasonable, considering that charges with the same sign repel
one another.You might imagine that, by moving to the surface, the added charges
are getting as far away from one another as they can. We turn to Gauss’ law for
verification of this speculation.

Figure 23-11a shows, in cross section, an isolated lump of copper hanging
from an insulating thread and having an excess charge q. We place a Gaussian
surface just inside the actual surface of the conductor.

The electric field inside this conductor must be zero. If this were not so, the
field would exert forces on the conduction (free) electrons, which are always
present in a conductor, and thus current would always exist within a conductor.
(That is, charge would flow from place to place within the conductor.) Of
course, there is no such perpetual current in an isolated conductor, and so the
internal electric field is zero.

(An internal electric field does appear as a conductor is being charged.
However, the added charge quickly distributes itself in such a way that the net
internal electric field — the vector sum of the electric fields due to all the
charges, both inside and outside — is zero. The movement of charge then ceases,
because the net force on each charge is zero; the charges are then in electro-
static equilibrium.)

If is zero everywhere inside our copper conductor, it must be zero for all
points on the Gaussian surface because that surface, though close to the surface
of the conductor, is definitely inside the conductor. This means that the flux
through the Gaussian surface must be zero. Gauss’ law then tells us that the net
charge inside the Gaussian surface must also be zero. Then because the excess
charge is not inside the Gaussian surface, it must be outside that surface, which
means it must lie on the actual surface of the conductor.

E
:
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59523-3 A CHARGED ISOLATED CONDUCTOR

An Isolated Conductor with a Cavity
Figure 23-11b shows the same hanging conductor, but now with a cavity that is
totally within the conductor. It is perhaps reasonable to suppose that when we
scoop out the electrically neutral material to form the cavity, we do not change the
distribution of charge or the pattern of the electric field that exists in Fig. 23-11a.
Again, we must turn to Gauss’ law for a quantitative proof.

We draw a Gaussian surface surrounding the cavity, close to its surface but in-
side the conducting body. Because inside the conductor, there can be no flux
through this new Gaussian surface.Therefore, from Gauss’ law, that surface can en-
close no net charge. We conclude that there is no net charge on the cavity walls; all
the excess charge remains on the outer surface of the conductor, as in Fig. 23-11a.

The Conductor Removed
Suppose that, by some magic, the excess charges could be “frozen” into position
on the conductor’s surface, perhaps by embedding them in a thin plastic coating,
and suppose that then the conductor could be removed completely. This is
equivalent to enlarging the cavity of Fig. 23-11b until it consumes the entire con-
ductor, leaving only the charges. The electric field would not change at all; it
would remain zero inside the thin shell of charge and would remain unchanged
for all external points. This shows us that the electric field is set up by the charges
and not by the conductor. The conductor simply provides an initial pathway for
the charges to take up their positions.

The External Electric Field
You have seen that the excess charge on an isolated conductor moves entirely to
the conductor’s surface. However, unless the conductor is spherical, the charge
does not distribute itself uniformly. Put another way, the surface charge density s
(charge per unit area) varies over the surface of any nonspherical conductor.
Generally, this variation makes the determination of the electric field set up by
the surface charges very difficult.

However, the electric field just outside the surface of a conductor is easy to
determine using Gauss’ law. To do this, we consider a section of the surface that
is small enough to permit us to neglect any curvature and thus to take the section
to be flat. We then imagine a tiny cylindrical Gaussian surface to be partially em-
bedded in the section as shown in Fig. 23-12: One end cap is fully inside the con-
ductor, the other is fully outside, and the cylinder is perpendicular to the conduc-
tor’s surface.

The electric field at and just outside the conductor’s surface must also be
perpendicular to that surface. If it were not, then it would have a component
along the conductor’s surface that would exert forces on the surface charges,
causing them to move. However, such motion would violate our implicit as-
sumption that we are dealing with electrostatic equilibrium. Therefore, is per-
pendicular to the conductor’s surface.

We now sum the flux through the Gaussian surface. There is no flux through
the internal end cap, because the electric field within the conductor is zero. There
is no flux through the curved surface of the cylinder, because internally (in the
conductor) there is no electric field and externally the electric field is parallel to
the curved portion of the Gaussian surface. The only flux through the Gaussian
surface is that through the external end cap, where is perpendicular to the
plane of the cap. We assume that the cap area A is small enough that the field
magnitude E is constant over the cap. Then the flux through the cap is EA, and
that is the net flux ! through the Gaussian surface.

The charge qenc enclosed by the Gaussian surface lies on the conductor’s sur-
face in an area A. (Think of the cylinder as a cookie cutter.) If s is the charge per
unit area, then qenc is equal to sA. When we substitute sA for qenc and EA for !,

E
:

E
:

E
:

E
:

" 0

Figure 23-12 (a) Perspective view and (b) side
view of a tiny portion of a large, isolated
conductor with excess positive charge on its
surface. A (closed) cylindrical Gaussian
surface, embedded perpendicularly in the
conductor, encloses some of the charge.
Electric field lines pierce the external end
cap of the cylinder, but not the internal end
cap.The external end cap has area A and
area vector A

:
.

There is flux only
through the
external end face.
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596 CHAPTER 23 GAUSS’ LAW

Gauss’ law (Eq. 23-6) becomes
´0EA " sA,

from which we find

(conducting surface). (23-11)

Thus, the magnitude of the electric field just outside a conductor is proportional
to the surface charge density on the conductor.The sign of the charge gives us the
direction of the field. If the charge on the conductor is positive, the electric field is
directed away from the conductor as in Fig. 23-12. It is directed toward the con-
ductor if the charge is negative.

The field lines in Fig. 23-12 must terminate on negative charges somewhere
in the environment. If we bring those charges near the conductor, the charge den-
sity at any given location on the conductor’s surface changes, and so does the
magnitude of the electric field. However, the relation between s and E is still
given by Eq. 23-11.

E "
s

´0

Sample Problem 23.05 Spherical metal shell, electric field and enclosed charge

Figure 23-13a shows a cross section of a spherical metal shell
of inner radius R. A particle with a charge of &5.0 mC is lo-
cated at a distance R/2 from the center of the shell. If the shell
is electrically neutral, what are the (induced) charges on its in-
ner and outer surfaces? Are those charges uniformly distrib-
uted? What is the field pattern inside and outside the shell?

KEY IDEAS

Figure 23-13b shows a cross section of a spherical Gaussian
surface within the metal, just outside the inner wall of the
shell. The electric field must be zero inside the metal (and
thus on the Gaussian surface inside the metal). This means
that the electric flux through the Gaussian surface must also
be zero. Gauss’ law then tells us that the net charge enclosed
by the Gaussian surface must be zero.

Reasoning: With a particle of charge &5.0 mC within the
shell, a charge of #5.0 mC must lie on the inner wall of
the shell in order that the net enclosed charge be zero. If the
particle were centered, this positive charge would be uni-
formly distributed along the inner wall. However, since the
particle is off-center, the distribution of positive charge is
skewed, as suggested by Fig. 23-13b, because the positive
charge tends to collect on the section of the inner wall near-
est the (negative) particle.

Because the shell is electrically neutral, its inner wall
can have a charge of #5.0 mC only if electrons, with a total
charge of &5.0 mC, leave the inner wall and move to the
outer wall. There they spread out uniformly, as is also sug-
gested by Fig. 23-13b. This distribution of negative charge is

Figure 23-13 (a) A negatively charged particle is located within a
spherical metal shell that is electrically neutral. (b) As a result,
positive charge is nonuniformly distributed on the inner wall of
the shell, and an equal amount of negative charge is uniformly 
distributed on the outer wall.

R 

R/2 

(a) (b) 

+ 
+ 

+ 

+ 
+ 

+ + 
+ 

+ 

+ 
+ 

+ +
+ 

Gaussian 
surface _ _ 

_ 

_ 

_ 

_ 
_ _

_ 
_ 

_ 

_ 

_ 
_ 

uniform because the shell is spherical and because the
skewed distribution of positive charge on the inner wall
cannot produce an electric field in the shell to affect the dis-
tribution of charge on the outer wall. Furthermore, these
negative charges repel one another.

The field lines inside and outside the shell are shown
approximately in Fig. 23-13b. All the field lines intersect the
shell and the particle perpendicularly. Inside the shell the pat-
tern of field lines is skewed because of the skew of the
positive charge distribution. Outside the shell the pattern is
the same as if the particle were centered and the shell were
missing. In fact, this would be true no matter where inside
the shell the particle happened to be located.

Additional examples, video, and practice available at WileyPLUS
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59723-4 APPLYING GAUSS’ LAW: CYLINDRICAL SYMMETRY

Applying Gauss’ Law: Cylindrical Symmetry
Figure 23-14 shows a section of an infinitely long cylindrical plastic rod with a uni-
form charge density l. We want to find an expression for the electric field magni-
tude E at radius r from the central axis of the rod, outside the rod. We could do
that using the approach of Chapter 22 (charge element dq, field vector , etc.).
However, Gauss’ law gives a much faster and easier (and prettier) approach.

The charge distribution and the field have cylindrical symmetry. To find the
field at radius r, we enclose a section of the rod with a concentric Gaussian
cylinder of radius r and height h. (If you want the field at a certain point, put a
Gaussian surface through that point.) We can now apply Gauss’ law to relate the
charge enclosed by the cylinder and the net flux through the cylinder’s surface.

First note that because of the symmetry, the electric field at any point must
be radially outward (the charge is positive). That means that at any point on the
end caps, the field only skims the surface and does not pierce it. So, the flux
through each end cap is zero.

To find the flux through the cylinder’s curved surface, first note that for any
patch element on the surface, the area vector is radially outward (away from
the interior of the Gaussian surface) and thus in the same direction as the field
piercing the patch.The dot product in Gauss’ law is then simply E dA cos 0 ! E dA,
and we can pull E out of the integral.The remaining integral is just the instruction
to sum the areas of all patch elements on the cylinder’s curved surface, but we al-
ready know that the total area is the product of the cylinder’s height h and cir-
cumference 2pr.The net flux through the cylinder is then

On the other side of Gauss’s law we have the charge qenc enclosed by the
cylinder. Because the linear charge density (charge per unit length, remember) is
uniform, the enclosed charge is lh.Thus, Gauss’ law,

´0" ! qenc,

reduces to ´0E(2prh) ! lh,

yielding (line of charge). (23-12)

This is the electric field due to an infinitely long, straight line of charge, at a point
that is a radial distance r from the line. The direction of is radially outwardE

:

E !
l

2p´0r

" ! EA cos u ! E(2prh)cos 0 ! E(2prh).

dA
:

dE
:

23-4 APPLYING GAUSS’ LAW: CYLINDRICAL SYMMETRY
Learning Objectives

on a cylindrical surface and the electric field magnitude E
at radial distance r from the central axis.

23.22 Explain how Gauss’ law can be used to find the electric
field magnitude inside a cylindrical nonconducting surface
(such as a plastic rod) with a uniform volume charge density r.

● The electric field at a point near an infinite line of charge (or charged rod) with uniform linear charge density l is perpendicular
to the line and has magnitude

(line of charge),

where r is the perpendicular distance from the line to the point.

E !
l

2p´0r

After reading this module, you should be able to . . . 

23.20 Explain how Gauss’ law is used to derive the electric
field magnitude outside a line of charge or a cylindrical
surface (such as a plastic rod) with a uniform linear
charge density l.

23.21 Apply the relationship between linear charge density l

Key Idea

Figure 23-14 A Gaussian surface in the form
of a closed cylinder surrounds a section
of a very long, uniformly charged, cylindri-
cal plastic rod.

r 

h 

λ + 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

2   r π 

Gaussian 
surface 

E 

There is flux only
through the
curved surface.
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598 CHAPTER 23 GAUSS’ LAW

Additional examples, video, and practice available at WileyPLUS

Figure 23-16 (a) Some of the conduction electrons in the woman’s
body are driven into the ground, leaving her positively charged. (b)
An upward streamer develops if the air undergoes electrical break-
down, which provides a path for electrons freed from molecules in
the air to move to the woman. (c) A cylinder represents the woman.

+Q 

R 

L 

e e

e 

Upward 
streamer 

(a) (b) (c) 

from the line of charge if the charge is positive, and radially inward if it is nega-
tive. Equation 23-12 also approximates the field of a finite line of charge at points
that are not too near the ends (compared with the distance from the line).

If the rod has a uniform volume charge density r, we could use a similar pro-
cedure to find the electric field magnitude inside the rod. We would just shrink
the Gaussian cylinder shown in Fig. 23-14 until it is inside the rod.The charge qenc

enclosed by the cylinder would then be proportional to the volume of the rod en-
closed by the cylinder because the charge density is uniform.

Sample Problem 23.06 Gauss’ law and an upward streamer in a lightning storm

Upward streamer in a lightning
storm. The woman in Fig. 23-
15 was standing on a lookout
platform high in the Sequoia
National Park when a large
storm cloud moved overhead.
Some of the conduction elec-
trons in her body were driven
into the ground by the cloud’s
negatively charged base (Fig.
23-16a), leaving her positively
charged. You can tell she was
highly charged because her
hair strands repelled one an-
other and extended away from
her along the electric field
lines produced by the charge
on her.

Lightning did not strike
the woman, but she was in
extreme danger because that

Figure 23-15 This woman has
become positively charged by
an overhead storm cloud.

Courtesy NOAA

field magnitude along her body had exceeded the critical value
Ec " 2.4 MN/C.What value of Q would have put the air along
her body on the verge of breakdown?

KEY IDEA

Because R * L, we can approximate the charge distribution
as a long line of charge. Further, because we assume that the
charge is uniformly distributed along this line, we can
approximate the magnitude of the electric field along the
side of her body with Eq. 23-12 (E " l/2p´0r).

Calculations: Substituting the critical value Ec for E, the
cylinder radius R for radial distance r, and the ratio Q/L for
linear charge density l, we have

or .

Substituting given data then gives us

(Answer) " 2.402 ( 10 &5 C $ 24 mC.

 ( (1.8 m)(2.4 ( 10 6 N/C)

 Q " (2p)(8.85 ( 10 &12 C 2 /N 'm2)(0.10 m)

 Q " 2p´0RLEc

 Ec "
Q/L

2p´0R
,

electric field was on the verge of causing electrical break-
down in the surrounding air. Such a breakdown would
have occurred along a path extending away from her in
what is called an upward streamer. An upward streamer is
dangerous because the resulting ionization of molecules
in the air suddenly frees a tremendous number of elec-
trons from those molecules. Had the woman in Fig. 23-15
developed an upward streamer, the free electrons in the
air would have moved to neutralize her (Fig. 23-16b), pro-
ducing a large, perhaps fatal, charge flow through her
body. That charge flow is dangerous because it could have
interfered with or even stopped her breathing (which is
obviously necessary for oxygen) and the steady beat of
her heart (which is obviously necessary for the blood flow
that carries the oxygen). The charge flow could also have
caused burns.

Let’s model her body as a narrow vertical cylinder of
height L " 1.8 m and radius R " 0.10 m (Fig. 23-16c).Assume
that charge Q was uniformly distributed along the cylinder and
that electrical breakdown would have occurred if the electric
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23-5 APPLYING GAUSS’ LAW: PLANAR SYMMETRY
Learning Objectives

tween the charge density and the electric field magnitude
E and also specify the direction of the field.

23.25 For points near two large, flat, parallel, conducting sur-
faces with a uniform charge density s, apply the relation-
ship between the charge density and the electric field
magnitude E and also specify the direction of the field.

● The electric field due to an infinite nonconducting sheet
with uniform surface charge density s is perpendicular to the
plane of the sheet and has magnitude

(nonconducting sheet of charge).E !
s

2´0

● The external electric field just outside the surface of an iso-
lated charged conductor with surface charge density s is per-
pendicular to the surface and has magnitude

(external, charged conductor).

Inside the conductor, the electric field is zero.

E !
s

´0

After reading this module, you should be able to . . . 

23.23 Apply Gauss’ law to derive the electric field magnitude
E near a large, flat, nonconducting surface with a uniform
surface charge density s.

23.24 For points near a large, flat nonconducting surface
with a uniform charge density s, apply the relationship be-

Key Ideas

Applying Gauss’ Law: Planar Symmetry
Nonconducting Sheet
Figure 23-17 shows a portion of a thin, infinite, nonconducting sheet with a uni-
form (positive) surface charge density s. A sheet of thin plastic wrap, uniformly
charged on one side, can serve as a simple model. Let us find the electric field 
a distance r in front of the sheet.

A useful Gaussian surface is a closed cylinder with end caps of area A,
arranged to pierce the sheet perpendicularly as shown. From symmetry, must
be perpendicular to the sheet and hence to the end caps. Furthermore, since the
charge is positive, is directed away from the sheet, and thus the electric field
lines pierce the two Gaussian end caps in an outward direction. Because the field
lines do not pierce the curved surface, there is no flux through this portion of the
Gaussian surface.Thus is simply E dA; then Gauss’ law,

becomes

where sA is the charge enclosed by the Gaussian surface.This gives

(sheet of charge). (23-13)

Since we are considering an infinite sheet with uniform charge density, this result
holds for any point at a finite distance from the sheet. Equation 23-13 agrees with
Eq. 22-27, which we found by integration of electric field components.

E !
s

2´0

´0(EA " EA) ! sA,

´0 ! E
:

! dA
:

! qenc,

E
:

! dA
:

E
:

E
:

E
:

Figure 23-17 (a) Perspective view
and (b) side view of a portion of a
very large, thin plastic sheet, uni-
formly charged on one side to sur-
face charge density s. A closed
cylindrical Gaussian surface passes
through the sheet and is perpendi-
cular to it.
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There is flux only
through the
two end faces.
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600 CHAPTER 23 GAUSS’ LAW

Sample Problem 23.07 Electric field near two parallel nonconducting sheets with charge

Figure 23-19a shows portions of two large, parallel, non-
conducting sheets, each with a fixed uniform charge on one
side. The magnitudes of the surface charge densities are 
s(#) " 6.8 mC/m2 for the positively charged sheet and s(&) "
4.3 mC/m2 for the negatively charged sheet.

Find the electric field (a) to the left of the sheets,
(b) between the sheets, and (c) to the right of the sheets.

KEY IDEA

With the charges fixed in place (they are on nonconductors),
we can find the electric field of the sheets in Fig. 23-19a by
(1) finding the field of each sheet as if that sheet were isolated
and (2) algebraically adding the fields of the isolated sheets

E
:

(a) – 

– 

– 
– 
– 
– 
– 
– 
– 
– 

+ 

+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+
+σ    (+) σ    (–) 

(b)

B
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R
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–

–

–
–
–
–
–
–
–
–

+

+

+
+
+
+
+
+
+
+
+
+
+
+
+

E(+) E(+)
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(c)
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–

–
–
–
–
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–
–
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+

+

+
+
+
+
+
+
+
+
+
+
+
+
+Figure 23-19 (a) Two large, paral-

lel sheets, uniformly charged on
one side. (b) The individual
electric fields resulting from the
two charged sheets. (c) The net
field due to both charged
sheets, found by superposition.
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+
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(c)

–

–
–
–
–
–
–
–
–
–

E = 0E = 0

(a) (b) 

E

E E E E 

Figure 23-18 (a) A thin, very large conduct-
ing plate with excess positive charge.
(b) An identical plate with excess negative
charge. (c) The two plates arranged so
they are parallel and close.

Two Conducting Plates
Figure 23-18a shows a cross section of a thin, infinite conducting plate with excess
positive charge. From Module 23-3 we know that this excess charge lies on the
surface of the plate. Since the plate is thin and very large, we can assume that
essentially all the excess charge is on the two large faces of the plate.

If there is no external electric field to force the positive charge into some par-
ticular distribution, it will spread out on the two faces with a uniform surface
charge density of magnitude s1. From Eq. 23-11 we know that just outside the
plate this charge sets up an electric field of magnitude E " s1/´0. Because the
excess charge is positive, the field is directed away from the plate.

Figure 23-18b shows an identical plate with excess negative charge having
the same magnitude of surface charge density s1. The only difference is that now
the electric field is directed toward the plate.

Suppose we arrange for the plates of Figs. 23-18a and b to be close to each
other and parallel (Fig. 23-18c). Since the plates are conductors, when we bring
them into this arrangement, the excess charge on one plate attracts the excess
charge on the other plate, and all the excess charge moves onto the inner faces of
the plates as in Fig. 23-18c.With twice as much charge now on each inner face, the
new surface charge density (call it s) on each inner face is twice s1.Thus, the elec-
tric field at any point between the plates has the magnitude

(23-14)

This field is directed away from the positively charged plate and toward the nega-
tively charged plate. Since no excess charge is left on the outer faces, the electric
field to the left and right of the plates is zero.

Because the charges moved when we brought the plates close to each other,
the charge distribution of the two-plate system is not merely the sum of the
charge distributions of the individual plates.

One reason why we discuss seemingly unrealistic situations, such as the field set
up by an infinite sheet of charge, is that analyses for “infinite” situations yield good
approximations to many real-world problems. Thus, Eq. 23-13 holds well for a finite
nonconducting sheet as long as we are dealing with points close to the sheet and not
too near its edges. Equation 23-14 holds well for a pair of finite conducting plates as
long as we consider points that are not too close to their edges.The trouble with the
edges is that near an edge we can no longer use planar symmetry to find expressions
for the fields. In fact, the field lines there are curved (said to be an edge effect or fring-
ing),and the fields can be very difficult to express algebraically.

E "
2s1

´0
"

s

´0
.
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Applying Gauss’ Law: Spherical Symmetry
Here we use Gauss’ law to prove the two shell theorems presented without proof
in Module 21-1:

Additional examples, video, and practice available at WileyPLUS

via the superposition principle. (We can add the fields alge-
braically because they are parallel to each other.)

Calculations: At any point, the electric field due to
the positive sheet is directed away from the sheet and, from
Eq. 23-13, has the magnitude

Similarly, at any point, the electric field due to the negative
sheet is directed toward that sheet and has the magnitude

"  2.43 ( 10 5 N/C.

E(&) "
s(&)

2´0
"

4.3 ( 10 &6 C/m2

(2)(8.85 ( 10 &12 C2/N 'm2)

E
:

(&)

"  3.84 ( 10 5 N/C.

E(#) "
s(#)

2)0
"

6.8 ( 10 &6 C/m2

(2)(8.85 ( 10 &12 C2/N 'm2)

E
:

(#)

Figure 23-19b shows the fields set up by the sheets to the left of
the sheets (L),between them (B),and to their right (R).

The resultant fields in these three regions follow from the
superposition principle.To the left, the field magnitude is

(Answer)

Because E(#) is larger than E(&), the net electric field in this
region is directed to the left, as Fig. 23-19c shows.To the right of
the sheets, the net electric field  has the same magnitude but is
directed to the right,as Fig.23-19c shows.

Between the sheets, the two fields add and we have

(Answer)

The electric field is directed to the right.E
:

B

" 6.3 ( 10 5 N/C.
" 3.84 ( 10 5 N/C # 2.43 ( 10 5 N/C

EB " E(#) # E(&)

E
:

L

" 1.4 ( 10 5 N/C.
" 3.84 ( 10 5 N/C & 2.43 ( 10 5 N/C

EL " E(#) & E(&)

23-6 APPLYING GAUSS’ LAW: SPHERICAL SYMMETRY
Learning Objectives

charge, apply the relationship between the electric field
magnitude E, the charge q on the shell, and the distance r
from the shell’s center.

23.29 Identify the magnitude of the electric field for points en-
closed by a spherical shell with uniform charge.

23.30 For a uniform spherical charge distribution (a uniform
ball of charge), determine the magnitude and direction of
the electric field at interior and exterior points.

● Outside a spherical shell of uniform charge q, the electric
field due to the shell is radial (inward or outward, depending
on the sign of the charge) and has the magnitude

(outside spherical shell),

where r is the distance to the point of measurement from the
center of the shell. The field is the same as though all of the
charge is concentrated as a particle at the center of the shell.

E "
1

4p´0

q
r2

● Inside the shell, the field due to the shell is zero.
● Inside a sphere with a uniform volume charge density, the
field is radial and has the magnitude

(inside sphere of charge),

where q is the total charge, R is the sphere’s radius, and r is
the radial distance from the center of the sphere to the point
of measurement.

E "
1

4p´0

q
R3  r

After reading this module, you should be able to . . . 

23.26 Identify that a shell of uniform charge attracts or re-
pels a charged particle that is outside the shell as if all the
shell’s charge is concentrated at the center of the shell.

23.27 Identify that if a charged particle is enclosed by a shell
of uniform charge, there is no electrostatic force on the
particle from the shell.

23.28 For a point outside a spherical shell with uniform

Key Ideas

A shell of uniform charge attracts or repels a charged particle that is outside the
shell as if all the shell’s charge were concentrated at the center of the shell.

halliday_c23_585-608v2.0.1.qxd  2/27/14  10:04 AM  Page 601

Uploaded By: anonymousSTUDENTS-HUB.com



602 CHAPTER 23 GAUSS’ LAW

Figure 23-21 The dots represent a spherically
symmetric distribution of charge of radius
R, whose volume charge density r is a
function only of distance from the center.
The charged object is not a conductor, and
therefore the charge is assumed to be
fixed in position. A concentric spherical
Gaussian surface with r ! R is shown in (a).
A similar Gaussian surface with r " R is
shown in (b).

r 

R 

ρ 

r 

R 

Gaussian 
surface 

Gaussian 
surface 

Enclosed 
charge is q' 

Enclosed 
charge is q 

(a) 

(b) The flux through the
surface depends on
only the enclosed
charge.

Figure 23-20 shows a charged spherical shell of total charge q and radius R and two
concentric spherical Gaussian surfaces, S1 and S2. If we followed the procedure of
Module 23-2 as we applied Gauss’ law to surface S2, for which r # R,we would find that

(spherical shell, field at r # R). (23-15)

This field is the same as one set up by a particle with charge q at the center of the
shell of charge.Thus, the force produced by a shell of charge q on a charged parti-
cle placed outside the shell is the same as if all the shell’s charge is concentrated
as a particle at the shell’s center.This proves the first shell theorem.

Applying Gauss’ law to surface S1, for which r " R, leads directly to

E $ 0 (spherical shell, field at r " R), (23-16)

because this Gaussian surface encloses no charge.Thus, if a charged particle were
enclosed by the shell, the shell would exert no net electrostatic force on the parti-
cle.This proves the second shell theorem.

E $
1

4p´0

q
r2

If a charged particle is located inside a shell of uniform charge, there is no electro-
static force on the particle from the shell.

Any spherically symmetric charge distribution, such as that of Fig. 23-21, can
be constructed with a nest of concentric spherical shells. For purposes of applying
the two shell theorems, the volume charge density r should have a single value
for each shell but need not be the same from shell to shell. Thus, for the charge
distribution as a whole, r can vary, but only with r, the radial distance from the
center. We can then examine the effect of the charge distribution “shell by shell.”

In Fig. 23-21a, the entire charge lies within a Gaussian surface with r ! R.
The charge produces an electric field on the Gaussian surface as if the charge
were that of a particle located at the center, and Eq. 23-15 holds.

Figure 23-21b shows a Gaussian surface with r " R. To find the electric
field at points on this Gaussian surface, we separately consider the charge in-
side it and the charge outside it. From Eq. 23-16, the outside charge does not
set up a field on the Gaussian surface. From Eq. 23-15, the inside charge sets
up a field as though it is concentrated at the center. Letting q% represent that
enclosed charge, we can then rewrite Eq. 23-15 as

(spherical distribution, field at r & R). (23-17)

If the full charge q enclosed within radius R is uniform, then q% enclosed
within radius r in Fig. 23-21b is proportional to q:

or (23-18)

This gives us
(23-19)

Substituting this into Eq. 23-17 yields

(uniform charge, field at r & R). (23-20)E $ ! q
4p´0R3 "r

q% $ q 
r3

R3 .

q%
4
3pr3 $

q
4
3pR3 .

!charge enclosed by
sphere of radius r "

!volume enclosed by
sphere of radius r "

$
full charge
full volume

E $
1

4p´0

q%

r2

Figure 23-20 A thin, uniformly charged,
spherical shell with total charge q, in cross
section. Two Gaussian surfaces S1 and S2

are also shown in cross section. Surface S2

encloses the shell, and S1 encloses only the
empty interior of the shell.
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R 
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q 
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603PROBLEMS

Checkpoint 4
The figure shows two large, parallel, nonconducting sheets with identical (posi-
tive) uniform surface charge densities, and a sphere with a uniform (positive)
volume charge density. Rank the four numbered points according to the magni-

+ 

+ 

+ 
+ 
+ 
+ 

+ 

+ 

+ 
+ 
+ 
+ 

d d d d d 

+ 

1 

2 3 4 

Gauss’ Law Gauss’ law and Coulomb’s law are different ways
of describing the relation between charge and electric field in static
situations. Gauss’ law is

´0' $ qenc (Gauss’ law), (23-6)

in which qenc is the net charge inside an imaginary closed surface (a
Gaussian surface) and ' is the net flux of the electric field through
the surface:

(23-4)

Coulomb’s law can be derived from Gauss’ law.

Applications of Gauss’ Law Using Gauss’ law and, in some
cases, symmetry arguments, we can derive several important
results in electrostatic situations.Among these are:
1. An excess charge on an isolated conductor is located entirely on

the outer surface of the conductor.

2. The external electric field near the surface of a charged conductor
is perpendicular to the surface and has a magnitude that depends
on the surface charge density s :

(conducting surface). (23-11)

Within the conductor, E $ 0.

3. The electric field at any point due to an infinite line of charge

E $
s

´0

(electric flux through a
Gaussian surface).' $ # E

:
! dA

:

Review & Summary

with uniform linear charge density l is perpendicular to the line
of charge and has magnitude

(line of charge), (23-12)

where r is the perpendicular distance from the line of charge to
the point.

4. The electric field due to an infinite nonconducting sheet with
uniform surface charge density s is perpendicular to the plane
of the sheet and has magnitude

(sheet of charge). (23-13)

5. The electric field outside a spherical shell of charge with radius R
and total charge q is directed radially and has magnitude

(spherical shell, for r # R). (23-15)

Here r is the distance from the center of the shell to the point at
which E is measured. (The charge behaves, for external points, as if
it were all located at the center of the sphere.) The field inside a
uniform spherical shell of charge is exactly zero:

E $ 0 (spherical shell, for r " R). (23-16)

6. The electric field inside a uniform sphere of charge is directed
radially and has magnitude

(23-20)E $ ! q
4p´0R3 " r.

E $
1

4p´0

q
r2

E $
s

2´0

E $
l

2p´0r

tude of the net electric field there, greatest first.

Problems

1 An infinite line of charge produces a field of magnitude 
1.7 ( 104 N/C at distance 9.0 m. Find the field magnitude at distance
2.0 m.

2 In Fig. 23-22a, an electron is shot directly away from a uni-
formly charged plastic sheet, at speed vs $ 1.6 ( 10 5 m/s. The

sheet is nonconducting, flat, and very large. Figure 23-22b gives
the electron’s vertical velocity component v versus time t until
the return to the launch point. What is the sheet’s surface charge
density?

3 An unknown charge sits on a conducting solid sphere of radius
10 cm. If the electric field 30 cm from the center of the sphere has
the magnitude 3.0 ( 103 N/C and is directed radially inward, (a)
what is the net charge on the sphere? and (b) what is the charge
density?
4 A charge of uniform linear density 1.5 nC/m is distributed along a
long, thin, nonconducting rod. The rod is coaxial with a long con-
ducting cylindrical shell (inner radius $ 5.0 cm, outer radius $ 10
cm).The net charge on the shell is zero. (a) What is the magnitude of
the electric field 15 cm from the axis of the shell? What is the sur-
face charge density on the (b) inner and (c) outer surface of the
shell?

3 6 

t (ps) 

9 

12 

vs 

0 

–vs 

v 
(1

05  m
/s

) 

+ + + + + + + + 
–e

(a) (b) 

Figure 23-22 Problem 2.
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604 CHAPTER 23 GAUSS’ LAW

5 An isolated conductor has net charge )10 ( 10*6 C and a cavity
with a particle of charge q $ *4.0 ( 10*6 C. What is the charge on 
(a) the cavity wall and (b) the outer surface?

6 Figure 23-23 gives the magnitude
of the electric field inside and outside
a sphere with a positive charge distrib-
uted uniformly throughout its volume.
The scale of the vertical axis is set by
Es $ 10 ( 107 N/C. (a) What is the
charge on the sphere? (b) What is the
field magnitude at r $ 8.0 m?
7 In Fig. 23-24, two large, thin
metal plates are parallel and close
to each other. On their inner
faces, the plates have excess sur-
face charge densities of opposite
signs and magnitude 2.31 (
10*22 C/m2. In unit-vector nota-
tion, what is the electric field at
points (a) to the left of the plates,
(b) to the right of them, and (c)
between them?

8 In Fig. 23-25, a small circular hole of radius R $ 1.30 cm has
been cut in the middle of an infinite, flat, nonconducting surface
that has uniform charge density s $ 4.50 pC/m2. A z axis, with its
origin at the hole’s center, is perpendicular to the surface. In unit-
vector notation, what is the electric field at point P at z $ 2.56 cm?
(Hint: See Eq. 22-26 and use superposition.)

coordinate on the x axis (other than infinity) is the net electric field
of the sheet and particle zero? (c) If d $ 0.950 m, at what 

coordinate on the x axis is 

11 The volume charge density of a solid nonconducting sphere of
radius R $ 5.60 cm varies with radial distance r as given by 
r $ (35.4 pC/m3)r/R. (a) What is the sphere’s total charge? What is
the field magnitude E at (b) r $ 0, (c) r $ R/3.00, and (d) r $ R?
(e) Graph E versus r.

12 Figure 23-28 shows a section of a
long, thin-walled metal tube of radius
R $ 2.50 cm, with a charge per unit
length of l $ 2.00 ( 10*8 C/m. What
is the magnitude E of the electric
field at radial distance (a) r $ R/2.00
and (b) r $ 2.00R? (c) Graph E ver-
sus r for the range r $ 0 to 2.00R.

13 The cube in Fig. 23-29 has edge
length 1.40 m and is oriented as
shown in a region of uniform electric
field.Find the electric flux through the
right face if the electric field, in newtons per coulomb, is given by 
(a) (b) and (c) (d) What is the total
flux through the cube for each field? (e) What is the total flux if the
edge length is doubled?

14 At each point on the surface
of the cube shown in Fig. 23-29, the
electric field is parallel to the 
z axis. The length of each edge
of the cube is 4.0 m. On the top
face of the cube the field is

and on the bottom
face it is Deter-
mine the net charge contained
within the cube.

15 Fig. 23-29 shows a Gaussian
surface in the shape of a cube with
edge length 5.60 m. What are (a)
the net flux ' through the surface and (b) the net charge qenc en-
closed by the surface if with y in meters? WhatE

:
$ (3.00yj ˆ) N/C.

E
:

$ ) 20k̂ N/C.
E
:

$ *34k̂ N/C,

*20.0î ) 4.00k̂.*2.00ĵ,19.0î,

E
:

net $ 0?
E
:

net

z 

y 

x 

Figure 23-29 Problems 13,
14, and 15.
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Figure 23-23 Problem 6.
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Figure 23-24 Problem 7.
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Figure 23-25 Problem 8.
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Figure 23-30 Problem 17.
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Figure 23-28 Problem 12.

9 In Fig. 23-26, a nonconducting
spherical shell of inner radius a $
1.50 cm and outer radius b $ 2.40
cm has (within its thickness) a posi-
tive volume charge density r $ A/r,
where A is a constant and r is the dis-
tance from the center of the shell. In
addition, a small ball of charge q $
75.0 fC is located at that center.
What value should A have if the
electric field in the shell (a & r & b)
is to be uniform?

10 Figure 23-27 shows a very large
nonconducting sheet that has a 
uniform surface charge density of 
s $ *2.00 mC/m2; it also shows a
particle of charge Q $ 8.00 mC, at
distance d from the sheet. Both are
fixed in place. If d $ 0.200 m, at what
(a) positive and (b) negative 

b 
a 

q + 

Figure 23-26 Problem 9.

y 

x 
Q 

σ 

d 

Figure 23-27 Problem 10.

18 A long, nonconducting, solid cylinder of radius 4.0 cm has a
nonuniform volume charge density r that is a function of radial dis-
tance r from the cylinder axis: r $ Ar 2. For A $ 6.3 mC/m5,

are (c) ' and (d) qenc if 

16 Two large metal plates of area 1.0 m2 face each other, 6.0 cm
apart, with equal charge magnitudes but opposite signs.The field
magnitude E between them (neglect fringing) is 72 N/C. Find .

17 In Fig. 23-30, a proton is a distance d/2 directly above the center
of a square of side d. What is the magnitude of the electric flux
through the square? (Hint: Think of the square as one face of a cube
with edge d.)

$ q $
$ q $

(6.00 ) 3.00y)ĵ] N/C?E
:

$ [*17.0î )
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23 Figure 23-34  shows a closed Gaussian surface in the shape of a
cube of edge length 2.00 m, with one corner at x1 5.00 m,
y1 4.00 m. The cube lies in a region where the electric field 
vector is given by with y in
meters.What is the net charge contained by the cube?

E
:

$ ) 23.0î * 2.00y2ĵ * 16.0k̂ N/C,
$

$

what is the magnitude of the electric field at (a) r $ 3.0 cm and 
(b) r $ 5.0 cm?

19 A long, straight wire has fixed negative charge with a linear
charge density of magnitude 5.2 nC/m. The wire is to be enclosed
by a coaxial, thin-walled nonconducting cylindrical shell of radius
1.2 cm. The shell is to have positive charge on its outside surface
with a surface charge density s that makes the net external electric
field zero. Calculate s.

20 Figure 23-31 shows cross sec-
tions through two large, parallel,
nonconducting sheets with identical
distributions of positive charge with
surface charge density s $ 2.31 (
10*22 C/m2. In unit-vector notation,
what is at points (a) above the
sheets, (b) between them, and (c) be-
low them?

21 In Fig. 23-32, a small, nonconducting ball of
mass m $ 7.3 mg and charge q $ 2.0 ( 10*8 C
(distributed uniformly through its volume)
hangs from an insulating thread that makes an
angle u $ 30° with a vertical, uniformly charged
nonconducting sheet (shown in cross section).
Considering the gravitational force on the ball
and assuming the sheet extends far vertically
and into and out of the page, calculate the sur-
face charge density s of the sheet.

22 A charged particle is held at the center of a
spherical shell. Figure 23-33 gives the magni-
tude E of the electric field versus radial dis-
tance r. The scale of the vertical axis is set by Es $ 5.0 ( 107 N/C.
Approximately, what is the net charge on the shell?

E
:

605PROBLEMS
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Figure 23-31
Problem 20.
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Figure 23-32
Problem 21.
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Figure 23-33 Problem 22.

Figure 23-34 Problem 23.

x 

y 

z 

x1 

y1 

24 An electric field given by pierces a
Gaussian cube of edge length 2.0 m and positioned as shown in
Fig. 23-7. (The magnitude E is in newtons per coulomb and the po-
sition x is in meters.) What is the electric flux through the (a) top face,
(b) bottom face, (c) left face, and (d) back face? (e) What is the net
electric flux through the cube?

25 Two charged concentric spherical shells have radii 10.0 cm
and 15.0 cm. The charge on the inner shell is 7.50 ( 10*8 C, and
that on the outer shell is 6.33 ( 10*8 C. Find the electric field (a) at
r $ 12.0 cm and (b) at r $ 20.0 cm.
26 An electron is released 9.0 cm from a very long nonconduct-
ing rod with a uniform 4.5 mC/m. What is the magnitude of the
electron’s initial acceleration?

27 Two long, charged, thin-walled, concentric cylindrical shells
have radii of 3.0 and 6.0 cm. The charge per unit length is 
*7.0 ( 10 *6 C/m on the inner shell and )5.0 ( 10 *6 C/m on the
outer shell. What are the (a) magnitude E and (b) direction (radi-
ally inward or outward) of the electric field at radial distance 
r $ 4.0 cm? What are (c) E and (d) the direction at r $ 8.0 cm?

28 Figure 23-35 shows a spherical
shell with uniform volume charge
density r $ 1.56 nC/m3, inner radius 
a $ 10.0 cm, and outer radius b $
2.00a. What is the magnitude of the
electric field at radial distances (a) r $
0; (b) r $ a/2.00, (c) r $ a, (d) r $
1.50a, (e) r $ b, and (f) r $ 3.00b?

29 In Fig. 23-36, a solid sphere of
radius a $ 2.00 cm is concentric with
a spherical conducting shell of inner
radius b $ 2.00a and outer radius 
c $ 2.40a. The sphere has a net
uniform charge q1 $ )2.00 fC; the
shell has a net charge q2 $ *q1.
What is the magnitude of the 
electric field at radial distances 
(a) r $ 0, (b) r $ a/2.00, (c) r $ a,
(d) r $ 1.50a, (e) r $ 2.30a, and 
(f) r $ 3.50a? What is the net char-
ge on the (g) inner and (h) outer
surface of the shell?

30 In Fig. 23-37, a butterfly net
is in a uniform electric field of
magnitude E $ 4.5 mN/C. The
rim, a circle of radius a $ 11 cm,
is aligned perpendicular to the
field. The net contains no net
charge. Find the electric flux
through the netting.

31 A charge distribution that is
spherically symmetric but not
uniform radially produces an
electric field of magnitude E $ Kr 4, directed radially outward from
the center of the sphere. Here r is the radial distance from that cen-
ter, and K is a constant. What is the volume density r of the charge
distribution?

32 Figure 23-38a shows a narrow charged solid cylinder that is
coaxial with a larger charged cylindrical shell. Both are noncon-
ducting and thin and have uniform surface charge densities on

E
:

$ 5.0î * 3.0(y2 ) 2.0)ĵ

a 

Figure 23-37 Problem 30.
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Figure 23-35 Problem 28.

a b 

c 

Figure 23-36 Problem 29.
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39 A uniformly charged conducting sphere of 0.60 m diameter
has surface charge density 5.7 mC/m2. Find (a) the net charge on
the sphere and (b) the total electric flux leaving the surface.
(c) What is the net flux through a concentric Gaussian sphere of ra-
dius 2.0 m?

40 Figure 23-42 shows, in cross section, two solid spheres with
uniformly distributed charge throughout their volumes. Each has
radius R. Point P lies on a line connecting the centers of the
spheres, at radial distance R/4.00 from the center of sphere 1. If the
net electric field at point P is zero, what is the ratio q2/q1 of the to-
tal charges? 

their outer surfaces. Figure 23-38b gives the radial component E of
the electric field versus radial distance r from the common axis,
and Es $ 6.0 ( 103 N/C.What is the shell’s linear charge density?

606 CHAPTER 23 GAUSS’ LAW

y 

x 

z 

z1

z2

z1

z2

x2

y2

x2x1Figure 23-39 Problem 34.

38 Figure 23-41 shows two nonconducting spherical shells fixed in
place on an x axis. Shell 1 has uniform surface charge density 
)5.0 mC/m2 on its outer surface and radius 0.50 cm,and shell 2 has uni-
form surface charge density *2.0 mC/m2 on its outer surface and radius
2.0 cm; the centers are separated by L $ 6.0 cm. Other than at x $ +,
where on the x axis is the net electric field equal to zero?

Es 

0 

–Es 

E 
(1

03  N
/C

) 

1 2 3 

r (cm) 

4 5 6 

(a)

(b)

Figure 23-38 Problem 32.

33 An electron is shot directly toward the center of a large metal
plate that has surface charge density *1.50 ( 10*6 C/m2. If the initial
kinetic energy of the electron is 3.93 ( 10*17 J and if the electron is to
stop (due to electrostatic repulsion from the plate) just as it reaches
the plate,how far from the plate must the launch point be?

34 The box-like Gaussian surface shown in Fig. 23-39 encloses
a net charge of 32´0 C and lies in an electric field given by

with x and z in meters
and b a constant. The bottom face is in the xz plane; the top face
is in the horizontal plane passing through y2 $ 1.00 m. For 
x1 $ 1.00 m, x2 $ 4.00 m, z1 $ 1.00 m, and z2 $ 3.00 m, what is b?

E
:

$ [(10.0 ) 2.00x)î * 3.00ĵ ) bzk̂] N/C,
)

35 The electric field in a certain region of Earth’s atmosphere is
directed vertically down. At an altitude of 300 m the field has mag-
nitude 75.0 N/C; at an altitude of 200 m, the magnitude is 210 N/C.
Find the net amount of charge contained in a cube 100 m on edge,
with horizontal faces at altitudes of 200 and 300 m.

36 In Fig. 23-40, short sections of
two very long parallel lines of  charge
are shown, fixed in place, separated
by L $ 10.0 cm. The uniform linear
charge densities are )6.0 mC/m for
line 1 and *2.0 mC/m for line 2.
Where along the x axis shown is the
net electric field from the two lines
zero?

37 (a) The drum of a photocopy-
ing machine has a length of 42 cm and a diameter of 12 cm.The elec-
tric field just above the drum’s surface is 1.1 ( 105 N/C. What is the
total charge on the drum? (b) The manufacturer wishes to produce a
desktop version of the machine. This requires reducing the drum
length to 28 cm and the diameter to 6.0 cm. The electric field at the
drum surface must not change. What must be the charge on this new
drum?

Figure 23-40 Problem 36.

Line 1 Line 2

x

y

L/2 L/2

x 

Shell 
1 

Shell 
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L 

Figure 23-41 Problem 38.

R R 

P 
1 2

Figure 23-42 Problem 40.

x 

y 

z 

Figure 23-43
Problem 42.

41 A particle of charge )q is placed at one corner of a Gaussian
cube. What multiple of q/´0 gives the flux through (a) each cube face
forming that corner and (b) each of the other cube faces?

42 Figure 23-43 shows a closed Gaussian surface in the shape of a
cube of edge length 1.50 m. It lies in a region where the nonuniform
electric field is given by 
with x in meters.What is the net charge contained by the cube?

7.00k̂ N/C,)6.00ĵ)4.00)î)(3.00x$E
:

43 A particle of charge 6.3 mC is at the center of a Gaussian cube
92 cm on edge. (a) What is the net electric flux through the sur-
face? (b) What is the net flux if the edge length is doubled?

44 The electric field just above the surface of the charged con-
ducting drum of a photocopying machine has a magnitude E of
1.9 ( 10 5 N/C.What is the surface charge density on the drum?

halliday_c23_585-608v2.0.1.qxd  2/27/14  10:05 AM  Page 606

Uploaded By: anonymousSTUDENTS-HUB.com



607PROBLEMS

(a) 

(b) 
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Figure 23-47 Problem 49.

45 The square surface shown in
Fig. 23-44 measures 6.8 mm on
each side. It is immersed in a uni-
form electric field with magnitude
E $ 1800 N/C and with field lines
at an angle of u $ 35° with a nor-
mal to the surface, as shown. Take
that normal to be directed “out-
ward,” as though the surface were
one face of a box. (a) Calculate the
electric flux through the surface.
(b) If the angle is reduced by a few
degrees, does the flux increase, decrease, or remain the same?
46 Assume that a ball of charged particles has a uniformly 
distributed negative charge density except for a narrow radial
tunnel through its center, from the surface on one side to the
surface on the opposite side. Also assume that we can position a
proton anywhere along the tunnel or outside the ball. Let FR be
the magnitude of the electrostatic force on the proton when it is
located at the ball’s surface, at radius R. As a multiple of R, how
far from the surface is there a point where the force magnitude is
0.70FR if we move the proton (a) away from the ball and (b) into
the tunnel?
47 Figure 23-45 shows a cross section through a very large non-
conducting slab of thickness d $ 9.40 mm and uniform volume
charge density r $ 1.89 fC/m3. The origin of an x axis is at the
slab’s center. What is the magnitude of the slab’s electric field 
at an x coordinate of (a) 0, (b) 2.00 mm, (c) 4.70 mm, and 
(d) 26.0 mm?

A 

B 
Φ

  (
10

5  N
 •  

m
2 /C

) 

(a) (b) 

– 

0 

Φ 

r 

s 

Φ s 

–2 Φ s 

Figure 23-48 Problem 50.
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Figure 23-45
Problem 47.
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L 

Figure 23-46 Problem 48.

48 Figure 23-46 shows two nonconducting spherical shells fixed
in place. Shell 1 has uniform surface charge density )6.0 mC/m2 on
its outer surface and radius 3.0 cm; shell 2 has uniform surface
charge density )4.0 mC/m2 on its outer surface and radius 2.0 cm;
the shell centers are separated by L $ 12 cm. In unit-vector nota-
tion, what is the net electric field at x $ 2.0 cm?

49 Figure 23-47a shows three plastic sheets that are large, parallel,
and uniformly charged. Figure 23-47b gives the component of the net
electric field along an x axis through the sheets.The scale of the verti-
cal axis is set by Es $ 3.0 ( 105 N/C. What is the ratio of the charge
density on sheet 3 to that on sheet 2?

50 Flux and conducting shells. A charged particle is held at the
center of two concentric conducting spherical shells. Figure 23-48a
shows a cross section. Figure 23-48b gives the net flux ' through a
Gaussian sphere centered on the particle, as a function of the ra-
dius r of the sphere. The scale of the vertical axis is set by 
's $ 10 ( 105 . What are (a) the charge of the central parti-
cle and the net charges of (b) shell A and (c) shell B?

N ,m2/C

51 Space vehicles traveling through Earth’s radiation belts can
intercept a significant number of electrons. The resulting charge
buildup can damage electronic components and disrupt operations.
Suppose a spherical metal satellite 1.3 m in diameter accumulates
3.9 mC of charge in one orbital revolution. (a) Find the resulting sur-
face charge density. (b) Calculate the magnitude of the electric field
just outside the surface of the satellite, due to the surface charge.

52 When a shower is turned on in a closed bathroom, the splashing
of the water on the bare tub can fill the room’s air with negatively
charged ions and produce an electric field in the air as great as 
1000 N/C. Consider a bathroom with dimensions 2.5 m ( 3.0 m (
2.0 m. Along the ceiling, floor, and four walls, approximate the elec-
tric field in the air as being directed perpendicular to the surface and
as having a uniform magnitude of 500 N/C.Also, treat those surfaces
as forming a closed Gaussian surface around the room’s air. What
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55 Figure 23-50 is a section of a conducting rod of radius
R1 $ 1.30 mm and length L $ 11.00 m inside a thin-walled coaxial
conducting cylindrical shell of radius R2 $ 10.0R1 and the (same)
length L. The net charge on the rod is Q1 $ *5.22 ( 10*13 C; that
on the shell is Q2 $ *2.00Q1. What are the (a) magnitude E and
(b) direction (radially inward or outward) of the electric field at ra-
dial distance r $ 2.00R2? What are (c) E and (d) the direction at 
r $ 5.00R1? What is the charge on the (e) interior and (f) exterior
surface of the shell?

608 CHAPTER 23 GAUSS’ LAW

are (a) the volume charge density r and (b) the number of excess el-
ementary charges e per cubic meter in the room’s air?

53 A square metal plate of edge length 12 cm and negligible thick-
ness has a total charge of 2.0 ( 10*6 C. (a) Estimate the magnitude E
of the electric field just off the center of the plate (at, say, a distance of
0.50 mm from the center) by assuming that the charge is spread uni-
formly over the two faces of the plate. (b) Estimate E at a distance of
30 m (large relative to the plate size) by assuming that the plate is a
charged particle.

54 Flux and nonconducting shells. A charged particle is suspended
at the center of two concentric spherical shells that are very thin and
made of nonconducting material. Figure 23-49a shows a cross sec-
tion. Figure 23-49b gives the net flux ' through a Gaussian sphere
centered on the particle, as a function of the radius r of the sphere.
The scale of the vertical axis is set by 's $ 10 ( 105 .
(a) What is the charge of the central particle? What are the net
charges of (b) shell A and (c) shell B?

N ,m2/C
R1 

R2 

Q1

Q 2

Figure 23-50 Problem 55.

Figure 23-49 Problem 54.
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A
B

(a) (b)
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C H A P T E R  2 4

Electric Potential

24-1 ELECTRIC POTENTIAL

After reading this module, you should be able to . . .

24.01 Identify that the electric force is conservative and thus
has an associated potential energy.

24.02 Identify that at every point in a charged object’s electric
field, the object sets up an electric potential V, which is a
scalar quantity that can be positive or negative depending
on the sign of the object’s charge.

24.03 For a charged particle placed at a point in an object’s
electric field, apply the relationship between the object’s
electric potential V at that point, the particle’s charge q,
and the potential energy U of the particle–object system.

24.04 Convert energies between units of joules and 
electron-volts.

24.05 If a charged particle moves from an initial point to a 
final point in an electric field, apply the relationships 

between the change V in the potential, the particle’s
charge q, the change U in the potential energy, and the
work W done by the electric force.

24.06 If a charged particle moves between two given points
in the electric field of a charged object, identify that the
amount of work done by the electric force is path
independent.

24.07 If a charged particle moves through a change V in
electric potential without an applied force acting on it, relate

V and the change K in the particle’s kinetic energy.
24.08 If a charged particle moves through a change V in

electric potential while an applied force acts on it, relate 
V, the change K in the particle’s kinetic energy, and the

work Wapp done by the applied force.
!!

!
!!

!

!
!

● The electric potential V at a point P in the electric field of a
charged object is

V "

where is the work that would be done by the electric 
force on a positive test charge q0 were it brought from an 
infinite distance to P, and U is the electric potential energy
that would then be stored in the test charge–object system.
● If a particle with charge q is placed at a point where the
electric potential of a charged object is V, the electric 
potential energy U of the particle–object system is

U " qV.

● If the particle moves through a potential difference !V, the
change in the electric potential energy is

W#

$W#

q0
"

U
q0

,

!U " q !V " q(Vf $ Vi).

● If a particle moves through a change !V in electric
potential without an applied force acting on it, applying
the conservation of mechanical energy gives the change in 
kinetic energy as

!K " $q !V.

● If, instead, an applied force acts on the particle, doing work
Wapp, the change in kinetic energy is

!K " $q !V % Wapp.

● In the special case when !K " 0, the work of an applied
force involves only the motion of the particle through a
potential difference:

Wapp " q !V.

Learning Objectives

Key Ideas

What Is Physics?
One goal of physics is to identify basic forces in our world, such as the electric
force we discussed in Chapter 21. A related goal is to determine whether a force
is conservative—that is, whether a potential energy can be associated with it. The
motivation for associating a potential energy with a force is that we can then
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610 CHAPTER 24 ELECTRIC POTENTIAL

apply the principle of the conservation of mechanical energy to closed systems
involving the force. This extremely powerful principle allows us to calculate the
results of experiments for which force calculations alone would be very difficult.
Experimentally, physicists and engineers discovered that the electric force is
conservative and thus has an associated electric potential energy. In this chapter
we first define this type of potential energy and then put it to use.

For a quick taste, let’s return to the situation we considered in Chapter 22:
In Figure 24-1, particle 1 with positive charge q1 is located at point P near parti-
cle 2 with positive charge q2. In Chapter 22 we explained how particle 2 is able
to push on particle 1 without any contact. To account for the force (which is a
vector quantity), we defined an electric field (also a vector quantity) that is
set up at P by particle 2. That field exists regardless of whether particle 1 is at P.
If we choose to place particle 1 there, the push on it is due to charge q1 and that
pre-existing field .

Here is a related problem. If we release particle 1 at P, it begins to move and
thus has kinetic energy. Energy cannot appear by magic, so from where does it
come? It comes from the electric potential energy U associated with the force be-
tween the two particles in the arrangement of Fig. 24-1. To account for the poten-
tial energy U (which is a scalar quantity), we define an electric potential V (also a
scalar quantity) that is set up at P by particle 2. The electric potential exists
regardless of whether particle 1 is at P. If we choose to place particle 1 there, the
potential energy of the two-particle system is then due to charge q1 and that pre-
existing electric potential V.

Our goals in this chapter are to (1) define electric potential, (2) discuss how
to calculate it for various arrangements of charged particles and objects, and
(3) discuss how electric potential V is related to electric potential energy U.

Electric Potential and Electric Potential Energy
We are going to define the electric potential (or potential for short) in terms of
electric potential energy, so our first job is to figure out how to measure that po-
tential energy. Back in Chapter 8, we measured gravitational potential energy U
of an object by (1) assigning U " 0 for a reference configuration (such as the ob-
ject at table level) and (2) then calculating the work W the gravitational force
does if the object is moved up or down from that level. We then defined the po-
tential energy as being

U " $W (potential energy). (24-1)

Let’s follow the same procedure with our new conservative force, the electric
force. In Fig. 24-2a, we want to find the potential energy U associated with a posi-
tive test charge q0 located at point P in the electric field of a charged rod. First, we
need a reference configuration for which U " 0. A reasonable choice is for the
test charge to be infinitely far from the rod, because then there is no interaction
with the rod. Next, we bring the test charge in from infinity to point P to form the
configuration of Fig. 24-2a. Along the way, we calculate the work done by the
electric force on the test charge. The potential energy of the final configuration is
then given by Eq. 24-1, where W is now the work done by the electric force. Let’s
use the notation to emphasize that the test charge is brought in from infinity.
The work and thus the potential energy can be positive or negative depending on
the sign of the rod’s charge.

Next, we define the electric potential V at P in terms of the work done by the
electric force and the resulting potential energy:

(electric potential). (24-2)V "
$W#

q0
"

U
q0

W#

E
:

E
:

F
:

+ +
q1 q2

+ 

Test charge q0 
at point P 

Charged 
object 

(a)

+ 
+ + 

+ + 
+ + 

+ + 
+ + 

Electric potential
V at point P

(b)

+
++

++
++

++
++

P

The rod sets up an
electric potential, 
which determines 
the potential energy.

Figure 24-1 Particle 1 is located at point P in
the electric field of particle 2.

Figure 24-2 (a) A test charge has been
brought in from infinity to point P in the
electric field of the rod. (b) We define an
electric potential V at P based on the 
potential energy of the configuration in (a).
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61124-1 ELECTRIC POTENTIAL

That is, the electric potential is the amount of electric potential energy per unit
charge when a positive test charge is brought in from infinity. The rod sets up this
potential V at P regardless of whether the test charge (or anything else) happens
to be there (Fig. 24-2b). From Eq. 24-2 we see that V is a scalar quantity (because
there is no direction associated with potential energy or charge) and can be posi-
tive or negative (because potential energy and charge have signs).

Repeating this procedure we find that an electric potential is set up at every
point in the rod’s electric field. In fact, every charged object sets up electric
potential V at points throughout its electric field. If we happen to place a particle
with, say, charge q at a point where we know the pre-existing V, we can immedi-
ately find the potential energy of the configuration:

(electric potential energy) " (particle’s charge)

or U " qV, (24-3)

where q can be positive or negative.
Two Cautions. (1) The (now very old) decision to call V a potential was un-

fortunate because the term is easily confused with potential energy. Yes, the two
quantities are related (that is the point here) but they are very different and not
interchangeable. (2) Electric potential is a scalar, not a vector. (When you come
to the homework problems, you will rejoice on this point.)

Language. A potential energy is a property of a system (or configuration) of
objects, but sometimes we can get away with assigning it to a single object. For ex-
ample, the gravitational potential energy of a baseball hit to outfield is actually a
potential energy of the baseball–Earth system (because it is associated with the
force between the baseball and Earth). However, because only the baseball no-
ticeably moves (its motion does not noticeably affect Earth), we might assign the
gravitational potential energy to it alone. In a similar way, if a charged particle is
placed in an electric field and has no noticeable effect on the field (or the charged
object that sets up the field), we usually assign the electric potential energy to the
particle alone.

Units. The SI unit for potential that follows from Eq. 24-2 is the joule per
coulomb. This combination occurs so often that a special unit, the volt (abbrevi-
ated V), is used to represent it.Thus,

1 volt " 1 joule per coulomb.

With two unit conversions, we can now switch the unit for electric field from new-
tons per coulomb to a more conventional unit:

The conversion factor in the second set of parentheses comes from our definition
of volt given above; that in the third set of parentheses is derived from the defini-
tion of the joule. From now on, we shall express values of the electric field in volts
per meter rather than in newtons per coulomb.

Motion Through an Electric Field
Change in Electric Potential. If we move from an initial point i to a second point f
in the electric field of a charged object, the electric potential changes by

!V " Vf $ Vi.

 " 1 V/m.

1 N/C " !1
N
C " ! 1 V

1 J/C " ! 1 J
1 N &m "

! electric potential energy
unit charge ",
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612 CHAPTER 24 ELECTRIC POTENTIAL

If we move a particle with charge q from i to f, then, from Eq. 24-3, the potential
energy of the system changes by

!U " q !V " q(Vf $ Vi). (24-4)

The change can be positive or negative, depending on the signs of q and !V. It
can also be zero, if there is no change in potential from i to f (the points have the
same value of potential). Because the electric force is conservative, the change in
potential energy !U between i and f is the same for all paths between those
points (it is path independent).

Work by the Field. We can relate the potential energy change !U to the
work W done by the electric force as the particle moves from i to f by applying
the general relation for a conservative force (Eq. 8-1):

W " $!U (work, conservative force). (24-5)

Next, we can relate that work to the change in the potential by substituting from
Eq. 24-4:

W " $!U " $q !V " $q(Vf $ Vi). (24-6)

Up until now, we have always attributed work to a force but here can also say
that W is the work done on the particle by the electric field (because it, of course,
produces the force). The work can be positive, negative, or zero. Because !U
between any two points is path independent, so is the work W done by the field.
(If you need to calculate work for a difficult path, switch to an easier path—you
get the same result.)

Conservation of Energy. If a charged particle moves through an electric
field with no force acting on it other than the electric force due to the field, then
the mechanical energy is conserved. Let’s assume that we can assign the electric
potential energy to the particle alone. Then we can write the conservation of me-
chanical energy of the particle that moves from point i to point f as

Ui % Ki " Uf % Kf , (24-7)

or !K " $!U. (24-8)

Substituting Eq. 24-4, we find a very useful equation for the change in the particle’s
kinetic energy as a result of the particle moving through a potential difference:

!K " $q !V " $q(Vf $ Vi). (24-9)

Work by an Applied Force. If some force in addition to the electric force
acts on the particle, we say that the additional force is an applied force or external
force, which is often attributed to an external agent. Such an applied force can do
work on the particle, but the force may not be conservative and thus, in general,
we cannot associate a potential energy with it. We account for that work Wapp by
modifying Eq. 24-7:

(initial energy) % (work by applied force) " (final energy)

or Ui % Ki % Wapp " Uf % Kf . (24-10)

Rearranging and substituting from Eq. 24-4, we can also write this as

!K " $!U % Wapp " $q !V % Wapp. (24-11)

The work by the applied force can be positive, negative, or zero, and thus the en-
ergy of the system can increase, decrease, or remain the same.

In the special case where the particle is stationary before and after the move,
the kinetic energy terms in Eqs. 24-10 and 24-11 are zero and we have

Wapp " q !V (for Ki " Kf). (24-12)

In this special case, the work Wapp involves the motion of the particle through
the potential difference !V and not a change in the particle’s kinetic energy.
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61324-1 ELECTRIC POTENTIAL

where u is the angle between the directions of and .
The field is directed downward and the displacement 
is directed upward; so u " 180'. We can now evaluate the
work as

Equation 24-5 then yields

!U " $W " $1.2 ( 10$14 J. (Answer)

This result tells us that during the 520 m ascent, the electric 
potential energy of the electron decreases by 1.2 ( 10$14 J.
To find the change in electric potential, we apply Eq. 24-4:

(Answer)

This tells us that the electric force does work to move the
electron to a higher potential.

" 4.5 ( 104 V " 45 kV.

!V "
!U
$q

"
$1.2 ( 10$14 J
$1.6 ( 10$19 C

 " 1.2 ( 10$14 J.

W " ($1.6 ( 10$19 C)(150 N/C)(520 m) cos 180'

d
:

E
:

d
:

E
:

Sample Problem 24.01 Work and potential energy in an electric field

Electrons are continually being knocked out of air mole-
cules in the atmosphere by cosmic-ray particles coming in
from space. Once released, each electron experiences an
electric force due to the electric field that is produced
in the atmosphere by charged particles already on Earth.
Near Earth’s surface the electric field has the magnitude
E " 150 N/C and is directed downward. What is the change
!U in the electric potential energy of a released electron
when the electric force causes it to move vertically upward
through a distance d " 520 m (Fig. 24-3)? Through what
potential change does the electron move?

KEY IDEAS

(1) The change !U in the electric potential energy of the
electron is related to the work W done on the electron by the
electric field. Equation 24-5 (W !U) gives the relation.
(2) The work done by a constant force on a particle under-
going a displacement is

(3) The electric force and the electric field are related by the
force equation where here q is the charge of an
electron ( 1.6 10$19 C).

Calculations: Substituting the force equation into the work
equation and taking the dot product yield

W " qE
:

! d
:

" qEd cos u,

(" $
F
:

" qE
:

,

W " F
:

! d
:

.

d
:

F
:

" $

E
:

F
:

Additional examples, video, and practice available at WileyPLUS

By comparing Eqs. 24-6 and 24-12, we see that in this special case, the work by the
applied force is the negative of the work by the field:

Wapp " $W (for Ki " Kf). (24-13)

Electron-volts. In atomic and subatomic physics, energy measures in the SI
unit of joules often require awkward powers of ten. A more convenient (but non-
SI unit) is the electron-volt (eV), which is defined to be equal to the work required
to move a single elementary charge e (such as that of an electron or proton)
through a potential difference !V of exactly one volt. From Eq. 24-6, we see that
the magnitude of this work is q !V.Thus,

1 eV " e(1 V)

" (1.602 ( 10$19 C)(1 J/C) " 1.602 ( 10$19 J. (24-14)

Checkpoint 1
In the figure, we move a proton from point i to point f in a uniform electric field. Is positive or negative
work done by (a) the electric field and (b) our force? (c) Does the electric potential energy increase or
decrease? (d) Does the proton move to a point of higher or lower electric potential?

E 

+ 
f i

Figure 24-3 An electron in the atmosphere is moved upward through
displacement by an electric force due to an electric field .E

:
F
:

d
:

– e 

E F d 
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614 CHAPTER 24 ELECTRIC POTENTIAL

Equipotential Surfaces
Adjacent points that have the same electric potential form an equipotential
surface, which can be either an imaginary surface or a real, physical surface. No
net work W is done on a charged particle by an electric field when the particle
moves between two points i and f on the same equipotential surface. This follows
from Eq. 24-6, which tells us that W must be zero if Vf " Vi. Because of the path
independence of work (and thus of potential energy and potential), W " 0 for
any path connecting points i and f on a given equipotential surface regardless of
whether that path lies entirely on that surface.

Figure 24-4 shows a family of equipotential surfaces associated with the elec-
tric field due to some distribution of charges. The work done by the electric field
on a charged particle as the particle moves from one end to the other of paths

24-2 EQUIPOTENTIAL SURFACES AND THE ELECTRIC FIELD

After reading this module, you should be able to . . .

24.09 Identify an equipotential surface and describe how it is
related to the direction of the associated electric field.

24.10 Given an electric field as a function of position, calcu-
late the change in potential !V from an initial point to a
final point by choosing a path between the points and
integrating the dot product of the field and a length
element along the path.d s:

E
:

24.11 For a uniform electric field, relate the field magnitude
E and the separation !x and potential difference !V
between adjacent equipotential lines.

24.12 Given a graph of electric field E versus position along
an axis, calculate the change in potential !V from an initial
point to a final point by graphical integration.

24.13 Explain the use of a zero-potential location.

Learning Objectives

● The points on an equipotential surface all have the same
electric potential. The work done on a test charge in moving it
from one such surface to another is independent of the loca-
tions of the initial and final points on these surfaces and of the
path that joins the points. The electric field is always directed
perpendicularly to corresponding equipotential surfaces.
● The electric potential difference between two points i and f is

where the integral is taken over any path connecting the
points. If the integration is difficult along any particular path,

Vf $ Vi " $#f

i
 E

: 
! d s:,

E
:

we can choose a different path along which the integration
might be easier. 
● If we choose Vi " 0, we have, for the potential at a particu-
lar point,

● In a uniform field of magnitude E, the change in potential
from a higher equipotential surface to a lower one, separated
by distance !x, is

!V " $E !x.

V " $#f

i
 E

: 
! d s:.

Key Ideas

I 

II 

III IV 

V1 

V2 

V3 

V4 

Equal work is done along
these paths between the
same surfaces.

No work is done along
this path on an
equipotential surface.

No work is done along this path 
that returns to the same surface.

Figure 24-4 Portions of four equipotential
surfaces at electric potentials V1 " 100 V,
V2 " 80 V, V3 " 60 V, and V4 " 40 V. Four
paths along which a test charge may move
are shown.Two electric field lines are also
indicated.
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61524-2 EQUIPOTENTIAL SURFACES AND THE ELECTRIC FIELD

I and II is zero because each of these paths begins and ends on the same
equipotential surface and thus there is no net change in potential. The work
done as the charged particle moves from one end to the other of paths III and
IV is not zero but has the same value for both these paths because the initial
and final potentials are identical for the two paths; that is, paths III and IV
connect the same pair of equipotential surfaces.

From symmetry, the equipotential surfaces produced by a charged particle or
a spherically symmetrical charge distribution are a family of concentric spheres.
For a uniform electric field, the surfaces are a family of planes perpendicular to
the field lines. In fact, equipotential surfaces are always perpendicular to electric
field lines and thus to , which is always tangent to these lines. If were not per-
pendicular to an equipotential surface, it would have a component lying along
that surface. This component would then do work on a charged particle as it
moved along the surface. However, by Eq. 24-6 work cannot be done if the
surface is truly an equipotential surface; the only possible conclusion is that 
must be everywhere perpendicular to the surface. Figure 24-5 shows electric field
lines and cross sections of the equipotential surfaces for a uniform electric field
and for the field associated with a charged particle and with an electric dipole.

Calculating the Potential from the Field
We can calculate the potential difference between any two points i and f in an
electric field if we know the electric field vector all along any path connecting
those points. To make the calculation, we find the work done on a positive test
charge by the field as the charge moves from i to f, and then use Eq. 24-6.

Consider an arbitrary electric field, represented by the field lines in Fig. 24-6,
and a positive test charge q0 that moves along the path shown from point i to
point f. At any point on the path, an electric force acts on the charge as it
moves through a differential displacement . From Chapter 7, we know that the
differential work dW done on a particle by a force during a displacement is
given by the dot product of the force and the displacement:

(24-15)

For the situation of Fig. 24-6, and Eq. 24-15 becomes

(24-16)

To find the total work W done on the particle by the field as the particle moves
from point i to point f, we sum—via integration—the differential works done on
the charge as it moves through all the displacements along the path:

(24-17)

If we substitute the total work W from Eq. 24-17 into Eq. 24-6, we find

(24-18)Vf $ Vi " $#f

i
E
:

! d s:.

W " q0 #f

i
E
:

! d s:.

d s:

dW " q0E
:

! d s:.

F
:

" q0E
:

dW " F
:

! d s:.

d s:F
:

d s:
q0E

:

E
:

E
:

E
:

E
:

Equipotential surface

Field line

(a)

(c)

+

(b)

+

Figure 24-5 Electric field lines (purple) and
cross sections of equipotential surfaces
(gold) for (a) a uniform electric field,
(b) the field due to a charged particle,
and (c) the field due to an electric dipole.

i 

f 

ds 
q0 
 

q0E 

Field line Path 

+ 

Figure 24-6 A test charge q0 moves from point i
to point f along the path shown in a nonuni-
form electric field. During a displacement ,
an electric force acts on the test charge.
This force points in the direction of the field
line at the location of the test charge.

q0E
:

d s:
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616 CHAPTER 24 ELECTRIC POTENTIAL

Checkpoint 2
The figure here shows a family of parallel equipotential surfaces (in cross section) and
five paths along which we shall move an electron from one surface to another. (a)
What is the direction of the electric field associated with the surfaces? (b) For each
path, is the work we do positive, negative, or zero? (c) Rank the paths according to the
work we do, greatest first.

90 V 80 V 70 V 60 V 50 V 40 V 

5 

3 
4 

2 

1 

The electric field vector points from higher potential toward lower potential.

Thus, the potential difference Vf $ Vi between any two points i and f in an electric
field is equal to the negative of the line integral (meaning the integral along a
particular path) of from i to f. However, because the electric force is con-
servative, all paths (whether easy or difficult to use) yield the same result.

Equation 24-18 allows us to calculate the difference in potential between any
two points in the field. If we set potential Vi " 0, then Eq. 24-18 becomes

(24-19)

in which we have dropped the subscript f on Vf . Equation 24-19 gives us the 
potential V at any point f in the electric field relative to the zero potential at point i.
If we let point i be at infinity, then Eq. 24-19 gives us the potential V at any point f
relative to the zero potential at infinity.

Uniform Field. Let’s apply Eq. 24-18 for a uniform field as shown in 
Fig. 24-7. We start at point i on an equipotential line with potential Vi and move to
point f on an equipotential line with a lower potential Vf. The separation between
the two equipotential lines is !x. Let’s also move along a path that is parallel to the
electric field (and thus perpendicular to the equipotential lines). The angle be-
tween and in Eq. 24-18 is zero, and the dot product gives us

" E ds cos 0 " E ds.

Because E is constant for a uniform field, Eq. 24-18 becomes

Vf $ Vi " $E . (24-20)

The integral is simply an instruction for us to add all the displacement elements
ds from i to f, but we already know that the sum is length !x. Thus we can write
the change in potential Vf $ Vi in this uniform field as

!V " $E !x (uniform field). (24-21)

This is the change in voltage !V between two equipotential lines in a uniform field
of magnitude E, separated by distance !x. If we move in the direction of the field
by distance !x, the potential decreases. In the opposite direction, it increases.

#f

i
ds

E
:

! d s:
d s:E

:
E
:

V " $#f

i
E
:

! d s:,

E
:

! d s:

Field line

Higher
potential Lower

potential

Path

E
!x

i f
x

Figure 24-7 We move between
points i and f, between adja-
cent equipotential lines in a
uniform electric field ,
parallel to a field line.

E
:
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61724-2 EQUIPOTENTIAL SURFACES AND THE ELECTRIC FIELD

Figure 24-8 (a) A test charge q0 moves in a straight line from point i to point f, along the
direction of a uniform external electric field. (b) Charge q0 moves along path icf in the same
electric field.

ment of the test charge is perpendicular to . Thus, the
angle u between and is 90 , and the dot product 
is 0. Equation 24-18 then tells us that points i and c are at the
same potential: Vc $ Vi " 0. Ah, we should have seen this
coming. The points are on the same equipotential surface,
which is perpendicular to the electric field lines.

For line cf we have u 45 and, from Eq. 24-18,

The integral in this equation is just the length of line cf ;
from Fig. 24-8b, that length is d/cos 45'.Thus,

(Answer)

This is the same result we obtained in (a), as it must be;
the potential difference between two points does not de-
pend on the path connecting them. Moral: When you
want to find the potential difference between two points
by moving a test charge between them, you can save time
and work by choosing a path that simplifies the use of
Eq. 24-18.

Vf $ Vi " $E(cos 45') 
d

cos 45'
" $Ed.

 " $E(cos 45') #f

c
ds.

Vf $ Vi " $#f

c
E
:

! d s: " $#f

c
E(cos 45') ds

'"

E
:

! d s:'d s:E
:

E
:

d s:

Sample Problem 24.02 Finding the potential change from the electric field

(a) Figure 24-8a shows two points i and f in a uniform elec-
tric field .The points lie on the same electric field line (not
shown) and are separated by a distance d. Find the potential
difference Vf $ Vi by moving a positive test charge q0 from
i to f along the path shown, which is parallel to the field
direction.

KEY IDEA

We can find the potential difference between any two points
in an electric field by integrating along a path con-
necting those two points according to Eq. 24-18.

Calculations: We have actually already done the calculation
for such a path in the direction of an electric field line in a
uniform field when we derived Eq. 24-21.With slight changes in
notation,Eq.24-21 gives us

Vf $ Vi " $Ed. (Answer)

(b) Now find the potential difference Vf $ Vi by moving the
positive test charge q0 from i to f along the path icf shown in
Fig.24-8b.

Calculations: The Key Idea of (a) applies here too, except
now we move the test charge along a path that consists of
two lines: ic and cf. At all points along line ic, the displace-

E
:

! d s:

E
:

(a) (b) 

d

i

f

q0
d 

i 

f 

q0 

q0 
 

c 

45° 

45° +

+ 

+ 

ds

ds 

ds 

E

E 

E 

The electric field points from 
higher potential to lower potential.

The field is perpendicular to this ic path, 
so there is no change in the potential.

The field has a component
along this cf path, so there
is a  change in the potential.

Higher potential

Lower potential

Additional examples, video, and practice available at WileyPLUS
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618 CHAPTER 24 ELECTRIC POTENTIAL

q0 

r 

R 

P 

q 

+ 

+ 

dsE 

To find the potential of
the charged particle,
we move this test charge
out to infinity.

Figure 24-9 The particle with positive charge
q produces an electric field and an elec-
tric potential V at point P. We find the
potential by moving a test charge q0 from
P to infinity. The test charge is shown at
distance r from the particle, during differ-
ential displacement .d s:

E
:

24-3 POTENTIAL DUE TO A CHARGED PARTICLE

After reading this module, you should be able to . . .

24.14 For a given point in the electric field of a charged parti-
cle, apply the relationship between the electric potential V,
the charge of the particle q, and the distance r from the
particle.

24.15 Identify the correlation between the algebraic signs of the
potential set up by a particle and the charge of the particle.

24.16 For points outside or on the surface of a spherically

symmetric charge distribution, calculate the electric
potential as if all the charge is concentrated as a particle
at the center of the sphere.

24.17 Calculate the net potential at any given point due to
several charged particles, identifying that algebraic addi-
tion is used, not vector addition.

24.18 Draw equipotential lines for a charged particle.

Learning Objectives

● The electric potential due to a single charged particle at a
distance r from that charged particle is

where V has the same sign as q. 

V "
1

4p´0

q
r

,

● The potential due to a collection of charged particles is

Thus, the potential is the algebraic sum of the individual po-
tentials, with no consideration of directions.

V " $
n

i"1
Vi "

1
4p´0

$
n

i"1

qi

ri
.

Key Ideas

Potential Due to a Charged Particle
We now use Eq. 24-18 to derive, for the space around a charged particle, an
expression for the electric potential V relative to the zero potential at infinity.
Consider a point P at distance R from a fixed particle of positive charge q (Fig. 24-9).
To use Eq. 24-18, we imagine that we move a positive test charge q0 from point P to
infinity. Because the path we take does not matter, let us choose the simplest one—
a line that extends radially from the fixed particle through P to infinity.

To use Eq. 24-18, we must evaluate the dot product

(24-22)

The electric field in Fig. 24-9 is directed radially outward from the fixed 
particle.Thus, the differential displacement of the test particle along its path has
the same direction as . That means that in Eq. 24-22, angle u 0 and cos u 1.
Because the path is radial, let us write ds as dr.Then, substituting the limits R and #,
we can write Eq. 24-18 as

(24-23)

Next, we set Vf " 0 (at #) and Vi " V (at R). Then, for the magnitude of the
electric field at the site of the test charge, we substitute from Eq. 22-3:

(24-24)

With these changes, Eq. 24-23 then gives us

(24-25) " $
1

4p´0

q
R

.

0 $ V " $
q

4p´0
##

R

1
r2  dr "

q
4p´0

% 1
r &

#

R

E "
1

4p´0

q
r2 .

Vf $ Vi " $##

R
E dr.

""E
:

d s:
E
:

E
:

! d s: " E cos ) ds.
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61924-3 POTENTIAL DUE TO A CHARGED PARTICLE

Solving for V and switching R to r, we then have

(24-26)

as the electric potential V due to a particle of charge q at any radial distance
r from the particle.

Although we have derived Eq. 24-26 for a positively charged particle, the
derivation holds also for a negatively charged particle, in which case, q is a nega-
tive quantity. Note that the sign of V is the same as the sign of q:

V "
1

4p´0

q
r

A positively charged particle produces a positive electric potential. A negatively
charged particle produces a negative electric potential.

Figure 24-10 A computer-generated plot of
the electric potential V(r) due to a positive-
ly charged particle located at the origin of
an xy plane. The potentials at points in the
xy plane are plotted vertically. (Curved
lines have been added to help you visual-
ize the plot.) The infinite value of V pre-
dicted by Eq. 24-26 for r " 0 is not plotted.

x 

y 

V(r) 

Figure 24-10 shows a computer-generated plot of Eq. 24-26 for a positively
charged particle; the magnitude of V is plotted vertically. Note that the magni-
tude increases as r : 0. In fact, according to Eq. 24-26, V is infinite at r " 0,
although Fig. 24-10 shows a finite, smoothed-off value there.

Equation 24-26 also gives the electric potential either outside or on the exter-
nal surface of a spherically symmetric charge distribution. We can prove this by
using one of the shell theorems of Modules 21-1 and 23-6 to replace the actual
spherical charge distribution with an equal charge concentrated at its center.
Then the derivation leading to Eq. 24-26 follows, provided we do not consider
a point within the actual distribution.

Potential Due to a Group of Charged Particles
We can find the net electric potential at a point due to a group of charged parti-
cles with the help of the superposition principle. Using Eq. 24-26 with the plus or
minus sign of the charge included, we calculate separately the potential resulting
from each charge at the given point. Then we sum the potentials. Thus, for n
charges, the net potential is

(n charged particles). (24-27)

Here qi is the value of the ith charge and ri is the radial distance of the given point
from the ith charge. The sum in Eq. 24-27 is an algebraic sum, not a vector sum
like the sum that would be used to calculate the electric field resulting from
a group of charged particles. Herein lies an important computational advantage
of potential over electric field: It is a lot easier to sum several scalar quantities
than to sum several vector quantities whose directions and components must
be considered.

V " $
n

i"1
Vi "

1
4p´0

$
n

i"1

qi

ri

Checkpoint 3
The figure here shows three arrangements of two protons. Rank the arrangements ac-
cording to the net electric potential produced at point P by the protons, greatest first.

P 
d 

D 

(b) 
P 

D d 
D 

d 

P 
(a) (c) 
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620 CHAPTER 24 ELECTRIC POTENTIAL

electric potential is a scalar, the orientations of the electrons
do not matter. (2) The electric field at C is a vector quantity
and thus the orientation of the electrons is important.

Calculations: Because the electrons all have the same nega-
tive charge $e and are all the same distance R from C, Eq.
24-27 gives us

(Answer) (24-28)

Because of the symmetry of the arrangement in Fig. 24-12a,
the electric field vector at C due to any given electron is
canceled by the field vector due to the electron that is dia-
metrically opposite it.Thus, at C,

(Answer)

(b) The electrons are moved along the circle until they are
nonuniformly spaced over a 120' arc (Fig. 24-12b).At C, find
the electric potential and describe the electric field.

Reasoning: The potential is still given by Eq. 24-28, because
the distance between C and each electron is unchanged and
orientation is irrelevant. The electric field is no longer zero,
however, because the arrangement is no longer symmetric.
A net field is now directed toward the charge distribution.

E
:

" 0.

V " $12 
1

4p´0

e
R

.

Sample Problem 24.04 Potential is not a vector, orientation is irrelevant

(a) In Fig. 24-12a, 12 electrons (of charge e) are equally
spaced and fixed around a circle of radius R. Relative to 
V " 0 at infinity, what are the electric potential and electric
field at the center C of the circle due to these electrons?

KEY IDEAS

(1) The electric potential V at C is the algebraic sum of the
electric potentials contributed by all the electrons. Because

$

Additional examples, video, and practice available at WileyPLUS

Figure 24-12 (a) Twelve electrons uniformly spaced around a circle.
(b)The electrons nonuniformly spaced along an arc of the original circle.

R 

C 
R

C

(a) (b)

120°

Potential is a scalar and 
orientation is irrelevant.

(Because electric potential is a scalar, the orientations of the
particles do not matter.)

Calculations: From Eq. 24-27, we have

The distance r is , which is 0.919 m, and the sum of the
charges is

Thus,

(Answer)

Close to any of the three positively charged particles in
Fig. 24-11a, the potential has very large positive values.
Close to the single negative charge, the potential has very
large negative values.Therefore, there must be points within
the square that have the same intermediate potential as that
at point P.The curve in Fig. 24-11b shows the intersection of
the plane of the figure with the equipotential surface that
contains point P.

 ' 350 V.

 V "
(8.99 ( 109 N &m2/C2)(36 ( 10$9 C)

0.919 m

 " 36 ( 10$9 C.

q1 % q2 % q3 % q4 " (12 $ 24 % 31 % 17) ( 10$9 C

d/1 2

V " $
4

i"1
Vi "

1
4p´0

! q1

r
%

q2

r
%

q3

r
%

q4

r ".

Sample Problem 24.03 Net potential of several charged particles

What is the electric potential at point P, located at the cen-
ter of the square of charged particles shown in Fig. 24-11a?
The distance d is 1.3 m, and the charges are

KEY IDEA

The electric potential V at point P is the algebraic sum of
the electric potentials contributed by the four particles.

q2 " $24 nC, q4 " %17 nC.

q1 " %12 nC, q3 " %31 nC,

Figure 24-11 (a) Four charged particles. (b) The closed curve is a
(roughly drawn) cross section of the equipotential surface that
contains point P.

d d

d 

d 

P 

q1 q2 

q3 q4 

P 

q1 q2 

q3 q4 

V = 350 V 

(a) (b) 

halliday_c24_609-638v2.0.1.qxd  2/27/14  10:26 AM  Page 620

Uploaded By: anonymousSTUDENTS-HUB.com



62124-4 POTENTIAL DUE TO AN ELECTRIC DIPOLE

24-4 POTENTIAL DUE TO AN ELECTRIC DIPOLE

After reading this module, you should be able to . . .

24.19 Calculate the potential V at any given point due to an
electric dipole, in terms of the magnitude p of the dipole
moment or the product of the charge separation d and the
magnitude q of either charge.

24.20 For an electric dipole, identify the locations of positive
potential, negative potential, and zero potential.

24.21 Compare the decrease in potential with increasing dis-
tance for a single charged particle and an electric dipole.

Learning Objectives

● At a distance r from an electric dipole with dipole moment magnitude p qd, the electric potential of the dipole is

for ; the angle u lies between the dipole moment vector and a line extending from the dipole midpoint to the point of
measurement.

r * d

V "
1

4p´0

p cos u
r2

"

Key Idea

z

d O

θ

+q

–q

r(–) – r(+)

r(–)

r(+)

r

P

(a)

+

z

d
θ

r(–) – r(+)

r(–)

r(+)

(b)

+
+q

–q

Figure 24-13 (a) Point P is a distance r from
the midpoint O of a dipole. The line OP
makes an angle u with the dipole axis.
(b) If P is far from the dipole, the lines of
lengths r(%) and r($) are approximately
parallel to the line of length r, and the
dashed black line is approximately per-
pendicular to the line of length r($).

Potential Due to an Electric Dipole
Now let us apply Eq. 24-27 to an electric dipole to find the potential at an 
arbitrary point P in Fig. 24-13a. At P, the positively charged particle (at distance
r(%)) sets up potential V(%) and the negatively charged particle (at distance r($))
sets up potential V($).Then the net potential at P is given by Eq. 24-27 as

(24-29)

Naturally occurring dipoles — such as those possessed by many mole-
cules — are quite small; so we are usually interested only in points that are rel-
atively far from the dipole, such that , where d is the distance between
the charges and r is the distance from the dipole’s midpoint to P. In that case,
we can approximate the two lines to P as being parallel and their length dif-
ference as being the leg of a right triangle with hypotenuse d (Fig. 24-13b).
Also, that difference is so small that the product of the lengths is approxi-
mately r2. Thus,

r($) $ r(%) ' d cos u and r($)r(%) ' r 2.

If we substitute these quantities into Eq. 24-29, we can approximate V to be

where u is measured from the dipole axis as shown in Fig. 24-13a. We can now
write V as

(electric dipole), (24-30)

in which p (" qd) is the magnitude of the electric dipole moment defined in
Module 22-3. The vector is directed along the dipole axis, from the negative to
the positive charge. (Thus, u is measured from the direction of .) We use this
vector to report the orientation of an electric dipole.

p:
p:

p:

V "
1

4p´0

p cos u
r2

V "
q

4p´0
 
d cos )

r2 ,

r * d

 "
q

4p´0

r($) $ r(%)

r($)r(%)
.

 V " $
2

i"1
Vi " V(%) % V($) "

1
4p´0

! q
r(%)

%
$q
r($)

"
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622 CHAPTER 24 ELECTRIC POTENTIAL

Potential Due to a Continuous Charge Distribution
When a charge distribution q is continuous (as on a uniformly charged thin rod
or disk), we cannot use the summation of Eq. 24-27 to find the potential V at a point
P. Instead, we must choose a differential element of charge dq, determine the
potential dV at P due to dq, and then integrate over the entire charge distribution.

Let us again take the zero of potential to be at infinity. If we treat the element of
charge dq as a particle, then we can use Eq. 24-26 to express the potential dV at point
P due to dq:

(positive or negative dq). (24-31)

Here r is the distance between P and dq. To find the total potential V at P, we

dV "
1

4p´0

dq
r

+

(a)

+ 

(b) 

p 

E 

The electric field shifts the positive 
and negative charges, creating a dipole.

Figure 24-14 (a) An atom, showing the posi-
tively charged nucleus (green) and the
negatively charged electrons (gold
shading). The centers of positive and nega-
tive charge coincide. (b) If the atom is
placed in an external electric field , the
electron orbits are distorted so that the
centers of positive and negative charge no
longer coincide. An induced dipole
moment appears. The distortion is great-
ly exaggerated here.

p:

E
:

24-5 POTENTIAL DUE TO A CONTINUOUS CHARGE DISTRIBUTION

After reading this module, you should be able to . . .

24.22 For charge that is distributed uniformly along a line or over a surface, find the net potential at a given point by splitting the
distribution up into charge elements and summing (by integration) the potential due to each one.

Learning Objective

● For a continuous distribution of charge (over an extended
object), the potential is found by (1) dividing the distribution
into charge elements dq that can be treated as particles and
then (2) summing the potential due to each element by inte-
grating over the full distribution:

V "
1

4p+0
# dq

r
.

● In order to carry out the integration, dq is replaced with the
product of either a linear charge density l and a length ele-
ment (such as dx), or a surface charge density s and area ele-
ment (such as dx dy).
● In some cases where the charge is symmetrically distrib-
uted, a two-dimensional integration can be reduced to a one-
dimensional integration.

Key Ideas

Induced Dipole Moment
Many molecules, such as water, have permanent electric dipole moments. In other
molecules (called nonpolar molecules) and in every isolated atom, the centers of
the positive and negative charges coincide (Fig. 24-14a) and thus no dipole
moment is set up. However, if we place an atom or a nonpolar molecule in an
external electric field, the field distorts the electron orbits and separates the centers
of positive and negative charge (Fig. 24-14b). Because the electrons are negatively
charged, they tend to be shifted in a direction opposite the field.This shift sets up a
dipole moment that points in the direction of the field. This dipole moment is
said to be induced by the field, and the atom or molecule is then said to be polar-
ized by the field (that is, it has a positive side and a negative side).When the field is
removed, the induced dipole moment and the polarization disappear.

p:

Checkpoint 4
Suppose that three points are set at equal (large) distances r from the center of the
dipole in Fig. 24-13: Point a is on the dipole axis above the positive charge, point b is on
the axis below the negative charge, and point c is on a perpendicular bisector through
the line connecting the two charges. Rank the points according to the electric potential
of the dipole there, greatest (most positive) first.
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62324-5 POTENTIAL DUE TO A CONTINUOUS CHARGE DISTRIBUTION

integrate to sum the potentials due to all the charge elements:

(24-32)

The integral must be taken over the entire charge distribution. Note that because
the electric potential is a scalar, there are no vector components to consider in
Eq. 24-32.

We now examine two continuous charge distributions, a line and a disk.

Line of Charge
In Fig. 24-15a, a thin nonconducting rod of length L has a positive charge of
uniform linear density l. Let us determine the electric potential V due to the rod
at point P, a perpendicular distance d from the left end of the rod.

We consider a differential element dx of the rod as shown in Fig. 24-15b. This
(or any other) element of the rod has a differential charge of

dq " l dx. (24-33)

This element produces an electric potential dV at point P, which is a distance 
r " (x2 % d 2)1/2 from the element (Fig. 24-15c). Treating the element as a point
charge, we can use Eq. 24-31 to write the potential dV as

(24-34)dV "
1

4p´0

dq
r

"
1

4p´0

l dx
(x2 % d 2)1/2 .

V " # dV "
1

4p´0
# dq

r
.

(b)

d

P

x
dxL

d

P

x

(a)

d = r

P

x

(d )

(c)

x

d

P

x
dx

r

x = 0

d r

P

x

(e)

x = L

This charged rod
is obviously not a
particle.

Our job is to add the
potentials due to all
the elements.

Here is the leftmost
element.

Here is the rightmost
element.

But we can treat this
element as a particle.

Here is how to find
distance r from the
element.

Figure 24-15 (a) A thin, uniformly charged rod produces an electric potential V at point P. (b) An
element can be treated as a particle. (c) The potential at P due to the element depends on the
distance r. We need to sum the potentials due to all the elements, from the left side (d) to the
right side (e).

A
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624 CHAPTER 24 ELECTRIC POTENTIAL

Since the charge on the rod is positive and we have taken V " 0 at infinity, we
know from Module 24-3 that dV in Eq. 24-34 must be positive.

We now find the total potential V produced by the rod at point P by integrat-
ing Eq. 24-34 along the length of the rod, from x " 0 to x " L (Figs. 24-15d and e),
using integral 17 in Appendix E.We find

We can simplify this result by using the general relation ln A ln B ln(A/B).
We then find

(24-35)

Because V is the sum of positive values of dV, it too is positive, consistent with
the logarithm being positive for an argument greater than 1.

Charged Disk
In Module 22-5, we calculated the magnitude of the electric field at points on the
central axis of a plastic disk of radius R that has a uniform charge density s on
one surface. Here we derive an expression for V(z), the electric potential at any
point on the central axis. Because we have a circular distribution of charge on the
disk, we could start with a differential element that occupies angle du and radial
distance dr. We would then need to set up a two-dimensional integration.
However, let’s do something easier.

In Fig. 24-16, consider a differential element consisting of a flat ring of radius
R, and radial width dR,. Its charge has magnitude

dq " s(2pR,)(dR,),

in which (2pR,)(dR,) is the upper surface area of the ring. All parts of this
charged element are the same distance r from point P on the disk’s axis. With the
aid of Fig. 24-16, we can use Eq. 24-31 to write the contribution of this ring to
the electric potential at P as

(24-36)

We find the net potential at P by adding (via integration) the contributions of all
the rings from R, " 0 to R, " R:

(24-37)

Note that the variable in the second integral of Eq. 24-37 is R, and not z, which
remains constant while the integration over the surface of the disk is carried out.
(Note also that, in evaluating the integral, we have assumed that z - 0.)

V " #dV "
s

2´0
#R

0

R, dR,2z2 % R,2
"

s

2´0
 (2z2 % R2 $ z).

dV "
1

4p´0

dq
r

"
1

4p´0

s(2pR,)(dR,)2z2 % R,2
.

V "
l

4p´0
 ln % L % (L2 % d 2)1/2

d &.

"$

 "
l

4p´0
%ln!L % (L2 % d2)1/2" $ ln d&.

 "
l

4p´0
%ln!x % (x2 % d 2)1/2"&

0

L

 "
l

4p´0
#L

0

dx
(x2 % d 2)1/2

V " #dV " #L

0

1
4p´0

l

(x2 % d 2)1/2  dx

z r 

P 

R' 

R 
dR' 

Every charge element
in the ring contributes
to the potential at P. 

Figure 24-16 A plastic disk of radius R,
charged on its top surface to a uniform
surface charge density s. We wish to
find the potential V at point P on the
central axis of the disk.
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62524-6 CALCULATING THE FIELD FROM THE POTENTIAL

Calculating the Field from the Potential
In Module 24-2, you saw how to find the potential at a point f if you know
the electric field along a path from a reference point to point f. In this module,
we propose to go the other way—that is, to find the electric field when we know
the potential. As Fig. 24-5 shows, solving this problem graphically is easy: If we
know the potential V at all points near an assembly of charges, we can draw in
a family of equipotential surfaces. The electric field lines, sketched perpendicular
to those surfaces, reveal the variation of .What we are seeking here is the math-
ematical equivalent of this graphical procedure.

Figure 24-17 shows cross sections of a family of closely spaced equipo-
tential surfaces, the potential difference between each pair of adjacent surfaces
being dV.As the figure suggests, the field at any point P is perpendicular to the
equipotential surface through P.

Suppose that a positive test charge q0 moves through a displacement 
from one equipotential surface to the adjacent surface. From Eq. 24-6, we see that
the work the electric field does on the test charge during the move is $q0 dV.
From Eq. 24-16 and Fig. 24-17, we see that the work done by the electric field may
also be written as the scalar product or q0E(cos u) ds. Equating these
two expressions for the work yields

$q0 dV " q0E(cos u) ds, (24-38)

or (24-39)

Since E cos u is the component of in the direction of Eq. 24-39 becomes

(24-40)

We have added a subscript to E and switched to the partial derivative symbols
to emphasize that Eq. 24-40 involves only the variation of V along a specified axis
(here called the s axis) and only the component of along that axis. In words,
Eq. 24-40 (which is essentially the reverse operation of Eq. 24-18) states:

E
:

Es " $
.V
.s

.

d s:,E
:

E cos u " $
dV
ds

.

(q0E
:

) ! d s:,

d s:

E
:

E
:

s 
q0 

P θ 

Two 
equipotential 

surfaces 

+ 
ds

E 

Figure 24-17 A test charge q0 moves a 
distance from one equipotential sur-
face to another. (The separation between
the surfaces has been exaggerated for clar-
ity.) The displacement makes an angle
u with the direction of the electric field .E

:
ds:

ds:

24-6 CALCULATING THE FIELD FROM THE POTENTIAL

After reading this module, you should be able to . . .

24.23 Given an electric potential as a function of position
along an axis, find the electric field along that axis.

24.24 Given a graph of electric potential versus position
along an axis, determine the electric field along the axis.

24.25 For a uniform electric field, relate the field magnitude E

and the separation x and potential difference V
between adjacent equipotential lines.

24.26 Relate the direction of the electric field and 
the directions in which the potential decreases and 
increases.

!!

Learning Objectives

● The component of in any direction is the negative of the rate at
which the potential changes with distance in that direction:

● The x, y, and z components of may be found from

Ex " $
.V
.x

; Ey " $
.V
.y

; Ez " $
.V
.z

.

E
:

Es " $
.V
.s

.

E
:

When is uniform, all this reduces to

where s is perpendicular to the equipotential surfaces. 
● The electric field is zero parallel to an equipotential
surface.

E " $
!V
!s

,

E
:

Key Ideas
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626 CHAPTER 24 ELECTRIC POTENTIAL

Checkpoint 5
The figure shows
three pairs of parallel
plates with the same
separation, and the
electric potential of
each plate.The elec-
tric field between the
plates is uniform and
perpendicular to the plates. (a) Rank the pairs according to the magnitude of the elec-
tric field between the plates, greatest first. (b) For which pair is the electric field point-
ing rightward? (c) If an electron is released midway between the third pair of plates,
does it remain there, move rightward at constant speed, move leftward at constant
speed, accelerate rightward, or accelerate leftward?

–50 V +150 V –20 V +200 V –200 V –400 V
(1) (2) (3) 

about that axis. Thus, we want the component Ez of in the
direction of z. This component is the negative of the rate at
which the electric potential changes with distance z.

Calculation: Thus, from the last of Eqs. 24-41, we can write

(Answer)

This is the same expression that we derived in Module 22-5
by integration, using Coulomb’s law.

 "
s

2´0
!1 $

z2z2 %  R2 ".

 Ez " $
.V
.z

" $
s

2´0

d
dz

 (2z2 % R2 $ z)

E
:

Sample Problem 24.05 Finding the field from the potential

The electric potential at any point on the central axis of a
uniformly charged disk is given by Eq. 24-37,

Starting with this expression, derive an expression for the
electric field at any point on the axis of the disk.

KEY IDEAS

We want the electric field as a function of distance z along
the axis of the disk. For any value of z, the direction of must
be along that axis because the disk has circular symmetry

E
:

E
:

V "
s

2´0
 (2z2 % R2 $ z).

Additional examples, video, and practice available at WileyPLUS

If we take the s axis to be, in turn, the x, y, and z axes, we find that the x, y, and
z components of at any point are

(24-41)

Thus, if we know V for all points in the region around a charge distribution—that
is, if we know the function V(x, y, z)—we can find the components of , and thus

itself, at any point by taking partial derivatives.
For the simple situation in which the electric field is uniform, Eq. 24-40

becomes
(24-42)

where s is perpendicular to the equipotential surfaces. The component of the
electric field is zero in any direction parallel to the equipotential surfaces because
there is no change in potential along the surfaces.

E " $
!V
!s

,

E
:

E
:

E
:

Ex " $
.V
.x

; Ey " $
.V
.y

; Ez " $
.V
.z

.

E
:

The component of in any direction is the negative of the rate at which the
electric potential changes with distance in that direction.

E
:
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62724-7 ELECTRIC POTENTIAL ENERGY OF A SYSTEM OF CHARGED PARTICLES

Electric Potential Energy of a System of Charged Particles
In this module we are going to calculate the potential energy of a system of two
charged particles and then briefly discuss how to expand the result to a system of
more than two particles. Our starting point is to examine the work we must do (as
an external agent) to bring together two charged particles that are initially infi-
nitely far apart and that end up near each other and stationary. If the two parti-
cles have the same sign of charge, we must fight against their mutual repulsion.
Our work is then positive and results in a positive potential energy for the final
two-particle system. If, instead, the two particles have opposite signs of charge,
our job is easy because of the mutual attraction of the particles. Our work is then
negative and results in a negative potential energy for the system.

Let’s follow this procedure to build the two-particle system in Fig. 24-18, where
particle 1 (with positive charge q1) and particle 2 (with positive charge q2) have sep-
aration r. Although both particles are positively charged, our result will apply also
to situations where they are both negatively charged or have different signs.

We start with particle 2 fixed in place and particle 1 infinitely far away, with
an initial potential energy Ui for the two-particle system. Next we bring particle 1
to its final position, and then the system’s potential energy is Uf. Our work
changes the system’s potential energy by !U " Uf $ Ui.

With Eq. 24-4 (!U " q(Vf $ Vi)), we can relate !U to the change in potential
through which we move particle 1:

Uf $ Ui " q1(Vf $ Vi). (24-43)

Let’s evaluate these terms.The initial potential energy is Ui " 0 because the parti-
cles are in the reference configuration (as discussed in Module 24-1). The two
potentials in Eq. 24-43 are due to particle 2 and are given by Eq. 24-26:

(24-44)

This tells us that when particle 1 is initially at distance r " #, the potential at its
location is Vi " 0. When we move it to the final position at distance r, the poten-
tial at its location is

(24-45)Vf "
1

4p´0

q2

r
.

V "
1

4p´0

q2

r
.

r 
q1 q2 
+ + 

Figure 24-18 Two charges held a fixed
distance r apart.

24-7 ELECTRIC POTENTIAL ENERGY OF A SYSTEM OF CHARGED PARTICLES

After reading this module, you should be able to . . .

24.27 Identify that the total potential energy of a system of
charged particles is equal to the work an applied force
must do to assemble the system, starting with the particles
infinitely far apart.

24.28 Calculate the potential energy of a pair of charged
particles.

24.29 Identify that if a system has more than two charged parti-

cles, then the system’s total potential energy is equal to the
sum of the potential energies of every pair of the particles.

24.30 Apply the principle of the conservation of mechanical
energy to a system of charged particles.

24.31 Calculate the escape speed of a charged particle 
from a system of charged particles (the minimum initial
speed required to move infinitely far from the system).

Learning Objectives

● The electric potential energy of a system of charged particles is equal to the work needed to assemble the system with the
particles initially at rest and infinitely distant from each other. For two particles at separation r,

U " W "
1

4p´0

q1q2

r
.

Key Idea
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628 CHAPTER 24 ELECTRIC POTENTIAL

Substituting these results into Eq. 24-43 and dropping the subscript f, we find that
the final configuration has a potential energy of

(two-particle system). (24-46)

Equation 24-46 includes the signs of the two charges. If the two charges have the
same sign, U is positive. If they have opposite signs, U is negative.

If we next bring in a third particle, with charge q3, we repeat our calculation,
starting with particle 3 at an infinite distance and then bringing it to a final posi-
tion at distance r31 from particle 1 and distance r32 from particle 2. At the final
position, the potential Vf at the location of particle 3 is the algebraic sum of the
potential V1 due to particle 1 and the potential V2 of particle 2. When we work
out the algebra, we find that

U "
1

4p´0

q1q2

r

place. The work that we must do in this last step is equal to
the sum of the work we must do to bring q3 near q1 and the
work we must do to bring it near q2. From Eq. 24-46, with d
substituted for r, that sum is

The total potential energy U of the three-charge system is the
sum of the potential energies associated with the three pairs of
charges. This sum (which is actually independent of the order
in which the charges are brought together) is

W13 % W23 " U13 % U23 "
1

4p´0

q1q3

d
%

1
4p´0

q2q3

d
.

Sample Problem 24.06 Potential energy of a system of three charged particles

Figure 24-19 shows three charged particles held in fixed
positions by forces that are not shown. What is the electric
potential energy U of this system of charges? Assume that
d " 12 cm and that

q1 " %q, q2 " $4q, and q3 " %2q,

in which q " 150 nC.

KEY IDEA

The potential energy U of the system is equal to the work
we must do to assemble the system, bringing in each charge
from an infinite distance.

Calculations: Let’s mentally build the system of Fig. 24-19,
starting with one of the charges, say q1, in place and the
others at infinity. Then we bring another one, say q2, in from
infinity and put it in place. From Eq. 24-46 with d substituted
for r, the potential energy U12 associated with the pair of
charges q1 and q2 is

We then bring the last charge q3 in from infinity and put it in

U12 "
1

4p´0

q1q2

d
.

Figure 24-19 Three charges are fixed at the vertices of an equilateral
triangle.What is the electric potential energy of the system?

d 
q1 q3 

d d 

q2 

+ + 

Energy is associated
with each pair of
particles.

The total potential energy of a system of particles is the sum of the potential
energies for every pair of particles in the system.

This result applies to a system for any given number of particles.
Now that we have an expression for the potential energy of a system of par-

ticles, we can apply the principle of the conservation of energy to the system as
expressed in Eq. 24-10. For example, if the system consists of many particles, we
might consider the kinetic energy (and the associated escape speed) required of
one of the particles to escape from the rest of the particles.
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Additional examples, video, and practice available at WileyPLUS

r 

Alpha 
particle 

Gold 
nucleus 

Figure 24-20 An alpha particle, traveling head-on toward the center of
a gold nucleus,comes to a momentary stop (at which time all its ki-
netic energy has been transferred to electric potential energy) and
then reverses its path.

As the incoming alpha particle is slowed by this repul-
sive force, its kinetic energy is transferred to electric poten-
tial energy of the system. The transfer is complete when the
alpha particle momentarily stops and the kinetic energy is
Kf " 0.

Calculations: The principle of conservation of mechanical
energy tells us that

Ki % Ui " Kf % Uf. (24-47)

We know two values: Ui " 0 and Kf " 0. We also know that
the potential energy Uf at the stopping point is given by the
right side of Eq. 24-46, with q1 " 2e, q2 " 79e (in which e is
the elementary charge, 1.60 ( 10$19 C), and r " 9.23 fm.
Thus, we can rewrite Eq. 24-47 as

(Answer) " 3.94 ( 10$12 J " 24.6 MeV.

 "
(8.99 ( 109 N &m2/C2)(158)(1.60 ( 10$19 C)2

9.23 ( 10$15 m

  Ki "
1

4p´0

(2e)(79e)
9.23 fm

Sample Problem 24.07 Conservation of mechanical energy with electric potential energy

An alpha particle (two protons, two neutrons) moves into a
stationary gold atom (79 protons, 118 neutrons), passing
through the electron region that surrounds the gold nucleus
like a shell and headed directly toward the nucleus 
(Fig. 24-20). The alpha particle slows until it momentarily
stops when its center is at radial distance r " 9.23 fm from
the nuclear center. Then it moves back along its incoming
path. (Because the gold nucleus is much more massive
than the alpha particle, we can assume the gold nucleus
does not move.) What was the kinetic energy Ki of the al-
pha particle when it was initially far away (hence external
to the gold atom)? Assume that the only force acting be-
tween the alpha particle and the gold nucleus is the (elec-
trostatic) Coulomb force and treat each as a single charged
particle.

KEY IDEA

During the entire process, the mechanical energy of the 
alpha particle % gold atom system is conserved.

Reasoning: When the alpha particle is outside the atom,
the system’s initial electric potential energy Ui is zero be-
cause the atom has an equal number of electrons and pro-
tons, which produce a net electric field of zero. However,
once the alpha particle passes through the electron region
surrounding the nucleus on its way to the nucleus, the elec-
tric field due to the electrons goes to zero.The reason is that
the electrons act like a closed spherical shell of uniform neg-
ative charge and, as discussed in Module 23-6, such a shell
produces zero electric field in the space it encloses. The
alpha particle still experiences the electric field of the
protons in the nucleus, which produces a repulsive force on
the protons within the alpha particle.

(Answer) " $1.7 ( 10$2 J " $17 mJ.

 " $
(8.99 ( 109 N &m2/C2)(10)(150 ( 10$9 C)2

0.12 m

 " $
10q2

4p´0d

 "
1

4p´0
! (%q)($4q)

d
%

(%q)(%2q)
d

%
($4q)(%2q)

d "
 U " U12 % U13 % U23 The negative potential energy means that negative

work would have to be done to assemble this structure,
starting with the three charges infinitely separated and at
rest. Put another way, an external agent would have to do 17
mJ of positive work to disassemble the structure completely,
ending with the three charges infinitely far apart.

The lesson here is this: If you are given an assembly of
charged particles, you can find the potential energy of the as-
sembly by finding the potential energy of every possible pair
of the particles and then summing the results.

24-7 ELECTRIC POTENTIAL ENERGY OF A SYSTEM OF CHARGED PARTICLES
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630 CHAPTER 24 ELECTRIC POTENTIAL

Potential of a Charged Isolated Conductor
In Module 23-3, we concluded that for all points inside an isolated conduc-
tor.We then used Gauss’ law to prove that an excess charge placed on an isolated
conductor lies entirely on its surface. (This is true even if the conductor has an
empty internal cavity.) Here we use the first of these facts to prove an extension
of the second:

E
:

" 0

An excess charge placed on an isolated conductor will distribute itself on the sur-
face of that conductor so that all points of the conductor—whether on the surface
or inside—come to the same potential. This is true even if the conductor has an
internal cavity and even if that cavity contains a net charge.

Our proof follows directly from Eq. 24-18, which is

Since for all points within a conductor, it follows directly that Vf " Vi for
all possible pairs of points i and f in the conductor.

Figure 24-21a is a plot of potential against radial distance r from the center
for an isolated spherical conducting shell of 1.0 m radius, having a charge of
1.0 mC. For points outside the shell, we can calculate V(r) from Eq. 24-26
because the charge q behaves for such external points as if it were concentrated at
the center of the shell.That equation holds right up to the surface of the shell. Now
let us push a small test charge through the shell—assuming a small hole exists—to
its center. No extra work is needed to do this because no net electric force acts on
the test charge once it is inside the shell. Thus, the potential at all points inside the
shell has the same value as that on the surface, as Fig. 24-21a shows.

E
:

" 0

Vf $ Vi " $#f

i
 E

:
! ds:.

12 

V 
(k

V
) 8 

4 

0 
0 1 2 3 4 

r (m) 

(a) 

(b) 

12 

E 
(k

V
/m

) 8 

4 

0 
0 1 2 3 4 

r (m) 

Figure 24-21 (a) A plot of V(r) both inside
and outside a charged spherical shell of
radius 1.0 m. (b) A plot of E(r) for the
same shell.

● An excess charge placed on a conductor will, in the equilib-
rium state, be located entirely on the outer surface of the
conductor.
● The entire conductor, including interior points, is at a
uniform potential.
● If an isolated conductor is placed in an external electric

field, then at every internal point, the electric field due to the
conduction electrons cancels the external electric field that
otherwise would have been there.
● Also, the net electric field at every point on the surface is
perpendicular to the surface.

Key Ideas

24-8 POTENTIAL OF A CHARGED ISOLATED CONDUCTOR

After reading this module, you should be able to . . .

24.32 Identify that an excess charge placed on an isolated
conductor (or connected isolated conductors) will distrib-
ute itself on the surface of the conductor so that all points
of the conductor come to the same potential.

24.33 For an isolated spherical conducting shell, sketch
graphs of the potential and the electric field magnitude
versus distance from the center, both inside and outside
the shell.

24.34 For an isolated spherical conducting shell, identify that
internally the electric field is zero and the electric potential

has the same value as the surface and that externally the
electric field and the electric potential have values as
though all of the shell’s charge is concentrated as a
particle at its center.

24.35 For an isolated cylindrical conducting shell, identify
that internally the electric field is zero and the electric
potential has the same value as the surface and that exter-
nally the electric field and the electric potential have values
as though all of the cylinder’s charge is concentrated as a
line of charge on the central axis.

Learning Objectives
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Figure 24-21b shows the variation of electric field with radial distance for the
same shell. Note that E " 0 everywhere inside the shell.The curves of Fig. 24-21b
can be derived from the curve of Fig. 24-21a by differentiating with respect to r,
using Eq. 24-40 (recall that the derivative of any constant is zero). The curve of
Fig. 24-21a can be derived from the curves of Fig. 24-21b by integrating with
respect to r, using Eq. 24-19.

Spark Discharge from a Charged Conductor
On nonspherical conductors, a surface charge does not distribute itself uniformly
over the surface of the conductor. At sharp points or sharp edges, the surface
charge density—and thus the external electric field, which is proportional to it—
may reach very high values. The air around such sharp points or edges may
become ionized, producing the corona discharge that golfers and mountaineers
see on the tips of bushes, golf clubs, and rock hammers when thunderstorms
threaten. Such corona discharges, like hair that stands on end, are often the
precursors of lightning strikes. In such circumstances, it is wise to enclose yourself
in a cavity inside a conducting shell, where the electric field is guaranteed to
be zero. A car (unless it is a convertible or made with a plastic body) is almost
ideal (Fig. 24-22).

Isolated Conductor in an External Electric Field
If an isolated conductor is placed in an external electric field, as in Fig. 24-23, all
points of the conductor still come to a single potential regardless of whether the
conductor has an excess charge. The free conduction electrons distribute them-
selves on the surface in such a way that the electric field they produce at interior
points cancels the external electric field that would otherwise be there.
Furthermore, the electron distribution causes the net electric field at all points on
the surface to be perpendicular to the surface. If the conductor in Fig. 24-23 could
be somehow removed, leaving the surface charges frozen in place, the internal
and external electric field would remain absolutely unchanged.

Figure 24-22 A large spark jumps to a car’s
body and then exits by moving across the
insulating left front tire (note the flash
there), leaving the person inside unharmed.

Courtesy Westinghouse Electric Corporation

REVIEW & SUMMARY

Figure 24-23 An uncharged conductor is suspended in an external electric field.The free
electrons in the conductor distribute themselves on the surface as shown, so as to reduce
the net electric field inside the conductor to zero and make the net field at the surface
perpendicular to the surface.

E = 0 

+ 

+ 
+ 

+ 
+ 

+ + + + 

+ + + + + + 
– – – – – – – – – – – 

– 
– 
– 
– 

Electric Potential The electric potential V at a point P in the
electric field of a charged object is

(24-2)

where is the work that would be done by the electric force on a
positive test charge were it brought from an infinite distance to P,
and U is the potential energy that would then be stored in the test
charge–object system.

Electric Potential Energy If a particle with charge q is
placed at a point where the electric potential of a charged object is
V, the electric potential energy U of the particle–object system is

U " qV. (24-3)

W#

V "
$W#

q0
"

U
q0

,

Review & Summary

If the particle moves through a potential difference !V, the change
in the electric potential energy is

!U " q !V " q(Vf $ Vi). (24-4)

Mechanical Energy If a particle moves through a change !V
in electric potential without an applied force acting on it, applying
the conservation of mechanical energy gives the change in kinetic
energy as

!K " $q !V. (24-9)

If, instead, an applied force acts on the particle, doing work Wapp,
the change in kinetic energy is

!K " $q !V % Wapp. (24-11)

In the special case when , the work of an applied force!K " 0
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632 CHAPTER 24 ELECTRIC POTENTIAL

involves only the motion of the particle through a potential
difference:

Wapp " q !V (for Ki " Kf). (24-12)

Equipotential Surfaces The points on an equipotential sur-
face all have the same electric potential. The work done on a test
charge in moving it from one such surface to another is independent
of the locations of the initial and final points on these surfaces and of
the path that joins the points. The electric field is always directed
perpendicularly to corresponding equipotential surfaces.

Finding V from The electric potential difference between
two points i and f is

(24-18)

where the integral is taken over any path connecting the points. If the
integration is difficult along any particular path,we can choose a differ-
ent path along which the integration might be easier. If we choose Vi "
0,we have, for the potential at a particular point,

(24-19)

In the special case of a uniform field of magnitude E, the po-
tential change between two adjacent (parallel) equipotential lines
separated by distance !x is

!V " $E !x. (24-21)

Potential Due to a Charged Particle The electric potential
due to a single charged particle at a distance r from that particle is

(24-26)

where V has the same sign as q.The potential due to a collection of
charged particles is

(24-27)

Potential Due to an Electric Dipole At a distance r from
an electric dipole with dipole moment magnitude p " qd, the elec-
tric potential of the dipole is

V " $
n

i"1
Vi "

1
4p´0

$
n

i"1

qi

ri
.

V "
1

4p´0

q
r

,

V " $#f

i
 E

: 
! d s:.

Vf $ Vi " $#f

i
 E

: 
! d s:,

E
:

E
:

(24-30)

for ; the angle u is defined in Fig. 24-13.

Potential Due to a Continuous Charge Distribution
For a continuous distribution of charge, Eq. 24-27 becomes

(24-32)

in which the integral is taken over the entire distribution.

Calculating from V The component of in any direction
is the negative of the rate at which the potential changes with dis-
tance in that direction:

(24-40)

The x, y, and z components of may be found from

(24-41)

When is uniform, Eq. 24-40 reduces to

(24-42)

where s is perpendicular to the equipotential surfaces.

Electric Potential Energy of a System of Charged
Particles The electric potential energy of a system of charged
particles is equal to the work needed to assemble the system with
the particles initially at rest and infinitely distant from each other.
For two particles at separation r,

(24-46)

Potential of a Charged Conductor An excess charge placed
on a conductor will, in the equilibrium state, be located entirely on
the outer surface of the conductor.The charge will distribute itself so
that the following occur: (1) The entire conductor, including interior
points, is at a uniform potential. (2) At every internal point, the elec-
tric field due to the charge cancels the external electric field that oth-
erwise would have been there. (3) The net electric field at every
point on the surface is perpendicular to the surface.

U " W "
1

4p´0

q1q2

r
.

E " $
!V
!s

,

E
:

Ex " $
.V
.x

;  Ey " $
.V
.y

;  Ez " $
.V
.z

.

E
:

Es " $
.V
.s

.

E
:E

:

V "
1

4p´0
# dq

r
,

r * d

V "
1

4p´0

p cos u
r2

Problems

1 A charged, conducting sphere of radius 5.5 cm sets up a poten-
tial of 75 V at a radial distance of 2.2 m (with V " 0 set at infinity).
(a) What is the potential on the
sphere’s surface? (b) What is the
surface charge density?

2 Figure 24-24 shows a thin plastic
rod of length L 12.0 cm and uni-
form positive charge Q 47.9 fC ly-
ing on an x axis. With V " 0 at infin-
ity, find the electric potential at
point P1 on the axis, at distance 
d " 2.50 cm from the rod.

"
"

3 The thin plastic rod shown in Fig. 24-24 has length L 24.0 cm
and a nonuniform linear charge density l cx, where 
c 28.9 pC/m2. With V " 0 at infinity, find the electric potential
at point P1 on the axis, at distance d " 3.00 cm from one end.

4 Figure 24-24 shows a thin plastic rod of length L " 13.5 cm and
uniform charge 43.6 fC. (a) In terms of distance d, find an expres-
sion for the electric potential at point P1. (b) Next, substitute vari-
able x for d and find an expression for the magnitude of the com-
ponent Ex of the electric field at P1. (c) What is the direction of Ex

relative to the positive direction of the x axis? (d) What is the value
of Ex at P1 for x " d " 6.60 cm? (e) From the symmetry in Fig. 24-
24, determine Ey at P1.

"
"

"

Figure 24-24 Problems 2, 3, 4,
and 6.

+ + + + + + + + + +  
L 

x 

P2 

D 

y 

d 

P1 
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8 Two particles, of charges q1 and q2, are separated by distance
d in Fig. 24-26. The net electric field due to the particles is zero at 
x " d/4. (a) With V " 0 at infinity, locate (in terms of d) any
point on the x axis (other than at infinity) at which the electric
potential due to the two particles is zero. (b) If, instead, the net
electric potential is 0 at x " d/4, find (in terms of d) the coordi-
nate of any point (other than at infinity) at which the net electric
field is zero.

9 A plastic rod has been bent into a circle of radius R " 8.20 cm.
It has a charge Q1 " %7.07 pC uniformly distributed along one-
quarter of its circumference and a charge Q2 " $6Q1 uniformly
distributed along the rest of the circumference (Fig. 24-27). With
V " 0 at infinity, what is the electric potential at (a) the center C of
the circle and (b) point P, on the central axis of the circle at dis-
tance D " 2.05 cm from the center?

12 The electric potential V in the space between two flat parallel
plates 1 and 2 is given (in volts) by V " 1500x2, where x (in meters)
is the perpendicular distance from plate 1. At x " 1.8 cm, (a) what
is the magnitude of the electric field and (b) is the field directed to-
ward or away from plate 1?

13 A particle of charge q is fixed at point P, and a second particle
of mass m and the same charge q is initially held a distance r1 from
P. The second particle is then released. Determine its momentum
magnitude when it is a distance r2 from P. Let q " 3.1 mC,
m " 20 mg, r1 " 0.90 mm, and r2 " 1.5 mm.

14 A nonuniform linear charge distribution given by l " bx,
where b is a constant, is located along an x axis from x 0 to 
x 0.20 m. If b " 15 nC/m2 and V " 0 at infinity, what is the
electric potential at (a) the origin and (b) the point y " 0.15 m
on the y axis?

15 If a lightning discharge lasts 1.4 ms and carries a current of
5.0 ( 104 A through a potential difference of 2.4 ( 109 V, what is
the change in the energy of the charge that is transferred by the
discharge?

16 During its first orbital period, a spherical satellite of radius
1.50 m picks up charge from the dilute ionized gas of Earth’s iono-
sphere, with its potential changing by $3.50 V. (a) How much
charge has been collected? (b) If the charge is entirely electrons,
how many were collected?

"
"
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10 A thin, spherical, conducting shell of radius R is mounted
on an isolating support and charged to a potential of $170 V. An
electron is then fired directly toward the center of the shell, from
point P at distance r from the center of the shell . What ini-
tial speed v0 is needed for the electron to just reach the shell before
reversing direction?

11 An electron is placed in an xy plane where the electric po-
tential depends on x and y as shown, for the coordinate axes, in
Fig. 24-28 (the potential does not depend on z). The scale of the
vertical axis is set by Vs 1000 V. In unit-vector notation, what is
the electric force on the electron?

"

(r * R)

5 (a) Figure 24-25a shows a nonconducting rod of length 
L " 6.00 cm and uniform linear charge density l " %7.07 pC/m.
Assume that the electric potential is defined to be V " 0 at infin-
ity. What is V at point P at distance d " 8.00 cm along the rod’s
perpendicular bisector? (b) Figure 24-25b shows an identical rod
except that one half is now negatively charged. Both halves have
a linear charge density of magnitude 3.68 pC/m. With V " 0 at in-
finity, what is V at P? Is the potential at P positive, negative, or
zero if P is moved in the plane of the figure by a distance of L/4
(c) upward and (d) leftward?

Figure 24-25 Problem 5.

+ + + + + + + + + + + + +
L/2 L/2 
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d 

+ + + + + + +  – – – – – – –
L/2 L/2 

P 

d 

(a) (b) 

6 The thin plastic rod of length L " 12.0 cm in Fig. 24-24 has a
nonuniform linear charge density l cx, where c 49.9 pC/m2.
(a) With V " 0 at infinity, find the electric potential at point P2 on
the y axis at y " D " 3.56 cm. (b) Find the electric field compo-
nent Ey at P2. (c) Why cannot the field component Ex at P2 be
found using the result of (a)?

7 In Fig. 24-26, particles with the charges q1 " %15e and
q2 " $5e are fixed in place with a separation of d " 24.0 cm. With
electric potential defined to be V 0 at infinity, what are the finite
(a) positive and (b) negative values of x at which the net electric po-
tential on the x axis is zero?

"

""

Figure 24-26 Problems 7
and 8.
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Figure 24-27 Problem 9.
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Figure 24-28 Problem 11.

halliday_c24_609-638v2.0.1.qxd  2/27/14  10:27 AM  Page 633

Uploaded By: anonymousSTUDENTS-HUB.com



27 In Fig. 24-33, a charged particle
(either an electron or a proton) is moving
rightward between two parallel charged
plates separated by distance d " 2.00 mm.
The plate potentials are V1 " $80.0 V and
V2 " $50.0 V. The particle is slowing from
an initial speed of 200 km/s at the left
plate. (a) Is the particle an electron or a
proton? (b) What is its speed just as it
reaches plate 2?

28 A positron (charge %e, mass
equal to the electron mass) is mov-
ing at 1.5 107 m/s in the positive
direction of an x axis when, at 
x " 0, it encounters an electric field
directed along the x axis.The electric
potential V associated with the field
is given in Fig. 24-34.The scale of the
vertical axis is set by Vs " 500.0 V.
(a) Does the positron emerge from
the field at x " 0 (which means its motion is reversed) or at x "
0.50 m (which means its motion is not reversed)? (b) What is its
speed when it emerges?

(

19 Two electrons are fixed 4.0 cm apart. Another electron is shot
from infinity and stops midway between the two. What is its initial
speed?

20 (a) What is the electric potential energy of two electrons
separated by 3.00 nm? (b) If the separation increases, does the po-
tential energy increase or decrease?

21 In the rectangle of Fig. 24-30, the
sides have lengths 5.0 cm and 15 cm,
q1 " $5.0 mC, and q2 " %2.0 mC. With
V " 0 at infinity, what is the electric
potential at (a) corner A and (b) corner
B? (c) How much work is required to
move a charge q3 " $2.0 mC from B to
A along a diagonal of the rectangle? (d) Does this work increase or
decrease the electric potential energy of the three-charge system?
Is more, less, or the same work required if q3 is moved along a path
that is (e) inside the rectangle but not on a diagonal and (f) outside
the rectangle?

22 If a proton moves through a potential difference of 4.5 kV,
what is the magnitude of the change in the proton’s potential en-
ergy expressed in the unit electron-volt?

23 Identical 50 mC charges are fixed on an x axis at 
x " /2.0 m. A particle of charge q " $15 mC is then released from
rest at a point on the positive part of the y axis. Due to the symmetry
of the situation, the particle moves along the y axis and has kinetic
energy 1.2 J as it passes through the point x " 0, y " 4.0 m. (a) What
is the kinetic energy of the particle as it passes through the origin?
(b) At what negative value of y will the particle momentarily stop?

24 In Fig. 24-31a, a particle of elementary charge %e is initially at
coordinate z " 20 nm on the dipole axis (here a z axis) through an
electric dipole, on the positive side of the dipole. (The origin of z is
at the center of the dipole.) The particle is then moved along a cir-
cular path around the dipole center until it is at coordinate 
z " $20 nm, on the negative side of the dipole axis. Figure 24-31b
gives the work Wa done by the force moving the particle versus the
angle u that locates the particle relative to the positive direction of
the z axis.The scale of the vertical axis is set by Was " 2.0 ( 10$30 J.
What is the magnitude of the dipole moment?

634 CHAPTER 24 ELECTRIC POTENTIAL

25 A particle of charge %7.5 mC is released from rest at the point
x " 60 cm on an x axis.The particle begins to move due to the pres-
ence of a charge Q that remains fixed at the origin. What is the ki-
netic energy of the particle at the instant it has moved 50 cm if (a)
Q " %20 mC and (b) Q " $20 mC?

26 When an electron moves from A to B along an electric field
line in Fig. 24-32, the electric field does 4.78 10$19 J of work on
it. What are the electric potential differences (a) VB VA, (b)
VC VA, and (c) VC VB?$$

$
(

17 What is the magnitude of the electric field at the point
if the electric potential in the region is

given by V 2.00xyz2, where V is in volts and coordinates x, y,
and z are in meters?

18 In Fig. 24-29, seven charged particles are fixed in place to
form a square with an edge length of 5.00 cm. How much work
must we do to bring a particle of charge %6e initially at rest from
an infinite distance to the center of the square?

"
($1.00î $ 2.00ĵ % 4.00k̂) m

B 

A 
q1 

q2 
+ 

Figure 24-30 Problem 21.

Figure 24-31 Problem 24.
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Figure 24-32 Problem 26.
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Figure 24-29 Problem 18.
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32 In Fig. 24-37, how much work
must we do to bring a particle, of
charge Q " %12e and initially at
rest, along the dashed line from in-
finity to the indicated point near
two fixed particles of charges 
q1 " %4e and q2 " $q1/2? Distance
d " 1.40 cm, u1 " 43', and u2 " 60'.

33 The particles shown in Fig. 24-
38 each have charge magnitude q 5.00 pC
and were initially infinitely far apart. To form
the square with edge length a 64.0 cm, (a)
how much work must be done by an external
agent, (b) how work must be done by the
electric forces, and (c) what is the potential
energy of the system?

34 Two uniformly charged, infinite, noncon-
ducting planes are parallel to a yz plane and po-
sitioned at x 50 cm and x 50 cm. The
charge densities on the planes are 50 nC/m2$

" %" $

"

"

29 Suppose N electrons can be placed in either of two
configurations. In configuration 1, they are all placed on the circum-
ference of a narrow ring of radius R and are uniformly distributed
so that the distance between adjacent electrons is the same every-
where. In configuration 2, N $ 1 electrons are uniformly distributed
on the ring and one electron is placed in the center of the ring. (a)
What is the smallest value of N for which the second configuration
is less energetic than the first? (b) For that value of N, consider any
one circumference electron—call it e0. How many other circumfer-
ence electrons are closer to e0 than the central electron is?

30 The smiling face of Fig. 24-35 consists of three items:

1. a thin rod of charge $3.0 mC that
forms a full circle of radius 6.0 cm;

2. a second thin rod of charge 1.0 mC
that forms a circular arc of radius 4.0
cm, subtending an angle of 90' about
the center of the full circle;

3. an electric dipole with a dipole
moment that is perpendicular to a
radial line and has a magnitude of
1.28 ( 10$21 .

What is the net electric potential at the center?

31 In Fig. 24-36, what is the net electric potential at point
P due to the four particles if V 0 at infinity, q 7.50 fC, and
d 1.60 cm?"

""

C &m
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Figure 24-36 Problem 31.

and 25 nC/m2, respectively. What is the magnitude of the
potential difference between the origin and the point on the x axis
at x " %100 cm? (Hint: Use Gauss’ law.)

35 In Fig. 24-39, three thin plastic rods form quarter-circles
with a common center of curvature at the origin. The uniform
charges on the three rods are Q1 " %30 nC, Q2 " %3.0Q1, and
Q3 " $10Q1. What is the net electric potential at the origin due
to the rods?
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Figure 24-40 Problem 38.
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Figure 24-39 Problem 35.

36 Sphere 1 with radius R1 has positive charge q. Sphere 2 with
radius 3.00R1 is far from sphere 1 and initially uncharged.After the
separated spheres are connected with a wire thin enough to retain
only negligible charge, (a) is potential V1 of sphere 1 greater than,
less than, or equal to potential V2 of sphere 2? What fraction of q
ends up on (b) sphere 1 and (c) sphere 2? (d) What is the ratio
s1/s2 of the surface charge densities of the spheres?

37 Two tiny metal spheres A and B, mass mA " 5.00 g and 
mB " 10.0 g, have equal positive charge q " 5.00 mC. The
spheres are connected by a massless nonconducting string of
length d " 3.00 m, which is much greater than the radii of the
spheres. (a) What is the electric potential energy of the system?
(b) Suppose you cut the string. At that instant, what is the accel-
eration of each sphere? (c) A long time after you cut the string,
what is the speed of each sphere?

38 Particle 1 (with a charge of %5.0 mC) and particle 2 (with
a charge of %3.0 mC) are fixed in place with separation d " 5.0 cm
on the x axis shown in Fig. 24-40a. Particle 3 can be moved along
the x axis to the right of particle 2. Figure 24-40b gives the electric
potential energy U of the three-particle system as a function of the
x coordinate of particle 3. The scale of the vertical axis is set by
Us " 5.0 J.What is the charge of particle 3?

39 (a) What is the escape speed for an electron initially at rest on
the surface of a sphere with a radius of 20 cm and a uniformly dis-
tributed charge of 1.6 ( 10$15 C? That is, what initial speed must
the electron have in order to reach an infinite distance from the
sphere and have zero kinetic energy when it gets there? (b) If its
initial speed is twice the escape speed, what is its kinetic energy at
infinity? 
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41 A charge of 70 (ampere-hours) moves through a poten-
tial difference of 25 V. What are (a) the charge in coulombs and 
(b) the magnitude of the change in the potential energy of the
charge?

42 Figure 24-42 shows a rectan-
gular array of charged particles
fixed in place, with distance 
a 35.0 cm and the charges shown
as integer multiples of q1 ! 3.40 pC
and q2 ! 6.00 pC. With V ! 0 at
infinity, what is the net electric po-
tential at the rectangle’s center?
(Hint: Thoughtful examination of
the arrangement can reduce the calculation.)

43 An infinite nonconducting sheet with a uniform surface
charge density sets up parallel equipotential surfaces. Any pair of
surfaces differing by 25.0 V are separated by 8.80 mm. (a) What is
the magnitude of the surface charge density? (b) If an electron is
released near the sheet, does it tend to move from higher to lower
potential or vice versa?

44 In Fig. 24-43a, we move an electron from an infinite distance
to a point at distance R ! 8.00 cm from a tiny charged ball.
The move requires work W ! 5.32 " 10#13 J by us. (a) What is the
charge Q on the ball? In Fig. 24-43b, the ball has been sliced up and
the slices spread out so that an equal amount of charge is at the
hour positions on a circular clock face of radius R ! 8.00 cm. Now
the electron is brought from an infinite distance to the center of
the circle. (b) With that addition of the electron to the system of 
12 charged particles, what is the change in the electric potential
energy of the system?

!

A $h
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40 Proton in a well. Figure 24-41 shows electric potential V along
an x axis. The scale of the vertical axis is set by Vs 10.0 V. A 
proton is to be released at x ! 3.5 cm with initial kinetic energy
5.00 eV. (a) If it is initially moving in the negative direction of the
axis, does it reach a turning point (if so, what is the x coordinate of
that point) or does it escape from the plotted region (if so, what is
its speed at x ! 0)? (b) If it is initially moving in the positive direc-
tion of the axis, does it reach a turning point (if so, what is the x
coordinate of that point) or does it escape from the plotted region
(if so, what is its speed at x ! 6.0 cm)? What are the (c) magnitude
F and (d) direction (positive or negative direction of the x axis) of
the electric force on the proton if the proton moves just to the left
of x 3.0 cm? What are (e) F and (f) the direction if the proton
moves just to the right of x ! 5.0 cm?

!

!

45 A metal sphere of radius 30 cm has a net charge of 3.0 " 10#8

C. (a) What is the electric field at the sphere’s surface? (b) If 
V ! 0 at infinity, what is the electric potential at the sphere’s sur-
face? (c) At what distance from the sphere’s surface has the elec-
tric potential decreased by 500 V?

46 A hollow metal sphere has a potential of %300 V with respect
to ground (defined to be at V ! 0) and a charge of 5.0 " 10#9 C. Find
the electric potential at the center of the sphere.

47 An electron is projected with an initial speed of 1.6 " 105 m/s
directly toward a proton that is fixed in place. If the electron is ini-
tially a great distance from the proton, at what distance from the
proton is the speed of the electron instantaneously equal to twice
the initial value?

48 Two isolated, concentric, conducting spherical shells 
have radii R1 ! 0.500 m and R2 ! 1.00 m, uniform charges 
q1 ! %3.00 mC and q2 ! %1.00 mC, and negligible thicknesses.
What is the magnitude of the electric field E at radial distance
(a) r ! 4.00 m, (b) r ! 0.700 m, and (c) r ! 0.200 m? With V ! 0 at
infinity, what is V at (d) r ! 4.00 m, (e) r ! 1.00 m, (f) r ! 0.700 m,
(g) r ! 0.500 m, (h) r ! 0.200 m, and (i) r ! 0? ( j) Sketch E(r) and
V(r).

49 Two metal spheres, each of radius 3.0 cm, have a center-to-
center separation of 2.0 m. Sphere 1 has charge 1.0 10#8 C;
sphere 2 has charge #8.0 " 10#8 C. Assume that the separation is
large enough for us to say that the charge on each sphere is uni-
formly distributed (the spheres do not affect each other). With 
V ! 0 at infinity, calculate (a) the potential at the point halfway be-
tween the centers and the potential on the surface of (b) sphere 1
and (c) sphere 2.

50 A charge of #9.0 nC is uniformly distributed around a thin
plastic ring lying in a yz plane with the ring center at the origin. A
#3.0 pC particle is located on the x axis at x ! 3.0 m. For a ring ra-
dius of 1.5 m, how much work must an external force do on the
particle to move it to the origin?

51 The ammonia molecule NH3 has a permanent electric
dipole moment equal to 1.47 D, where 1 D 1 debye unit
3.34 10#30 . Calculate the electric potential due to an
ammonia molecule at a point 103 nm away along the axis of the
dipole. (Set V ! 0 at infinity.)

C $m"
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52 A graph of the x component of
the electric field as a function of x in a
region of space is shown in Fig. 24-44.
The scale of the vertical axis is set by
Exs 10.0 N/C. The y and z compo-
nents of the electric field are zero in
this region. If the electric potential
at the origin is 10 V, (a) what is the
electric potential at x 2.0 m, (b) what is the greatest positive
value of the electric potential for points on the x axis for which 
0 0 x 0 6.0 m,and (c) for what value of x is the electric potential zero?

53 A spherical drop of water carrying a charge of 30 pC has a po-
tential of 500 V at its surface (with V 0 at infinity). (a) What is the
radius of the drop? (b) If two such drops of the same charge and ra-
dius combine to form a single spherical drop, what is the potential
at the surface of the new drop? (c) What is the ratio of the surface
charge density on the new drop to that on the original drop?

54 The electric field between two large, parallel, metal plates is
approximately uniform, especially away from the edges where
there can be some fringing. Suppose the plate separation is 8.00
cm. If the electric force on an electron placed in the uniform field
has a magnitude of 7.90 ( 10$16 N, (a) what is the potential differ-
ence between the plates and (b) is the force directed toward the
plate with the higher potential or the lower potential?

55 A nonconducting sphere has radius R " 2.31 cm and uni-
formly distributed charge q " %3.50 fC. Take the electric potential
at the sphere’s center to be V0 0. What is V at radial distance
(a) r " 1.45 cm and (b) r " R. (Hint: See Module 23-6.) (c) If, in-
stead, V0 " 0 at infinity, what is V at r " R?

56 Figure 24-45 shows a thin rod
with a uniform charge density of 1.00
mC/m. Evaluate the electric potential
at point P if d D " L/4.00.Assume
that the potential is zero at infinity.

57 What is the excess charge on a
conducting sphere of radius r 0.35 m if the potential of the sphere
is 1500 V and V 0 at infinity?

58 Two large parallel metal plates are 1.5 cm apart and have
charges of equal magnitudes but opposite signs on their facing sur-
faces. Take the potential of the negative plate to be zero. If the
potential halfway between the plates is then %10.0 V, what is the
electric field in the region between the plates?

59 The electric field in a region of space 
has the components Ey Ez 0 and Ex

(4.00 N/C)x2. Point A is on the y axis at y 3.00
m, and point B is on the x axis at x 4.00 m.
What is the potential difference VB VA?

60 In Fig. 24-46, a plastic rod having a uni-
formly distributed charge Q " $28.9 pC
has been bent into a circular arc of radius 
R " 3.71 cm and central angle f " 120'. With
V " 0 at infinity, what is the electric potential
at P, the center of curvature of the rod?

$
"

"
"""

"
"

"

"

"

"

"
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61 (a) In Fig. 24-47, what is the net electric potential at the origin
due to the circular arc of charge Q1 " %7.21 pC and the two parti-
cles of charges Q2 " 4.00Q1 and Q3 " $2.00Q1? The arc’s center of
curvature is at the origin and its radius is R " 2.00 m; the angle
indicated is u " 35.0'. (b) What is the net electric potential at the
origin if both Q1 and R are doubled?
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62 Consider a particle with charge q " 3.0 nC, point A at distance
d1 " 2.0 m from q, and point B at distance d2 " 1.0 m. (a) If A and B
are diametrically opposite each other, as in Fig. 24-48a, what is the
electric potential difference VA $ VB? (b) What is that electric
potential difference if A and B are located as in Fig. 24-48b?

63 The electric potential at points in an xy plane is given by 
V " (2.00 V/m2)x2 $ (3.00 V/m2)y2. What are (a) the magnitude
and (b) angle (relative to %x) of the electric field at the point 
(4.00 m, 2.00 m)?

64 Two charged particles are shown in Fig. 24-49a. Particle 1,
with charge q1, is fixed in place at distance d. Particle 2, with charge
q2, can be moved along the x axis. Figure 24-49b gives the net
electric potential V at the origin due to the two particles as a func-
tion of the x coordinate of particle 2.The scale of the x axis is set by
xs 16.0 cm. The plot has an asymptote of V " 5.92 ( 10$7 V as 
x : #.What is q2 in terms of e?

"
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67 A plastic disk of radius R 64.0 cm is charged on one side
with a uniform surface charge density s 7.73 fC/m2, and then
three quadrants of the disk are removed. The remaining quadrant
is shown in Fig. 24-51. With V " 0 at infinity, what is the potential
due to the remaining quadrant at point P, which is on the central
axis of the original disk at distance D " 45.0 cm from the original
center?

"
"65 An infinite nonconducting sheet has a surface charge density

s 5.80 pC/m2. (a) How much work is done by the electric field
due to the sheet if a particle of charge q " %1.60 ( 10$19 C is
moved from the sheet to a point P at distance d " 6.15 cm from the
sheet? (b) If the electric potential V is defined to be $5.00 mV on
the sheet, what is V at P?

66 Figure 24-50a shows an electron moving along an electric di-
pole axis toward the negative side of the dipole. The dipole is fixed
in place.The electron was initially very far from the dipole, with ki-
netic energy 300 eV. Figure 24-50b gives the kinetic energy K of
the electron versus its distance r from the dipole center. The scale
of the horizontal axis is set by rs " 0.20 m. What is the magnitude
of the dipole moment?

%"

Figure 24-50 Problem 66.
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Figure 24-51 Problem 67.
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C H A P T E R  2 5

Capacitance

What Is Physics?
One goal of physics is to provide the basic science for practical devices designed
by engineers. The focus of this chapter is on one extremely common 
example—the capacitor, a device in which electrical energy can be stored. For ex-
ample, the batteries in a camera store energy in the photoflash unit by charging a
capacitor. The batteries can supply energy at only a modest rate, too slowly for
the photoflash unit to emit a flash of light. However, once the capacitor is
charged, it can supply energy at a much greater rate when the photoflash unit is
triggered—enough energy to allow the unit to emit a burst of bright light.

The physics of capacitors can be generalized to other devices and to any situ-
ation involving electric fields. For example, Earth’s atmospheric electric field is
modeled by meteorologists as being produced by a huge spherical capacitor that
partially discharges via lightning. The charge that skis collect as they slide along
snow can be modeled as being stored in a capacitor that frequently discharges as
sparks (which can be seen by nighttime skiers on dry snow).

The first step in our discussion of capacitors is to determine how much
charge can be stored.This “how much” is called capacitance.

Capacitance
Figure 25-1 shows some of the many sizes and shapes of capacitors. Figure 25-2
shows the basic elements of any capacitor — two isolated conductors of any

25-1 CAPACITANCE

After reading this module, you should be able to . . .

25.01 Sketch a schematic diagram of a circuit with a parallel-
plate capacitor, a battery, and an open or closed switch.

25.02 In a circuit with a battery, an open switch, and an un-
charged capacitor, explain what happens to the conduc-
tion electrons when the switch is closed.

25.03 For a capacitor, apply the relationship between the
magnitude of charge q on either plate (“the charge on the
capacitor”), the potential difference V between the plates
(“the potential across the capacitor”), and the capacitance
C of the capacitor.

● A capacitor consists of two isolated conductors (the plates)
with charges !q and "q. Its capacitance C is defined from

q # CV,
where V is the potential difference between the plates.

● When a circuit with a battery, an open switch, and an
uncharged capacitor is completed by closing the switch,
conduction electrons shift, leaving the capacitor plates with
opposite charges.

Learning Objectives

Key Ideas

Figure 25-2 Two conductors, isolated electrically from each other and from their surroundings,
form a capacitor. When the capacitor is charged, the charges on the conductors, or plates as
they are called, have the same magnitude q but opposite signs.

Figure 25-1 An assortment of capacitors.

+q –q

Paul Silvermann/Fundamental Photographs
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640 CHAPTER 25 CAPACITANCE

Figure 25-4 (a) Battery B, switch S, and plates
h and l of capacitor C, connected in a
circuit. (b) A schematic diagram with the
circuit elements represented by their
symbols.

l 

V + 
– 

(b) 

C 

B 

Terminal 

S 

(a) 

– + 
B 

S 

h  
l  

C 

h 

Terminal 

shape. No matter what their geometry, flat or not, we call these conductors
plates.

Figure 25-3a shows a less general but more conventional arrangement, called
a parallel-plate capacitor, consisting of two parallel conducting plates of area
A separated by a distance d. The symbol we use to represent a capacitor (!") is
based on the structure of a parallel-plate capacitor but is used for capacitors of all
geometries. We assume for the time being that no material medium (such as glass
or plastic) is present in the region between the plates. In Module 25-5, we shall
remove this restriction.

When a capacitor is charged, its plates have charges of equal magnitudes but
opposite signs: !q and "q. However, we refer to the charge of a capacitor as
being q, the absolute value of these charges on the plates. (Note that q is not the
net charge on the capacitor, which is zero.)

Because the plates are conductors, they are equipotential surfaces; all points on a
plate are at the same electric potential. Moreover, there is a potential difference be-
tween the two plates. For historical reasons, we represent the absolute value of this
potential difference with V rather than with the $V we used in previous notation.

The charge q and the potential difference V for a capacitor are proportional
to each other; that is,

q # CV. (25-1)

The proportionality constant C is called the capacitance of the capacitor. Its
value depends only on the geometry of the plates and not on their charge or
potential difference. The capacitance is a measure of how much charge must be
put on the plates to produce a certain potential difference between them: The
greater the capacitance, the more charge is required.

The SI unit of capacitance that follows from Eq. 25-1 is the coulomb per volt.
This unit occurs so often that it is given a special name, the farad (F):

1 farad # 1 F # 1 coulomb per volt # 1 C/V. (25-2)

As you will see, the farad is a very large unit. Submultiples of the farad, such as
the microfarad (1 mF # 10"6 F) and the picofarad (1 pF # 10"12 F), are more
convenient units in practice.

Charging a Capacitor
One way to charge a capacitor is to place it in an electric circuit with a battery.
An electric circuit is a path through which charge can flow. A battery is a device
that maintains a certain potential difference between its terminals (points at
which charge can enter or leave the battery) by means of internal electrochemi-
cal reactions in which electric forces can move internal charge.

In Fig. 25-4a, a battery B, a switch S, an uncharged capacitor C, and inter-
connecting wires form a circuit. The same circuit is shown in the schematic dia-
gram of Fig. 25-4b, in which the symbols for a battery, a switch, and a capacitor
represent those devices. The battery maintains potential difference V between its
terminals. The terminal of higher potential is labeled ! and is often called the
positive terminal; the terminal of lower potential is labeled " and is often called
the negative terminal.

Figure 25-3 (a) A parallel-plate capacitor,
made up of two plates of area A separated
by a distance d.The charges on the facing
plate surfaces have the same magnitude q
but opposite signs. (b) As the field lines
show, the electric field due to the charged
plates is uniform in the central region be-
tween the plates.The field is not uniform at
the edges of the plates, as indicated by the
“fringing” of the field lines there.

Area A V 

d 

Top side of 
bottom 
plate has 
charge –q 

A 

–q

+q 

(b) (a) 

Bottom side of 
top plate has 
charge +q 

Electric field lines 
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The circuit shown in Figs. 25-4a and b is said to be incomplete because
switch S is open; that is, the switch does not electrically connect the wires at-
tached to it. When the switch is closed, electrically connecting those wires, the
circuit is complete and charge can then flow through the switch and the wires.
As we discussed in Chapter 21, the charge that can flow through a conductor,
such as a wire, is that of electrons. When the circuit of Fig. 25-4 is completed,
electrons are driven through the wires by an electric field that the battery sets
up in the wires. The field drives electrons from capacitor plate h to the positive
terminal of the battery; thus, plate h, losing electrons, becomes positively
charged. The field drives just as many electrons from the negative terminal of
the battery to capacitor plate l; thus, plate l, gaining electrons, becomes nega-
tively charged just as much as plate h, losing electrons, becomes positively
charged.

Initially, when the plates are uncharged, the potential difference between
them is zero. As the plates become oppositely charged, that potential differ-
ence increases until it equals the potential difference V between the terminals
of the battery. Then plate h and the positive terminal of the battery are at the
same potential, and there is no longer an electric field in the wire between
them. Similarly, plate l and the negative terminal reach the same potential,
and there is then no electric field in the wire between them. Thus, with the
field zero, there is no further drive of electrons. The capacitor is then said to
be fully charged, with a potential difference V and charge q that are related
by Eq. 25-1.

In this book we assume that during the charging of a capacitor and after-
ward, charge cannot pass from one plate to the other across the gap separating
them. Also, we assume that a capacitor can retain (or store) charge indefinitely,
until it is put into a circuit where it can be discharged.

Checkpoint 1
Does the capacitance C of a capacitor increase, decrease, or remain the same (a) when
the charge q on it is doubled and (b) when the potential difference V across it is tripled?

25-2 CALCULATING THE CAPACITANCE

After reading this module, you should be able to . . .

25.04 Explain how Gauss’ law is used to find the capacitance of a parallel-plate capacitor.
25.05 For a parallel-plate capacitor, a cylindrical capacitor, a spherical capacitor, and an isolated sphere, calculate the capacitance.

Learning Objectives

● We generally determine the capacitance of a particular
capacitor configuration by (1) assuming a charge q to have
been placed on the plates, (2) finding the electric field due
to this charge, (3) evaluating the potential difference V be-
tween the plates, and (4) calculating C from q ! CV. Some
results are the following:
● A parallel-plate capacitor with flat parallel plates of area A
and spacing d has capacitance

● A cylindrical capacitor (two long coaxial cylinders) of length

C !
´0A

d
.

E
:

L and radii a and b has capacitance

● A spherical capacitor with concentric spherical plates of
radii a and b has capacitance

● An isolated sphere of radius R has capacitance

C ! 4p´0R.

C ! 4p´0
ab

b " a
.

C ! 2p´0
L

ln(b
a)

.

Key Ideas

25-2 CALCULATING THE CAPACITANCE
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642 CHAPTER 25 CAPACITANCE

Figure 25-5 A charged parallel-plate capaci-
tor. A Gaussian surface encloses the charge
on the positive plate. The integration of
Eq. 25-6 is taken along a path extending
directly from the negative plate to the
positive plate.

+ + + + + + + + + +

– – – – – – – – – –

Gaussian 
surface 

Path of  
integration 

+q 

–q

A d 

We use Gauss’ law to relate
q and E. Then we integrate the
E to get the potential difference.

Calculating the Capacitance
Our goal here is to calculate the capacitance of a capacitor once we know its
geometry. Because we shall consider a number of different geometries, it seems
wise to develop a general plan to simplify the work. In brief our plan is as follows:
(1) Assume a charge q on the plates; (2) calculate the electric field between
the plates in terms of this charge, using Gauss’ law; (3) knowing , calculate the
potential difference V between the plates from Eq. 24-18; (4) calculate C from
Eq. 25-1.

Before we start, we can simplify the calculation of both the electric field
and the potential difference by making certain assumptions. We discuss each in
turn.

Calculating the Electric Field
To relate the electric field between the plates of a capacitor to the charge q on
either plate, we shall use Gauss’ law:

(25-3)

Here q is the charge enclosed by a Gaussian surface and is the net
electric flux through that surface. In all cases that we shall consider, the Gaussian
surface will be such that whenever there is an electric flux through it, will have
a uniform magnitude E and the vectors and will be parallel. Equation 25-3
then reduces to

q ! ´0EA (special case of Eq. 25-3), (25-4)

in which A is the area of that part of the Gaussian surface through which there is
a flux. For convenience, we shall always draw the Gaussian surface in such a way
that it completely encloses the charge on the positive plate; see Fig. 25-5 for an
example.

Calculating the Potential Difference
In the notation of Chapter 24 (Eq. 24-18), the potential difference between
the plates of a capacitor is related to the field by

(25-5)

in which the integral is to be evaluated along any path that starts on one plate
and ends on the other. We shall always choose a path that follows an electric
field line, from the negative plate to the positive plate. For this path, the vectors

and will have opposite directions; so the dot product will be equal
to E ds.Thus, the right side of Eq. 25-5 will then be positive. Letting V represent
the difference Vf " Vi, we can then recast Eq. 25-5 as

(special case of Eq. 25-5), (25-6)

in which the " and # remind us that our path of integration starts on the nega-
tive plate and ends on the positive plate.

We are now ready to apply Eqs. 25-4 and 25-6 to some particular cases.

A Parallel-Plate Capacitor
We assume, as Fig. 25-5 suggests, that the plates of our parallel-plate capacitor are
so large and so close together that we can neglect the fringing of the electric field

V ! !#

"
E ds

"
E
:

! ds:d s:E
:

Vf " Vi ! "!f

i
 E

:
! ds:,

E
:

dA
:

E
:

E
:

" E
:

! dA
:

´0 # E
:

! dA
:

! q.

E
:

E
:

E
:
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64325-2 CALCULATING THE CAPACITANCE

at the edges of the plates, taking to be constant throughout the region between
the plates.

We draw a Gaussian surface that encloses just the charge q on the positive
plate, as in Fig. 25-5. From Eq. 25-4 we can then write

q ! ´0EA, (25-7)

where A is the area of the plate.
Equation 25-6 yields

(25-8)

In Eq. 25-8, E can be placed outside the integral because it is a constant; the sec-
ond integral then is simply the plate separation d.

If we now substitute q from Eq. 25-7 and V from Eq. 25-8 into the relation 
q ! CV (Eq. 25-1), we find

(parallel-plate capacitor). (25-9)

Thus, the capacitance does indeed depend only on geometrical factors—namely,
the plate area A and the plate separation d. Note that C increases as we increase
area A or decrease separation d.

As an aside, we point out that Eq. 25-9 suggests one of our reasons for writing
the electrostatic constant in Coulomb’s law in the form 1/4p´0. If we had not
done so, Eq. 25-9—which is used more often in engineering practice than
Coulomb’s law—would have been less simple in form. We note further that
Eq. 25-9 permits us to express the permittivity constant ´0 in a unit more appro-
priate for use in problems involving capacitors; namely,

´0 ! 8.85 $ 10"12 F/m ! 8.85 pF/m. (25-10)

We have previously expressed this constant as

´0 ! 8.85 $ 10"12 C2/N %m2. (25-11)

A Cylindrical Capacitor
Figure 25-6 shows, in cross section, a cylindrical capacitor of length L formed by
two coaxial cylinders of radii a and b. We assume that L & b so that we can
neglect the fringing of the electric field that occurs at the ends of the cylinders.
Each plate contains a charge of magnitude q.

As a Gaussian surface, we choose a cylinder of length L and radius r, closed
by end caps and placed as is shown in Fig. 25-6. It is coaxial with the cylinders
and encloses the central cylinder and thus also the charge q on that cylinder.
Equation 25-4 then relates that charge and the field magnitude E as

q ! ´0EA ! ´0E(2prL),

in which 2prL is the area of the curved part of the Gaussian surface. There is
no flux through the end caps. Solving for E yields

(25-12)

Substitution of this result into Eq. 25-6 yields

(25-13)

where we have used the fact that here ds ! "dr (we integrated radially inward).

V ! !#

"
E ds ! "

q
2p´0L

!a

b

dr
r

!
q

2p´0L
 ln$ b

a %,

E !
q

2p´0Lr
.

C !
'0A

d

V ! !#

"
E ds ! E !d

0
ds ! Ed.

E
:

Figure 25-6 A cross section of a long cylindri-
cal capacitor, showing a cylindrical
Gaussian surface of radius r (that encloses
the positive plate) and the radial path of
integration along which Eq. 25-6 is to be
applied.This figure also serves to illustrate
a spherical capacitor in a cross section
through its center.
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644 CHAPTER 25 CAPACITANCE

Checkpoint 2
For capacitors charged by the same battery, does the charge stored by the capacitor
increase, decrease, or remain the same in each of the following situations? (a) The
plate separation of a parallel-plate capacitor is increased. (b) The radius of the inner
cylinder of a cylindrical capacitor is increased. (c) The radius of the outer spherical
shell of a spherical capacitor is increased.

From the relation C ! q/V, we then have

(cylindrical capacitor). (25-14)

We see that the capacitance of a cylindrical capacitor, like that of a parallel-plate
capacitor, depends only on geometrical factors, in this case the length L and the
two radii b and a.

A Spherical Capacitor
Figure 25-6 can also serve as a central cross section of a capacitor that consists of
two concentric spherical shells, of radii a and b. As a Gaussian surface we draw a
sphere of radius r concentric with the two shells; then Eq. 25-4 yields

q ! ´0EA ! ´0E(4pr 2),

in which 4pr2 is the area of the spherical Gaussian surface.We solve this equation
for E, obtaining

(25-15)

which we recognize as the expression for the electric field due to a uniform
spherical charge distribution (Eq. 23-15).

If we substitute this expression into Eq. 25-6, we find

(25-16)

where again we have substituted "dr for ds. If we now substitute Eq. 25-16 into
Eq. 25-1 and solve for C, we find

(spherical capacitor). (25-17)

An Isolated Sphere
We can assign a capacitance to a single isolated spherical conductor of radius R
by assuming that the “missing plate” is a conducting sphere of infinite radius.
After all, the field lines that leave the surface of a positively charged isolated
conductor must end somewhere; the walls of the room in which the conductor is
housed can serve effectively as our sphere of infinite radius.

To find the capacitance of the conductor, we first rewrite Eq. 25-17 as

If we then let b : ( and substitute R for a, we find

C ! 4p´0R (isolated sphere). (25-18)

Note that this formula and the others we have derived for capacitance (Eqs. 25-9,
25-14, and 25-17) involve the constant ´0 multiplied by a quantity that has the
dimensions of a length.

C ! 4p´0 
a

1 " a/b
.

C ! 4p´0 
ab

b " a

V ! !#

"
E ds ! "

q
4p´0

!a

b

dr
r2 !

q
4p´0

$ 1
a

"
1
b % !

q
4p´0

b " a
ab

,

E !
1

4p´0

q
r2  ,

C ! 2p´0 
L

ln(b/a)
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magnitude that collects there is
q ! CV ! (0.25 $ 10"6 F)(12 V)

! 3.0 $ 10"6 C.
Dividing this result by e gives us the number N of conduc-
tion electrons that come up to the face:

! 1.873 $ 1013 electrons.
These electrons come from a volume that is the product of the
face area A and the depth d we seek.Thus, from the density of
conduction electrons (number per volume), we can write

or

! 1.1 $ 10"12 m ! 1.1 pm. (Answer)

We commonly say that electrons move from the battery to
the negative face but, actually, the battery sets up an electric
field in the wires and plate such that electrons very close to
the plate face move up to the negative face.

d !
N

An
!

1.873 $ 1013 electrons
(2.0 $ 10"4 m2)(8.49 $ 1028 electrons/m3)

n !
N

Ad
,

N !
q
e

!
3.0 $ 10"6 C

1.602 $ 10"19 C

Sample Problem 25.01 Charging the plates in a parallel-plate capacitor

In Fig. 25-7a, switch S is closed to connect the uncharged
capacitor of capacitance C ! 0.25 mF to the battery of poten-
tial difference V ! 12 V. The lower capacitor plate has thick-
ness L ! 0.50 cm and face area A ! 2.0 $ 10"4 m2, and it
consists of copper, in which the density of conduction elec-
trons is n ! 8.49 $ 1028 electrons/m3. From what depth d
within the plate (Fig. 25-7b) must electrons move to the plate
face as the capacitor becomes charged?

KEY IDEA

The charge collected on the plate is related to the capaci-
tance and the potential difference across the capacitor by
Eq. 25-1 (q ! CV).

Calculations: Because the lower plate is connected to the
negative terminal of the battery, conduction electrons move
up to the face of the plate. From Eq. 25-1, the total charge

Figure 25-7 (a) A
battery and ca-
pacitor circuit.
(b) The lower ca-
pacitor plate.

C 

S 

(a) (b) 

– – – – – – 
d 

25-3 CAPACITORS IN PARALLEL AND IN SERIES

After reading this module, you should be able to . . .

25.06 Sketch schematic diagrams for a battery and (a) three
capacitors in parallel and (b) three capacitors in series.

25.07 Identify that capacitors in parallel have the same poten-
tial difference, which is the same value that their equivalent
capacitor has.

25.08 Calculate the equivalent of parallel capacitors.
25.09 Identify that the total charge stored on parallel capacitors is

the sum of the charges stored on the individual capacitors.
25.10 Identify that capacitors in series have the same charge,

which is the same value that their equivalent capacitor has.
25.11 Calculate the equivalent of series capacitors.
25.12 Identify that the potential applied to capacitors in series is

equal to the sum of the potentials across the individual capacitors.

25.13 For a circuit with a battery and some capacitors in
parallel and some in series, simplify the circuit in steps by
finding equivalent capacitors, until the charge and potential
on the final equivalent capacitor can be determined, and
then reverse the steps to find the charge and potential on
the individual capacitors.

25.14 For a circuit with a battery, an open switch, and one or
more uncharged capacitors, determine the amount of
charge that moves through a point in the circuit when the
switch is closed.

25.15 When a charged capacitor is connected in parallel to one or
more uncharged capacitors, determine the charge and potential
difference on each capacitor when equilibrium is reached.

Learning Objectives

● The equivalent capacitances Ceq of combinations of individual
capacitors connected in parallel and in series can be found from

(n capacitors in parallel)Ceq ! &
n

j !  1
 Cj

Key Idea

and (n capacitors in series).

Equivalent capacitances can be used to calculate the capaci-
tances of more complicated series – parallel combinations.

1
Ceq

 ! &
n

j!1

1
Cj

25-3 CAPACITORS IN PARALLEL AND IN SERIES

Additional examples, video, and practice available at WileyPLUS
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646 CHAPTER 25 CAPACITANCE

When we analyze a circuit of capacitors in parallel, we can simplify it with
this mental replacement:

Capacitors in Parallel and in Series
When there is a combination of capacitors in a circuit, we can sometimes replace
that combination with an equivalent capacitor—that is, a single capacitor that
has the same capacitance as the actual combination of capacitors. With such a
replacement, we can simplify the circuit, affording easier solutions for unknown
quantities of the circuit. Here we discuss two basic combinations of capacitors
that allow such a replacement.

Capacitors in Parallel
Figure 25-8a shows an electric circuit in which three capacitors are connected in par-
allel to battery B. This description has little to do with how the capacitor plates are
drawn. Rather, “in parallel” means that the capacitors are directly wired together at
one plate and directly wired together at the other plate, and that the same potential
difference V is applied across the two groups of wired-together plates.Thus, each ca-
pacitor has the same potential difference V, which produces charge on the capacitor.
(In Fig.25-8a, the applied potential V is maintained by the battery.) In general:

Figure 25-8 (a) Three capacitors connected
in parallel to battery B.The battery main-
tains potential difference V across its termi-
nals and thus across each capacitor. (b) The
equivalent capacitor, with capacitance Ceq,
replaces the parallel combination.

V 
+q3

V–
+ 

Terminal 

C3

B 

(a)

–q

+q
V

+
–

(b)

Ceq

B

Terminal 

–q3

+q2

–q2 C2

V 
+q1

–q1 C1

V 

Parallel capacitors and
their equivalent have
the same V (“par-V”).

When a potential difference V is applied across several capacitors connected in
parallel, that potential difference V is applied across each capacitor.The total
charge q stored on the capacitors is the sum of the charges stored on all the capacitors.

Capacitors connected in parallel can be replaced with an equivalent capacitor that has
the same total charge q and the same potential difference V as the actual capacitors.

(You might remember this result with the nonsense word “par-V,” which is close to
“party,” to mean “capacitors in parallel have the same V.”) Figure 25-8b shows the
equivalent capacitor (with equivalent capacitance Ceq) that has replaced the three ca-
pacitors (with actual capacitances C1,C2,and C3) of Fig.25-8a.

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the
charge on each actual capacitor:

q1 ! C1V, q2 ! C2V, and q3 ! C3V.

The total charge on the parallel combination of Fig. 25-8a is then

q ! q1 # q2 # q3 ! (C1 # C2 # C3)V.

The equivalent capacitance, with the same total charge q and applied potential
difference V as the combination, is then

a result that we can easily extend to any number n of capacitors, as

(n capacitors in parallel). (25-19)

Thus, to find the equivalent capacitance of a parallel combination, we simply add
the individual capacitances.

Capacitors in Series
Figure 25-9a shows three capacitors connected in series to battery B.This description
has little to do with how the capacitors are drawn. Rather,“in series” means that the
capacitors are wired serially, one after the other, and that a potential difference V is

Ceq ! &
n

j!1
 Cj

Ceq !
q
V

! C1 # C2 # C3,
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64725-3 CAPACITORS IN PARALLEL AND IN SERIES

Figure 25-9 (a) Three capacitors connected
in series to battery B.The battery main-
tains potential difference V between the
top and bottom plates of the series combi-
nation. (b) The equivalent capacitor,
with capacitance Ceq, replaces the series
combination.
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V2 

V3 
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B 

Terminal 

Terminal 

–q 

+q 

–q 

–q 

+q 

–q 

+q 

Series capacitors and
their equivalent have
the same q (“seri-q”).

applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is
maintained by battery B.) The potential differences that then exist across the capaci-
tors in the series produce identical charges q on them.

Capacitors that are connected in series can be replaced with an equivalent capaci-
tor that has the same charge q and the same total potential difference V as the
actual series capacitors.

(You might remember this with the nonsense word “seri-q” to mean “capacitors
in series have the same q.”) Figure 25-9b shows the equivalent capacitor (with
equivalent capacitance Ceq) that has replaced the three actual capacitors
(with actual capacitances C1, C2, and C3) of Fig. 25-9a.

To derive an expression for Ceq in Fig. 25-9b, we first use Eq. 25-1 to find the
potential difference of each actual capacitor:

The total potential difference V due to the battery is the sum 

The equivalent capacitance is then

or
1

Ceq
!

1
C1

#
1

C2
#

1
C3

.

Ceq !
q
V

!
1

1/C1 # 1/C2 # 1/C3
,

V ! V1 # V2 # V3 ! q $ 1
C1

#
1

C2
#

1
C3

%.

V1 !
q
C1

, V2 !
q
C2

, and V3 !
q
C3

.

When a potential difference V is applied across several capacitors connected in
series, the capacitors have identical charge q.The sum of the potential differences
across all the capacitors is equal to the applied potential difference V.

We can explain how the capacitors end up with identical charge by following a
chain reaction of events, in which the charging of each capacitor causes the charging
of the next capacitor.We start with capacitor 3 and work upward to capacitor 1.When
the battery is first connected to the series of capacitors, it produces charge "q on the
bottom plate of capacitor 3. That charge then repels negative charge from the top
plate of capacitor 3 (leaving it with charge #q).The repelled negative charge moves
to the bottom plate of capacitor 2 (giving it charge "q). That charge on the bottom
plate of capacitor 2 then repels negative charge from the top plate of capacitor 2
(leaving it with charge #q) to the bottom plate of capacitor 1 (giving it charge "q).
Finally, the charge on the bottom plate of capacitor 1 helps move negative charge
from the top plate of capacitor 1 to the battery, leaving that top plate with charge #q.

Here are two important points about capacitors in series:

1. When charge is shifted from one capacitor to another in a series of capacitors,
it can move along only one route, such as from capacitor 3 to capacitor 2 in
Fig. 25-9a. If there are additional routes, the capacitors are not in series.

2. The battery directly produces charges on only the two plates to which it is
connected (the bottom plate of capacitor 3 and the top plate of capacitor 1 in
Fig. 25-9a). Charges that are produced on the other plates are due merely to
the shifting of charge already there. For example, in Fig. 25-9a, the part of the
circuit enclosed by dashed lines is electrically isolated from the rest of the
circuit.Thus, its charge can only be redistributed.

When we analyze a circuit of capacitors in series, we can simplify it with this
mental replacement:
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648 CHAPTER 25 CAPACITANCE

Checkpoint 3
A battery of potential V stores charge q on a combination of two identical capacitors.
What are the potential difference across and the charge on either capacitor if the ca-
pacitors are (a) in parallel and (b) in series?

parallel can be replaced with their equivalent capacitor.
Therefore, we should first check whether any of the capaci-
tors in Fig. 25-10a are in parallel or series.

Finding equivalent capacitance: Capacitors 1 and 3 are
connected one after the other, but are they in series? No.
The potential V that is applied to the capacitors produces
charge on the bottom plate of capacitor 3. That charge
causes charge to shift from the top plate of capacitor 3.
However, note that the shifting charge can move to the bot-

Sample Problem 25.02 Capacitors in parallel and in series

(a) Find the equivalent capacitance for the combination of
capacitances shown in Fig. 25-10a, across which potential
difference V is applied.Assume

C1 ! 12.0 mF, C2 ! 5.30 mF, and C3 ! 4.50 mF.

KEY IDEA

Any capacitors connected in series can be replaced with
their equivalent capacitor, and any capacitors connected in

A

(a)

C1 =
12.0 µF

C2 =
5.30 µF

C12 =
17.3 µF

C123 =
3.57 µF

C3 =
4.50 µF

C3 =
4.50 µF

A

B
B

A

(b) (c)

V

C12 =
17.3 µF

C3 =
4.50 µF

q3 =
44.6 µC

( f )

12.5 V

V
C123 =

3.57 µF
V123 =
12.5 V

(d)

12.5 V
C123 =

3.57 µF

q123 =
44.6 µC

q12 =
44.6 µC

C12 =
17.3 µF

V12 =
2.58 V

V3 =
9.92 V

C3 =
4.50 µF

q3 =
44.6 µC

(g)

12.5 V

q12 =
44.6 µC

V123 =
12.5 V

(e)

12.5 VV

(h)

C1 =
12.0 µF

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

(i )

C1 =
12.0 µF

q1 =
31.0 µC

q2 =
13.7 µC

V1 =
2.58 V

V2 =
2.58 V

V3 =
9.92 V

C2 =
5.30 µF

C3 =
4.50 µF

q3 =
44.6 µC12.5 V

We first reduce the
circuit to a single
capacitor.

Next, we work
backwards to the
desired capacitor.

Series capacitors and
their equivalent have
the same q (“seri-q”).

Parallel capacitors and
their equivalent have
the same V (“par-V”).

Applying V = q/C yields
the potential difference.

Applying q = CV
yields the charge.

Applying q = CV
yields the charge.

The equivalent of
parallel capacitors
is larger.

The equivalent of
series capacitors
is smaller.

Figure 25-10 (a)–(d) Three capacitors are reduced to one equivalent capacitor. (e)–(i) Working backwards to get the charges.

We can easily extend this to any number n of capacitors as

(n capacitors in series). (25-20)

Using Eq. 25-20 you can show that the equivalent capacitance of a series of
capacitances is always less than the least capacitance in the series.

1
Ceq

! &
n

j!1

1
Cj
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64925-3 CAPACITORS IN PARALLEL AND IN SERIES

tom plates of both capacitor 1 and capacitor 2. Because
there is more than one route for the shifting charge, capaci-
tor 3 is not in series with capacitor 1 (or capacitor 2). Any
time you think you might have two capacitors in series, ap-
ply this check about the shifting charge.

Are capacitor 1 and capacitor 2 in parallel? Yes. Their
top plates are directly wired together and their bottom
plates are directly wired together, and electric potential
is applied between the top-plate pair and the bottom-plate
pair. Thus, capacitor 1 and capacitor 2 are in parallel, and
Eq. 25-19 tells us that their equivalent capacitance C12 is

C12 ! C1 # C2 ! 12.0 mF # 5.30 mF ! 17.3 mF.

In Fig. 25-10b, we have replaced capacitors 1 and 2 with
their equivalent capacitor, called capacitor 12 (say “one
two” and not “twelve”). (The connections at points A and B
are exactly the same in Figs. 25-10a and b.)

Is capacitor 12 in series with capacitor 3? Again apply-
ing the test for series capacitances, we see that the charge
that shifts from the top plate of capacitor 3 must entirely go
to the bottom plate of capacitor 12. Thus, capacitor 12 and
capacitor 3 are in series, and we can replace them with their
equivalent C123 (“one two three”), as shown in Fig. 25-10c.
From Eq. 25-20, we have

from which

(Answer)C123 !
1

0.280 mF"1 ! 3.57 mF.

!
1

17.3 mF
#

1
4.50 mF

! 0.280 mF"1,

1
C123

!
1

C12
#

1
C3

(b) The potential difference applied to the input terminals
in Fig. 25-10a is V ! 12.5 V.What is the charge on C1?

KEY IDEAS

We now need to work backwards from the equivalent 
capacitance to get the charge on a particular capacitor. We
have two techniques for such “backwards work”: (1) Seri-q:
Series capacitors have the same charge as their equivalent
capacitor. (2) Par-V: Parallel capacitors have the same 
potential difference as their equivalent capacitor.

Working backwards: To get the charge q1 on capacitor 1,
we work backwards to that capacitor, starting with the
equivalent capacitor 123. Because the given potential differ-
ence V (! 12.5 V) is applied across the actual combination
of three capacitors in Fig. 25-10a, it is also applied across
C123 in Figs. 25-10d and e.Thus, Eq. 25-1 (q ! CV) gives us

q123 ! C123V ! (3.57 mF)(12.5 V) ! 44.6 mC.

The series capacitors 12 and 3 in Fig. 25-10b each have the
same charge as their equivalent capacitor 123 (Fig. 25-10f ).
Thus, capacitor 12 has charge q12 ! q123 ! 44.6 mC. From
Eq. 25-1 and Fig. 25-10g, the potential difference across ca-
pacitor 12 must be

The parallel capacitors 1 and 2 each have the same potential
difference as their equivalent capacitor 12 (Fig. 25-10h). Thus,
capacitor 1 has potential difference V1 ! V12 ! 2.58 V, and,
from Eq.25-1 and Fig.25-10i, the charge on capacitor 1 must be

(Answer) ! 31.0 mC.

q1 ! C1V1 ! (12.0 mF)(2.58 V)

V12 !
q12

C12
!

44.6 mC
17.3 mF

! 2.58 V.

As the electric potential across capacitor 1 decreases,
that across capacitor 2 increases. Equilibrium is reached
when the two potentials are equal because, with no potential
difference between connected plates of the capacitors, there

Sample Problem 25.03 One capacitor charging up another capacitor

Capacitor 1, with C1 3.55 mF, is charged to a potential !

Figure 25-11 A potential difference
V0 is applied to capacitor 1 and the
charging battery is removed. Switch
S is then closed so that the charge
on capacitor 1 is shared with
capacitor 2.

S 

C2C1

q0

After the switch is closed,
charge is transferred until
the potential differences
match.

difference V0 ! 6.30 V, using a 6.30 V battery. The battery is
then removed, and the capacitor is connected as in Fig. 25-11
to an uncharged capacitor 2, with C2 ! 8.95 mF.When switch
S is closed, charge flows between the capacitors. Find the
charge on each capacitor when equilibrium is reached.

KEY IDEAS

The situation here differs from the previous example be-
cause here an applied electric potential is not maintained
across a combination of capacitors by a battery or some
other source. Here, just after switch S is closed, the only ap-
plied electric potential is that of capacitor 1 on capacitor 2,
and that potential is decreasing. Thus, the capacitors in
Fig. 25-11 are not connected in series; and although they are
drawn parallel, in this situation they are not in parallel.
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650 CHAPTER 25 CAPACITANCE

Energy Stored in an Electric Field
Work must be done by an external agent to charge a capacitor. We can imagine
doing the work ourselves by transferring electrons from one plate to the other,
one by one. As the charges build, so does the electric field between the plates,
which opposes the continued transfer. So, greater amounts of work are required.
Actually, a battery does all this for us, at the expense of its stored chemical en-
ergy. We visualize the work as being stored as electric potential energy in the
electric field between the plates.

25-4 ENERGY STORED IN AN ELECTRIC FIELD

After reading this module, you should be able to . . .

25.16 Explain how the work required to charge a capacitor
results in the potential energy of the capacitor.

25.17 For a capacitor, apply the relationship between the
potential energy U, the capacitance C, and the potential
difference V.

25.18 For a capacitor, apply the relationship between the

potential energy, the internal volume, and the internal
energy density.

25.19 For any electric field, apply the relationship between
the potential energy density u in the field and the field’s
magnitude E.

25.20 Explain the danger of sparks in airborne dust.

Learning Objectives

● The electric potential energy U of a charged capacitor,

is equal to the work required to charge the capacitor. This en-
ergy can be associated with the capacitor’s electric field .E

:

U !
q2

2c
! 1

2CV 2,

Key Ideas
● Every electric field, in a capacitor or from any other source,
has an associated stored energy. In vacuum, the energy den-
sity u (potential energy per unit volume) in a field of magni-
tude E is

u ! 1
2´0E2.

is no electric field within the connecting wires to move con-
duction electrons. The initial charge on capacitor 1 is then
shared between the two capacitors.

Calculations: Initially, when capacitor 1 is connected to the
battery, the charge it acquires is, from Eq. 25-1,

q0 ! C1V0 ! (3.55 $ 10"6 F)(6.30 V)
! 22.365 $ 10"6 C.

When switch S in Fig. 25-11 is closed and capacitor 1 begins
to charge capacitor 2, the electric potential and charge on
capacitor 1 decrease and those on capacitor 2 increase until

V1 ! V2 (equilibrium).

From Eq. 25-1, we can rewrite this as

(equilibrium).
q1

C1
!

q2

C2

Because the total charge cannot magically change, the total
after the transfer must be

q1 # q2 ! q0 (charge conservation);

thus q2 ! q0 " q1.

We can now rewrite the second equilibrium equation as

Solving this for q1 and substituting given data, we find

q1 ! 6.35 mC. (Answer)

The rest of the initial charge (q0 ! 22.365 mC) must be on
capacitor 2:

q2 ! 16.0 mC. (Answer)

q1

C1
!

q0 " q1

C2
.

Additional examples, video, and practice available at WileyPLUS
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65125-4 ENERGY STORED IN AN ELECTRIC FIELD

The potential energy of a charged capacitor may be viewed as being stored in the
electric field between its plates.

Suppose that, at a given instant, a charge q) has been transferred from one
plate of a capacitor to the other.The potential difference V) between the plates at
that instant will be q)/C. If an extra increment of charge dq) is then transferred,
the increment of work required will be, from Eq. 24-6,

The work required to bring the total capacitor charge up to a final value q is

This work is stored as potential energy U in the capacitor, so that

(potential energy). (25-21)

From Eq. 25-1, we can also write this as

(potential energy). (25-22)

Equations 25-21 and 25-22 hold no matter what the geometry of the capacitor is.
To gain some physical insight into energy storage, consider two parallel-

plate capacitors that are identical except that capacitor 1 has twice the plate
separation of capacitor 2. Then capacitor 1 has twice the volume between its
plates and also, from Eq. 25-9, half the capacitance of capacitor 2. Equation 25-
4 tells us that if both capacitors have the same charge q, the electric fields be-
tween their plates are identical. And Eq. 25-21 tells us that capacitor 1 has twice
the stored potential energy of capacitor 2. Thus, of two otherwise identical ca-
pacitors with the same charge and same electric field, the one with twice the
volume between its plates has twice the stored potential energy.Arguments like
this tend to verify our earlier assumption:

U ! 1
2 CV 2

U !
q2

2C

W ! ! dW !
1
C !q

0
 q) dq) !

q2

2C
.

dW ! V) dq) !
q)

C
 dq).

Explosions in Airborne Dust
As we discussed in Module 24-8, making contact with certain materials, such as
clothing, carpets, and even playground slides, can leave you with a significant
electrical potential. You might become painfully aware of that potential if a
spark leaps between you and a grounded object, such as a faucet. In many in-
dustries involving the production and transport of powder, such as in the cos-
metic and food industries, such a spark can be disastrous. Although the powder
in bulk may not burn at all, when individual powder grains are airborne and
thus surrounded by oxygen, they can burn so fiercely that a cloud of the grains
burns as an explosion. Safety engineers cannot eliminate all possible sources of
sparks in the powder industries. Instead, they attempt to keep the amount of
energy available in the sparks below the threshold value Ut (' 150 mJ) typi-
cally required to ignite airborne grains.

Suppose a person becomes charged by contact with various surfaces as he walks
through an airborne powder.We can roughly model the person as a spherical capaci-
tor of radius R ! 1.8 m. From Eq. 25-18 and Eq. 25-22 , we
see that the energy *f the capacitor is

U ! 1
2 (4p´0R)V 2.

(U ! 1
2CV 2)(C ! 4p´0R)
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652 CHAPTER 25 CAPACITANCE

From this we see that the threshold energy corresponds to a potential of 

! 3.9 $ 104 V.

Safety engineers attempt to keep the potential of the personnel below this level
by “bleeding” off the charge through, say, a conducting floor.

Energy Density
In a parallel-plate capacitor, neglecting fringing, the electric field has the same
value at all points between the plates. Thus, the energy density u—that is, the
potential energy per unit volume between the plates—should also be uniform.
We can find u by dividing the total potential energy by the volume Ad of the
space between the plates. Using Eq. 25-22, we obtain

(25-23)

With Eq. 25-9 (C ! ´0A/d), this result becomes

(25-24)

However, from Eq. 24-42 (E ! "+V/+s), V/d equals the electric field magnitude E; so

(energy density). (25-25)

Although we derived this result for the special case of an electric field of a
parallel-plate capacitor, it holds for any electric field. If an electric field ex-
ists at any point in space, that site has an electric potential energy with a den-
sity (amount per unit volume) given by Eq. 25-25.

E
:

u ! 1
2 ´0E2

u ! 1
2 ´0 $ V

d %2

.

u !
U

Ad
!

CV 2

2Ad
.

V ! A 2Ut

4p 0́R
! A 2(150 $ 10"3 J)

4p(8.85 $ 10"12 C2/N %m2)(1.8 m)

(b) What is the energy density at the surface of the sphere?

KEY IDEA

The density u of the energy stored in an electric field
depends on the magnitude E of the field, according to 
Eq. 25-25 .

Calculations: Here we must first find E at the surface of
the sphere, as given by Eq. 23-15:

The energy density is then

(Answer) ! 2.54 $ 10"5 J/m3 ! 25.4 mJ/m3.

 !
(1.25 $ 10"9 C)2

(32p 2)(8.85 $ 10"12 C2/N%m2)(0.0685 m)4

 u ! 1
2´0E2 !

q2

32p 2´0R4

E !
1

4p´0

q
R2 .

(u ! 1
2´0E2)

Sample Problem 25.04 Potential energy and energy density of an electric field

An isolated conducting sphere whose radius R is 6.85 cm
has a charge q ! 1.25 nC.

(a) How much potential energy is stored in the electric field
of this charged conductor?

KEY IDEAS

(1) An isolated sphere has capacitance given by Eq. 25-18
(C ! 4p´0R). (2) The energy U stored in a capacitor de-
pends on the capacitor’s charge q and capacitance C accord-
ing to Eq. 25-21 (U ! q2/2C).

Calculation: Substituting C ! 4p´0R into Eq. 25-21 gives us

(Answer) ! 1.03 $ 10"7 J ! 103 nJ. 

 !
(1.25 $ 10"9 C)2

(8p)(8.85 $ 10"12 F/m)(0.0685 m)

 U !
q2

2C
!

q2

8p´0R

Additional examples, video, and practice available at WileyPLUS
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65325-5 CAPACITOR WITH A DIELECTRIC

Capacitor with a Dielectric
If you fill the space between the plates of a capacitor with a dielectric, which is
an insulating material such as mineral oil or plastic, what happens to the capaci-
tance? Michael Faraday — to whom the whole concept of capacitance is largely
due and for whom the SI unit of capacitance is named — first looked into this
matter in 1837. Using simple equipment much like that shown in Fig. 25-12, he
found that the capacitance increased by a numerical factor k, which he called

25-5 CAPACITOR WITH A DIELECTRIC

After reading this module, you should be able to . . .

25.21 Identify that capacitance is increased if the space
between the plates is filled with a dielectric material.

25.22 For a capacitor, calculate the capacitance with and
without a dielectric.

25.23 For a region filled with a dielectric material with a
given dielectric constant k, identify that all electrostatic
equations containing the permittivity constant ´0 are
modified by multiplying that constant by the dielectric
constant to get k´0.

25.24 Name some of the common dielectrics.
25.25 In adding a dielectric to a charged capacitor, distin-

guish the results for a capacitor (a) connected to a battery
and (b) not connected to a battery.

25.26 Distinguish polar dielectrics from nonpolar dielectrics.
25.27 In adding a dielectric to a charged capacitor,

explain what happens to the electric field between the
plates in terms of what happens to the atoms in the
dielectric.

Learning Objectives

● If the space between the plates of a capacitor is completely
filled with a dielectric material, the capacitance C in vacuum
(or, effectively, in air) is multiplied by the material’s dielectric
constant k, which is a number greater than 1.
● In a region that is completely filled by a dielectric, all
electrostatic equations containing the permittivity constant
´0 must be modified by replacing ´0 with k´0.

Key Ideas
● When a dielectric material is placed in an external electric
field, it develops an internal electric field that is oriented
opposite the external field, thus reducing the magnitude of
the electric field inside the material.
● When a dielectric material is placed in a capacitor with a
fixed amount of charge on the surface, the net electric field
between the plates is decreased.

The Royal Institute, England/Bridgeman Art Library/NY

Figure 25-12 The simple electrostatic apparatus used by Faraday. An assembled apparatus
(second from left) forms a spherical capacitor consisting of a central brass ball and a
concentric brass shell. Faraday placed dielectric materials in the space between the ball
and the shell.
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the dielectric constant of the insulating material. Table 25-1 shows some dielec-
tric materials and their dielectric constants. The dielectric constant of a vacuum
is unity by definition. Because air is mostly empty space, its measured dielectric
constant is only slightly greater than unity. Even common paper can signifi-
cantly increase the capacitance of a capacitor, and some materials, such as
strontium titanate, can increase the capacitance by more than two orders of
magnitude.

Another effect of the introduction of a dielectric is to limit the potential
difference that can be applied between the plates to a certain value Vmax, called
the breakdown potential. If this value is substantially exceeded, the dielectric
material will break down and form a conducting path between the plates. Every
dielectric material has a characteristic dielectric strength, which is the maximum
value of the electric field that it can tolerate without breakdown. A few such
values are listed in Table 25-1.

As we discussed just after Eq. 25-18, the capacitance of any capacitor can be
written in the form

C ! ´0!, (25-26)

in which ! has the dimension of length. For example, ! ! A /d for a parallel-plate
capacitor. Faraday’s discovery was that, with a dielectric completely filling the
space between the plates, Eq. 25-26 becomes

C ! k´0! ! kCair, (25-27)

where Cair is the value of the capacitance with only air between the plates. For ex-
ample, if we fill a capacitor with strontium titanate, with a dielectric constant of
310, we multiply the capacitance by 310.

Figure 25-13 provides some insight into Faraday’s experiments. In 
Fig. 25-13a the battery ensures that the potential difference V between the plates
will remain constant. When a dielectric slab is inserted between the plates, the
charge q on the plates increases by a factor of k; the additional charge is delivered
to the capacitor plates by the battery. In Fig. 25-13b there is no battery, and there-
fore the charge q must remain constant when the dielectric slab is inserted; then
the potential difference V between the plates decreases by a factor of k.
Both these observations are consistent (through the relation q ! CV) with the
increase in capacitance caused by the dielectric.

Comparison of Eqs. 25-26 and 25-27 suggests that the effect of a dielectric
can be summed up in more general terms:

654 CHAPTER 25 CAPACITANCE

Table 25-1 Some Properties of Dielectricsa

Dielectric Dielectric 
Constant Strength 

Material k (kV/mm)

Air (1 atm) 1.00054 3
Polystyrene 2.6 24
Paper 3.5 16
Transformer 

oil 4.5
Pyrex 4.7 14
Ruby mica 5.4
Porcelain 6.5
Silicon 12
Germanium 16
Ethanol 25
Water (20°C) 80.4
Water (25°C) 78.5
Titania 

ceramic 130
Strontium 

titanate 310 8

For a vacuum, k ! unity.

aMeasured at room temperature,except for the 
water.

Figure 25-13 (a) If the potential difference between the plates of a capacitor is maintained, as by battery B, the effect of a
dielectric is to increase the charge on the plates. (b) If the charge on the capacitor plates is maintained, as in this case,
the effect of a dielectric is to reduce the potential difference between the plates.The scale shown is that of a potentiometer,
a device used to measure potential difference (here, between the plates).A capacitor cannot discharge through a 
potentiometer.

(a)

B B

  ++++++++
κ

V = a constant

(b)

q = a constant

+ ++ +

––––  ––––––––

+ ++ +

––––

+

–

+ ++ +

––––

+

–
κ0

VOLTS

0

VOLTS

In a region completely filled by a dielectric material of dielectric constant k, all 
electrostatic equations containing the permittivity constant '0 are to be modified 
by replacing ´0 with k´0.
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Thus, the magnitude of the electric field produced by a point charge inside a
dielectric is given by this modified form of Eq. 23-15:

(25-28)

Also, the expression for the electric field just outside an isolated conductor
immersed in a dielectric (see Eq. 23-11) becomes

(25-29)

Because k is always greater than unity, both these equations show that for a fixed
distribution of charges, the effect of a dielectric is to weaken the electric field that
would otherwise be present.

E !
s

k´0
.

E !
1

4pk´0

q
r2 .

65525-5 CAPACITOR WITH A DIELECTRIC

KEY IDEA

Because the battery has been disconnected, the charge on
the capacitor cannot change when the dielectric is inserted.
However, the potential does change.

Calculations: Thus, we must now use Eq. 25-21 to write the
final potential energy Uf , but now that the slab is within the
capacitor, the capacitance is kC.We then have

(Answer)

When the slab is introduced, the potential energy decreases
by a factor of k.

The “missing” energy, in principle, would be apparent to
the person who introduced the slab.The capacitor would ex-
ert a tiny tug on the slab and would do work on it, in amount

W ! Ui " Uf ! (1055 " 162) pJ ! 893 pJ.

If the slab were allowed to slide between the plates with no
restraint and if there were no friction, the slab would oscillate
back and forth between the plates with a (constant) mechani-
cal energy of 893 pJ, and this system energy would transfer
back and forth between kinetic energy of the moving slab and
potential energy stored in the electric field.

 ! 162 pJ ' 160 pJ.

 Uf !
q2

2kC
!

Ui

k
!

1055 pJ
6.50

Sample Problem 25.05 Work and energy when a dielectric is inserted into a capacitor

A parallel-plate capacitor whose capacitance C is 13.5 pF is
charged by a battery to a potential difference V ! 12.5 V
between its plates. The charging battery is now discon-
nected, and a porcelain slab (k ! 6.50) is slipped between
the plates.

(a) What is the potential energy of the capacitor before the
slab is inserted?

KEY IDEA

We can relate the potential energy Ui of the capacitor to the
capacitance C and either the potential V (with Eq. 25-22) or
the charge q (with Eq. 25-21):

Calculation: Because we are given the initial potential V
(! 12.5 V), we use Eq. 25-22 to find the initial stored
energy:

(Answer)

(b) What is the potential energy of the capacitor–slab device
after the slab is inserted? 

! 1.055 $ 10"9 J ! 1055 pJ ' 1100 pJ.
Ui ! 1

2CV 2 ! 1
2(13.5 $ 10"12 F)(12.5 V)2

Ui ! 1
2CV 2 !

q2

2C
.

Dielectrics: An Atomic View
What happens, in atomic and molecular terms, when we put a dielectric in an
electric field? There are two possibilities, depending on the type of molecule:

1. Polar dielectrics. The molecules of some dielectrics, like water, have permanent
electric dipole moments. In such materials (called polar dielectrics), the

Additional examples, video, and practice available at WileyPLUS
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(a) 

E0 = 0 

The initial electric field
inside this nonpolar
dielectric slab is zero.
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The applied field
aligns the atomic
dipole moments.
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E'

E0

(c)

+
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+
+

+
+

–
–
–
–
–
–
–

–

E

The field of the aligned
atoms is opposite the
applied field.
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Figure 25-15 (a) A nonpolar dielectric slab.
The circles represent the electrically neu-
tral atoms within the slab. (b) An electric
field is applied via charged capacitor
plates; the field slightly stretches the atoms,
separating the centers of positive and neg-
ative charge. (c) The separation produces
surface charges on the slab faces.These
charges set up a field which opposes the
applied field .The resultant field in-
side the dielectric (the vector sum of 
and ) has the same direction as but a
smaller magnitude.

E
:

0E
:

)
E
:

0

E
:

E
:

0

E
:

),

Figure 25-14 (a) Molecules with a permanent
electric dipole moment, showing their
random orientation in the absence of an
external electric field. (b) An electric field is
applied, producing partial alignment of the
dipoles.Thermal agitation prevents complete
alignment.
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(a) 

p 

electric dipoles tend to line up with an external electric field as in Fig. 25-14.
Because the molecules are continuously jostling each other as a result of their
random thermal motion, this alignment is not complete, but it becomes more
complete as the magnitude of the applied field is increased (or as the temper-
ature, and thus the jostling, are decreased). The alignment of the electric
dipoles produces an electric field that is directed opposite the applied field
and is smaller in magnitude.

2. Nonpolar dielectrics. Regardless of whether they have permanent electric
dipole moments, molecules acquire dipole moments by induction when
placed in an external electric field. In Module 24-4 (see Fig. 24-14), we saw
that this occurs because the external field tends to “stretch” the molecules,
slightly separating the centers of negative and positive charge.

Figure 25-15a shows a nonpolar dielectric slab with no external electric field
applied. In Fig. 25-15b, an electric field is applied via a capacitor, whose plates
are charged as shown. The result is a slight separation of the centers of the posi-
tive and negative charge distributions within the slab, producing positive charge
on one face of the slab (due to the positive ends of dipoles there) and negative
charge on the opposite face (due to the negative ends of dipoles there). The slab
as a whole remains electrically neutral and—within the slab—there is no excess
charge in any volume element.

Figure 25-15c shows that the induced surface charges on the faces produce an
electric field in the direction opposite that of the applied electric field . The
resultant field inside the dielectric (the vector sum of fields and ) has the
direction of but is smaller in magnitude.

Both the field produced by the surface charges in Fig. 25-15c and the
electric field produced by the permanent electric dipoles in Fig. 25-14 act in the
same way—they oppose the applied field . Thus, the effect of both polar and
nonpolar dielectrics is to weaken any applied field within them, as between the
plates of a capacitor.

E
:

E
:

)
E
:

0

E
:

)E
:

0E
:

E
:

0E
:

)

E
:

0
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Dielectrics and Gauss’ Law
In our discussion of Gauss’ law in Chapter 23, we assumed that the charges
existed in a vacuum. Here we shall see how to modify and generalize that law if
dielectric materials, such as those listed in Table 25-1, are present. Figure 25-16
shows a parallel-plate capacitor of plate area A, both with and without a 
dielectric. We assume that the charge q on the plates is the same in both situa-
tions. Note that the field between the plates induces charges on the faces of the
dielectric by one of the methods described in Module 25-5.

For the situation of Fig. 25-16a, without a dielectric, we can find the electric
field between the plates as we did in Fig. 25-5: We enclose the charge #q on
the top plate with a Gaussian surface and then apply Gauss’ law. Letting E0 rep-
resent the magnitude of the field, we find

(25-30)

or (25-31)

In Fig. 25-16b, with the dielectric in place, we can find the electric field
between the plates (and within the dielectric) by using the same Gaussian sur-
face. However, now the surface encloses two types of charge: It still encloses
charge #q on the top plate, but it now also encloses the induced charge "q) on
the top face of the dielectric. The charge on the conducting plate is said to be free
charge because it can move if we change the electric potential of the plate; the
induced charge on the surface of the dielectric is not free charge because it
cannot move from that surface.

E0 !
q

´0A
.

´0 # E
:

! dA
:

! ´0EA ! q,

E
:

0
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25-6 DIELECTRICS AND GAUSS’ LAW

After reading this module, you should be able to . . .

25.28 In a capacitor with a dielectric, distinguish free charge
from induced charge.

25.29 When a dielectric partially or fully fills the space in a

capacitor, find the free charge, the induced charge, the elec-
tric field between the plates (if there is a gap, there is more
than one field value), and the potential between the plates.

Learning Objectives

● Inserting a dielectric into a capacitor causes induced
charge to appear on the faces of the dielectric and weakens
the electric field between the plates.
● The induced charge is less than the free charge on the
plates.
● When a dielectric is present, Gauss’ law may be

Key Ideas
generalized to

where q is the free charge. Any induced surface charge is
accounted for by including the dielectric constant k inside
the integral.

´0 # kE
:

! dA
:

! q,

Figure 25-16 A parallel-plate capacitor (a) without and (b) with a dielectric slab inserted.
The charge q on the plates is assumed to be the same in both cases.

(b)

–q'

+q'

+ + + + + + + ++ +

– – – – – – – –– –
+ + + ++

– – – ––

κ

+q

–q

Gaussian surface

EE0

Gaussian surface

+q

–q

(a) 

+ + + + + + + ++ +

– – – – – – – –– –
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The net charge enclosed by the Gaussian surface in Fig. 25-16b is q " q), so
Gauss’ law now gives

(25-32)

or (25-33)

The effect of the dielectric is to weaken the original field E0 by a factor of k; so we
may write

(25-34)

Comparison of Eqs. 25-33 and 25-34 shows that

(25-35)

Equation 25-35 shows correctly that the magnitude q) of the induced surface
charge is less than that of the free charge q and is zero if no dielectric is present
(because then k ! 1 in Eq. 25-35).

By substituting for q " q) from Eq. 25-35 in Eq. 25-32, we can write Gauss’
law in the form

(Gauss’ law with dielectric). (25-36)

This equation, although derived for a parallel-plate capacitor, is true generally
and is the most general form in which Gauss’ law can be written. Note:

1. The flux integral now involves not just (The vector is sometimes 
called the electric displacement so that Eq. 25-36 can be written in the form

2. The charge q enclosed by the Gaussian surface is now taken to be the free
charge only. The induced surface charge is deliberately ignored on the right
side of Eq. 25-36, having been taken fully into account by introducing the
dielectric constant k on the left side.

3. Equation 25-36 differs from Eq. 23-7, our original statement of Gauss’ law,
only in that '0 in the latter equation has been replaced by k'0. We keep k
inside the integral of Eq. 25-36 to allow for cases in which k is not constant
over the entire Gaussian surface.

"  D
:

! dA
:

! q.)
D
:

,
´0kE

:
E
:

.kE
:

,

´0 # kE
:

! dA
:

! q

q " q) !
q
k

.

E !
E0

k
!

q
k´0A

.

E !
q " q)

´0A
.

´0 # E
:

! dA
:

! ´0EA ! q " q),
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Sample Problem 25.06 Dielectric partially filling the gap in a capacitor

Figure 25-17 shows a parallel-plate capacitor of plate area
A and plate separation d. A potential difference V0 is ap-
plied between the plates by connecting a battery between
them. The battery is then disconnected, and a dielectric slab
of thickness b and dielectric constant k is placed between
the plates as shown. Assume A ! 115 cm2, d ! 1.24 cm,
V0 ! 85.5 V, b ! 0.780 cm, and k ! 2.61.

(a) What is the capacitance C0 before the dielectric slab is
inserted?

Figure 25-17 A parallel-plate capacitor containing a dielectric slab
that only partially fills the space between the plates.

Gaussian 
surface I 

–q' – – – – 

+q 

–q
Gaussian 
surface II 

+ + + + + + + + 

– – – – – – – – 

+ + + + κ +q' 
b d 
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KEY IDEA

Now we apply Gauss’ law in the form of  Eq. 25-36 to
Gaussian surface II in Fig. 25-17.

Calculations: Only the free charge "q is in Eq. 25-36, so 

(25-37)

The first minus sign in this equation comes from the dot
product along the top of the Gaussian surface be-
cause now the field vector is directed downward and the
area vector (which, as always, points outward from the
interior of a closed Gaussian surface) is directed upward.
With 180, between the vectors, the dot product is negative.
Now k ! 2.61.Thus, Eq. 25-37 gives us

(Answer)

(e) What is the potential difference V between the plates
after the slab has been introduced?

KEY IDEA

We find V by integrating along a straight line directly from
the bottom plate to the top plate.

Calculation: Within the dielectric, the path length is b and
the electric field is E1. Within the two gaps above and below
the dielectric, the total path length is d " b and the electric
field is E0. Equation 25-6 then yields

(Answer)
This is less than the original potential difference of 85.5 V.

(f) What is the capacitance with the slab in place?

KEY IDEA

The capacitance C is related to q and V via Eq. 25-1.

Calculation: Taking q from (b) and V from (e), we have

(Answer)

This is greater than the original capacitance of 8.21 pF.

 ! 1.34 $ 10"11 F ! 13.4 pF.

C !
q
V

!
7.02 $ 10"10 C

52.3 V

! 52.3 V.

# (2640 V/m)(0.00780 m)

! (6900 V/m)(0.0124 m " 0.00780 m)

V ! !#

"
E ds ! E0(d " b) # E1b

 ! 2.64 kV/m.

 E1 !
q

´0kA
!

E0

k
!

6.90 kV/m
2.61

dA
:

E
:

1

E
:

1 ! dA
:

´0 # kE
:

1 ! dA
:

! "´0kE1A ! "q.

Calculation: From Eq. 25-9 we have

(Answer)

(b) What free charge appears on the plates?

Calculation: From Eq. 25-1,

(Answer)

Because the battery was disconnected before the slab was
inserted, the free charge is unchanged.

(c) What is the electric field E0 in the gaps between the
plates and the dielectric slab?

KEY IDEA

We need to apply Gauss’ law, in the form of Eq. 25-36, to
Gaussian surface I in Fig. 25-17.

Calculations: That surface passes through the gap, and so it
encloses only the free charge on the upper capacitor plate.
Electric field pierces only the bottom of the Gaussian surface.
Because there the area vector and the field vector are
both directed downward, the dot product in Eq. 25-36 becomes

Equation 25-36 then becomes

The integration now simply gives the surface area A of the
plate.Thus, we obtain

´0kE0A ! q,

or

We must put k ! 1 here because Gaussian surface I does
not pass through the dielectric.Thus, we have

(Answer)

Note that the value of E0 does not change when the slab is
introduced because the amount of charge enclosed by
Gaussian surface I in Fig. 25-17 does not change.

(d) What is the electric field E1 in the dielectric slab?

! 6900 V/m ! 6.90 kV/m.

E0 !
q

´0kA
!

7.02 $ 10"10 C
(8.85 $ 10"12 F/m)(1)(115 $ 10"4 m2)

E0 !
q

´0kA
.

´0kE0 # dA ! q.

E
:

0 ! dA
:

! E0 dA cos 0, ! E0 dA.

E
:

0dA
:

! 7.02 $ 10"10 C ! 702 pC.
q ! C0V0 ! (8.21 $ 10"12 F)(85.5 V)

! 8.21 $ 10"12  F ! 8.21 pF.

C0 !
'0 A

d
!

(8.85 $ 10"12 F/m)(115 $ 10"4 m2)
1.24 $ 10"2 m

25-6 DIELECTRICS AND GAUSS’ LAW

Additional examples, video, and practice available at WileyPLUS
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660 CHAPTER 25 CAPACITANCE

for capacitor 1 what are the increases in (a) charge, (b) potential
difference, and (c) stored energy?

4 In Fig. 25-19, find the equivalent
capacitance of the combination.
Assume that C1 is 10.0 mF, C2 is 8.00
mF, and C3 is 4.00 mF.

5 What capacitance is required to
store an energy of 10 kW %h at a po-
tential difference of 1700 V?

6 In Fig. 25-19, a potential differ-
ence V ! 100 V is applied across a ca-
pacitor arrangement with capacitances C1 ! 10.0 mF, C2 ! 5.00 mF,
and C3 ! 2.00 mF. What are (a) charge q3, (b) potential difference
V3, and (c) stored energy U3 for capacitor 3, (d) q1, (e) V1, and (f)
U1 for capacitor 1, and (g) q2, (h) V2, and (i) U2 for capacitor 2?

7 A parallel-plate capacitor has plates of area 0.080 m2 and a sepa-
ration of 1.2 cm. A battery charges the plates to a potential

Problems

1 In Fig. 25-18, C1 10.0 mF,
C2 5.0 mF, and C3 4.0 mF. What
is the change in their equivalent ca-
pacitance if (a) capacitors 1 and 2 are 
interchanged and (separately) (b)
capacitors 1 and 3 are interchanged?

2 In Fig. 25-18, a potential differ-
ence V ! 75.0 V is applied across a
capacitor arrangement with capaci-
tances C1 ! 10.0 mF, C2 5.00 mF,
and C3 15.0 mF. What are (a) charge q3, (b) potential differ-
ence V3, and (c) stored energy U3 for capacitor 3, (d) q1, (e) V1,
and (f ) U1 for capacitor 1, and (g) q2, (h) V2, and (i) U2 for
capacitor 2?

3 In Fig. 25-18, a potential difference of V 65.0 V is applied
across a capacitor arrangement with capacitances C1 10.0 mF,
C2 5.00 mF, and C3 4.00 mF. If capacitor 3 undergoes electrical
breakdown so that it becomes equivalent to conducting wire, then

!!
!

!

!
!

!!
!

Capacitor; Capacitance A capacitor consists of two isolated
conductors (the plates) with charges #q and "q. Its capacitance C
is defined from

q ! CV, (25-1)

where V is the potential difference between the plates.

Determining Capacitance We generally determine the
capacitance of a particular capacitor configuration by (1) assuming a
charge q to have been placed on the plates, (2) finding the electric field

due to this charge, (3) evaluating the potential difference V, and (4)
calculating C from Eq.25-1.Some specific results are the following:

A parallel-plate capacitor with flat parallel plates of area A
and spacing d has capacitance

(25-9)

A cylindrical capacitor (two long coaxial cylinders) of length
L and radii a and b has capacitance

(25-14)

A spherical capacitor with concentric spherical plates of radii
a and b has capacitance

(25-17)

An isolated sphere of radius R has capacitance

C ! 4p´0R. (25-18)

Capacitors in Parallel and in Series The equivalent
capacitances Ceq of combinations of individual capacitors con-
nected in parallel and in series can be found from

(n capacitors in parallel) (25-19)

and (n capacitors in series). (25-20)
1

Ceq
 ! &

n

j!1

1
Cj

Ceq ! &
n

j !  1
 Cj

C ! 4p´0 
ab

b " a
.

C ! 2p´0 
L

ln(b/a)
.

C !
´0A

d
.

E
:

Review & Summary

Equivalent capacitances can be used to calculate the capacitances
of more complicated series–parallel combinations.

Potential Energy and Energy Density The electric poten-
tial energy U of a charged capacitor,

(25-21, 25-22)

is equal to the work required to charge the capacitor. This energy
can be associated with the capacitor’s electric field By extension
we can associate stored energy with any electric field. In vacuum,
the energy density u, or potential energy per unit volume, within an
electric field of magnitude E is given by

(25-25)

Capacitance with a Dielectric If the space between the
plates of a capacitor is completely filled with a dielectric material,
the capacitance C is increased by a factor k, called the dielectric
constant, which is characteristic of the material. In a region that
is completely filled by a dielectric, all electrostatic equations con-
taining '0 must be modified by replacing '0 with k'0.

The effects of adding a dielectric can be understood physically
in terms of the action of an electric field on the permanent or
induced electric dipoles in the dielectric slab. The result is the for-
mation of induced charges on the surfaces of the dielectric, which
results in a weakening of the field within the dielectric for a given
amount of free charge on the plates.

Gauss’ Law with a Dielectric When a dielectric is present,
Gauss’ law may be generalized to

(25-36)

Here q is the free charge; any induced surface charge is accounted
for by including the dielectric constant k inside the integral.

´0 # kE
:

! dA
:

! q.

u ! 1
2´0 E2.

E
:

.

U !
q2

2C
! 1

2 CV2,

V 

C2 

C3 

C1 

Figure 25-18 Problems 1, 2,
and 3.

V 

C1 

C3 

C2 

Figure 25-19 Problems 4 and 6.
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661PROBLEMS

15 Assume that a stationary electron is a point of charge. What 
is the energy density u of its electric field at radial distances 
(a) r ! 1.00 mm, (b) r ! 1.00 mm, (c) r ! 1.00 nm, (d) r ! 1.00 pm,
and (e) r ! 1.00 fm? (f) What is u in the limit as r : 0?

16 You are asked to construct a capacitor having a capacitance
near 1 nF and a breakdown potential in excess of 10 000 V. You
think of using the sides of a tall Pyrex drinking glass as a dielectric,
lining the inside and outside curved surfaces with aluminum foil to
act as the plates. The glass is 10 cm tall with an inner radius of
3.6 cm and an outer radius of 3.8 cm. What are the (a) capacitance
and (b) breakdown potential of this capacitor?

17 The parallel plates in a capacitor, with a plate area of 8.50 cm2

and an air-filled separation of 8.00 mm, are charged by a 16.0 V
battery. They are then disconnected from the battery and pushed
together (without discharge) to a separation of 3.00 mm.
Neglecting fringing, find (a) the potential difference between the
plates, (b) the initial stored energy, (c) the final stored energy, and
(d) the (negative) work in pushing them together.

18 Figure 25-23 shows a parallel
plate capacitor with a plate area A !
5.56 cm2 and separation d ! 5.56
mm. The left half of the gap is filled
with material of dielectric constant
k1 ! 7.00; the right half is filled 
with material of dielectric constant 
k2 ! 10.0. What is the capacitance?

19 In Fig. 25-24, C1 ! 10.0mF,
C2 20.0 mF, and C3 5.00
mF. If no capacitor can with-
stand a potential difference of
more than 100 V without failure, what are (a) the magnitude of the
maximum potential difference that can exist between points A and
B and (b) the maximum energy that can be stored in the three-ca-
pacitor arrangement?

20 As a safety engineer, you must
evaluate the practice of storing flam-
mable conducting liquids in noncon-
ducting containers. The company
supplying a certain liquid has been
using a squat, cylindrical plastic con-
tainer of radius r ! 0.20 m and filling
it to height h ! 10 cm, which is not
the container’s full interior height
(Fig. 25-25). Your investigation reveals that during handling at the
company, the exterior surface of the container commonly acquires
a negative charge density of magnitude 2.0 mC/m2 (approximately
uniform). Because the liquid is a conducting material, the charge
on the container induces charge separation within the liquid. (a)
How much negative charge is induced in the center of the liquid’s
bulk? (b) Assume the capacitance of the central portion of the liq-
uid relative to ground is 50 pF. What is the potential energy associ-
ated with the negative charge in that effective capacitor? (c) If a
spark occurs between the ground and the central portion of the liq-
uid (through the venting port), the potential energy can be fed into
the spark.The minimum spark energy needed to ignite the liquid is
10 mJ. In this situation, can a spark ignite the liquid?

21 A coaxial cable used in a transmission line has an inner radius
of 0.10 mm and an outer radius of 0.40 mm. Calculate the capaci-
tance per meter for the cable. Assume that the space between the
conductors is filled with epoxy resin with dielectric constant 3.6.

!!

difference of 120 V and is then disconnected. A dielectric slab of
thickness 4.0 mm and dielectric constant 4.8 is then placed symmet-
rically between the plates. (a) What is the capacitance before the
slab is inserted? (b) What is the capacitance with the slab in place?
What is the free charge q (c) before and (d) after the slab is inserted?
What is the magnitude of the electric field (e) in the space between
the plates and dielectric and (f) in the dielectric itself? (g) With the
slab in place, what is the potential difference across the plates?
(h) How much external work is involved in inserting the slab?

8 Figure 25-20 displays a 16.0 V
battery and 3 uncharged capaci-
tors of capacitances C1 4.00 mF,
C2 6.00 mF, and C3 ! 3.00 mF.
The switch is thrown to the left
side until capacitor 1 is fully
charged. Then the switch is thrown
to the right. What is the final
charge on (a) capacitor 1, (b) ca-
pacitor 2, and (c) capacitor 3?

9 In Fig. 25-21, the battery has potential difference V 14.0 V,
C2 3.0 mF, C4 4.0 mF, and all the capacitors are initially un-
charged. When switch S is closed, a total charge of 12 mC passes
through point a and a total charge of 8.0 mC passes through point
b.What are (a) C1 and (b) C3?

!!
!

!
! S C2 

C3 C1 

V0 
+ 
– 

Figure 25-20 Problem 8.

V 

a b S C1 C2
C3 C4

Figure 25-21 Problem 9.

10 A parallel-plate air-filled capacitor having area 40 cm2 and
plate spacing 1.0 mm is charged to a potential difference of 500 V.
Find (a) the capacitance, (b) the magnitude of the charge on each
plate, (c) the stored energy, (d) the electric field between the
plates, and (e) the energy density between the plates.

11 A dielectric material is to fill the space in a capacitor. Initially,
with only air in place, the capacitance is 8.0 pF. With the dielectric
material in place, the capacitor should store 3.2 mJ at a maximum
potential difference of 350.8 V. (a) What dielectric constant is re-
quired? (b) Of the materials in Table 25-1, which material should
be used? 

12 An air-filled parallel-plate capacitor has a capacitance of
2.1 pF. The separation of the plates is doubled, and wax is inserted
between them. The new capacitance is 2.6 pF. Find the dielectric
constant of the wax.

13 A 2.0 mF capacitor and a 4.0 mF capacitor are connected in
parallel across a 300 V potential difference. (a) What is the total
energy stored by them? (b) They are next connected in series
across that potential difference. What is the ratio of the total en-
ergy stored by them in the parallel arrangement to that in the se-
ries arrangement? 

14 In Fig. 25-22, how much charge is
stored on the parallel-plate capacitors
by the 10.0 V battery? One is filled
with air, and the other is filled with a di-
electric for which k ! 3.00; both capaci-
tors have a plate area of 5.00 $ 10"3 m2

and a plate separation of 2.00 mm. Figure 25-22 Problem 14.

C1 C2 V 

d   1 κ   2 κ 

A/2 A/2 

Figure 25-23 Problem 18.

Figure 25-24 Problem 19.

B A 
C1 C2 C3

Figure 25-25 Problem 20.
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662 CHAPTER 25 CAPACITANCE

22 Figure 25-26 shows a parallel-plate
capacitor of plate area A ! 12.5 cm2

and plate separation 2d ! 7.12 mm.
The left half of the gap is filled 
with material of dielectric constant
k1 ! 21.0; the top of the right half is
filled with material of dielectric con-
stant k2 ! 42.0; the bottom of the
right half is filled with material of di-
electric constant k3 ! 58.0. What is
the capacitance?

23 A parallel-plate capacitor has square plates with edge length
8.20 cm and 1.30 mm separation. (a) Calculate the capacitance.
(b) Find the charge for a potential difference of 120 V.

24 In Fig. 25-27, the battery has a
potential difference of V 12.0 V
and the five capacitors each have a
capacitance of 10.0 mF. What is
the charge on (a) capacitor 1 and
(b) capacitor 2?

25 A certain parallel-plate capaci-
tor is filled with a dielectric for
which k ! 2.4. The area of each
plate is 0.017 m2, and the plates are separated by 2.0 mm. The ca-
pacitor will fail (short out and burn up) if the electric field between
the plates exceeds 200 kN/C.What is the maximum energy that can
be stored in the capacitor?

26 How much energy is stored in 1.00 m3 of air due to the “fair
weather” electric field of magnitude 120 V/m?

27 A parallel-plate capacitor has a capacitance of 100 pF, a
plate area of 80 cm2, and a mica dielectric (k 5.4) completely
filling the space between the plates. At 85 V potential difference,
calculate (a) the electric field magnitude E in the mica, (b) the
magnitude of the free charge on the plates, and (c) the magni-
tude of the induced surface charge on the mica.

28 A parallel-plate air-filled capacitor has a capacitance of 50 pF.
(a) If each of its plates has an area of 0.30 m2, what is the separa-
tion? (b) If the region between the plates is now filled with mate-
rial having k ! 5.6, what is the capacitance?

29 Each of the uncharged capaci-
tors in Fig. 25-28 has a capacitance
of 25.0 mF. A potential difference
of V ! 750 V is established when
the switch is closed. How many
coulombs of charge then pass
through meter A?

30 Figure 25-29 shows a vari-
able “air gap” capacitor for man-
ual tuning. Alternate plates are
connected together; one group
of plates is fixed in position, and
the other group is capable of
rotation. Consider a capacitor 
of n ! 8 plates of alternating
polarity, each plate having area 
A ! 1.50 cm2 and separated
from adjacent plates by distance

!

!

31 Figure 25-30 shows a parallel-plate ca-
pacitor with a plate area A ! 7.89 cm2 and
plate separation d ! 4.62 mm. The top half
of the gap is filled with material of dielectric
constant k1 ! 11.0; the bottom half is filled
with material of dielectric constant k2 ! 4.0.
What is the capacitance?

32 The capacitor in Fig. 25-31 has a
capacitance of 30 mF and is initially
uncharged. The battery provides a
potential difference of 120 V. After
switch S is closed, how much charge
will pass through it?

33 If an uncharged parallel-plate
capacitor (capacitance C) is con-
nected to a battery, one plate be-
comes negatively charged as electrons
move to the plate face (area A). In Fig.
25-32, the depth d from which the elec-
trons come in the plate in a particular
capacitor is plotted against a range of
values for the potential difference V
of the battery. The density of conduction
electrons in the copper plates is 
8.49 $ 10 28 electrons/m3. The vertical
scale is set by ds ! 2.00 pm, and the hori-
zontal scale is set by Vs ! 20.0 V. What is
the ratio C/A?

34 Two parallel-plate capacitors, 8.0 mF each, are connected in
parallel to a 10 V battery. One of the capacitors is then squeezed so
that its plate separation is 50.0% of its initial value. Because of the
squeezing, (a) how much additional charge is transferred to the ca-
pacitors by the battery and (b) what is the increase in the total
charge stored on the capacitors?

35 In Fig. 25-33, a 20.0 V battery is connected across capacitors of
capacitances C1 ! C6 ! 6.00 mF and C3 ! C5 ! 2.00C2 ! 2.00C4 !
4.00 mF. What are (a) the equivalent capacitance Ceq of the capaci-
tors and (b) the charge stored by Ceq? What are (c) V1 and (d) q1 of
capacitor 1, (e) V2 and (f) q2 of capacitor 2, and (g) V3 and (h) q3 of
capacitor 3?

2d 
d 

d 
κ 1 

κ 2 

κ 3 

A/2 A/2 

Figure 25-26 Problem 22.

Figure 25-27 Problem 24.

C2 

+ 
– V 

C1 

V 

A 

C C C 

Figure 25-28 Problem 29.

Figure 25-33 Problem 35.

V 
+ 
– 

C2 C5 

C3 

C4 

C6 
C1 

A 

d 

A 

Figure 25-29 Problem 30.

C 
+ 
– 

S 

Figure 25-31 Problem 32.

ds 

d (pm) 

Vs 
V (V) 

0 

Figure 25-32 Problem 33.

d κ 1 

κ 2 

Figure 25-30
Problem 31.

36 Figure 25-34 represents two air-
filled cylindrical capacitors connected
in series across a battery with potential
V 10 V. Capacitor 1 has an inner
plate radius of 3.00 mm, an outer plate
radius of 1.5 cm, and a length of 5.0 cm.

!

Figure 25-34 Problem 36.

C1

C2

V 

P 

d ! 3.40 mm.What is the maximum capacitance of the device?
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663PROBLEMS

43 A charged isolated metal sphere of diameter 15 cm has a po-
tential of 6500 V relative to V ! 0 at infinity. (a) Calculate the en-
ergy density in the electric field near the surface of the sphere. (b)
If the diameter is decreased, does the energy density near the sur-
face increase, decrease, or remain the same?

44 Two parallel plates of area 100 cm2 are given charges of equal
magnitudes 8.4 $ 10"7 C but opposite signs. The electric field
within the dielectric material filling the space between the plates is
1.4 $ 106 V/m. (a) Calculate the dielectric constant of the material.
(b) Determine the magnitude of the charge induced on each di-
electric surface.

45 What is the capacitance of a drop that results when two
mercury spheres, each of radius R ! 3.00 mm, merge?

46 Plot 1 in Fig. 25-39a gives the charge q that can be stored on
capacitor 1 versus the electric potential V set up across it. The
vertical scale is set by qs ! 16.0 mC, and the horizontal scale is set
by Vs ! 2.0 V. Plots 2 and 3 are similar plots for capacitors 2 and
3, respectively. Figure 25-39b shows a circuit with those three
capacitors and a 10.0 V battery. What is the charge stored on
capacitor 2 in that circuit?

Capacitor 2 has an inner plate radius of 2.5 mm, an outer plate radius
of 1.0 cm, and a length of 9.0 cm. The outer plate of capacitor 2 is a
conducting organic membrane that can be stretched, and the capaci-
tor can be inflated to increase the plate separation. If the outer plate
radius is increased to 2.5 cm by inflation, (a) how many electrons
move through point P and (b) do they move toward or away from the
battery?

37 A certain substance has a dielectric constant of 5.6 and a di-
electric strength of 18 MV/m. If it is used as the dielectric material
in a parallel-plate capacitor, what minimum area should the plates
of the capacitor have to obtain a capacitance of 3.9 $ 10"2 mF and
to ensure that the capacitor will be able to withstand a potential
difference of 4.0 kV?

38 For the arrangement of Fig. 25-17, suppose that the battery
remains connected while the dielectric slab is being introduced.
Calculate (a) the capacitance, (b) the charge on the capacitor
plates, (c) the electric field in the gap, and (d) the electric field in
the slab, after the slab is in place.

39 In Fig. 25-35, the capacitances
are C1 1.0 mF and C2 3.0 mF,
and both capacitors are charged to a
potential difference of V ! 200 V
but with opposite polarity as
shown. Switches S1 and S2 are now
closed. (a) What is now the potential
difference between points a and b?
What now is the charge on capacitor (b) 1 and (c) 2?

40 Capacitor 3 in Fig. 25-36a is a variable capacitor (its
capacitance C3 can be varied). Figure 25-36b gives the electric po-
tential V1 across capacitor 1 versus C3.The horizontal scale is set by
C3s = 12.0 mF. Electric potential V1 approaches an asymptote of
8.0 V as C3 : (. What are (a) the electric potential V across the
battery, (b) C1, and (c) C2?

!!

42 Figure 25-38 shows a circuit section of four air-filled capacitors
that is connected to a larger circuit.The graph below the section shows
the electric potential V(x) as a function of position x along the lower
part of the section, through capacitor 4. Similarly, the graph above the
section shows the electric potential V(x) as a function of position x
along the upper part of the section, through capacitors 1, 2, and 3.
Capacitor 3 has a capacitance of 1.60 mF. What are the capaci-
tances of (a) capacitor 1 and (b) capacitor 2?

+ + + + 
– – – – + + + + 

– – – – 

S2 

S1 

C1 C2 

a

b 

Figure 25-35 Problem 39.
Figure 25-38
Problem 42.
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Figure 25-39 Problem 46.
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Figure 25-36 Problem 40.

41 The capacitors in Fig. 25-37 are
initially uncharged. The capacitances
are C1 ! 4.0 mF, C2 ! 8.0 mF, and 
C3 ! 12 mF, and the battery’s potential
difference is V ! 6.0 V. When switch S
is closed, how many electrons travel
through (a) point a, (b) point b, (c)
point c, and (d) point d? In the figure,
do the electrons travel up or down through (e) point b and (f)
point c?

V 

a 

d 

b 
c 

S C2 
C1 

C3 

Figure 25-37 Problem 41.
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664 CHAPTER 25 CAPACITANCE

47 Figure 25-40 shows a 24.0 V
battery and four uncharged capac-
itors of capacitances C1 1.00 mF,
C2 2.00 mF, C3 3.00 mF, and
C4 ! 4.00 mF. If only switch S1 is
closed, what is the charge on (a)
capacitor 1, (b) capacitor 2, (c)
capacitor 3, and (d) capacitor 4? If
both switches are closed, what is
the charge on (e) capacitor 1, (f)
capacitor 2,(g) capacitor 3,and (h)
capacitor 4?

48 How many 12.5 mF capacitors must be connected in parallel
to store a charge of 33.0 mC with a potential of 110 V across the 
capacitors?

49 The space between two concentric conducting spherical shells of
radii b ! 1.70 cm and a ! 1.20 cm is filled with a substance of dielec-
tric constant k 6.91. A potential difference V ! 73.0 V is applied
across the inner and outer shells. Determine (a) the capacitance of
the device, (b) the free charge q on the inner shell, and (c) the charge
q" induced along the surface of the inner shell.

50 You have two flat metal plates, each of area 1.00 m2, with
which to construct a parallel-plate capacitor. (a) If the capac-
itance of the device is to be 2.00 F, what must be the separation
between the plates? (b) Could this capacitor actually be
constructed?

51 The two metal objects in 
Fig. 25-41 have net charges of 
#70 pC and $70 pC, which result in
a 35 V potential difference between
them. (a) What is the capacitance of

!

!!
!

the system? (b) If the charges are changed to #200 pC and $200 pC,
what does the capacitance become? (c) What does the potential dif-
ference become?

52 In Fig. 25-42, V ! 12 V, C1 ! 10 mF,
and C2 ! C3 ! 20 mF. Switch S is first
thrown to the left side until capacitor 1
reaches equilibrium. Then the switch is
thrown to the right.When equilibrium is
again reached, how much charge is on
capacitor 1?

53 A 100 pF capacitor is charged to a potential difference of 
80.0 V, and the charging battery is disconnected. The capacitor is
then connected in parallel with a second (initially uncharged) ca-
pacitor. If the potential difference across the first capacitor drops
to 35.0 V, what is the capacitance of this second capacitor?

54 The plates of a spherical capacitor have radii 37.0 mm and
40.0 mm. (a) Calculate the capacitance. (b) What must be the plate
area of a parallel-plate capacitor with the same plate separation
and capacitance?

55 In Fig. 25-43, two parallel-plate ca-
pacitors (with air between the plates) are
connected to a battery. Capacitor 1 has a
plate area of 1.5 cm2 and an electric field
(between its plates) of magnitude 
3500 V/m. Capacitor 2 has a plate area of
0.70 cm2 and an electric field of magni-
tude 1500 V/m. (a) What is the total charge on the two capaci-
tors? (b) If the first plate area is cut in half, does the total charge
increase, decrease, or remain the same?

Figure 25-40 Problem 47.

S2 

C1 C3 

C2 C4 

S1 

B 
+ – 

Figure 25-41 Problem 51.

C2 C1 

Figure 25-43
Problem 55.

S 

C1 C2 V C3 

Figure 25-42 Problem 52.
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C H A P T E R  2 6

Current and Resistance

What Is Physics?
In the last five chapters we discussed electrostatics—the physics of stationary
charges. In this and the next chapter, we discuss the physics of electric currents—
that is, charges in motion.

Examples of electric currents abound and involve many professions. Mete-
orologists are concerned with lightning and with the less dramatic slow flow of
charge through the atmosphere. Biologists, physiologists, and engineers work-
ing in medical technology are concerned with the nerve currents that control
muscles and especially with how those currents can be reestablished after
spinal cord injuries. Electrical engineers are concerned with countless electri-
cal systems, such as power systems, lightning protection systems, information
storage systems, and music systems. Space engineers monitor and study the
flow of charged particles from our Sun because that flow can wipe out telecom-
munication systems in orbit and even power transmission systems on the
ground. In addition to such scholarly work, almost every aspect of daily life
now depends on information carried by electric currents, from stock trades to
ATM transfers and from video entertainment to social networking.

In this chapter we discuss the basic physics of electric currents and why they
can be established in some materials but not in others. We begin with the mean-
ing of electric current.

26-1 ELECTRIC CURRENT

After reading this module, you should be able to . . .

26.01 Apply the definition of current as the rate at which
charge moves through a point, including solving for the
amount of charge that passes the point in a given time
interval.

26.02 Identify that current is normally due to the motion of
conduction electrons that are driven by electric fields
(such as those set up in a wire by a battery).

26.03 Identify a junction in a circuit and apply the fact 
that (due to conservation of charge) the total current 
into a junction must equal the total current out of the
junction.

26.04 Explain how current arrows are drawn in a schematic
diagram of a circuit, and identify that the arrows are not
vectors.

● An electric current i in a conductor is defined by

where dq is the amount of positive charge that passes in 
time dt.

i !
dq
dt

,

● By convention, the direction of electric current is taken
as the direction in which positive charge carriers would
move even though (normally) only conduction electrons
can move.

Learning Objectives

Key Ideas
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Electric Current
Although an electric current is a stream of moving charges, not all moving
charges constitute an electric current. If there is to be an electric current through
a given surface, there must be a net flow of charge through that surface. Two
examples clarify our meaning.

1. The free electrons (conduction electrons) in an isolated length of copper wire are
in random motion at speeds of the order of 106 m/s. If you pass a hypothetical
plane through such a wire, conduction electrons pass through it in both directions
at the rate of many billions per second—but there is no net transport of charge
and thus no current through the wire. However, if you connect the ends of the wire
to a battery, you slightly bias the flow in one direction, with the result that there
now is a net transport of charge and thus an electric current through the wire.

2. The flow of water through a garden hose represents the directed flow of
positive charge (the protons in the water molecules) at a rate of perhaps sev-
eral million coulombs per second.There is no net transport of charge, however,
because there is a parallel flow of negative charge (the electrons in the water
molecules) of exactly the same amount moving in exactly the same direction.

In this chapter we restrict ourselves largely to the study—within the frame-
work of classical physics—of steady currents of conduction electrons moving
through metallic conductors such as copper wires.

As Fig. 26-1a reminds us, any isolated conducting loop—regardless of
whether it has an excess charge—is all at the same potential. No electric field can
exist within it or along its surface. Although conduction electrons are available,
no net electric force acts on them and thus there is no current.

If, as in Fig. 26-1b, we insert a battery in the loop, the conducting loop is no
longer at a single potential. Electric fields act inside the material making up the
loop, exerting forces on the conduction electrons, causing them to move and thus
establishing a current. After a very short time, the electron flow reaches a con-
stant value and the current is in its steady state (it does not vary with time).

Figure 26-2 shows a section of a conductor, part of a conducting loop in which
current has been established. If charge dq passes through a hypothetical plane
(such as aa") in time dt, then the current i through that plane is defined as

(definition of current). (26-1)

We can find the charge that passes through the plane in a time interval
extending from 0 to t by integration:

(26-2)

in which the current i may vary with time.
Under steady-state conditions, the current is the same for planes aa", bb", and

cc" and indeed for all planes that pass completely through the conductor, no
matter what their location or orientation.This follows from the fact that charge is
conserved. Under the steady-state conditions assumed here, an electron must
pass through plane aa" for every electron that passes through plane cc". In the
same way, if we have a steady flow of water through a garden hose, a drop of
water must leave the nozzle for every drop that enters the hose at the other end.
The amount of water in the hose is a conserved quantity.

The SI unit for current is the coulomb per second, or the ampere (A), which
is an SI base unit:

1 ampere ! 1 A ! 1 coulomb per second ! 1 C/s.

The formal definition of the ampere is discussed in Chapter 29.

q ! ! dq ! !t

0
 i dt,

i !
dq
dt

666 CHAPTER 26 CURRENT AND RESISTANCE

(a) 

(b) 

Battery 

+ – ii 

i 

i 
i 

Figure 26-2 The current i through the con-
ductor has the same value at planes aa",
bb", and cc".

Figure 26-1 (a) A loop of copper in electro-
static equilibrium.The entire loop is at a
single potential, and the electric field is zero
at all points inside the copper. (b) Adding a
battery imposes an electric potential differ-
ence between the ends of the loop that are
connected to the terminals of the battery.
The battery thus produces an electric field
within the loop, from terminal to terminal,
and the field causes charges to move
around the loop.This movement of charges
is a current i.

i i 

a 

a' 

b 

b' 

c 

c' 

The current is the same in 
any cross section.
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Current, as defined by Eq. 26-1, is a scalar because both charge and time in
that equation are scalars. Yet, as in Fig. 26-1b, we often represent a current with
an arrow to indicate that charge is moving. Such arrows are not vectors, however,
and they do not require vector addition. Figure 26-3a shows a conductor with
current i0 splitting at a junction into two branches. Because charge is conserved,
the magnitudes of the currents in the branches must add to yield the magnitude
of the current in the original conductor, so that

i0 ! i1 # i2. (26-3)

As Fig. 26-3b suggests, bending or reorienting the wires in space does not change
the validity of Eq. 26-3. Current arrows show only a direction (or sense) of flow
along a conductor, not a direction in space.

The Directions of Currents
In Fig. 26-1b we drew the current arrows in the direction in which positively
charged particles would be forced to move through the loop by the electric field.
Such positive charge carriers, as they are often called, would move away from the
positive battery terminal and toward the negative terminal. Actually, the charge
carriers in the copper loop of Fig. 26-1b are electrons and thus are negatively
charged.The electric field forces them to move in the direction opposite the current
arrows, from the negative terminal to the positive terminal. For historical reasons,
however, we use the following convention:

66726-1 ELECTRIC CURRENT

Figure 26-3 The relation i0 i1 i2 is true at
junction a no matter what the orientation
in space of the three wires. Currents are
scalars, not vectors.

#!

i 0

a  

i 1

i 2

(a) 

(b) 

a  
i 2

i1

i 0

The current into the
junction must equal
the current out
(charge is conserved).

Checkpoint 1
The figure here shows a portion of a circuit.
What are the magnitude and direction of the
current i in the lower right-hand wire?

A current arrow is drawn in the direction in which positive charge carriers would
move, even if the actual charge carriers are negative and move in the opposite
direction.

1 A 

2 A 

3 A 4 A 

2 A 

2 A 

i 

We can use this convention because in most situations, the assumed motion
of positive charge carriers in one direction has the same effect as the actual
motion of negative charge carriers in the opposite direction. (When the effect is
not the same, we shall drop the convention and describe the actual motion.)

Calculations: We can write the current in terms of the num-
ber of molecules that pass through such a plane per second as

or i ! (e)(10) 
dN
dt

.

i ! " charge
per

electron # "electrons
per

molecule # "molecules
per

second #

Sample Problem 26.01 Current is the rate at which charge passes a point

Water flows through a garden hose at a volume flow rate
dV/dt of 450 cm3/s. What is the current of negative charge?

KEY IDEAS

The current i of negative charge is due to the electrons in
the water molecules moving through the hose.The current is
the rate at which that negative charge passes through any
plane that cuts completely across the hose.
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668 CHAPTER 26 CURRENT AND RESISTANCE

26-2 CURRENT DENSITY

After reading this module, you should be able to . . .

26.05 Identify a current density and a current density vector.
26.06 For current through an area element on a cross section

through a conductor (such as a wire), identify the element’s
area vector .

26.07 Find the current through a cross section of a conductor
by integrating the dot product of the current density
vector and the element area vector over the
full cross section.

26.08 For the case where current is uniformly spread over
a cross section in a conductor, apply the relationship

dA
:

J
:

dA
:

between the current i, the current density magnitude J,
and the area A.

26.09 Identify streamlines.
26.10 Explain the motion of conduction electrons in terms of

their drift speed.
26.11 Distinguish the drift speeds of conduction electrons from

their random-motion speeds, including relative magnitudes.
26.12 Identify charge carrier density n.
26.13 Apply the relationship between current density J,

charge carrier density n, and charge carrier drift speed vd.

Learning Objectives

● Current i (a scalar quantity) is related to current density
(a vector quantity) by

where is a vector perpendicular to a surface element 
of area dA and the integral is taken over any surface
cutting across the conductor. The current density has
the same direction as the velocity of the moving charges if

J
:

dA
:

i ! ! J
:

! dA
:

,

J
: they are positive and the opposite direction if they are

negative.
● When an electric field is established in a conductor, the
charge carriers (assumed positive) acquire a drift speed vd in
the direction of .
● The drift velocity is related to the current density by

where ne is the carrier charge density.

J
:

! (ne)vd
: ,

vd
:

E
:

E
:

Key Ideas

We substitute 10 electrons per molecule because a water
(H2O) molecule contains 8 electrons in the single oxygen
atom and 1 electron in each of the two hydrogen atoms.

We can express the rate dN/dt in terms of the given vol-
ume flow rate dV/dt by first writing

“Molecules per mole” is Avogadro’s number NA. “Moles per
unit mass” is the inverse of the mass per mole, which is the
molar mass M of water.“Mass per unit volume” is the (mass)
density rmass of water. The volume per second is the volume
flow rate dV/dt.Thus, we have

dN
dt

! NA" 1
M #rmass" dV

dt # !
NArmass

M
dV
dt

.

$ " mass
per unit
volume

 # "volume
per

second
 #.

"molecules
per

second  # ! "molecules
per

mole  # " moles
per unit

mass  #

Substituting this into the equation for i, we find

We know that Avogadro’s number NA is 6.02 $ 1023 mole-
cules/mol, or 6.02 $ 1023 mol%1, and from Table 15-1 we
know that the density of water rmass under normal condi-
tions is 1000 kg/m3.We can get the molar mass of water from
the molar masses listed in Appendix F (in grams per mole):
We add the molar mass of oxygen (16 g/mol) to twice the
molar mass of hydrogen (1 g/mol), obtaining 18 g/mol !
0.018 kg/mol. So, the current of negative charge due to the
electrons in the water is

(Answer)

This current of negative charge is exactly compensated by a
current of positive charge associated with the nuclei of the
three atoms that make up the water molecule. Thus, there is
no net flow of charge through the hose.

!  24.1 MA.
!  2.41 $ 10 7 C/s ! 2.41 $ 10 7 A

$ (0.018 kg/mol)%1(1000 kg/m3)(450 $ 10 %6 m3/s)
i ! (10)(1.6 $ 10 %19 C)(6.02 $ 10 23 mol%1)

i ! 10eNAM%1rmass 
dV
dt

.

Additional examples, video, and practice available at WileyPLUS
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66926-2 CURRENT DENSITY

Figure 26-4 Streamlines representing current
density in the flow of charge through a con-
stricted conductor.

i 

Figure 26-5 Positive charge carriers
drift at speed vd in the direction
of the applied electric field By
convention, the direction of the
current density and the sense
of the current arrow are drawn in
that same direction.

J
:

E
:

.

L 
i 

+ 
+ 

+ 
+ 

+ 

vd 

E 

J 

Current is said to be due to positive charges that
are propelled by the electric field.

Current Density
Sometimes we are interested in the current i in a particular conductor. At other
times we take a localized view and study the flow of charge through a cross sec-
tion of the conductor at a particular point. To describe this flow, we can use the
current density which has the same direction as the velocity of the moving
charges if they are positive and the opposite direction if they are negative. For
each element of the cross section, the magnitude J is equal to the current per unit
area through that element. We can write the amount of current through the ele-
ment as where is the area vector of the element, perpendicular to the
element.The total current through the surface is then

(26-4)

If the current is uniform across the surface and parallel to then is also uni-
form and parallel to Then Eq. 26-4 becomes

so (26-5)

where A is the total area of the surface. From Eq. 26-4 or 26-5 we see that the SI
unit for current density is the ampere per square meter (A/m2).

In Chapter 22 we saw that we can represent an electric field with electric
field lines. Figure 26-4 shows how current density can be represented with a
similar set of lines, which we can call streamlines. The current, which is toward the
right in Fig. 26-4, makes a transition from the wider conductor at the left to the
narrower conductor at the right. Because charge is conserved during the transition,
the amount of charge and thus the amount of current cannot change. However,
the current density does change—it is greater in the narrower conductor. The
spacing of the streamlines suggests this increase in current density; streamlines
that are closer together imply greater current density.

Drift Speed
When a conductor does not have a current through it, its conduction electrons
move randomly, with no net motion in any direction. When the conductor does
have a current through it, these electrons actually still move randomly, but now
they tend to drift with a drift speed vd in the direction opposite that of the applied
electric field that causes the current. The drift speed is tiny compared with the
speeds in the random motion. For example, in the copper conductors of house-
hold wiring, electron drift speeds are perhaps 10%5 or 10%4 m/s, whereas the
random-motion speeds are around 106 m/s.

We can use Fig. 26-5 to relate the drift speed vd of the conduction electrons in
a current through a wire to the magnitude J of the current density in the wire. For

J !
i
A

,

i ! ! J dA ! J ! dA ! JA,

dA
:

.
J
:

dA
:

,

i ! ! J
:

! dA
:

.

dA
:

J
:

! dA
:

,

J
:

,
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convenience, Fig. 26-5 shows the equivalent drift of positive charge carriers in the
direction of the applied electric field Let us assume that these charge carriers
all move with the same drift speed vd and that the current density J is uniform
across the wire’s cross-sectional area A. The number of charge carriers in a length
L of the wire is nAL, where n is the number of carriers per unit volume.The total
charge of the carriers in the length L, each with charge e, is then

q ! (nAL)e.

Because the carriers all move along the wire with speed vd, this total charge
moves through any cross section of the wire in the time interval

Equation 26-1 tells us that the current i is the time rate of transfer of charge
across a cross section, so here we have

(26-6)

Solving for vd and recalling Eq. 26-5 (J ! i/A), we obtain

or, extended to vector form,

(26-7)

Here the product ne, whose SI unit is the coulomb per cubic meter (C/m3), is the
carrier charge density. For positive carriers, ne is positive and Eq. 26-7 predicts
that and have the same direction. For negative carriers, ne is negative and 
and have opposite directions.v:d

J
:

v:dJ
:

J
:

! (ne)v:d.

vd !
i

nAe
!

J
ne

i !
q
t

!
nALe
L/vd

! nAevd.

t !
L
vd

.

E
:

.

670 CHAPTER 26 CURRENT AND RESISTANCE

Checkpoint 2
The figure shows conduction electrons moving
leftward in a wire.Are the following leftward or
rightward: (a) the current i, (b) the current density

(c) the electric field in the wire?E
:

J
:

,

Sample Problem 26.02 Current density, uniform and nonuniform

(a) The current density in a cylindrical wire of radius R 
2.0 mm is uniform across a cross section of the wire and is J !
2.0 $ 105 A/m2.What is the current through the outer portion
of the wire between radial distances R/2 and R (Fig. 26-6a)?

KEY IDEA

Because the current density is uniform across the cross
section, the current density J, the current i, and the cross-
sectional area A are related by Eq. 26-5 (J ! i/A).

Calculations: We want only the current through a reduced
cross-sectional area A" of the wire (rather than the entire

! area), where

!
3p

4
 (0.0020 m)2 ! 9.424 $ 10 %6 m2.

A" ! pR2 % p " R
2 #2

! p " 3R2

4 #

So, we rewrite Eq. 26-5 as

i ! JA"

and then substitute the data to find

(Answer)! 1.9 A.

i ! (2.0 $ 10 5 A/m2)(9.424 $ 10%6 m2)
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67126-2 CURRENT DENSITY

R/2
R

(a)

R

(e)

R/2

(d)

(b)

dr

(c)

We want the current in the area 
between these two radii.

Our job is to sum the current in 
all rings from this smallest one ... ... to this largest one.

Its area is the product of the 
circumference and the width.

The current within the ring is 
the product of the current density
and the ring’s area.

If the current is nonuniform, we start with a 
ring that is so thin that we can approximate 
the current density as being uniform within it.

Figure 26-6 (a) Cross section of a wire of
radius R. If the current density is uni-
form, the current is just the product of
the current density and the area. (b)–(e)
If the current is nonuniform, we must
first find the current through a thin ring
and then sum (via integration) the cur-
rents in all such rings in the given area.

A

(b) Suppose, instead, that the current density through a
cross section varies with radial distance r as J ! ar2, in which
a ! 3.0 $ 1011 A/m4 and r is in meters. What now is the
current through the same outer portion of the wire?

KEY IDEA

Because the current density is not uniform across a cross
section of the wire, we must resort to Eq. 26-4 
and integrate the current density over the portion of the
wire from r ! R/2 to r ! R.

Calculations: The current density vector (along the
wire’s length) and the differential area vector (per-
pendicular to a cross section of the wire) have the same
direction.Thus,

J
:

! dA
:

 !  J dA cos 0 !  J dA.

dA
:

J
:

(i ! ! J
:

! dA
:

)

We need to replace the differential area dA with some-
thing we can actually integrate between the limits r ! R/2
and r ! R.The simplest replacement (because J is given as a
function of r) is the area 2pr dr of a thin ring of circumfer-
ence 2pr and width dr (Fig. 26-6b). We can then integrate
with r as the variable of integration. Equation 26-4 then
gives us

(Answer)

!
15
32

 p(3.0 $ 10 11 A/m4)(0.0020 m)4 ! 7.1 A.

! 2pa $ r4

4 %R

R/2
!

pa
2 $R4 %

R4

16 % !
15
32

 paR4

! !R

R/2
ar2 2pr dr ! 2pa! R

R/2
r3 dr

i ! !J
:

! dA
:

! ! J dA

Additional examples, video, and practice available at WileyPLUS
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672 CHAPTER 26 CURRENT AND RESISTANCE

Taking copper’s molar mass M and density rmass from
Appendix F, we then have (with some conversions of units)

or n ! 8.49 $ 1028 m%3.

Next let us combine the first two key ideas by writing

Substituting for A with pr 2 (! 2.54 $ 10%6 m2) and solving
for vd, we then find

(Answer)

which is only 1.8 mm/h, slower than a sluggish snail.

Lights are fast: You may well ask: “If the electrons drift so
slowly, why do the room lights turn on so quickly when I throw
the switch?” Confusion on this point results from not distin-
guishing between the drift speed of the electrons and the
speed at which changes in the electric field configuration
travel along wires.This latter speed is nearly that of light; elec-
trons everywhere in the wire begin drifting almost at once, in-
cluding into the lightbulbs. Similarly, when you open the valve
on your garden hose with the hose full of water, a pressure
wave travels along the hose at the speed of sound in water.
The speed at which the water itself moves through the hose—
measured perhaps with a dye marker—is much slower.

! 4.9 $ 10 %7 m/s,

!
17 $ 10 %3 A

(8.49 $ 10 28 m%3)(1.6 $ 10 %19 C)(2.54 $ 10 %6 m2)

vd !
i

ne(pr2)

i
A

! nevd.

! 8.49 $ 10 28 electrons/m3

  n !
(6.02 $ 10 23 mol%1)(8.96 $ 10 3 kg/m3)

63.54 $ 10 %3 kg/mol

Sample Problem 26.03 In a current, the conduction electrons move very slowly

What is the drift speed of the conduction electrons in a
copper wire with radius r ! 900 mm when it has a uniform
current i ! 17 mA? Assume that each copper atom con-
tributes one conduction electron to the current and that
the current density is uniform across the wire’s cross
section.

KEY IDEAS

1. The drift speed vd is related to the current density and
the number n of conduction electrons per unit volume
according to Eq. 26-7, which we can write as J ! nevd.

2. Because the current density is uniform, its magnitude J is
related to the given current i and wire size by Eq. 26-5
(J ! i/A, where A is the cross-sectional area of the wire).

3. Because we assume one conduction electron per atom,
the number n of conduction electrons per unit volume is
the same as the number of atoms per unit volume.

Calculations: Let us start with the third idea by writing

The number of atoms per mole is just Avogadro’s number
NA (! 6.02 $ 1023 mol%1). Moles per unit mass is the inverse
of the mass per mole, which here is the molar mass M of
copper. The mass per unit volume is the (mass) density rmass

of copper.Thus,

n ! NA" 1
M #rmass !

NArmass

M
.

n ! " atoms
per unit
volume # ! "atoms

per
mole # " moles

per unit
mass # " mass

per unit
volume #.

J
:

26-3 RESISTANCE AND RESISTIVITY

After reading this module, you should be able to . . .

26.14 Apply the relationship between the potential difference 
V applied across an object, the object’s resistance R,
and the resulting current i through the object, between the
application points.

26.15 Identify a resistor.
26.16 Apply the relationship between the electric field magni-

tude E set up at a point in a given material, the material’s
resistivity r, and the resulting current density magnitude
J at that point.

26.17 For a uniform electric field set up in a wire, apply 
the relationship between the electric field magnitude E,

the potential difference V between the two ends, and
the wire’s length L.

26.18 Apply the relationship between resistivity r and
conductivity s.

26.19 Apply the relationship between an object’s resistance
R, the resistivity of its material r, its length L, and its cross-
sectional area A.

26.20 Apply the equation that approximately gives a
conductor’s resistivity r as a function of temperature T.

26.21 Sketch a graph of resistivity r versus temperature T for
a metal.

Learning Objectives

Additional examples, video, and practice available at WileyPLUS
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Resistance and Resistivity
If we apply the same potential difference between the ends of geometrically simi-
lar rods of copper and of glass, very different currents result. The characteristic
of the conductor that enters here is its electrical resistance. We determine the re-
sistance between any two points of a conductor by applying a potential difference
V between those points and measuring the current i that results. The resistance R
is then

(definition of R). (26-8)

The SI unit for resistance that follows from Eq. 26-8 is the volt per ampere.This com-
bination occurs so often that we give it a special name, the ohm (symbol &); that is,

(26-9)

A conductor whose function in a circuit is to provide a specified resistance is
called a resistor (see Fig. 26-7). In a circuit diagram, we represent a resistor and
a resistance with the symbol . If we write Eq. 26-8 as

we see that, for a given V, the greater the resistance, the smaller the current.
The resistance of a conductor depends on the manner in which the potential

difference is applied to it. Figure 26-8, for example, shows a given potential dif-
ference applied in two different ways to the same conductor. As the current
density streamlines suggest, the currents in the two cases—hence the measured
resistances—will be different. Unless otherwise stated, we shall assume that any
given potential difference is applied as in Fig. 26-8b.

i !
V
R

,

 ! 1 V/A.
 1 ohm ! 1 & ! 1 volt per ampere

R !
V
i

67326-3 RESISTANCE AND RESISTIVITY

● The resistance R of a conductor is defined as

where V is the potential difference across the conductor and
i is the current.
● The resistivity r and conductivity s of a material are related by

where E is the magnitude of the applied electric field and J is
the magnitude of the current density.
● The electric field and current density are related to the
resistivity by

E
:

! rJ
:

.

r !
1
s

!
E
J

,

R !
V
i

,

● The resistance R of a conducting wire of length L and
uniform cross section is

where A is the cross-sectional area.
● The resistivity r for most materials changes with tempera-
ture. For many materials, including metals, the relation
between r and temperature T is approximated by the
equation

r % r0 ! r0a(T % T0).

Here T0 is a reference temperature, r0 is the resistivity at
T0, and a is the temperature coefficient of resistivity for the
material.

R ! r
L
A

,

Key Ideas

Figure 26-7 An assortment of resistors.The
circular bands are color-coding marks
that identify the value of the resistance.

T
he

 I
m

ag
e 

W
or

ks

Figure 26-8 Two ways of applying a potential difference to a conducting rod.The gray
connectors are assumed to have negligible resistance.When they are arranged as in
(a) in a small region at each rod end, the measured resistance is larger than when they
are arranged as in (b) to cover the entire rod end.

(a) (b)
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As we have done several times in other connections, we often wish to take a
general view and deal not with particular objects but with materials. Here we do
so by focusing not on the potential difference V across a particular resistor but on
the electric field at a point in a resistive material. Instead of dealing with the
current i through the resistor, we deal with the current density at the point in
question. Instead of the resistance R of an object, we deal with the resistivity r of
the material:

(definition of r). (26-10)

(Compare this equation with Eq. 26-8.)
If we combine the SI units of E and J according to Eq. 26-10, we get, for the

unit of r, the ohm-meter (&'m):

(Do not confuse the ohm-meter, the unit of resistivity, with the ohmmeter, which
is an instrument that measures resistance.) Table 26-1 lists the resistivities of
some materials.

We can write Eq. 26-10 in vector form as

(26-11)

Equations 26-10 and 26-11 hold only for isotropic materials—materials whose
electrical properties are the same in all directions.

We often speak of the conductivity s of a material.This is simply the recipro-
cal of its resistivity, so

(definition of s). (26-12)

The SI unit of conductivity is the reciprocal ohm-meter, (&'m)%1. The unit name
mhos per meter is sometimes used (mho is ohm backwards). The definition of s
allows us to write Eq. 26-11 in the alternative form

(26-13)

Calculating Resistance from Resistivity
We have just made an important distinction:

J
:

! sE
:

.

s !
1
r

E
:

! rJ
:

.

unit (E)
unit (J)

!
V/m
A/m2 !

V
A

 m ! &'m.

r !
E
J

J
:

E
:

674 CHAPTER 26 CURRENT AND RESISTANCE

Table 26-1 Resistivities of Some Materials 
at Room Temperature (20(C)

Temperature  
Coefficient

Resistivity, r of Resistivity,
Material (&'m) a (K%1)

Typical Metals
Silver 1.62 $ 10%8 4.1 $ 10%3

Copper 1.69 $ 10%8 4.3 $ 10%3

Gold 2.35 $ 10%8 4.0 $ 10%3

Aluminum 2.75 $ 10%8 4.4 $ 10%3

Manganina 4.82 $ 10%8 0.002 $ 10%3

Tungsten 5.25 $ 10%8 4.5 $ 10%3

Iron 9.68 $ 10%8 6.5 $ 10%3

Platinum 10.6 $ 10%8 3.9 $ 10%3

Typical Semiconductors
Silicon,
pure 2.5 $ 103 %70 $ 10%3

Silicon,
n-typeb 8.7 $ 10%4

Silicon,
p-typec 2.8 $ 10%3

Typical Insulators
Glass 1010%1014

Fused 
quartz &1016

aAn alloy specifically designed to have a small
value of a.
bPure silicon doped with phosphorus impurities
to a charge carrier density of 10 23 m%3.
cPure silicon doped with aluminum impurities to
a charge carrier density of 1023 m%3.

Figure 26-9 A potential difference V is applied
between the ends of a wire of length L and
cross section A, establishing a current i.

L 

i i 

A 
V 

Current is driven by
a potential difference.

Resistance is a property of an object. Resistivity is a property of a material.

If we know the resistivity of a substance such as copper, we can calculate the
resistance of a length of wire made of that substance. Let A be the cross-sectional
area of the wire, let L be its length, and let a potential difference V exist between
its ends (Fig. 26-9). If the streamlines representing the current density are
uniform throughout the wire, the electric field and the current density will
be constant for all points within the wire and, from Eqs. 24-42 and 26-5, will have
the values

E ! V/L and J ! i/A. (26-14)

We can then combine Eqs. 26-10 and 26-14 to write

(26-15)r !
E
J

!
V/L
i/A

.
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67526-3 RESISTANCE AND RESISTIVITY

However, V/i is the resistance R, which allows us to recast Eq. 26-15 as

(26-16)

Equation 26-16 can be applied only to a homogeneous isotropic conductor of
uniform cross section, with the potential difference applied as in Fig. 26-8b.

The macroscopic quantities V, i, and R are of greatest interest when we are
making electrical measurements on specific conductors. They are the quantities
that we read directly on meters. We turn to the microscopic quantities E, J, and r
when we are interested in the fundamental electrical properties of materials.

R ! r 
L
A

.

Checkpoint 3
The figure here shows three cylindrical copper conductors along with their face areas
and lengths. Rank them according to the current through them, greatest first, when
the same potential difference V is placed across their lengths.

(a) (b) 

A 

L 

(c) 

1.5L 
A _

 2 
A _

 2 

L/2 

Variation with Temperature
The values of most physical properties vary with temperature, and resistivity is no
exception. Figure 26-10, for example, shows the variation of this property for
copper over a wide temperature range. The relation between temperature and
resistivity for copper—and for metals in general—is fairly linear over a rather
broad temperature range. For such linear relations we can write an empirical
approximation that is good enough for most engineering purposes:

r % r0 ! r0a(T %T0). (26-17)

Here T0 is a selected reference temperature and r0 is the resistivity at that temper-
ature. Usually T0 ! 293 K (room temperature), for which r0 ! 1.69 $ 10%8 &'m
for copper.

Because temperature enters Eq. 26-17 only as a difference, it does not matter
whether you use the Celsius or Kelvin scale in that equation because the sizes of
degrees on these scales are identical. The quantity a in Eq. 26-17, called the
temperature coefficient of resistivity, is chosen so that the equation gives good
agreement with experiment for temperatures in the chosen range. Some values of
a for metals are listed in Table 26-1.

Figure 26-10 The resistivity of copper as a function of temperature.The dot on the curve
marks a convenient reference point at temperature T0 ! 293 K and resistivity r0 ! 1.69 $
10%8 &'m.
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Resistivity can depend
on temperature.
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Ohm’s Law
As we just discussed, a resistor is a conductor with a specified resistance. It has
that same resistance no matter what the magnitude and direction (polarity) of
the applied potential difference are. Other conducting devices, however, might
have resistances that change with the applied potential difference.

676 CHAPTER 26 CURRENT AND RESISTANCE

Calculations: For arrangement 1, we have L 15 cm
0.15 m and

A ! (1.2 cm)2 ! 1.44 $ 10%4 m2.

Substituting into Eq. 26-16 with the resistivity r from 
Table 26-1, we then find that for arrangement 1,

(Answer)

Similarly, for arrangement 2, with distance L ! 1.2 cm
and area A ! (1.2 cm)(15 cm), we obtain

(Answer) ! 6.5 $ 10 %7 & ! 0.65 m&.

R !
rL
A

!
(9.68 $ 10 %8 &'m)(1.2 $ 10 %2 m)

1.80 $ 10 %3 m2

 ! 1.0 $ 10 %4 & ! 100 m&.

R !
rL
A

!
(9.68 $ 10 %8 &'m)(0.15 m)

1.44 $ 10 %4 m2

!!

Sample Problem 26.04 A material has resistivity, a block of the material has resistance

A rectangular block of iron has dimensions 1.2 cm
1.2 cm $ 15 cm. A potential difference is to be applied to
the block between parallel sides and in such a way that
those sides are equipotential surfaces (as in Fig. 26-8b).
What is the resistance of the block if the two parallel
sides are (1) the square ends (with dimensions 1.2 cm $
1.2 cm) and (2) two rectangular sides (with dimensions
1.2 cm $ 15 cm)?

KEY IDEA

The resistance R of an object depends on how the electric
potential is applied to the object. In particular, it depends
on the ratio L/A, according to Eq. 26-16 (R ! rL/A),
where A is the area of the surfaces to which the potential
difference is applied and L is the distance between those
surfaces.

$

26-4 OHM’S LAW

After reading this module, you should be able to . . .

26.22 Distinguish between an object that obeys Ohm’s law
and one that does not.

26.23 Distinguish between a material that obeys Ohm’s law
and one that does not.

26.24 Describe the general motion of a conduction electron
in a current.

26.25 For the conduction electrons in a conductor, explain
the relationship between the mean free time t, the effective
speed, and the thermal (random) motion.

26.26 Apply the relationship between resistivity r, number
density n of conduction electrons, and the mean free time
t of the electrons.

Learning Objectives

● A given device (conductor, resistor, or any other
electrical device) obeys Ohm’s law if its resistance 
R (! V/i) is independent of the applied potential 
difference V.
● A given material obeys Ohm’s law if its resistivity r (! E/J)
is independent of the magnitude and direction of the applied
electric field .
● The assumption that the conduction electrons in a metal
are free to move like the molecules in a gas leads to an

E
:

expression for the resistivity of a metal:

Here n is the number of free electrons per unit volume and t
is the mean time between the collisions of an electron with
the atoms of the metal.
● Metals obey Ohm’s law because the mean free time t is
approximately independent of the magnitude E of any electric
field applied to a metal.

r !
m

e2nt
.

Key Ideas

Additional examples, video, and practice available at WileyPLUS
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Figure 26-11a shows how to distinguish such devices. A potential difference
V is applied across the device being tested, and the resulting current i through the
device is measured as V is varied in both magnitude and polarity. The polarity of
V is arbitrarily taken to be positive when the left terminal of the device is at a
higher potential than the right terminal. The direction of the resulting current
(from left to right) is arbitrarily assigned a plus sign. The reverse polarity of V
(with the right terminal at a higher potential) is then negative; the current it
causes is assigned a minus sign.

Figure 26-11b is a plot of i versus V for one device. This plot is a straight line
passing through the origin, so the ratio i/V (which is the slope of the straight line) is
the same for all values of V. This means that the resistance R ! V/i of the device is
independent of the magnitude and polarity of the applied potential difference V.

Figure 26-11c is a plot for another conducting device. Current can exist in this
device only when the polarity of V is positive and the applied potential difference
is more than about 1.5 V.When current does exist, the relation between i and V is
not linear; it depends on the value of the applied potential difference V.

We distinguish between the two types of device by saying that one obeys
Ohm’s law and the other does not.

67726-4 OHM’S LAW
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Figure 26-11 (a) A potential difference V is
applied to the terminals of a device, estab-
lishing a current i. (b) A plot of current i
versus applied potential difference V when
the device is a 1000 & resistor. (c) A plot
when the device is a semiconducting pn
junction diode.

(This assertion is correct only in certain situations; still, for historical reasons, the
term “law” is used.) The device of Fig. 26-11b—which turns out to be a 1000 &
resistor—obeys Ohm’s law. The device of Fig. 26-11c—which is called a pn junc-
tion diode—does not.

Ohm’s law is an assertion that the current through a device is always directly
proportional to the potential difference applied to the device.

A conducting device obeys Ohm’s law when the resistance of the device is
independent of the magnitude and polarity of the applied potential difference.

It is often contended that V ! iR is a statement of Ohm’s law.That is not true!
This equation is the defining equation for resistance, and it applies to all conducting
devices, whether they obey Ohm’s law or not. If we measure the potential differ-
ence V across, and the current i through, any device, even a pn junction diode, we
can find its resistance at that value of V as R V/i.The essence of Ohm’s law, how-
ever, is that a plot of i versus V is linear; that is, R is independent of V.We can gener-
alize this for conducting materials by using Eq. 26-11 (E

:
! r J

:
):

!

Checkpoint 4
The following table gives the current i (in
amperes) through two devices for several
values of potential difference V (in volts).
From these data, determine which device
does not obey Ohm’s law.

Device 1 Device 2

V i V i

2.00 4.50 2.00 1.50
3.00 6.75 3.00 2.20
4.00 9.00 4.00 2.80

A conducting material obeys Ohm’s law when the resistivity of the material is
independent of the magnitude and direction of the applied electric field.

All homogeneous materials, whether they are conductors like copper or semicon-
ductors like pure silicon or silicon containing special impurities, obey Ohm’s law
within some range of values of the electric field. If the field is too strong, how-
ever, there are departures from Ohm’s law in all cases.
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A Microscopic View of Ohm’s Law
To find out why particular materials obey Ohm’s law, we must look into the
details of the conduction process at the atomic level. Here we consider only con-
duction in metals, such as copper. We base our analysis on the free-electron
model, in which we assume that the conduction electrons in the metal are free to
move throughout the volume of a sample, like the molecules of a gas in a closed
container. We also assume that the electrons collide not with one another but
only with atoms of the metal.

According to classical physics, the electrons should have a Maxwellian speed dis-
tribution somewhat like that of the molecules in a gas (Module 19-6),and thus the av-
erage electron speed should depend on the temperature. The motions of electrons
are, however, governed not by the laws of classical physics but by those of quantum
physics. As it turns out, an assumption that is much closer to the quantum reality is
that conduction electrons in a metal move with a single effective speed veff, and this
speed is essentially independent of the temperature. For copper, veff ' 1.6 $ 106 m/s.

When we apply an electric field to a metal sample, the electrons modify their
random motions slightly and drift very slowly—in a direction opposite that of
the field—with an average drift speed vd. The drift speed in a typical metallic
conductor is about 5 $ 10%7 m/s, less than the effective speed (1.6 $ 106 m/s) by
many orders of magnitude. Figure 26-12 suggests the relation between these two
speeds.The gray lines show a possible random path for an electron in the absence
of an applied field; the electron proceeds from A to B, making six collisions along
the way. The green lines show how the same events might occur when an electric
field is applied.We see that the electron drifts steadily to the right, ending at B"
rather than at B. Figure 26-12 was drawn with the assumption that vd ' 0.02veff.
However, because the actual value is more like vd ' (10%13)veff, the drift dis-
played in the figure is greatly exaggerated.

The motion of conduction electrons in an electric field is thus a combina-
tion of the motion due to random collisions and that due to When we consider
all the free electrons, their random motions average to zero and make no con-
tribution to the drift speed. Thus, the drift speed is due only to the effect of the
electric field on the electrons.

If an electron of mass m is placed in an electric field of magnitude E, the elec-
tron will experience an acceleration given by Newton’s second law:

(26-18)

After a typical collision, each electron will—so to speak—completely lose its
memory of its previous drift velocity, starting fresh and moving off in a random di-
rection. In the average time t between collisions, the average electron will acquire a
drift speed of vd ! at. Moreover, if we measure the drift speeds of all the electrons at
any instant, we will find that their average drift speed is also at.Thus, at any instant,
on average, the electrons will have drift speed vd ! at.Then Eq. 26-18 gives us

(26-19)vd ! at !
eEt

m
.

a !
F
m

!
eE
m

.

E
:

.
E
:

E:

678 CHAPTER 26 CURRENT AND RESISTANCE

B B' 

A E 

Figure 26-12 The gray lines show an electron moving
from A to B, making six collisions en route.The green
lines show what the electron’s path might be in the
presence of an applied electric field Note the steady
drift in the direction of (Actually, the green lines
should be slightly curved, to represent the parabolic
paths followed by the electrons between collisions, un-
der the influence of an electric field.)

%E
:

.
E
:

.
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Combining this result with Eq. 26-7 in magnitude form, yields

(26-20)

which we can write as

(26-21)

Comparing this with Eq. 26-11 in magnitude form, leads to

(26-22)

Equation 26-22 may be taken as a statement that metals obey Ohm’s law if we
can show that, for metals, their resistivity r is a constant, independent of the
strength of the applied electric field Let’s consider the quantities in Eq. 26-22.
We can reasonably assume that n, the number of conduction electrons per vol-
ume, is independent of the field, and m and e are constants. Thus, we only need to
convince ourselves that t, the average time (or mean free time) between colli-
sions, is a constant, independent of the strength of the applied electric field.
Indeed, t can be considered to be a constant because the drift speed vd caused by
the field is so much smaller than the effective speed veff that the electron speed—
and thus t— is hardly affected by the field. Thus, because the right side of 
Eq. 26-22 is independent of the field magnitude, metals obey Ohm’s law.

E
:

.

r !
m

e2nt
.

(E
:

! r J
:

),

E ! " m
e2nt # J.

vd !
J

ne
!

eEt

m
,

( J
:

! nev:d),
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Using these results and substituting for the electron mass m,
we then have

(Answer)

(b) The mean free path l of the conduction electrons in a
conductor is the average distance traveled by an electron
between collisions. (This definition parallels that in
Module 19-5 for the mean free path of molecules in a gas.)
What is l for the conduction electrons in copper, assuming
that their effective speed veff is 1.6 $ 10 6 m/s?

KEY IDEA

The distance d any particle travels in a certain time t at a
constant speed v is d ! vt.

Calculation: For the electrons in copper, this gives us

(26-24)

(Answer)

This is about 150 times the distance between nearest-
neighbor atoms in a copper lattice. Thus, on the average,
each conduction electron passes many copper atoms before
finally hitting one.

 ! 4.0 $ 10 %8 m ! 40 nm.

 ! (1.6 $ 10 6 m/s)(2.5 $ 10 %14 s)

 l ! vefft

t !
9.1 $ 10 %31 kg

3.67 $ 10 %17 kg/s
! 2.5 $ 10 %14 s.

Sample Problem 26.05 Mean free time and mean free distance

(a) What is the mean free time t between collisions for the
conduction electrons in copper?

KEY IDEAS

The mean free time t of copper is approximately constant,
and in particular does not depend on any electric field that
might be applied to a sample of the copper. Thus, we need
not consider any particular value of applied electric field.
However, because the resistivity r displayed by copper
under an electric field depends on t, we can find the mean
free time t from Eq. 26-22 (r ! m/e2nt).

Calculations: That equation gives us

(26-23)

The number of conduction electrons per unit volume in cop-
per is 8.49 $ 1028 m%3.We take the value of r from Table 26-1.
The denominator then becomes

where we converted units as
C2 '&

m2 !
C2 'V
m2 'A

!
C2 'J/C
m2 'C/s

!
kg 'm2/s2

m2/s
!

kg
s

.

 ! 3.67 $ 10 %17 C2 '&/m2 ! 3.67 $ 10 %17 kg/s,

(8.49 $ 10 28 m%3)(1.6 $ 10 %19 C)2(1.69 $ 10 %8 &'m)

t !
m

ne2r
.

Additional examples, video, and practice available at WileyPLUS
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680 CHAPTER 26 CURRENT AND RESISTANCE

26-5 POWER, SEMICONDUCTORS, SUPERCONDUCTORS

After reading this module, you should be able to . . .

26.27 Explain how conduction electrons in a circuit lose
energy in a resistive device.

26.28 Identify that power is the rate at which energy is
transferred from one type to another.

26.29 For a resistive device, apply the relationships 
between power P, current i, voltage V, and 
resistance R.

26.30 For a battery, apply the relationship between power P,
current i, and potential difference V.

26.31 Apply the conservation of energy to a circuit with a
battery and a resistive device to relate the energy transfers
in the circuit.

26.32 Distinguish conductors, semiconductors, and
superconductors.

Learning Objectives

● The power P, or rate of energy transfer, in an electrical
device across which a potential difference V is maintained is

P ! iV.

● If the device is a resistor, the power can also be written as

● In a resistor, electric potential energy is converted to internal

P ! i2R !
V2

R
.

thermal energy via collisions between charge carriers and atoms.
● Semiconductors are materials that have few conduction
electrons but can become conductors when they are doped
with other atoms that contribute charge carriers.
● Superconductors are materials that lose all electrical resis-
tance. Most such materials require very low temperatures,
but some become superconducting at temperatures as high
as room temperature.

Key Ideas

Power in Electric Circuits
Figure 26-13 shows a circuit consisting of a battery B that is connected by
wires, which we assume have negligible resistance, to an unspecified conducting
device. The device might be a resistor, a storage battery (a rechargeable battery),
a motor, or some other electrical device. The battery maintains a potential
difference of magnitude V across its own terminals and thus (because of the
wires) across the terminals of the unspecified device, with a greater potential at
terminal a of the device than at terminal b.

Because there is an external conducting path between the two terminals of the
battery, and because the potential differences set up by the battery are maintained,
a steady current i is produced in the circuit, directed from terminal a to terminal b.
The amount of charge dq that moves between those terminals in time interval dt is
equal to i dt.This charge dq moves through a decrease in potential of magnitude V,
and thus its electric potential energy decreases in magnitude by the amount

dU ! dq V ! i dt V. (26-25)

The principle of conservation of energy tells us that the decrease in electric
potential energy from a to b is accompanied by a transfer of energy to some other
form. The power P associated with that transfer is the rate of transfer dU/dt,
which is given by Eq. 26-25 as

P ! iV (rate of electrical energy transfer). (26-26)

Moreover, this power P is also the rate at which energy is transferred from the
battery to the unspecified device. If that device is a motor connected to a me-
chanical load, the energy is transferred as work done on the load. If the device is a
storage battery that is being charged, the energy is transferred to stored chemical
energy in the storage battery. If the device is a resistor, the energy is transferred
to internal thermal energy, tending to increase the resistor’s temperature.

Figure 26-13 A battery B sets up a current i
in a circuit containing an unspecified
conducting device.

+ 
– 

i 

B 

i 

? 

a 

b 

i 

i 

i 

i 

The battery at the left
supplies energy to the
conduction electrons
that form the current.
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The unit of power that follows from Eq. 26-26 is the volt-ampere (V 'A).
We can write it as

As an electron moves through a resistor at constant drift speed, its average
kinetic energy remains constant and its lost electric potential energy appears as
thermal energy in the resistor and the surroundings. On a microscopic scale this
energy transfer is due to collisions between the electron and the molecules of the
resistor, which leads to an increase in the temperature of the resistor lattice.
The mechanical energy thus transferred to thermal energy is dissipated (lost)
because the transfer cannot be reversed.

For a resistor or some other device with resistance R, we can combine
Eqs. 26-8 (R ! V/i) and 26-26 to obtain, for the rate of electrical energy dissipa-
tion due to a resistance, either

P ! i2R (resistive dissipation) (26-27)

or (resistive dissipation). (26-28)

Caution: We must be careful to distinguish these two equations from Eq. 26-26:
P ! iV applies to electrical energy transfers of all kinds; P ! i2R and P ! V 2/R
apply only to the transfer of electric potential energy to thermal energy in a
device with resistance.

P !
V 2

R

1 V 'A ! "1 
J
C # "1 

C
s # ! 1 

J
s

! 1 W.

68126-5 POWER, SEMICONDUCTORS, SUPERCONDUCTORS

Checkpoint 5
A potential difference V is connected across a device with resistance R, causing cur-
rent i through the device. Rank the following variations according to the change in the
rate at which electrical energy is converted to thermal energy due to the resistance,
greatest change first: (a) V is doubled with R unchanged, (b) i is doubled with R
unchanged, (c) R is doubled with V unchanged, (d) R is doubled with i unchanged.

(Answer)

In situation 2, the resistance of each half of the wire is
(72 &)/2, or 36 &.Thus, the dissipation rate for each half is

and that for the two halves is
P ! 2P" ! 800 W. (Answer)

This is four times the dissipation rate of the full length of
wire. Thus, you might conclude that you could buy a heating
coil, cut it in half, and reconnect it to obtain four times the
heat output.Why is this unwise? (What would happen to the
amount of current in the coil?)

P" !
(120 V)2

36 &
! 400 W,

P !
V 2

R
!

(120 V)2

72 &
! 200 W.

Sample Problem 26.06 Rate of energy dissipation in a wire carrying current

You are given a length of uniform heating wire made of a
nickel–chromium–iron alloy called Nichrome; it has a re-
sistance R of 72 &. At what rate is energy dissipated in each
of the following situations? (1) A potential difference of 
120 V is applied across the full length of the wire. (2) The
wire is cut in half, and a potential difference of 120 V is
applied across the length of each half.

KEY IDEA

Current in a resistive material produces a transfer of
mechanical energy to thermal energy; the rate of transfer
(dissipation) is given by Eqs. 26-26 to 26-28.

Calculations: Because we know the potential V and resis-
tance R, we use Eq. 26-28, which yields, for situation 1,

Additional examples, video, and practice available at WileyPLUS
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Semiconductors
Semiconducting devices are at the heart of the microelectronic revolution that
ushered in the information age. Table 26-2 compares the properties of silicon—
a typical semiconductor—and copper—a typical metallic conductor. We see that
silicon has many fewer charge carriers, a much higher resistivity, and a temperature
coefficient of resistivity that is both large and negative.Thus, although the resistivity
of copper increases with increasing temperature, that of pure silicon decreases.

Pure silicon has such a high resistivity that it is effectively an insulator and
thus not of much direct use in microelectronic circuits. However, its resistivity can
be greatly reduced in a controlled way by adding minute amounts of specific
“impurity” atoms in a process called doping. Table 26-1 gives typical values of
resistivity for silicon before and after doping with two different impurities.

We can roughly explain the differences in resistivity (and thus in conductivity)
between semiconductors, insulators, and metallic conductors in terms of the ener-
gies of their electrons. (We need quantum physics to explain in more detail.) In a
metallic conductor such as copper wire, most of the electrons are firmly locked in
place within the atoms; much energy would be required to free them so they
could move and participate in an electric current. However, there are also some
electrons that, roughly speaking, are only loosely held in place and that require
only little energy to become free. Thermal energy can supply that energy, as can
an electric field applied across the conductor. The field would not only free these
loosely held electrons but would also propel them along the wire; thus, the field
would drive a current through the conductor.

In an insulator, significantly greater energy is required to free electrons so
they can move through the material. Thermal energy cannot supply enough en-
ergy, and neither can any reasonable electric field applied to the insulator. Thus,
no electrons are available to move through the insulator, and hence no current
occurs even with an applied electric field.

A semiconductor is like an insulator except that the energy required to free
some electrons is not quite so great. More important, doping can supply electrons
or positive charge carriers that are very loosely held within the material and thus
are easy to get moving. Moreover, by controlling the doping of a semiconductor,
we can control the density of charge carriers that can participate in a current and
thereby can control some of its electrical properties. Most semiconducting
devices, such as transistors and junction diodes, are fabricated by the selective
doping of different regions of the silicon with impurity atoms of different kinds.

Let us now look again at Eq. 26-22 for the resistivity of a conductor:

(26-29)

where n is the number of charge carriers per unit volume and t is the mean time
between collisions of the charge carriers. The equation also applies to semicon-
ductors. Let’s consider how n and t change as the temperature is increased.

In a conductor, n is large but very nearly constant with any change in temper-
ature. The increase of resistivity with temperature for metals (Fig. 26-10) is due
to an increase in the collision rate of the charge carriers, which shows up in
Eq. 26-29 as a decrease in t, the mean time between collisions.

r !
m

e2nt
,
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Table 26-2 Some Electrical Properties of Copper and Silicon

Property Copper Silicon

Type of material Metal Semiconductor
Charge carrier density, m%3 8.49 $ 1028 1 $ 1016

Resistivity, &'m 1.69 $ 10%8 2.5 $ 103

Temperature coefficient of resistivity, K%1 #4.3 $ 10%3 %70 $ 10%3
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Courtesy Shoji Tonaka/International 
Superconductivity Technology Center, 
Tokyo, Japan

In a semiconductor, n is small but increases very rapidly with temperature as
the increased thermal agitation makes more charge carriers available.This causes
a decrease of resistivity with increasing temperature, as indicated by the negative
temperature coefficient of resistivity for silicon in Table 26-2. The same increase
in collision rate that we noted for metals also occurs for semiconductors, but its
effect is swamped by the rapid increase in the number of charge carriers.

Superconductors
In 1911, Dutch physicist Kamerlingh Onnes discovered that the resistivity of mer-
cury absolutely disappears at temperatures below about 4 K (Fig. 26-14). This phe-
nomenon of superconductivity is of vast potential importance in technology be-
cause it means that charge can flow through a superconducting conductor without
losing its energy to thermal energy. Currents created in a superconducting ring, for
example, have persisted for several years without loss; the electrons making up the
current require a force and a source of energy at start-up time but not thereafter.

Prior to 1986, the technological development of superconductivity was throt-
tled by the cost of producing the extremely low temperatures required to achieve
the effect. In 1986, however, new ceramic materials were discovered that become
superconducting at considerably higher (and thus cheaper to produce) tempera-
tures. Practical application of superconducting devices at room temperature may
eventually become commonplace.

Superconductivity is a phenomenon much different from conductivity. In
fact, the best of the normal conductors, such as silver and copper, cannot become
superconducting at any temperature, and the new ceramic superconductors are
actually good insulators when they are not at low enough temperatures to be in
a superconducting state.

One explanation for superconductivity is that the electrons that make up the
current move in coordinated pairs. One of the electrons in a pair may electrically dis-
tort the molecular structure of the superconducting material as it moves through, cre-
ating nearby a short-lived concentration of positive charge.The other electron in the
pair may then be attracted toward this positive charge.According to the theory, such
coordination between electrons would prevent them from colliding with the mole-
cules of the material and thus would eliminate electrical resistance. The theory
worked well to explain the pre-1986, lower temperature superconductors, but new
theories appear to be needed for the newer,higher temperature superconductors.
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Figure 26-14 The resistance of mercury drops
to zero at a temperature of about 4 K.

A disk-shaped magnet is levitated above a
superconducting material that has been
cooled by liquid nitrogen.The goldfish is
along for the ride.

Current An electric current i in a conductor is defined by

(26-1)

Here dq is the amount of (positive) charge that passes in time dt
through a hypothetical surface that cuts across the conductor. By
convention, the direction of electric current is taken as the direc-
tion in which positive charge carriers would move. The SI unit of
electric current is the ampere (A): 1 A ! 1 C/s.

Current Density Current (a scalar) is related to current
density (a vector) by

(26-4)

where is a vector perpendicular to a surface element of area dA
and the integral is taken over any surface cutting across the conduc-
tor. has the same direction as the velocity of the moving charges if
they are positive and the opposite direction if they are negative.

J
:

dA
:

i ! ! J
:

! dA
:

,

J
:

i !
dq
dt

.

Review & Summary

Drift Speed of the Charge Carriers When an electric field
is established in a conductor, the charge carriers (assumed posi-

tive) acquire a drift speed vd in the direction of the velocity is
related to the current density by

(26-7)

where ne is the carrier charge density.

Resistance of a Conductor The resistance R of a conductor
is defined as

(definition of R), (26-8)

where V is the potential difference across the conductor and i is the
current.The SI unit of resistance is the ohm (&): 1 & ! 1 V/A. Similar
equations define the resistivity r and conductivity s of a material:

(definitions of r and s), (26-12, 26-10)r !
1
s

!
E
J

R !
V
i

J
:

! (ne)v:d,

v:dE
:

;
E
:
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684 CHAPTER 26 CURRENT AND RESISTANCE

where E is the magnitude of the applied electric field. The SI unit
of resistivity is the ohm-meter (&'m). Equation 26-10 corresponds
to the vector equation

(26-11)

The resistance R of a conducting wire of length L and uniform
cross section is

(26-16)

where A is the cross-sectional area.

Change of r with Temperature The resistivity r for most
materials changes with temperature. For many materials, including
metals, the relation between r and temperature T is approximated
by the equation

r % r0 ! r0a(T % T0). (26-17)

Here T0 is a reference temperature, r0 is the resistivity at T0, and a
is the temperature coefficient of resistivity for the material.

Ohm’s Law A given device (conductor, resistor, or any other
electrical device) obeys Ohm’s law if its resistance R, defined by
Eq. 26-8 as V/i, is independent of the applied potential difference
V. A given material obeys Ohm’s law if its resistivity, defined by
Eq. 26-10, is independent of the magnitude and direction of the ap-
plied electric field 

Resistivity of a Metal By assuming that the conduction elec-
trons in a metal are free to move like the molecules of a gas, it is

E
:

.

R ! r 
L
A

,

E
:

! r J
:

.

possible to derive an expression for the resistivity of a metal:

(26-22)

Here n is the number of free electrons per unit volume and t is the
mean time between the collisions of an electron with the atoms of
the metal. We can explain why metals obey Ohm’s law by pointing
out that t is essentially independent of the magnitude E of any
electric field applied to a metal.

Power The power P, or rate of energy transfer, in an electrical
device across which a potential difference V is maintained is

P ! iV (rate of electrical energy transfer). (26-26)

Resistive Dissipation If the device is a resistor, we can write
Eq. 26-26 as

(resistive dissipation). (26-27, 26-28)

In a resistor, electric potential energy is converted to internal ther-
mal energy via collisions between charge carriers and atoms.

Semiconductors Semiconductors are materials that have few
conduction electrons but can become conductors when they are
doped with other atoms that contribute charge carriers.

Superconductors Superconductors are materials that lose all
electrical resistance at low temperatures. Some materials are su-
perconducting at surprisingly high temperatures.

P ! i2R !
V 2

R

r !
m

e2nt
.

Problems

1 The magnitude J(r) of the current density in a certain cylindri-
cal wire is given as a function of radial distance from the center of
the wire’s cross section as J(r) ! Br, where r is in meters, J is in am-
peres per square meter, and B ! 2.00 $ 105 A/m3. This function
applies out to the wire’s radius of 2.00 mm. How much current is
contained within the width of a thin ring concentric with the wire if
the ring has a radial width of 10.0 mm and is at a radial distance of
0.750 mm?

2 A wire 8.00 m long and 6.00 mm in diameter has a resistance of
30.0 m&. A potential difference of 23.0 V is applied between the
ends. (a) What is the current in the wire? (b) What is the magnitude
of the current density? (c) Calculate the resistivity of the wire ma-
terial. (d) Using Table 26-1, identify the material.

3 An electrical cable consists of 63 strands of fine wire, each
having 2.65 m& resistance. The same potential difference is
applied between the ends of all the strands and results in a total
current of 0.750 A. (a) What is the current in each strand?
(b) What is the applied potential difference? (c) What is the
resistance of the cable?

4 In Fig. 26-15a, a 9.00 V battery is connected to a resistive strip
that consists of three sections with the same cross-sectional areas
but different conductivities. Figure 26-15b gives the electric poten-
tial V(x) versus position x along the strip.The horizontal scale is set
by xs 8.00 mm. Section 3 has conductivity 4.00 107 (&'m)%1.
What is the conductivity of section (a) 1 and (b) 2?

$!

5 In Fig. 26-16, current is set up through a truncated right circular
cone of resistivity 731 , left radius a 1.70 mm, right radius 
b ! 2.30 mm, and length L ! 3.50 cm. Assume that the current
density is uniform across any cross section taken perpendicular to
the length.What is the resistance of the cone?

!&'m

Figure 26-15 Problem 4.

x = 0
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V

(a) (b)

V 
(V
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2 3 

Figure 26-16 Problem 5.

L 

i i 
a b 

6 Kiting during a storm. The legend that Benjamin Franklin
flew a kite as a storm approached is only a legend—he was 
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685PROBLEMS

neither stupid nor suicidal. Suppose a kite string of radius 2.00 mm
extends directly upward by 1.80 km and is coated with a 0.500
mm layer of water having resistivity 150 &'m. If the potential
difference between the two ends of the string is 213 MV, what is
the current through the water layer? The danger is not this cur-
rent but the chance that the string draws a lightning strike, which
can have a current as large as 500 000 A (way beyond just being
lethal).

7 Show that, according to the free-electron model of electrical
conduction in metals and classical physics, the resistivity of metals
should be proportional to where T is the temperature in
kelvins. (See Eq. 19-31.)

8 Earth’s lower atmosphere contains negative and positive ions
that are produced by radioactive elements in the soil
and cosmic rays from space. In a certain region, the atmospheric
electric field strength is 120 V/m and the field is directed vertically
down. This field causes singly charged positive ions, at a density of
640 cm%3, to drift downward and singly charged negative ions, at a
density of 550 cm%3, to drift upward (Fig. 26-17). The measured
conductivity of the air in that region is 2.70 $ 10%14 (&'m)%1.
Calculate (a) the magnitude of the current density and (b) 
the ion drift speed, assumed to be the same for positive and 
negative ions.

1T,

13 Nichrome wire consists of a nickel–chromium–iron alloy, is
commonly used in heating elements such as on a stove, and has 
conductivity 2.0 $ 106 (& m)%1. If a Nichrome wire with a cross-
sectional area of 2.3 mm2 carries a current of 5.5 A when a 1.4 V 
potential difference is applied between its ends, what is the wire’s
length?

14 Thermal energy is produced in a resistor at a rate of 90 W
when the current is 3.00 A. What is the resistance?

15 A heater contains a Nichrome wire (resistivity 5.0 $ 10%7 & m)
of length 5.85 m, with an end-to-end potential difference of 112
V, and with a dissipation power of 4000 W. (a) What is the wire’s
cross-sectional area? (b) If 100 V is used to obtain the same dis-
sipation rate, what should the length be?

16 Exploding shoes. The rain-soaked shoes of a person may 
explode if ground current from nearby lightning vaporizes the
water. The sudden conversion of water to water vapor causes a
dramatic expansion that can rip apart shoes. Water has density
1000 kg/m3 and requires 2256 kJ/kg to be vaporized. If horizontal
current lasts 2.00 ms and encounters water with resistivity 150 &'m,
length 12.0 cm, and vertical cross-sectional area 5.0 $ 10%5 m2,
what average current is required to vaporize the water?

17 An unknown resistor is connected between the terminals of
a 3.00 V battery. Energy is dissipated in the resistor at the rate of
0.707 W. The same resistor is then connected between the termi-
nals of a 12.0 V battery. At what rate is energy now dissipated?

18 In Fig. 26-20, a battery of potential
difference V ! 12 V is connected to a re-
sistive strip of resistance R ! 4.0 &. When
an electron moves through the strip from
one end to the other, (a) in which direction
in the figure does the electron move,
(b) how much work is done on the electron
by the electric field in the strip, and (c)
how much energy is transferred to the
thermal energy of the strip by the electron?

19 A 60 W lightbulb is plugged into a standard 120 V outlet.
(a) How much does it cost per 31-day month to leave the light
turned on continuously? Assume electrical energy costs

'

'

+ + 

+ 
+ 

+ + 
+ 

E 

Figure 26-17 Problem 8.

9 A potential difference of 6.00 nV is set up across a 1.50 cm
length of copper wire that has a radius of 2.00 mm. How much
charge drifts through a cross section in 4.70 ms?

10 Figure 26-18 shows wire 
section 1 of diameter D1 4.00R
and wire section 2 of diameter 
D2 ! 1.75R, connected by a ta-
pered section. The wire is copper
and carries a current. Assume that
the current is uniformly distrib-
uted across any cross-sectional area through the wire’s width.
The electric potential change V along the length L ! 2.00 m
shown in section 2 is 10.0 mV. The number of charge carriers per
unit volume is 8.49 $ 10 28 m%3. What is the drift speed of the
conduction electrons in section 1?

11 When 230 V is applied across a wire that is 14.1 m long and
has a 0.30 mm radius, the magnitude of the current density is 
1.98 $ 108 A/m2. Find the resistivity of the wire.

!
D1 

L

(1) 
(2)

D2 

Figure 26-18 Problem 10.

Figure 26-19 Problem 12.

R

(a) (b)

E
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E th,s

0 ts
t (s)

V R 

Figure 26-20
Problem 18.

12 In Fig. 26-19a, a 15 & resistor is connected to a battery. Figure
26-19b shows the increase of thermal energy Eth in the resistor as
a function of time t. The vertical scale is set by Eth,s ! 2.50 mJ, and
the horizontal scale is set by ts ! 4.0 s. What is the electric
potential across the battery?
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686 CHAPTER 26 CURRENT AND RESISTANCE

29 A certain brand of hot-dog cooker works by applying a 
potential difference of 120 V across opposite ends of a hot dog
and allowing it to cook by means of the thermal energy
produced. The current is 5.30 A, and the energy required to
cook one hot dog is 60.0 kJ. If the rate at which energy is
supplied is unchanged, how long will it take to cook three hot
dogs simultaneously?

30 A copper wire of cross-sectional area 2.40 $ 10 %6 m2 and
length 4.00 m has a current of 2.00 A uniformly distributed
across that area. (a) What is the magnitude of the electric field
along the wire? (b) How much electrical energy is transferred to
thermal energy in 30 min?

31 For a current set up in wire for 28.0 d, a total of 1.36 $ 10 26

electrons pass through any cross section across the wire’s width
at a steady rate. What is the current?

32 The current-density magnitude in a certain circular wire is
J (2.75 10 10 A/m4)r 2, where r is the radial distance out to
the wire’s radius of 3.00 mm. The potential applied to the wire
(end to end) is 80.0 V. How much energy is converted to thermal
energy in 1.00 h?

33 A charged belt, 50 cm wide, travels at 30 m/s between a
source of charge (electrons) and a sphere. The belt carries charge
into the sphere at a rate corresponding to 76 mA. (a) Compute
the surface charge density on the belt. (b) What is the  number
density (number per unit area) of the  electrons on the belt?

34 A student kept his 9.0 V, 8.0 W radio turned on at full vol-
ume from 9:00 P.M. until 2:00 A.M. How much charge went
through it?

35 A wire initially has length L0 and resistance 5.00 & . The re-
sistance is to be increased to 45.0 & by stretching the wire.

$!

US$0.06/kW 'h. (b) What is the resistance of the bulb? (c) What
is the current in the bulb?

20 Figure 26-21 gives the elec-
tric potential V(x) along a copper
wire carrying uniform current,
from a point of higher potential
Vs ! 12.0 mV at x ! 0 to a point of
zero potential at xs ! 3.00 m. The
wire has a radius of 2.20 mm.
What is the current in the wire?

21 A 120 V potential difference
is applied to a space heater whose
resistance is 12 when hot. (a) At what rate is electrical energy
transferred to thermal energy? (b) What is the cost for 5.0 h at
US$0.07/kW 'h?

22 If the gauge number of a wire is increased by 6, the
diameter is halved; if a gauge number is increased by 1, the
diameter decreases by the factor 21/6 (see the table in Problem
44). Knowing this, and knowing that 1000 ft of 10-gauge copper
wire has a resistance of approximately 1.00 &, estimate the
resistance of 13 ft of 22-gauge copper wire.

23 A 890 W radiant heater is constructed to operate at 115 V.
(a) What is the current in the heater when the unit is operating?
(b) What is the resistance of the heating coil? (c) How much
thermal energy is produced in 5.00 h?

24 Swimming during a storm.
Figure 26-22 shows a swimmer at
distance D 38.0 m from a light-
ning strike to the water, with 
current I 78 kA. The water has
resistivity 30 &'m, the width of
the swimmer along a radial line
from the strike is 0.70 m, and his re-
sistance across that width is 4.00 k&.
Assume that the current spreads
through the water over a hemi-
sphere centered on the strike point. What is the current through
the swimmer?

25 Wire C and wire D are made
from different materials and have
length LC ! LD ! 1.0 m. The resis-
tivity and radius of wire C are 
2.0 $ 10%6 &'m and 1.00 mm, and
those of wire D are 1.0 $ 10%6 &'m
and 0.50 mm. The wires are joined
as shown in Fig. 26-23, and a current of 2.0 A is set up in them.
What is the electric potential difference between (a) points
1 and 2 and (b) points 2 and 3? What is the rate at which en-
ergy is dissipated between (c) points 1 and 2 and (d) points 2
and 3?

26 A small but measurable current of 1.2 $ 10 %10 A exists in a
copper wire whose diameter is 3.0 mm. The number of charge
carriers per unit volume is 8.49 $ 10 28 m%3. Assuming the cur-
rent is uniform, calculate the (a) current density and (b) electron
drift speed.

27 A block in the shape of a rectangular solid has a cross-
sectional area of 2.70 cm2 across its width, a front-to-rear length

!

!

&

Figure 26-22 Problem 24.
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Figure 26-23 Problem 25.
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Figure 26-24 Problem 28.
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Figure 26-21 Problem 20.

of 11.7 cm, and a resistance of 935 &. The block’s material con-
tains 5.33 $ 10 22 conduction electrons/m3. A potential difference
of 35.8 V is maintained between its front and rear faces. (a) What
is the current in the block? (b) If the current density is uniform,
what is its magnitude? What are (c) the drift velocity of the con-
duction electrons and (d) the magnitude of the electric field in
the block?

28 The current through the battery and resistors 1 and 2 in Fig.
26-24a is 1.50 A. Energy is transferred from the current to ther-
mal energy Eth in both resistors. Curves 1 and 2 in Fig. 26-24b
give that thermal energy Eth for resistors 1 and 2, respectively, as
a function of time t. The vertical scale is set by Eth,s 40.0 mJ,
and the horizontal scale is set by ts 5.00 s. What is the power of
the battery?

!
!
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687PROBLEMS

Assuming that the resistivity and density of the material are un-
affected by the stretching, find the ratio of the new length to L0.

36 A human being can be electrocuted if a current as small as 50 mA
passes near the heart. An electrician working with sweaty hands
makes good contact with the two conductors he is holding, one in
each hand. If his resistance is 2100 &, what might the fatal voltage be?

37 A 120 V potential difference is applied to a space heater
that dissipates 1500 W during operation. (a) What is its resist-
ance during operation? (b) At what rate do electrons flow
through any cross section of the heater element?

38 A certain wire has a resistance R. What is the resistance of a
second wire, made of the same material, that is twice as long and
has twice the diameter?

39 A coil is formed by winding 2000 turns of insulated 16-gauge
copper wire (diameter 1.3 mm) in a single layer on a cylindrical
form of radius 12 cm.What is the resistance of the coil? Neglect the
thickness of the insulation. (Use Table  26-1.)

40 Figure 26-25a shows a rod of
resistive material. The resistance
per unit length of the rod increases
in the positive direction of the x
axis. At any position x along the
rod, the resistance dR of a narrow
(differential) section of width dx
is given by dR ! 5.00x dx, where
dR is in ohms and x is in meters.
Figure 26-25b shows such a narrow
section. You are to slice off a length of the rod between x 0 and
some position x L and then connect that length to a battery
with potential difference V 8.0 V (Fig. 26-25c). You want the
current in the length to transfer energy to thermal energy at the
rate of 180 W.At what position x ! L should you cut the rod?

41 A fuse in an electric circuit is a wire that is designed to melt,
and thereby open the circuit, if the current exceeds a predeter-
mined value. Suppose that the material to be used in a fuse melts
when the current density rises to 440 A/cm2. What radius of
cylindrical wire should be used to make a fuse that will limit the
current to 6.0 A?

42 Copper and aluminum are being considered for a
high-voltage transmission line that must carry a current of 50.0 A.
The resistance per unit length is to be 0.150 &/km. The densities
of copper and aluminum are 8960 and 2600 kg/m3, respectively.
Compute (a) the magnitude J of the current density and (b) the
mass per unit length l for a copper cable and (c) J and (d) l for
an aluminum cable.

43 How long does it take electrons to get from a car battery to
the starting motor? Assume the current is 285 A and the electrons
travel through a copper wire with cross-sectional area 0.17 cm2 and
length 0.43 m. The number of charge carriers per unit volume is
8.49 $ 10 28 m%3.

44 The (United States) National Electric Code, which sets maxi-
mum safe currents for insulated copper wires of various diameters,
is given (in part) in the table. (a) Plot the safe current density as a
function of diameter.Which wire gauge has the maximum safe cur-
rent density? (“Gauge” is a way of identifying wire diameters, and
1 mil ! 10%3 in.) (b) What is the current density (assumed to be
uniform) in 8-gauge wire for a current of 35 A?

!
!

!

!

Gauge 4 6 8 10 12 14 16 18
Diameter, mils 204 162 129 102 81 64 51 40
Safe current, A 70 50 35 25 20 15 6 3

45 What is the current in a wire of radius R ! 2.67 mm if the
magnitude of the current density is given by (a) Ja ! J0r/R
and (b) Jb ! J0(1 % r/R), in which r is the radial distance and 
J0 ! 5.50 $ 10 4 A/m2? (c) Which function maximizes the current
density near the wire’s surface?

46 A certain cylindrical
wire carries current. We
draw a circle of radius r
around its central axis in 
Fig. 26-26a to determine the 
current i within the circle.
Figure 26-26b shows current i
as a function of r2. The vertical
scale is set by is ! 4.0 mA,
and the horizontal scale is set
by ! 8.0 mm2. (a) Is the current density uniform? (b) If so,
what is its magnitude? (c) What is the current between r = 0 and
r = 2.0 mm? 

47 What is the resistance of a wire with radius 0.500 mm and
length 4.3 m, made from a material with resistivity 2.0 $ 10%8 & m?

48 Figure 26-27a gives the magnitude E(x) of the electric fields
that have been set up by a battery along a resistive rod of length 
9.00 mm (Fig. 26-27b).The vertical scale is set by Es ! 8.00 $ 103 V/m.
The rod consists of three sections of the same material but with
different radii. (The schematic diagram of Fig. 26-25b does not
indicate the different radii.) The radius of section 3 is 1.70 mm.
What is the radius of (a) section 1 and (b) section 2?

'

r2
s

49 Two conductors are made of the same material and have
the same length. Conductor A is a solid wire of radius 1.0 mm.
Conductor B is a hollow tube of outside radius 2.2 mm and in-
side radius 1.0 mm. What is the resistance ratio RA/RB, measured
between their ends?

50 Near Earth, the density of protons in the solar wind
(a stream of particles from the Sun) can be 4.63 cm%3, and their
speed can be 391 km/s. (a) Find the current density of these pro-
tons. (b) If Earth’s magnetic field did not deflect the protons,
what total current would Earth receive?

51 A common flashlight bulb is rated at 0.20 A and 3.2 V (the val-
ues of the current and voltage under operating conditions). If the re-
sistance of the tungsten bulb filament at room temperature (20(C) is
1.1 &, what is the temperature of the filament when the bulb is on?
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x = 9 mm
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Figure 26-27 Problem 48.

Figure 26-26 Problem 46.
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688 CHAPTER 26 CURRENT AND RESISTANCE

52 An isolated conducting sphere has a 20 cm radius. One wire
carries a current of 1.000 002 0 A into it. Another wire carries a
current of 1.000 000 0 A out of it. How long would it take for the
sphere to increase in potential by 1000 V?

53 A beam contains 4.5 $ 108 doubly charged negative ions per
cubic centimeter, all of which are moving north with a speed of 
300 m/s. What are the (a) magnitude and (b) direction of the 

current density (c) If the particle distribution is uniform across
a cross-sectional area of 2.5 mm2, what is the current?

54 The magnitude J of the current density in a certain lab
wire with a circular cross section of radius R ! 2.50 mm is given
by J ! (3.00 $ 10 8)r 2, with J in amperes per square meter and
radial distance r in meters. What is the current through the outer
section bounded by r ! 0.900R and r ! R?

J
:

?
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689

C H A P T E R  2 7

Circuits

27-1 SINGLE-LOOP CIRCUITS

After reading this module, you should be able to . . .

27.01 Identify the action of an emf source in terms of the work
it does.

27.02 For an ideal battery, apply the relationship between
the emf, the current, and the power (rate of energy transfer).

27.03 Draw a schematic diagram for a single-loop circuit
containing a battery and three resistors.

27.04 Apply the loop rule to write a loop equation that relates
the potential differences of the circuit elements around a
(complete) loop.

27.05 Apply the resistance rule in crossing through a resistor.
27.06 Apply the emf rule in crossing through an emf.
27.07 Identify that resistors in series have the same cur-

rent, which is the same value that their equivalent
resistor has.

27.08 Calculate the equivalent of series resistors.
27.09 Identify that a potential applied to resistors wired in

series is equal to the sum of the potentials across the
individual resistors.

27.10 Calculate the potential difference between any two
points in a circuit.

27.11 Distinguish a real battery from an ideal battery and, in a
circuit diagram, replace a real battery with an ideal battery
and an explicitly shown resistance.

27.12 With a real battery in a circuit, calculate the potential dif-
ference between its terminals for current in the direction of
the emf and in the opposite direction.

27.13 Identify what is meant by grounding a circuit, and draw a
schematic diagram for such a connection.

27.14 Identify that grounding a circuit does not affect the
current in a circuit.

27.15 Calculate the dissipation rate of energy in a real battery.
27.16 Calculate the net rate of energy transfer in a real battery for

current in the direction of the emf and in the opposite direction.

● An emf device does work on charges to maintain a potential dif-
ference between its output terminals. If dW is the work the device
does to force positive charge dq from the negative to the positive
terminal, then the emf (work per unit charge) of the device is

(definition of !).

● An ideal emf device is one that lacks any internal resistance. 
The potential difference between its terminals is equal to the emf.
● A real emf device has internal resistance. The potential
difference between its terminals is equal to the emf only if there
is no current through the device.
● The change in potential in traversing a resistance R in the di-
rection of the current is !iR; in the opposite direction it is "iR
(resistance rule). 
● The change in potential in traversing an ideal emf device in
the direction of the emf arrow is "!; in the opposite direction it
is !! (emf rule). 
● Conservation of energy leads to the loop rule:
Loop Rule. The algebraic sum of the changes in potential encoun-

! #
dW
dq

tered in a complete traversal of any loop of a circuit must be zero.
Conservation of charge leads to the junction rule (Chapter 26):
Junction Rule. The sum of the currents entering any junction
must be equal to the sum of the currents leaving that junction.
● When a real battery of emf ! and internal resistance r does
work on the charge carriers in a current i through the battery,
the rate P of energy transfer to the charge carriers is

P # iV,

where V is the potential across the terminals of the battery.
● The rate Pr at which energy is dissipated as thermal energy
in the battery is Pr # i2r.
● The rate Pemf at which the chemical energy in the battery
changes is Pemf # i!.
● When resistances are in series, they have the same current. The
equivalent resistance that can replace a series combination of re-
sistances is

(n resistances in series).Req # !
n

j#1
 Rj

Learning Objectives

Key Ideas
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What Is Physics?
You are surrounded by electric circuits. You might take pride in the number of
electrical devices you own and might even carry a mental list of the devices you
wish you owned. Every one of those devices, as well as the electrical grid that
powers your home, depends on modern electrical engineering. We cannot easily
estimate the current financial worth of electrical engineering and its products, but
we can be certain that the financial worth continues to grow yearly as more and
more tasks are handled electrically. Radios are now tuned electronically instead
of manually. Messages are now sent by email instead of through the postal
system. Research journals are now read on a computer instead of in a library
building, and research papers are now copied and filed electronically instead of
photocopied and tucked into a filing cabinet. Indeed, you may be reading an elec-
tronic version of this book.

The basic science of electrical engineering is physics. In this chapter we
cover the physics of electric circuits that are combinations of resistors and bat-
teries (and, in Module 27-4, capacitors). We restrict our discussion to circuits
through which charge flows in one direction, which are called either direct-
current circuits or DC circuits. We begin with the question: How can you get
charges to flow?

“Pumping” Charges
If you want to make charge carriers flow through a resistor, you must establish a
potential difference between the ends of the device. One way to do this is to con-
nect each end of the resistor to one plate of a charged capacitor.The trouble with
this scheme is that the flow of charge acts to discharge the capacitor, quickly
bringing the plates to the same potential. When that happens, there is no longer
an electric field in the resistor, and thus the flow of charge stops.

To produce a steady flow of charge, you need a “charge pump,” a device
that—by doing work on the charge carriers—maintains a potential difference
between a pair of terminals.We call such a device an emf device, and the device is
said to provide an emf !, which means that it does work on charge carriers.
An emf device is sometimes called a seat of emf. The term emf comes from the
outdated phrase electromotive force, which was adopted before scientists clearly
understood the function of an emf device.

In Chapter 26, we discussed the motion of charge carriers through a circuit in
terms of the electric field set up in the circuit—the field produces forces that
move the charge carriers. In this chapter we take a different approach:We discuss
the motion of the charge carriers in terms of the required energy—an emf device
supplies the energy for the motion via the work it does.

A common emf device is the battery, used to power a wide variety of
machines from wristwatches to submarines. The emf device that most influences
our daily lives, however, is the electric generator, which, by means of electrical
connections (wires) from a generating plant, creates a potential difference in our
homes and workplaces. The emf devices known as solar cells, long familiar as the
wing-like panels on spacecraft, also dot the countryside for domestic applications.
Less familiar emf devices are the fuel cells that powered the space shuttles and
the thermopiles that provide onboard electrical power for some spacecraft and
for remote stations in Antarctica and elsewhere. An emf device does not have to
be an instrument—living systems, ranging from electric eels and human beings to
plants, have physiological emf devices.

Although the devices we have listed differ widely in their modes of opera-
tion, they all perform the same basic function—they do work on charge carriers
and thus maintain a potential difference between their terminals.

690 CHAPTER 27 CIRCUITS

Courtesy Southern California Edison Company

The world’s largest battery energy storage
plant (dismantled in 1996) connected over
8000 large lead-acid batteries in 8 strings at
1000 V each with a capability of 10 MW of
power for 4 hours. Charged up at night, the
batteries were then put to use during peak
power demands on the electrical system.
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Work, Energy, and Emf
Figure 27-1 shows an emf device (consider it to be a battery) that is part of a
simple circuit containing a single resistance R (the symbol for resistance and a
resistor is ). The emf device keeps one of its terminals (called the positive
terminal and often labeled ") at a higher electric potential than the other termi-
nal (called the negative terminal and labeled !).We can represent the emf of the
device with an arrow that points from the negative terminal toward the positive
terminal as in Fig. 27-1. A small circle on the tail of the emf arrow distinguishes it
from the arrows that indicate current direction.

When an emf device is not connected to a circuit, the internal chemistry of
the device does not cause any net flow of charge carriers within it. However,
when it is connected to a circuit as in Fig. 27-1, its internal chemistry causes a net
flow of positive charge carriers from the negative terminal to the positive termi-
nal, in the direction of the emf arrow. This flow is part of the current that is set up
around the circuit in that same direction (clockwise in Fig. 27-1).

Within the emf device, positive charge carriers move from a region of low
electric potential and thus low electric potential energy (at the negative terminal)
to a region of higher electric potential and higher electric potential energy (at
the positive terminal). This motion is just the opposite of what the electric field
between the terminals (which is directed from the positive terminal toward the
negative terminal) would cause the charge carriers to do.

Thus, there must be some source of energy within the device, enabling it to
do work on the charges by forcing them to move as they do. The energy source
may be chemical, as in a battery or a fuel cell. It may involve mechanical forces, as
in an electric generator. Temperature differences may supply the energy, as in a
thermopile; or the Sun may supply it, as in a solar cell.

Let us now analyze the circuit of Fig. 27-1 from the point of view of work and
energy transfers. In any time interval dt, a charge dq passes through any cross sec-
tion of this circuit, such as aa$. This same amount of charge must enter the emf
device at its low-potential end and leave at its high-potential end. The device
must do an amount of work dW on the charge dq to force it to move in this way.
We define the emf of the emf device in terms of this work:

(definition of !). (27-1)

In words, the emf of an emf device is the work per unit charge that the device
does in moving charge from its low-potential terminal to its high-potential termi-
nal. The SI unit for emf is the joule per coulomb; in Chapter 24 we defined that
unit as the volt.

An ideal emf device is one that lacks any internal resistance to the internal
movement of charge from terminal to terminal.The potential difference between
the terminals of an ideal emf device is equal to the emf of the device. For exam-
ple, an ideal battery with an emf of 12.0 V always has a potential difference of
12.0 V between its terminals.

A real emf device, such as any real battery, has internal resistance to the
internal movement of charge. When a real emf device is not connected to a
circuit, and thus does not have current through it, the potential difference
between its terminals is equal to its emf. However, when that device has current
through it, the potential difference between its terminals differs from its emf. We
shall discuss such real batteries near the end of this module.

When an emf device is connected to a circuit, the device transfers energy to
the charge carriers passing through it. This energy can then be transferred from
the charge carriers to other devices in the circuit, for example, to light a bulb.
Figure 27-2a shows a circuit containing two ideal rechargeable (storage) batteries
A and B, a resistance R, and an electric motor M that can lift an object by using

! #
dW
dq
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Figure 27-1 A simple electric circuit, in which
a device of emf ! does work on the charge
carriers and maintains a steady current i in
a resistor of resistance R.
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energy lost 

by B 

Thermal energy 
produced 

by resistance R 

Chemical 
energy stored 

in A 

(b) 

Figure 27-2 (a) In the circuit, !B % !A; so bat-
tery B determines the direction of the cur-
rent. (b) The energy transfers in the circuit.
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energy it obtains from charge carriers in the circuit. Note that the batteries are
connected so that they tend to send charges around the circuit in opposite direc-
tions. The actual direction of the current in the circuit is determined by the
battery with the larger emf, which happens to be battery B, so the chemical
energy within battery B is decreasing as energy is transferred to the charge
carriers passing through it. However, the chemical energy within battery A is
increasing because the current in it is directed from the positive terminal to the
negative terminal. Thus, battery B is charging battery A. Battery B is also pro-
viding energy to motor M and energy that is being dissipated by resistance R.
Figure 27-2b shows all three energy transfers from battery B; each decreases that
battery’s chemical energy.

Calculating the Current in a Single-Loop Circuit
We discuss here two equivalent ways to calculate the current in the simple single-
loop circuit of Fig. 27-3; one method is based on energy conservation considerations,
and the other on the concept of potential. The circuit consists of an ideal battery B
with emf !, a resistor of resistance R, and two connecting wires. (Unless otherwise
indicated, we assume that wires in circuits have negligible resistance.Their function,
then, is merely to provide pathways along which charge carriers can move.)

Energy Method
Equation 26-27 (P # i 2R) tells us that in a time interval dt an amount of energy
given by i2R dt will appear in the resistor of Fig. 27-3 as thermal energy. As noted
in Module 26-5, this energy is said to be dissipated. (Because we assume the wires
to have negligible resistance, no thermal energy will appear in them.) During the
same interval, a charge dq # i dt will have moved through battery B, and the
work that the battery will have done on this charge, according to Eq. 27-1, is

dW # ! dq # !i dt.

From the principle of conservation of energy, the work done by the (ideal) bat-
tery must equal the thermal energy that appears in the resistor:

!i dt # i2R dt.
This gives us

! # iR.

The emf ! is the energy per unit charge transferred to the moving charges by the
battery. The quantity iR is the energy per unit charge transferred from the mov-
ing charges to thermal energy within the resistor. Therefore, this equation means
that the energy per unit charge transferred to the moving charges is equal to the
energy per unit charge transferred from them. Solving for i, we find

(27-2)

Potential Method
Suppose we start at any point in the circuit of Fig. 27-3 and mentally proceed
around the circuit in either direction, adding algebraically the potential differ-
ences that we encounter. Then when we return to our starting point, we must
also have returned to our starting potential. Before actually doing so, we shall
formalize this idea in a statement that holds not only for single-loop circuits such
as that of Fig. 27-3 but also for any complete loop in a multiloop circuit, as we
shall discuss in Module 27-2:

i #
!

R
.
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Figure 27-3 A single-loop circuit in which a
resistance R is connected across an ideal
battery B with emf !.The resulting current
i is the same throughout the circuit.

Higher 
potential 

R i 
– B

i 

i 

+ 

Lower 
potential 

a 

The battery drives current
through the resistor, from
high potential to low potential.
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This is often referred to as Kirchhoff’s loop rule (or Kirchhoff’s voltage law), after
German physicist Gustav Robert Kirchhoff. This rule is equivalent to saying that
each point on a mountain has only one elevation above sea level. If you start
from any point and return to it after walking around the mountain, the algebraic
sum of the changes in elevation that you encounter must be zero.

In Fig. 27-3, let us start at point a, whose potential is Va, and mentally walk
clockwise around the circuit until we are back at a, keeping track of potential
changes as we move. Our starting point is at the low-potential terminal of the bat-
tery. Because the battery is ideal, the potential difference between its terminals is
equal to !. When we pass through the battery to the high-potential terminal, the
change in potential is "!.

As we walk along the top wire to the top end of the resistor, there is no
potential change because the wire has negligible resistance; it is at the same
potential as the high-potential terminal of the battery. So too is the top end of the
resistor. When we pass through the resistor, however, the potential changes
according to Eq. 26-8 (which we can rewrite as V # iR). Moreover, the potential
must decrease because we are moving from the higher potential side of the resis-
tor.Thus, the change in potential is !iR.

We return to point a by moving along the bottom wire.Because this wire also has
negligible resistance, we again find no potential change. Back at point a, the potential
is again Va. Because we traversed a complete loop, our initial potential, as modified
for potential changes along the way,must be equal to our final potential; that is,

Va " ! ! iR # Va.

The value of Va cancels from this equation, which becomes
! ! iR # 0.

Solving this equation for i gives us the same result, i # !/R, as the energy method
(Eq. 27-2).

If we apply the loop rule to a complete counterclockwise walk around the
circuit, the rule gives us

!! " iR # 0

and we again find that i # !/R. Thus, you may mentally circle a loop in either
direction to apply the loop rule.

To prepare for circuits more complex than that of Fig. 27-3, let us set down
two rules for finding potential differences as we move around a loop:

69327-1 SINGLE-LOOP CIRCUITS

LOOP RULE: The algebraic sum of the changes in potential encountered in a
complete traversal of any loop of a circuit must be zero.

RESISTANCE RULE: For a move through a resistance in the direction of the 
current, the change in potential is !iR; in the opposite direction it is "iR.

EMF RULE: For a move through an ideal emf device in the direction of the emf 
arrow, the change in potential is "!; in the opposite direction it is !!.

Checkpoint 1
The figure shows the current i in a single-loop circuit
with a battery B and a resistance R (and wires of neg-
ligible resistance). (a) Should the emf arrow at B be
drawn pointing leftward or rightward? At points a, b,
and c, rank (b) the magnitude of the current, (c) the electric potential, and (d) the
electric potential energy of the charge carriers, greatest first.

a b c 
B 

i 

R
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If we apply the loop rule clockwise beginning at point a, the changes in
potential give us

! ! ir ! iR # 0. (27-3)

Solving for the current, we find

. (27-4)

Note that this equation reduces to Eq. 27-2 if the battery is ideal—that is, if r # 0.
Figure 27-4b shows graphically the changes in electric potential around the

circuit. (To better link Fig. 27-4b with the closed circuit in Fig. 27-4a, imagine
curling the graph into a cylinder with point a at the left overlapping point a at
the right.) Note how traversing the circuit is like walking around a (potential)
mountain back to your starting point—you return to the starting elevation.

In this book, when a battery is not described as real or if no internal resist-
ance is indicated, you can generally assume that it is ideal—but, of course, in the
real world batteries are always real and have internal resistance.

Resistances in Series
Figure 27-5a shows three resistances connected in series to an ideal battery with
emf !. This description has little to do with how the resistances are drawn.
Rather, “in series” means that the resistances are wired one after another and
that a potential difference V is applied across the two ends of the series. In
Fig. 27-5a, the resistances are connected one after another between a and b, and a
potential difference is maintained across a and b by the battery. The potential
differences that then exist across the resistances in the series produce identical
currents i in them. In general,

i #
!

R " r

Other Single-Loop Circuits
Next we extend the simple circuit of Fig. 27-3 in two ways.

Internal Resistance
Figure 27-4a shows a real battery, with internal resistance r, wired to an external
resistor of resistance R. The internal resistance of the battery is the electrical
resistance of the conducting materials of the battery and thus is an unremov-
able feature of the battery. In Fig. 27-4a, however, the battery is drawn as if it
could be separated into an ideal battery with emf ! and a resistor of resistance
r. The order in which the symbols for these separated parts are drawn does not
matter.
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R i 

i 

i 

Real battery 

r 

i 

a 

b +

–  

(a) 

Emf device Resistor 

a b a

r 

ir 

Po
te

nt
ia

l (
V
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iR 
Va Va 

Vb 

(b) 

Figure 27-4 (a) A single-loop circuit containing a real battery having internal resistance
r and emf !. (b) The same circuit, now spread out in a line.The potentials encountered
in traversing the circuit clockwise from a are also shown.The potential Va is arbitrarily
assigned a value of zero, and other potentials in the circuit are graphed relative to Va.

Figure 27-5 (a) Three resistors are connected
in series between points a and b. (b) An
equivalent circuit, with the three resistors
replaced with their equivalent resistance Req.

+  
–  

a  

b  

i R 2

R3

R1

i 
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(a) 

+
–

a

b

iR eq

(b)

Series resistors 
and their
equivalent have 
the same
current (“ser-i”).
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When a potential difference V is applied across resistances connected in series,
the resistances have identical currents i. The sum of the potential differences
across the resistances is equal to the applied potential difference V.

Resistances connected in series can be replaced with an equivalent resistance Req

that has the same current i and the same total potential difference V as the actual
resistances.

Checkpoint 2
In Fig. 27-5a, if R1 % R2 % R3, rank the three resistances according to (a) the current
through them and (b) the potential difference across them, greatest first.

You might remember that Req and all the actual series resistances have the same
current i with the nonsense word “ser-i.” Figure 27-5b shows the equivalent resis-
tance Req that can replace the three resistances of Fig. 27-5a.

To derive an expression for Req in Fig. 27-5b, we apply the loop rule to both
circuits. For Fig. 27-5a, starting at a and going clockwise around the circuit, we
find

! ! iR1 ! iR2 ! iR3 # 0,

or (27-5)

For Fig. 27-5b, with the three resistances replaced with a single equivalent resist-
ance Req, we find

! ! iReq # 0,

or (27-6)

Comparison of Eqs. 27-5 and 27-6 shows that

Req # R1 " R2 " R3.

The extension to n resistances is straightforward and is

(n resistances in series). (27-7)

Note that when resistances are in series, their equivalent resistance is greater
than any of the individual resistances.

Req # !
n

j#1
 Rj

i #
!

Req
.

i #
!

R1 " R2 " R3
.

Potential Difference Between Two Points
We often want to find the potential difference between two points in a circuit. For 
example, in Fig. 27-6, what is the potential difference Vb ! Va between points a
and b? To find out, let’s start at point a (at potential Va) and move through the
battery to point b (at potential Vb) while keeping track of the potential changes
we encounter. When we pass through the battery’s emf, the potential increases
by !. When we pass through the battery’s internal resistance r, we move in the
direction of the current and thus the potential decreases by ir. We are then at the

Figure 27-6 Points a and b, which are at the
terminals of a real battery, differ in potential.

R = 4.0 Ω 

i 

r = 2.0 Ω 

 = 12 V 

i a 

b + 

–  

The internal resistance reduces
the potential difference between
the terminals.

Note that charge moving through the series resistances can move along only a
single route. If there are additional routes, so that the currents in different resis-
tances are different, the resistances are not connected in series.
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potential of point b and we have

Va " ! ! ir # Vb,
or Vb ! Va # ! ! ir. (27-8)

To evaluate this expression, we need the current i. Note that the circuit is the
same as in Fig. 27-4a, for which Eq. 27-4 gives the current as

(27-9)

Substituting this equation into Eq. 27-8 gives us

(27-10)

Now substituting the data given in Fig. 27-6, we have

(27-11)

Suppose, instead, we move from a to b counterclockwise, passing through
resistor R rather than through the battery. Because we move opposite the
current, the potential increases by iR.Thus,

Va " iR # Vb

or Vb ! Va # iR. (27-12)

Substituting for i from Eq. 27-9, we again find Eq. 27-10. Hence, substitution of
the data in Fig. 27-6 yields the same result, Vb ! Va # 8.0 V. In general,

Vb ! Va #
12 V

4.0 & " 2.0 &
 4.0 & # 8.0 V.

#
!

R " r
 R.

Vb ! Va # ! !
!

R " r
 r

i #
!

R " r
.
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To find the potential between any two points in a circuit, start at one point and 
traverse the circuit to the other point, following any path, and add algebraically
the changes in potential you encounter.

Potential Difference Across a Real Battery
In Fig. 27-6, points a and b are located at the terminals of the battery. Thus, the
potential difference Vb ! Va is the terminal-to-terminal potential difference V
across the battery. From Eq. 27-8, we see that

V # ! ! ir. (27-13)

If the internal resistance r of the battery in Fig. 27-6 were zero, Eq. 27-13 tells
us that V would be equal to the emf ! of the battery—namely, 12 V. However,
because r # 2.0 &, Eq. 27-13 tells us that V is less than !. From Eq. 27-11, we
know that V is only 8.0 V. Note that the result depends on the value of the current
through the battery. If the same battery were in a different circuit and had a
different current through it, V would have some other value.

Grounding a Circuit
Figure 27-7a shows the same circuit as Fig. 27-6 except that here point a is directly
connected to ground, as indicated by the common symbol . Grounding a cir-
cuit usually means connecting the circuit to a conducting path to Earth’s surface
(actually to the electrically conducting moist dirt and rock below ground). Here,
such a connection means only that the potential is defined to be zero at the
grounding point in the circuit. Thus in Fig. 27-7a, the potential at a is defined to
be Va # 0. Equation 27-11 then tells us that the potential at b is Vb # 8.0 V.

halliday_c27_689-718v2.0.1.qxd  3/5/14  11:25 AM  Page 696

Uploaded By: anonymousSTUDENTS-HUB.com



Figure 27-7b is the same circuit except that point b is now directly connected
to ground. Thus, the potential there is defined to be Vb # 0. Equation 27-11 now
tells us that the potential at a is Va # !8.0 V.

Power, Potential, and Emf
When a battery or some other type of emf device does work on the charge car-
riers to establish a current i, the device transfers energy from its source of en-
ergy (such as the chemical source in a battery) to the charge carriers. Because a
real emf device has an internal resistance r, it also transfers energy to internal
thermal energy via resistive dissipation (Module 26-5). Let us relate these
transfers.

The net rate P of energy transfer from the emf device to the charge carriers is
given by Eq. 26-26:

P # iV, (27-14)

where V is the potential across the terminals of the emf device. From Eq. 27-13,
we can substitute V # ! ! ir into Eq. 27-14 to find

P # i(! ! ir) # i! ! i2r. (27-15)

From Eq. 26-27, we recognize the term i2r in Eq. 27-15 as the rate Pr of energy
transfer to thermal energy within the emf device:

Pr # i2r (internal dissipation rate). (27-16)

Then the term i! in Eq. 27-15 must be the rate Pemf at which the emf device
transfers energy both to the charge carriers and to internal thermal energy.
Thus,

Pemf # i! (power of emf device). (27-17)

If a battery is being recharged, with a “wrong way” current through it, the
energy transfer is then from the charge carriers to the battery—both to the
battery’s chemical energy and to the energy dissipated in the internal resistance r.
The rate of change of the chemical energy is given by Eq. 27-17, the rate of dissi-
pation is given by Eq. 27-16, and the rate at which the carriers supply energy is
given by Eq. 27-14.
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Figure 27-7 (a) Point a is directly connected to ground. (b) Point b is directly connected to
ground.

R = 4.0 Ω 

i 

r = 2.0 Ω 

 = 12 V 

i a 

b + 

–  

(a) 

R = 4.0 Ω

i

r = 2.0 Ω

 = 12 V

ia

b +

– 

(b)Ground is taken
to be zero potential.

Checkpoint 3
A battery has an emf of 12 V and an internal resistance of 2 &. Is the terminal-to-
terminal potential difference greater than, less than, or equal to 12 V if the current in
the battery is (a) from the negative to the positive terminal, (b) from the positive to
the negative terminal, and (c) zero?
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two batteries. Because !1 is greater than !2, battery 1 con-
trols the direction of i, so the direction is clockwise. Let us
then apply the loop rule by going counterclockwise—
against the current—and starting at point a. (These deci-
sions about where to start and which way you go are
arbitrary but, once made, you must be consistent with
decisions about the plus and minus signs.) We find

!!1 " ir1 " iR " ir2 " !2 # 0.

Check that this equation also results if we apply the loop
rule clockwise or start at some point other than a. Also,
take the time to compare this equation term by term with
Fig. 27-8b, which shows the potential changes graphically
(with the potential at point a arbitrarily taken to be zero).

Solving the above loop equation for the current i, we
obtain

(Answer)

(b) What is the potential difference between the terminals
of battery 1 in Fig. 27-8a?

KEY IDEA

We need to sum the potential differences between points a
and b.

Calculations: Let us start at point b (effectively the nega-
tive terminal of battery 1) and travel clockwise through
battery 1 to point a (effectively the positive terminal),
keeping track of potential changes. We find that

Vb ! ir1 " !1 # Va,

which gives us

(Answer)

which is less than the emf of the battery. You can verify this
result by starting at point b in Fig. 27-8a and traversing the
circuit counterclockwise to point a. We learn two points
here. (1) The potential difference between two points in a
circuit is independent of the path we choose to go from one
to the other. (2) When the current in the battery is in the
“proper” direction, the terminal-to-terminal potential dif-
ference is low, that is, lower than the stated emf for the bat-
tery that you might find printed on the battery.

# "3.84 V " 3.8 V,

# !(0.2396 A)(2.3 &) " 4.4 V

Va ! Vb # !ir1 " ! 1

# 0.2396 A " 240 mA.

i #
! 1 ! ! 2

R " r1 " r2
#

4.4 V ! 2.1 V
5.5 & " 2.3 & " 1.8 &

Sample Problem 27.01 Single-loop circuit with two real batteries

The emfs and resistances in the circuit of Fig. 27-8a have the
following values:

!1 # 4.4 V, !2 # 2.1 V,

r1 # 2.3 &, r2 # 1.8 &, R # 5.5 &.

(a) What is the current i in the circuit?

KEY IDEA

We can get an expression involving the current i in this
single-loop circuit by applying the loop rule, in which we
sum the potential changes around the full loop.

Calculations: Although knowing the direction of i is not
necessary, we can easily determine it from the emfs of the

Figure 27-8 (a) A single-loop circuit containing two real batteries
and a resistor.The batteries oppose each other; that is, they tend to
send current in opposite directions through the resistor. (b) A
graph of the potentials, counterclockwise from point a, with the
potential at a arbitrarily taken to be zero. (To better link the circuit
with the graph, mentally cut the circuit at a and then unfold the left
side of the circuit toward the left and the right side of the circuit
toward the right.)

R

Battery 1
r1 i

(a)

a

Battery 2
1

b c

2

r2

i

a b c a
r2Rr1

i
1 2

Battery 1 Battery 2Resistor

Va
0

–1

–2

–3

–4

–5

1 = 4.4 V

ir1

iR
ir2

2 = 2.1 V

Vb

Va

Vc

Po
te

nt
ia

l (
V

)

(b)

Additional examples, video, and practice available at WileyPLUS
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Multiloop Circuits
Figure 27-9 shows a circuit containing more than one loop. For simplicity, we
assume the batteries are ideal. There are two junctions in this circuit, at b and d,
and there are three branches connecting these junctions.The branches are the left
branch (bad), the right branch (bcd), and the central branch (bd). What are the
currents in the three branches?

We arbitrarily label the currents, using a different subscript for each branch.
Current i1 has the same value everywhere in branch bad, i2 has the same value
everywhere in branch bcd, and i3 is the current through branch bd. The directions
of the currents are assumed arbitrarily.

Consider junction d for a moment: Charge comes into that junction via
incoming currents i1 and i3, and it leaves via outgoing current i2. Because there is
no variation in the charge at the junction, the total incoming current must equal
the total outgoing current:

i1 " i3 # i2. (27-18)

You can easily check that applying this condition to junction b leads to exactly
the same equation. Equation 27-18 thus suggests a general principle:
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27-2 MULTILOOP CIRCUITS

After reading this module, you should be able to . . .

27.17 Apply the junction rule.
27.18 Draw a schematic diagram for a battery and three

parallel resistors and distinguish it from a diagram with a
battery and three series resistors.

27.19 Identify that resistors in parallel have the same potential
difference, which is the same value that their equivalent
resistor has.

27.20 Calculate the resistance of the equivalent resistor of
several resistors in parallel.

27.21 Identify that the total current through parallel resistors
is the sum of the currents through the individual resistors.

27.22 For a circuit with a battery and some resistors in parallel
and some in series, simplify the circuit in steps by finding

equivalent resistors, until the current through the battery
can be determined, and then reverse the steps to find
the currents and potential differences of the individual
resistors.

27.23 If a circuit cannot be simplified by using equivalent
resistors, identify the several loops in the circuit, choose
names and directions for the currents in the branches, set
up loop equations for the various loops, and solve these
simultaneous equations for the unknown currents.

27.24 In a circuit with identical real batteries in series, replace
them with a single ideal battery and a single resistor.

27.25 In a circuit with identical real batteries in parallel, re-
place them with a single ideal battery and a single resistor.

Learning Objectives

● When resistances are in parallel, they have the same potential difference. The equivalent resistance that can replace a parallel
combination of resistances is given by

(n resistances in parallel).
1

Req
 # !

n

j#1

1
Rj

Key Idea

Figure 27-9 A multiloop circuit consisting of
three branches: left-hand branch bad, right-
hand branch bcd, and central branch bd.
The circuit also consists of three loops: left-
hand loop badb, right-hand loop bcdb, and
big loop badcb.

R 2R3R1 

a  b c

d  

 i 1  i 3  i 2

+ – 
1 2

– +

The current into the junction
must equal the current out
(charge is conserved).

JUNCTION RULE: The sum of the currents entering any junction must be
equal to the sum of the currents leaving that junction.

This rule is often called Kirchhoff’s junction rule (or Kirchhoff’s current law). It is
simply a statement of the conservation of charge for a steady flow of charge—
there is neither a buildup nor a depletion of charge at a junction. Thus, our basic
tools for solving complex circuits are the loop rule (based on the conservation of
energy) and the junction rule (based on the conservation of charge).
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Equation 27-18 is a single equation involving three unknowns. To solve the
circuit completely (that is, to find all three currents), we need two more equations
involving those same unknowns. We obtain them by applying the loop rule twice.
In the circuit of Fig. 27-9, we have three loops from which to choose: the left-hand
loop (badb), the right-hand loop (bcdb), and the big loop (badcb). Which two
loops we choose does not matter—let’s choose the left-hand loop and the right-
hand loop.

If we traverse the left-hand loop in a counterclockwise direction from point
b, the loop rule gives us

!1 ! i1R1 " i3R3 # 0. (27-19)

If we traverse the right-hand loop in a counterclockwise direction from point b,
the loop rule gives us

!i3R3 ! i2R2 ! !2 # 0. (27-20)

We now have three equations (Eqs. 27-18, 27-19, and 27-20) in the three unknown
currents, and they can be solved by a variety of techniques.

If we had applied the loop rule to the big loop, we would have obtained
(moving counterclockwise from b) the equation

!1 ! i1R1 ! i2R2 ! !2 # 0.

However, this is merely the sum of Eqs. 27-19 and 27-20.

Resistances in Parallel
Figure 27-10a shows three resistances connected in parallel to an ideal battery
of emf !. The term “in parallel” means that the resistances are directly wired
together on one side and directly wired together on the other side, and that a
potential difference V is applied across the pair of connected sides.Thus, all three
resistances have the same potential difference V across them, producing a cur-
rent through each. In general,
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Figure 27-10 (a) Three resistors connected in parallel across points a and b. (b) An equiva-
lent circuit, with the three resistors replaced with their equivalent resistance Req.

When a potential difference V is applied across resistances connected in parallel,
the resistances all have that same potential difference V.

In Fig. 27-10a, the applied potential difference V is maintained by the battery. In
Fig. 27-10b, the three parallel resistances have been replaced with an equivalent
resistance Req.

b

iR eq

(b)

a

i

+
–

i

R3R1

a  

b  

 i 1  i 3 i 2
+ 
– R 2

(a) 

i 

i 

i2 + i3 

i2 + i3 

Parallel resistors and their
equivalent have the same
potential difference (“par-V”).
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Resistances connected in parallel can be replaced with an equivalent resistance
Req that has the same potential difference V and the same total current i as the
actual resistances.

You might remember that Req and all the actual parallel resistances have the
same potential difference V with the nonsense word “par-V.”

To derive an expression for Req in Fig. 27-10b, we first write the current in
each actual resistance in Fig. 27-10a as

where V is the potential difference between a and b. If we apply the junction rule
at point a in Fig. 27-10a and then substitute these values, we find

(27-21)

If we replaced the parallel combination with the equivalent resistance Req

(Fig. 27-10b), we would have

(27-22)

Comparing Eqs. 27-21 and 27-22 leads to

(27-23)

Extending this result to the case of n resistances, we have

(n resistances in parallel). (27-24)

For the case of two resistances, the equivalent resistance is their product divided
by their sum; that is,

(27-25)

Note that when two or more resistances are connected in parallel, the equivalent
resistance is smaller than any of the combining resistances.Table 27-1 summarizes the
equivalence relations for resistors and capacitors in series and in parallel.

Req #
R1R2

R1 " R2
.

1
Req

# !
n

j#1

1
Rj

1
Req

#
1

R1
"

1
R2

"
1

R3
.

i #
V

Req
.

i # i1 " i2 " i3 # V # 1
R1

"
1

R2
"

1
R3

$.

i1 #
V
R1

,  i2 #
V
R2

,  and  i3 #
V
R3

,

Table 27-1 Series and Parallel Resistors and Capacitors

Series Parallel Series Parallel

Resistors Capacitors

Eq. 27-7 Eq. 27-24 Eq. 25-20 Eq. 25-19

Same current through Same potential difference Same charge on all Same potential difference 
all resistors across all resistors capacitors across all capacitors

Ceq # !
n

j#1
 Cj

1
Ceq

# !
n

j#1
 

1
Cj

1
Req

# !
n

j#1 

1
Rj

Req # !
n

j#1
 Rj

Checkpoint 4
A battery, with potential V across it, is connected to a combination of two identical re-
sistors and then has current i through it.What are the potential difference across and
the current through either resistor if the resistors are (a) in series and (b) in parallel?
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702 CHAPTER 27 CIRCUITS

We can now redraw the circuit as in Fig. 27-11c; note that
the current through R23 must be i1 because charge that
moves through R1 and R4 must also move through R23. For
this simple one-loop circuit, the loop rule (applied clockwise
from point a as in Fig. 27-11d) yields

"! ! i1R1 ! i1R23 ! i1R4 # 0.

Substituting the given data, we find

12 V ! i1(20 &) ! i1(12 &) ! i1(8.0 &) # 0,

which gives us

(Answer)

(b) What is the current i2 through R2?

KEY IDEAS

(1) we must now work backward from the equivalent circuit
of Fig. 27-11d, where R23 has replaced R2 and R3. (2) Because
R2 and R3 are in parallel, they both have the same potential
difference across them as R23.

Working backward: We know that the current through R23

is i1 # 0.30 A. Thus, we can use Eq. 26-8 (R # V/i) and
Fig. 27-11e to find the potential difference V23 across R23.
Setting R23 # 12 & from (a), we write Eq. 26-8 as  

V23 # i1R23 # (0.30 A)(12 &) # 3.6 V.

The potential difference across R2 is thus also 3.6 V 
(Fig. 27-11f), so the current i2 in R2 must be, by Eq. 26-8 and
Fig. 27-11g,

(Answer)

(c) What is the current i3 through R3?

KEY IDEAS

We can answer by using either of two techniques: (1) Apply
Eq. 26-8 as we just did. (2) Use the junction rule, which tells
us that at point b in Fig. 27-11b, the incoming current i1 and
the outgoing currents i2 and i3 are related by

i1 # i2 " i3.

Calculation: Rearranging this junction-rule result yields
the result displayed in Fig. 27-11g:

i3 # i1 ! i2 # 0.30 A ! 0.18 A

# 0.12 A. (Answer)

i2 #
V2

R2
#

3.6 V
20 &

# 0.18 A.

i1 #
12 V
40 &

# 0.30 A.

Sample Problem 27.02 Resistors in parallel and in series 

Figure 27-11a shows a multiloop circuit containing one ideal
battery and four resistances with the following values:

(a) What is the current through the battery?

KEY IDEA

Noting that the current through the battery must also be
the current through R1, we see that we might find the
current by applying the loop rule to a loop that includes R1

because the current would be included in the potential
difference across R1.

Incorrect method: Either the left-hand loop or the big loop
should do. Noting that the emf arrow of the battery points
upward, so the current the battery supplies is clockwise, we
might apply the loop rule to the left-hand loop, clockwise
from point a. With i being the current through the battery,
we would get

"! ! iR1 ! iR2 ! iR4 # 0 (incorrect).

However, this equation is incorrect because it assumes
that R1, R2, and R4 all have the same current i. Resistances
R1 and R4 do have the same current, because the current
passing through R4 must pass through the battery and then
through R1 with no change in value. However, that current
splits at junction point b—only part passes through R2, the
rest through R3.

Dead-end method: To distinguish the several currents in
the circuit, we must label them individually as in Fig. 27-11b.
Then, circling clockwise from a, we can write the loop rule
for the left-hand loop as

"! ! i1R1 ! i2R2 ! i1R4 # 0.

Unfortunately, this equation contains two unknowns, i1 and
i2; we would need at least one more equation to find them.

Successful method: A much easier option is to simplify
the circuit of Fig. 27-11b by finding equivalent resistances.
Note carefully that R1 and R2 are not in series and thus
cannot be replaced with an equivalent resistance.
However, R2 and R3 are in parallel, so we can use either
Eq. 27-24 or Eq. 27-25 to find their equivalent resistance
R23. From the latter,

R23 #
R2R3

R2 " R3
#

(20 &)(30 &)
50 &

# 12 &.

R3 # 30 &,  R4 # 8.0 &.

R1 # 20 &,  R2 # 20 &,  ! # 12 V,

Additional examples, video, and practice available at WileyPLUS
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70327-2 MULTILOOP CIRCUITS

Figure 27-11 (a) A circuit with an ideal battery. (b) Label the currents. (c) Replacing the parallel resistors with their equivalent.
(d)–(g) Working backward to find the currents through the parallel resistors.

R 2

(a)

a

+
–

R 4

R 1

c

b

R 3

R 2

a

+
–

R 4

R 1

c

b

R 3

 i 2

 i 1

 i 1  i 3

(b)

a c

+
–

R 4 = 8.0 Ω

R 1 = 20 Ω

b

 i 1
R 23 = 12 Ω

 i 1

 i 1

(c)

The equivalent of parallel
resistors is smaller.

a

+
–

R 4 = 8.0 Ω

R 1 = 20 Ω

b
 i 1  = 0.30 A

 i 1  = 0.30 A

 i 1  = 0.30 A

(d)

R 23 = 12 Ω= 12 V

a cc

c c

+
–

R 4 = 8.0 Ω

R 1 = 20 Ω

b
 i 1  = 0.30 A

 i 1  = 0.30 A

 i 1  = 0.30 A

(e)

R 23 = 12 ΩV 23 = 3.6 V= 12 V

Applying the loop rule
yields the current.

Applying V = iR yields
the potential difference.

+
–

R 4 = 8.0 Ω

R 1 = 20 Ω

 i 1  = 0.30 A

 i 1  = 0.30 A

 i 2

 i 3

( f )

R 2 = 20 ΩV 2 = 3.6 V

V 3 = 3.6 V

= 12 V

R 3 = 30 Ω

+
–

R 4 = 8.0 Ω

R 1 = 20 Ω

 i 1  = 0.30 A

 i 1  = 0.30 A
(g)

R 2 = 20 Ω
i 2 = 0.18 A

i 3 = 0.12 A

V 2 = 3.6 V

V 3 = 3.6 V

= 12 V

R 3 = 30 Ω

Parallel resistors and
their equivalent have
the same V (“par-V”).

Applying i = V/R 
yields the current.

b b

A
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704 CHAPTER 27 CIRCUITS

The total resistance Rrow along a row is the sum of the inter-
nal resistances of the 5000 electroplaques:

Rrow # 5000r # (5000)(0.25 &) # 1250 &.

We can now represent each of the 140 identical rows as hav-
ing a single emf !row and a single resistance Rrow (Fig. 27-12b).

In Fig. 27-12b, the emf between point a and point b on
any row is !row # 750 V. Because the rows are identical and
because they are all connected together at the left in
Fig. 27-12b, all points b in that figure are at the same electric
potential. Thus, we can consider them to be connected so
that there is only a single point b. The emf between point a
and this single point b is !row # 750 V, so we can draw the
circuit as shown in Fig. 27-12c.

Between points b and c in Fig. 27-12c are 140 resistances
Rrow # 1250 &, all in parallel. The equivalent resistance Req

of this combination is given by Eq. 27-24 as

or  Req #
Rrow

140
#

1250 &
140

# 8.93 &.

1
Req

# !
140

j#1

1
Rj

# 140 
1

Rrow
,

Sample Problem 27.03 Many real batteries in series and in parallel in an electric fish

Electric fish can generate current with biological emf cells
called electroplaques. In the South American eel they are
arranged in 140 rows, each row stretching horizontally along
the body and each containing 5000 cells, as suggested by
Fig. 27-12a. Each electroplaque has an emf ! of 0.15 V and
an internal resistance r of 0.25 &.The water surrounding the
eel completes a circuit between the two ends of the electro-
plaque array, one end at the head of the animal and the
other near the tail.

(a) If the surrounding water has resistance Rw # 800 &, how
much current can the eel produce in the water?

KEY IDEA

We can simplify the circuit of Fig. 27-12a by replacing 
combinations of emfs and internal resistances with equiva-
lent emfs and resistances.

Calculations: We first consider a single row. The total emf
!row along a row of 5000 electroplaques is the sum of the emfs:

!row # 5000! # (5000)(0.15 V) # 750 V.

Figure 27-12 (a) A model of the electric circuit of an eel in water. Along each of 140 rows extending from the head to the tail of the eel, there are
5000 electroplaques.The surrounding water has resistance Rw. (b) The emf !row and resistance Rrow of each row. (c) The emf between points a
and b is !row. Between points b and c are 140 parallel resistances Rrow. (d) The simplified circuit.

Rw

i

(b)

a c

row Rrow

row Rrow

row Rrow

b

b

b

Rw

(c)

a
c

row

Rrow

b

= 750 V

Rw

(d)

row

Req

+ –
i

Rw
(a)

r

Electroplaque

 5000 electroplaques per row

140 rows

–+

750 V

–+ –+

–+ –+ –+

–+ –+ –+

–+

–+

–+

–+

Rrow

Rrow

a b c

First, reduce each row to one emf and one resistance.

Emfs in parallel
act as a single emf.

Replace the parallel
resistances with their
equivalent.

Points with the same
potential can be taken
as though connected.
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70527-2 MULTILOOP CIRCUITS

Replacing the parallel combination with Req, we obtain the
simplified circuit of Fig. 27-12d. Applying the loop rule to
this circuit counterclockwise from point b, we have

!row ! iRw ! iReq # 0.

Solving for i and substituting the known data, we find

(Answer)

If the head or tail of the eel is near a fish, some of this
current could pass along a narrow path through the fish,
stunning or killing it.

# 0.927 A " 0.93 A.

i #
! row

Rw " Req
#

750 V
800 & " 8.93 &

(b) How much current irow travels through each row of 
Fig. 27-12a?

KEY IDEA

Because the rows are identical, the current into and out of
the eel is evenly divided among them.

Calculation: Thus, we write

(Answer)

Thus, the current through each row is small, so that the eel
need not stun or kill itself when it stuns or kills a fish.

irow #
i

140
#

0.927 A
140

# 6.6 ' 10 !3 A.

Combining equations: We now have a system of two equa-
tions (Eqs. 27-27 and 27-28) in two unknowns (i1 and i2) to
solve either “by hand” (which is easy enough here) or with a
“math package.” (One solution technique is Cramer’s rule,
given in Appendix E.) We find

i1 # !0.50 A. (27-29)

(The minus sign signals that our arbitrary choice of direction
for i1 in Fig. 27-13 is wrong, but we must wait to correct it.)
Substituting i1 # !0.50 A into Eq. 27-28 and solving for
i2 then give us

i2 # 0.25 A. (Answer)

With Eq. 27-26 we then find that

i3 # i1 " i2 # !0.50 A " 0.25 A

# !0.25 A.

The positive answer we obtained for i2 signals that our choice of
direction for that current is correct. However, the negative an-
swers for i1 and i3 indicate that our choices for those currents are
wrong.Thus,as a last step here,we correct the answers by revers-
ing the arrows for i1 and i3 in Fig.27-13 and then writing

i1 # 0.50 A and i3 # 0.25 A. (Answer)

Caution: Always make any such correction as the last step
and not before calculating all the currents.

Figure 27-13 shows a circuit whose elements have the fol-
lowing values:

The three batteries are ideal batteries. Find the mag-
nitude and direction of the current in each of the three
branches.

KEY IDEAS

It is not worthwhile to try to simplify this circuit, because no
two resistors are in parallel, and the resistors that are in series
(those in the right branch or those in the left branch) present
no problem. So, our plan is to apply the junction and loop rules.

Junction rule: Using arbitrarily chosen directions for the cur-
rents as shown in Fig. 27-13, we apply the junction rule at point
a by writing

i3 # i1 " i2. (27-26)

An application of the junction rule at junction b gives only
the same equation, so we next apply the loop rule to any two
of the three loops of the circuit.

Left-hand loop: We first arbitrarily choose the left-hand
loop, arbitrarily start at point b, and arbitrarily traverse the
loop in the clockwise direction, obtaining

!i1R1 " !1 ! i1R1 ! (i1 " i2)R2  ! !2 # 0,

where we have used (i1 " i2) instead of i3 in the middle
branch. Substituting the given data and simplifying yield

i1(8.0 &) " i2(4.0 &) # !3.0 V. (27-27)

Right-hand loop: For our second application of the loop
rule, we arbitrarily choose to traverse the right-hand loop
counterclockwise from point b, finding

!i2R1 " !2 ! i2R1 ! (i1 " i2)R2 ! !2 # 0.

Substituting the given data and simplifying yield

i1(4.0 &) " i2(8.0 &) # 0. (27-28)

4.0 &.
R2 # R1 # 2.0 &,! 1 # 3.0 V, ! 2 # 6.0 V,

Figure 27-13 A multi-
loop circuit with three
ideal batteries and five
resistances.

+  
–  1 

2 
R 2

R1 R1

R1

R1

+  
–  

+  
– 2

i1
i2

i1 i2
a  

b  

i3

Sample Problem 27.04 Multiloop circuit and simultaneous loop equations

Additional examples, video, and practice available at WileyPLUS
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The Ammeter and the Voltmeter
An instrument used to measure currents is called an ammeter. To measure the
current in a wire, you usually have to break or cut the wire and insert the ammeter
so that the current to be measured passes through the meter. (In Fig. 27-14, amme-
ter A is set up to measure current i.) It is essential that the resistance RA of the am-
meter be very much smaller than other resistances in the circuit. Otherwise, the
very presence of the meter will change the current to be measured.

A meter used to measure potential differences is called a voltmeter. To find
the potential difference between any two points in the circuit, the voltmeter ter-
minals are connected between those points without breaking or cutting the wire.
(In Fig. 27-14, voltmeter V is set up to measure the voltage across R1.) It is essen-
tial that the resistance RV of a voltmeter be very much larger than the resistance
of any circuit element across which the voltmeter is connected. Otherwise, the
meter alters the potential difference that is to be measured.

Often a single meter is packaged so that, by means of a switch, it can be made
to serve as either an ammeter or a voltmeter—and usually also as an ohmmeter,
designed to measure the resistance of any element connected between its termi-
nals. Such a versatile unit is called a multimeter.

706 CHAPTER 27 CIRCUITS

27-3 THE AMMETER AND THE VOLTMETER

After reading this module, you should be able to . . .

27.26 Explain the use of an ammeter and a voltmeter, includ-

Learning Objective

● Here are three measurement instruments used with cir-
cuits: An ammeter measures current. A voltmeter measures

Key Idea

+ 
– R2 

A R1 

r 

a 

b 

c 

d 

V 

i 

i 

Figure 27-14 A single-loop circuit, showing
how to connect an ammeter (A) and a
voltmeter (V).

27-4 RC CIRCUITS

After reading this module, you should be able to . . .

27.27 Draw schematic diagrams of charging and discharging
RC circuits.

27.28 Write the loop equation (a differential equation) for a
charging RC circuit.

27.29 Write the loop equation (a differential equation) for a
discharging RC circuit.

27.30 For a capacitor in a charging or discharging RC circuit,
apply the relationship giving the charge as a function of time.

27.31 From the function giving the charge as a function of
time in a charging or discharging RC circuit, find the ca-
pacitor’s potential difference as a function of time.

27.32 In a charging or discharging RC circuit, find the resis-
tor’s current and potential difference as functions of time.

27.33 Calculate the capacitive time constant t.
27.34 For a charging RC circuit and a discharging RC circuit,

determine the capacitor’s charge and potential difference
at the start of the process and then a long time later.

Learning Objectives

● When an emf is applied to a resistance R and capacitance C
in series, the charge on the capacitor increases according to

q # C !(1 ! e!t/RC) (charging a capacitor),

in which C ! # q0 is the equilibrium (final) charge and RC # t
is the capacitive time constant of the circuit. 
● During the charging, the current is

(charging a capacitor).i #
dq
dt

# # !

R $e!t/RC

!
Key Ideas

● When a capacitor discharges through a resistance R, the
charge on the capacitor decays according to

q # q0e!t/RC (discharging a capacitor).

● During the discharging, the current is

(discharging a capacitor).i #
dq
dt

# !# q0

RC $e!t/RC

ing the resistance required of each in order not to affect the
measured quantities.

voltage (potential differences). A multimeter can be used to
measure current, voltage, or resistance.
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RC Circuits
In preceding modules we dealt only with circuits in which the currents did not
vary with time. Here we begin a discussion of time-varying currents.

Charging a Capacitor
The capacitor of capacitance C in Fig. 27-15 is initially uncharged.To charge it, we
close switch S on point a. This completes an RC series circuit consisting of the
capacitor, an ideal battery of emf !, and a resistance R.

From Module 25-1, we already know that as soon as the circuit is com-
plete, charge begins to flow (current exists) between a capacitor plate and a
battery terminal on each side of the capacitor. This current increases the
charge q on the plates and the potential difference VC (# q/C) across the ca-
pacitor. When that potential difference equals the potential difference across
the battery (which here is equal to the emf !), the current is zero. From Eq.
25-1 (q # CV), the equilibrium (final) charge on the then fully charged capacitor
is equal to C !.

Here we want to examine the charging process. In particular we want to
know how the charge q(t) on the capacitor plates, the potential difference VC(t)
across the capacitor, and the current i(t) in the circuit vary with time during the
charging process. We begin by applying the loop rule to the circuit, traversing it
clockwise from the negative terminal of the battery.We find

(27-30)

The last term on the left side represents the potential difference across the capac-
itor. The term is negative because the capacitor’s top plate, which is connected to
the battery’s positive terminal, is at a higher potential than the lower plate. Thus,
there is a drop in potential as we move down through the capacitor.

We cannot immediately solve Eq. 27-30 because it contains two variables,
i and q. However, those variables are not independent but are related by

(27-31)

Substituting this for i in Eq. 27-30 and rearranging, we find

(charging equation). (27-32)

This differential equation describes the time variation of the charge q on the
capacitor in Fig. 27-15. To solve it, we need to find the function q(t) that satisfies
this equation and also satisfies the condition that the capacitor be initially
uncharged; that is, q # 0 at t # 0.

We shall soon show that the solution to Eq. 27-32 is

q # C !(1 ! e!t/RC) (charging a capacitor). (27-33)

(Here e is the exponential base, 2.718 . . . , and not the elementary charge.)
Note that Eq. 27-33 does indeed satisfy our required initial condition, because
at t # 0 the term e!t/RC is unity; so the equation gives q # 0. Note also that as t
goes to infinity (that is, a long time later), the term e!t/RC goes to zero; so
the equation gives the proper value for the full (equilibrium) charge on the
capacitor — namely, q # C !. A plot of q(t) for the charging process is given in
Fig. 27-16a.

The derivative of q(t) is the current i(t) charging the capacitor:

(charging a capacitor). (27-34)i #
dq
dt

# # !

R $e!t/RC

R 
dq
dt

"
q
C

# !

i #
dq
dt

.

! ! iR !
q
C

# 0.

70727-4 RC CIRCUITS

Figure 27-15 When switch S is closed on a, the
capacitor is charged through the resistor.
When the switch is afterward closed on b, the
capacitor discharges through the resistor.

C 
+ 
– 

S 

R b 

a 

Figure 27-16 (a) A plot of Eq. 27-33, which
shows the buildup of charge on the capaci-
tor of Fig. 27-15. (b) A plot of Eq. 27-34,
which shows the decline of the charging
current in the circuit of Fig. 27-15.The
curves are plotted for R # 2000 &, C # 1 mF,
and ! # 10 V; the small triangles represent
successive intervals of one time constant t.

q 
( 

 C
) 

12 
i (

m
A

) 
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8 
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4 

2 

0 

0 

2 4 6 8 10 

2 4 6 8 

Time (ms) 

Time (ms) 

(a) 

(b) 

10 

µ 
C 

/R 

The capacitor’s charge
grows as the resistor’s
current dies out.
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A plot of i(t) for the charging process is given in Fig. 27-16b. Note that the current
has the initial value !/R and that it decreases to zero as the capacitor becomes
fully charged.

708 CHAPTER 27 CIRCUITS

A capacitor that is being charged initially acts like ordinary connecting wire 
relative to the charging current. A long time later, it acts like a broken wire.

By combining Eq. 25-1 (q # CV ) and Eq. 27-33, we find that the potential
difference VC(t) across the capacitor during the charging process is

(charging a capacitor). (27-35)

This tells us that VC # 0 at t # 0 and that VC # ! when the capacitor becomes
fully charged as t : (.

The Time Constant
The product RC that appears in Eqs. 27-33, 27-34, and 27-35 has the dimensions
of time (both because the argument of an exponential must be dimensionless and
because, in fact, 1.0 & ' 1.0 F # 1.0 s). The product RC is called the capacitive
time constant of the circuit and is represented with the symbol t:

t # RC (time constant). (27-36)

From Eq. 27-33, we can now see that at time t # t (# RC), the charge on the
initially uncharged capacitor of Fig. 27-15 has increased from zero to

q # C !(1 ! e!1) # 0.63C !. (27-37)

In words, during the first time constant t the charge has increased from zero to
63% of its final value C !. In Fig. 27-16, the small triangles along the time axes
mark successive intervals of one time constant during the charging of the capaci-
tor.The charging times for RC circuits are often stated in terms of t . For example,
a circuit with t # 1 ms charges quickly while one with t # 100 s charges much
more slowly,

Discharging a Capacitor
Assume now that the capacitor of Fig. 27-15 is fully charged to a potential V0

equal to the emf ! of the battery.At a new time t # 0, switch S is thrown from a to
b so that the capacitor can discharge through resistance R. How do the charge
q(t) on the capacitor and the current i(t) through the discharge loop of capacitor
and resistance now vary with time?

The differential equation describing q(t) is like Eq. 27-32 except that now,
with no battery in the discharge loop, ! # 0.Thus,

(discharging equation). (27-38)

The solution to this differential equation is

q # q0e!t/RC (discharging a capacitor), (27-39)

where q0 (# CV0) is the initial charge on the capacitor.You can verify by substitu-
tion that Eq. 27-39 is indeed a solution of Eq. 27-38.

R 
dq
dt

"
q
C

# 0

VC #
q
C

# !(1 ! e!t/RC)
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Equation 27-39 tells us that q decreases exponentially with time, at a rate that
is set by the capacitive time constant t # RC. At time t # t, the capacitor’s
charge has been reduced to q0e!1, or about 37% of the initial value. Note that a
greater t means a greater discharge time.

Differentiating Eq. 27-39 gives us the current i(t):

(discharging a capacitor). (27-40)

This tells us that the current also decreases exponentially with time, at a rate set
by t. The initial current i0 is equal to q0/RC. Note that you can find i0 by simply
applying the loop rule to the circuit at t # 0; just then the capacitor’s initial poten-
tial V0 is connected across the resistance R, so the current must be i0 # V0/R #
(q0/C)/R # q0/RC. The minus sign in Eq. 27-40 can be ignored; it merely means
that the capacitor’s charge q is decreasing.

Derivation of Eq. 27-33
To solve Eq. 27-32, we first rewrite it as

(27-41)

The general solution to this differential equation is of the form

q # qp " Ke!at, (27-42)

where qp is a particular solution of the differential equation, K is a constant to
be evaluated from the initial conditions, and a # 1/RC is the coefficient of q in
Eq. 27-41. To find qp, we set dq/dt # 0 in Eq. 27-41 (corresponding to the final
condition of no further charging), let q # qp, and solve, obtaining

qp # C !. (27-43)

To evaluate K, we first substitute this into Eq. 27-42 to get

q # C ! " Ke!at.

Then substituting the initial conditions q # 0 and t # 0 yields

0 # C ! " K,

or K # !C !. Finally, with the values of qp, a, and K inserted, Eq. 27-42 becomes

q # C ! ! C !e!t/RC,

which, with a slight modification, is Eq. 27-33.

dq
dt

"
q

RC
#

!

R
.

i #
dq
dt

# !# q0

RC $e!t/RC

70927-4 RC CIRCUITS

Checkpoint 5
The table gives four sets of values for the circuit elements in Fig. 27-15. Rank the
sets according to (a) the initial current (as the switch is closed on a) and (b) the time
required for the current to decrease to half its initial value, greatest first.

1 2 3 4

! (V) 12 12 10 10
R (&) 2 3 10 5
C (mF) 3 2 0.5 2
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710 CHAPTER 27 CIRCUITS

Sample Problem 27.05 Discharging an RC circuit to avoid a fire in a race car pit stop

As a car rolls along pavement, electrons move from the
pavement first onto the tires and then onto the car body.The
car stores this excess charge and the associated electric poten-
tial energy as if the car body were one plate of a capacitor and
the pavement were the other plate (Fig. 27-17a).When the car
stops, it discharges its excess charge and energy through the
tires, just as a capacitor can discharge through a resistor. If a
conducting object comes within a few centimeters of the car
before the car is discharged, the remaining energy can be
suddenly transferred to a spark between the car and the
object. Suppose the conducting object is a fuel dispenser. The
spark will not ignite the fuel and cause a fire if the spark
energy is less than the critical value Ufire # 50 mJ.

When the car of Fig. 27-17a stops at time t # 0, the car–
ground potential difference is V0 # 30 kV. The car–ground
capacitance is C # 500 pF, and the resistance of each tire is
Rtire # 100 G&. How much time does the car take to discharge
through the tires to drop below the critical value Ufire?

KEY IDEAS

(1) At any time t, a capacitor’s stored electric potential energy U
is related to its stored charge q according to Eq. 25-21 (U #
q2/2C). (2) While a capacitor is discharging, the charge de-
creases with time according to Eq.27-39 (q # q0e!t/RC).

Calculations: We can treat the tires as resistors that are
connected to one another at their tops via the car body and
at their bottoms via the pavement. Figure 27-17b shows how
the four resistors are connected in parallel across the car’s
capacitance, and Fig. 27-17c shows their equivalent resist-
ance R. From Eq. 27-24, R is given by

or (27-44)

When the car stops, it discharges its excess charge and
energy through R.We now use our two Key Ideas to analyze
the discharge. Substituting Eq. 27-39 into Eq. 25-21 gives

(27-45)

From Eq. 25-1 (q # CV ), we can relate the initial charge q0

on the car to the given initial potential difference V0: q0 #
CV0. Substituting this equation into Eq. 27-45 brings us to

U #
(CV0)2

2C
 e!2t/RC #

CV 0
2

2
 e!2t/RC,

 #
q0

2

2C
 e!2t/RC.

U #
q2

2C
 #

(q0e!t/RC)2

2C

R #
Rtire

4
#

100 ' 10 9 &

4
# 25 ' 10 9 &.

1
R

#
1

Rtire
"

1
Rtire

"
1

Rtire
"

1
Rtire

,

or (27-46)

Taking the natural logarithms of both sides, we obtain

or (27-47)

Substituting the given data, we find that the time the car
takes to discharge to the energy level Ufire # 50 mJ is

(Answer)

Fire or no fire: This car requires at least 9.4 s before fuel can be
brought safely near it.A pit crew cannot wait that long. So the
tires include some type of conducting material (such as carbon
black) to lower the tire resistance and thus increase the dis-
charge rate. Figure 27-17d shows the stored energy U versus
time t for tire resistances of R # 100 G& (our value) and R #
10 G&. Note how much more rapidly a car discharges to level
Ufire with the lower R value.

# 9.4 s.

 ' ln# 2(50 ' 10 !3 J)
(500 ' 10 !12 F)(30 ' 10 3 V)2 $

 t # !
(25 ' 10 9 &)(500 ' 10 !12 F)

2

t # !
RC
2

 ln# 2U
CV0

2 $.

!
2t

RC
# ln# 2U

CV0
2 $,

e!2t/RC #
2U

CV 0
2 .

Tire 
resistance Effective 

capacitance 

DRIVE    THRUDRIVE    THRU

3N
Bomman

SchtuffMDOG 
WNFR

True Vales RPM

XP3I

6
ULTRA

MOTEL
PST4

R tire R tire R tire R tireC RC

(a)

(b) (c)

(d)

U

Ufire

0.94
t (s)

9.4

10 GΩ

100 GΩ

Figure 27-17 (a) A charged car and the
pavement acts like a capacitor that can
discharge through the tires. (b) The
effective circuit of the car–pavement
capacitor, with four tire resistances Rtire

connected in parallel. (c) The equivalent
resistance R of the tires. (d) The electric
potential energy U in the car–pavement
capacitor decreases during discharge.

Additional examples, video, and practice available at WileyPLUS
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711PROBLEMS

Emf An emf device does work on charges to maintain a potential
difference between its output terminals. If dW is the work the device
does to force positive charge dq from the negative to the positive ter-
minal, then the emf (work per unit charge) of the device is

(definition of !). (27-1)

The volt is the SI unit of emf as well as of potential difference.An ideal
emf device is one that lacks any internal resistance. The potential dif-
ference between its terminals is equal to the emf. A real emf device
has internal resistance.The potential difference between its terminals
is equal to the emf only if there is no current through the device.

Analyzing Circuits The change in potential in traversing a
resistance R in the direction of the current is !iR; in the opposite
direction it is "iR (resistance rule). The change in potential in tra-
versing an ideal emf device in the direction of the emf arrow is "!;
in the opposite direction it is !! (emf rule). Conservation of
energy leads to the loop rule:

Loop Rule. The algebraic sum of the changes in potential encountered
in a complete traversal of any loop of a circuit must be zero.

Conservation of charge gives us the junction rule:

Junction Rule. The sum of the currents entering any junction
must be equal to the sum of the currents leaving that junction.

Single-Loop Circuits The current in a single-loop circuit con-
taining a single resistance R and an emf device with emf ! and in-
ternal resistance r is

(27-4)

which reduces to i # !/R for an ideal emf device with r # 0.

Power When a real battery of emf ! and internal resistance r
does work on the charge carriers in a current i through the battery,
the rate P of energy transfer to the charge carriers is

P # iV, (27-14)

i #
!

R " r
,

! #
dW
dq

Review & Summary

where V is the potential across the terminals of the battery.The rate
Pr at which energy is dissipated as thermal energy in the battery is

Pr # i2r. (27-16)

The rate Pemf at which the chemical energy in the battery changes is

Pemf # i!. (27-17)

Series Resistances When resistances are in series, they have
the same current. The equivalent resistance that can replace a se-
ries combination of resistances is

(n resistances in series). (27-7)

Parallel Resistances When resistances are in parallel,
they have the same potential difference. The equivalent resistance
that can replace a parallel combination of resistances is given by

(n resistances in parallel). (27-24)

RC Circuits When an emf ! is applied to a resistance R and ca-
pacitance C in series, as in Fig. 27-15 with the switch at a, the charge
on the capacitor increases according to

q # C !(1 ! e!t/RC) (charging a capacitor), (27-33)

in which C! # q0 is the equilibrium (final) charge and RC # t is the ca-
pacitive time constant of the circuit. During the charging, the current is

(charging a capacitor). (27-34)

When a capacitor discharges through a resistance R, the charge on
the capacitor decays according to

q # q0e!t/RC (discharging a capacitor). (27-39)

During the discharging, the current is

(discharging a capacitor). (27-40)i #
dq
dt

# !# q0

RC $e!t/RC

i #
dq
dt

# # !

R $e!t/RC

1
Req

 # !
n

j#1

1
Rj

Req # !
n

j#1
 Rj

Problems

1 An isolated charged capacitor may gradually discharge as charge
leaks from one plate to the other through the intermediate material,
as if it were discharging through an external resistor. (a) What is the
resistance of such an external resistor if a 2.00 mF capacitor’s 
potential difference decreases to 60.0% of its initial value of 50.0 V
in 2.40 d? (b) What is the corresponding loss of potential energy in
that time interval? (c) At the end of that interval, at what rate is the
capacitor losing potential energy?

2 In Fig. 27-18, the ideal batteries
have emfs V and 2 # 0.500 1,
and the resistances are each 4.00 .
What is the current in (a) resistance 2
and (b) resistance 3?

3 In Fig. 27-18, !1 # 1.00 V, !2 # 3.00 V,
R1 # 4.00 &, R2 # 2.00 &, R3 # 5.00 &,
and both batteries are ideal. What is the
rate at which energy is dissipated in (a) R1, (b) R2, and (c) R3? What is
the power of (d) battery 1 and (e) battery 2? Is energy being 
absorbed or provided in (f) battery 1 and (g) battery 2?

&
!!!1 # 12.0 +

– 2 R3 
+ 
– 1 

R2 R1 

Figure 27-18 Problems 
2 and 3.

2 (V)

C
ur

re
nt

 (
A

)

is

0

–is
5 10

(b)

2

1

R2

R1

(a)

+
– +

–

Figure 27-19 Problem 4.

4 Both batteries in Fig. 27-19a are ideal. Emf !1 of battery 1 has
a fixed value, but emf !2 of battery 2 can be varied between 1.0 V
and 10 V. The plots in Fig. 27-19b give the currents through the
two batteries as a function of !2. The vertical scale is set by 
is # 0.40 A. You must decide which plot corresponds to which bat-
tery, but for both plots, a negative current occurs when the direc-
tion of the current through the battery is opposite the direction of
that battery’s emf. What are (a) emf !1, (b) resistance R1, and 
(c) resistance R2?
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7 In Fig. 27-22, a voltmeter of re-
sistance RV # 300 & and an amme-
ter of resistance RA # 3.00 & are
being used to measure a resistance
R in a circuit that also contains
a resistance R0 # 100 & and an
ideal battery with an emf of 
! # 18.0 V. Resistance R is given
by R # V/i, where V is the potential
across R and i is the ammeter read-
ing. The voltmeter reading is V$, which is V plus the potential dif-
ference across the ammeter. Thus, the ratio of the two meter
readings is not R but only an apparent resistance R$ # V$/i. If 
R # 85.0 &, what are (a) the ammeter reading, (b) the voltmeter
reading, and (c) R$? (d) If RA is decreased, does the difference
between R$ and R increase, decrease, or remain the same?

8 In Fig. 27-23, R1 100 , R2 R3 50.0 , R4 75.0 , and
the ideal battery has emf ! # 12.0 V. (a) What is the equivalent
resistance? What is i in (b) resistance 1, (c) resistance 2, (d) resist-
ance 3, and (e) resistance 4?

&#&##&#

12 Figure 27-26 shows a battery connected across a uniform resistor
R0.A sliding contact can move across the resistor from x # 0 at the left
to x # 10 cm at the right. Moving the contact changes how much re-
sistance is to the left of the contact and how much is to the right. Find
the rate at which energy is dissipated in resistor R as a function of x.
Plot the function for ! # 50 V,R # 2000 &, and R0 # 100 &.

10 In Fig. 27-23, the resistors have the values R1 # 7.00 &,
R2 12.0 , and R3 4.00 , and the ideal battery’s emf is 
! # 22.0 V. For what value of R4 will the rate at which the battery
transfers energy to the resistors equal (a) 60.0 W, (b) the maximum
possible rate Pmax, and (c) the minimum possible rate Pmin? What
are (d) Pmax and (e) Pmin?

11 In Fig. 27-25, the ideal batteries have emfs 1 5.0 V and
V, the resistances are each 2.0 , and the potential is de-

fined to be zero at the grounded point of the circuit. What are po-
tentials (a) V1 and (b) V2 at the indicated points? (c) What is the
power of battery 2?

&!2 # 19 
#!

&#&#

712 CHAPTER 27 CIRCUITS

5 In Fig. 27-20, two batteries with an emf 
! # 12.0 V and an internal resistance r # 0.500 &
are connected in parallel across a resistance R.
(a) For what value of R is the dissipation rate in
the resistor a maximum? (b) What is that maxi-
mum? and (c) what is the total dissipation rate
in the batteries? In terms of r, what are (d) the
effective (internal) resistance of the two-battery
system and (e) the resistance R that is required
to maximize the dissipation rate? This is a gen-
eral result.

6 Two identical batteries of emf ! # 10.0 V
and internal resistance r 0.200 are to be
connected to an external resistance R, either in
parallel (Fig. 27-20) or in series (Fig. 27-21). If R # 2.00r, what is
the current i in the external resistance in the (a) parallel and (b) se-
ries arrangements? (c) For which arrangement is i greater? If 
R # r/2.00, what is i in the external resistance in the (d) parallel
arrangement and (e) series arrangement? (f) For which arrange-
ment is i greater now?

&#

+ – 

+ – 
r 

r 

R 

Figure 27-20
Problems  
5 and 6.

+ 
– R2

R1

C 

Figure 27-24
Problem 9.

R2 
+ 
– 

R1 

R3 

R4 

Figure 27-23
Problems 8 and 10.

+ – 

R 

R0 

V 

A

Figure 27-22 Problem 7.

+ – + – 
r r 

R 

Figure 27-21 Problem 6.

9 In Fig. 27-24, R1 # 10.0 k&, R2 15.0 k , C 0.400 mF, and the
ideal battery has emf V. First, the switch is closed a long
time so that the steady state is reached.Then the switch is opened at
time t # 0. For resistor 2 and at time t # 4.00 ms, what are (a) the
current, (b) the rate at which the current is changing, and (c) the
rate at which the dissipation rate is changing?

! # 20.0 
#&#

Figure 27-25 Problem 11.

V2 V1 

1 
+ 
– 

2 
+ 
– 

x 

+ – 

R 

R0 

Sliding 
contact 

Figure 27-26 Problem 12.

13 In Fig. 27-14, assume that ! # 13.2 V, r # 100 &, R1 # 250 &,
and R2 # 300 &. If the voltmeter resistance RV is 5.0 k&, what per-
cent error does it introduce into the measurement of the potential
difference across R1? Ignore the presence of the ammeter.

halliday_c27_689-718v2.0.1.qxd  3/5/14  11:27 AM  Page 712

Uploaded By: anonymousSTUDENTS-HUB.com



23 You are given a number of 10 & resistors, each capable of dis-
sipating only 1.0 W without being destroyed. What is the minimum
number of such resistors that you need to combine in series or in
parallel to make a 10 & resistance that is
capable of dissipating at least 12 W?

24 When the lights of a car are
switched on, an ammeter in series with
them reads 10.0 A and a voltmeter
connected across them reads 12.0 V
(Fig. 27-34). When the electric starting
motor is turned on, the ammeter reading
drops to 8.50 A and the lights dim some-
what. If the internal resistance of the
battery is 0.0500 & and that of the am-
meter is negligible, what are (a) the emf
of the battery and (b) the current
through the starting motor when the
lights are on?

15 What multiple of the time constant t gives the time taken by
an initially uncharged capacitor in an RC series circuit to be
charged to 89.0% of its final charge?

16 In Fig. 27-28, an array of n parallel
resistors is connected in series to a re-
sistor and an ideal battery.All the resis-
tors have the same resistance. If an
identical resistor were added in paral-
lel to the parallel array, the current
through the battery would change by
0.833%.What is the value of n?

17 In Fig. 27-29, the resistances are R1 # 3.00 &, R2 # 7.00 &,
and the battery is ideal. What value of R3 maximizes the dissipa-
tion rate in resistance 3?

20 In Fig. 27-31, V,
V, R1 100 ,

and R3 300 . One point of the
circuit is grounded (V # 0).What are
the (a) size and (b) direction (up or
down) of the current through resist-
ance 1, the (c) size and (d) direction
(left or right) of the current through
resistance 2, and the (e) size and
(f) direction of the current through resistance 3? (g) What is the
electric potential at point A?

21 Switch S in Fig. 27-32 is closed at time t # 0, to begin charging
an initially uncharged capacitor of capacitance C # 49.0 mF
through a resistor of resistance R # 32.0 &. At what time is the po-
tential across the capacitor equal to that across the resistor?

&#
R2 # 200 &,&#!2 # 12.0 
!1 # 8.00 14 The resistances in Fig. 27-27a and b are all 4.0 &, and the bat-

teries are ideal 12 V batteries. (a) When switch S in Fig. 27-27a is
closed, what is the change in the electric potential V1 across resis-
tor 1, or does V1 remain the same? (b) When switch S in Fig. 27-27b
is closed, what is the change in V1 across resistor 1, or does V1

remain the same?
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R2 R1 R5 

R4 R6 R3 i6
+ 
– 

Figure 27-30 Problem 19.

(a) (b) 

R2 R1 

S 

R2 R1 

R3 

S 

+ 
– 

+ 
– 

Figure 27-27 Problem 14.

+ 
– 

R3R2

R1

Figure 27-29 Problem 17.

R R 
R 

n resistors 
in parallel 

Figure 27-28 Problem 16.

1 2 R1 

R2 R3 

A 

+ 
– 

+ 
– 

Figure 27-31 Problem 20.

Figure 27-33 Problem 22.

+ 
– 

0–1.00 
mA 

R 

C 
R 

S 
+ 
– 

Figure 27-32
Problem 21.

V 

+ –

S 

S 
Starting 
motor 

Lights 

A 

r 

Figure 27-34
Problem 24.

18 A capacitor with an initial potential difference of 80.0 V
is discharged through a resistor when a switch between them
is closed at t # 0. At t # 10.0 s, the potential difference across the
capacitor is 1.00 V. (a) What is the time constant of the circuit?
(b) What is the potential difference across the capacitor at 
t # 17.0 s?

19 In Fig. 27-30, the current in resistance 6 is i6 # 2.80 A and the
resistances are R1 R2 R3 2.00 , R4 16.0 , R5 8.00 ,
and R6 # 4.00 &.What is the emf of the ideal battery?

&#&#&###

22 A simple ohmmeter is made by connecting a 9.00 V flashlight
battery in series with a resistance R and an ammeter that reads
from 0 to 1.00 mA, as shown in Fig. 27-33. Resistance R is adjusted
so that when the clip leads are shorted together, the meter deflects
to its full-scale value of 1.00 mA. What external resistance across
the leads results in a deflection of (a) 10.0%, (b) 50.0%, and (c)
90.0% of full scale? (d) If the ammeter has a resistance of 20.0 &
and the internal resistance of the battery is negligible, what is the
value of R?
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33 In Fig. 27-39, circuit section
AB absorbs energy at a rate of 
50 W when current i # 2.0 A
through it is in the indicated
direction. Resistance R # 2.0 &.
(a) What is the potential difference
between A and B? Emf device X lacks internal resistance. (b)
What is its emf? (c) Is point B connected to the positive terminal
of X or to the negative terminal?

34 In Fig. 27-40a, both batteries have emf ! # 1.20 V and the
external resistance R is a variable resistor. Figure 27-40b gives
the electric potentials V between the terminals of each battery
as functions of R: Curve 1 corresponds to battery 1, and curve 
2 corresponds to battery 2. The horizontal scale is set by 
Rs # 0.40 &. What is the internal resistance of (a) battery 1 and
(b) battery 2?

30 A capacitor with initial charge q0 is discharged through a
resistor. What multiple of the time constant t gives the time the
capacitor takes to lose (a) the first 25% of its charge and (b) 50%
of its charge?

31 A wire of resistance 5.0 & is connected to a battery whose emf
! is 12 V and whose internal resistance is 0.70 &. In 5.0 min, how
much energy is (a) transferred from chemical form in the battery,
(b) dissipated as thermal energy in the wire, and (c) dissipated as
thermal energy in the battery?

32 Figure 27-38 displays two circuits with a charged capacitor
that is to be discharged through a resistor when a switch is
closed. In Fig. 27-38a, R1 # 20.0 & and C1 # 5.00 mF. In 
Fig. 27-38b, R2 # 10.0 & and C2 # 8.00 mF. The ratio of the initial
charges on the two capacitors is q02/q01 # 1.75. At time t # 0,
both switches are closed. At what time t do the two capacitors
have the same charge?

714 CHAPTER 27 CIRCUITS

26 A 15.0 k& resistor and a capacitor are connected in series, and
then a 31.0 V potential difference is suddenly applied across them.
The potential difference across the capacitor rises to 7.00 V in 1.30
ms. (a) Calculate the time constant of the circuit. (b) Find the ca-
pacitance of the capacitor.

27 In Fig.27-36,battery 1 has emf V
and internal resistance r1 0.025 and 
battery 2 has emf V and internal
resistance r2 0.012 . The batteries are
connected in series with an external resist-
ance R. (a) What R value makes the termi-
nal-to-terminal potential difference of one
of the batteries zero? (b) Which battery 
is that?

28 A solar cell generates a potential difference of 0.10 V when a
500 & resistor is connected across it, and a potential difference of
0.15 V when a 1200 & resistor is substituted. What are the 
(a) internal resistance and (b) emf of the solar cell? (c) The area
of the cell is 5.0 cm2, and the rate per unit area at which it receives
energy from light is 2.0 mW/cm2. What is the efficiency of the cell
for converting light energy to thermal energy in the 1200 & exter-
nal resistor?

29 In Fig. 27-37, Rs is to be adjusted in value by moving the slid-
ing contact across it until points a and b are brought to the same
potential. (One tests for this condition by momentarily connecting
a sensitive ammeter between a and b; if these points are at the
same potential, the ammeter will not deflect.) Show that when this
adjustment is made, the following relation holds: Rx # RsR2/R1. An
unknown resistance (Rx) can be measured in terms of a standard
(Rs) using this device, which is called a Wheatstone bridge.

&#
!2 # 12.0 

&#
!1 # 12.0 

25 In Fig. 27-35, ! # 24.0 V, R1 2000 , R2 3000 , and 
R3 4000 . What are the potential differences (a) VA VB,
(b) VB ! VC, (c) VC ! VD, and (d) VA ! VC?

!&#
&#&#

C2R1 R2C1

(a) (b) 

Figure 27-38 Problem 32.

X 

i

A BR 

Figure 27-39 Problem 33.
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– 
+ 

– 
+ 

Figure 27-40 Problem 34.

R 
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r2
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+ 
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Figure 27-36
Problem 27.

R1 

R1 

R3 

R2 

R2 

A 

B 

D 

C 
+ 
– 

Figure 27-35 Problem 25.

+ – R0 
b 

a 

Rs Rx 

R1 
R2 

Sliding contact 

Figure 27-37 Problem 29.

35 Sixteen copper wires of length l and diameter d are connected
in parallel to form a single composite conductor of resistance R.
What must the diameter D of a single copper wire of length l be if it
is to have the same resistance?
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in the composite wire. Using Table 26-1, calculate the current in 
(a) the copper and (b) the aluminum. (c) If a potential difference 
V # 12.0 V between the ends maintains the current, what is the
length of the composite wire?

42 In Fig. 27-43, the ideal batteries have emfs !1 # 200 V and 
!2 # 50 V and the resistances are R1 # 3.0 & and R2 # 2.0 &. If the
potential at P is 100 V, what is it at Q?

36 A standard flashlight battery can deliver about 2.0 W )h of
energy before it runs down. (a) If a battery costs US$0.85, what is
the cost of operating a 100 W lamp for 8.0 h using batteries?
(b) What is the cost if energy is provided at the rate of US$0.06 per
kilowatt-hour?

37 In Fig. 27-41, the resistances are R1 1.0 and R2 2.0 ,
and the ideal batteries have emfs !1 # 2.0 V and !2 # !3 # 4.0 V.
What are the (a) size and (b) direction (up or down) of the current
in battery 1 and the (c) size and (d) direction of the current in bat-
tery 2? (e) Is battery 1 absorbing or providing energy and (f) at
what rate? (g) What is the potential difference Va ! Vb?

&#&#
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Figure 27-42 Problem 38.
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Figure 27-44
Problem 43.
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Figure 27-43 Problem 42.
+ 
– 3 

R1 + 
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R2 + 
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R1 R1 

R1 

a 

b 

Figure 27-41 Problem 37.

38 In Fig. 27-42, a voltmeter of resistance RV # 300 & and an
ammeter of resistance RA # 3.00 & are being used to measure a
resistance R in a circuit that also contains a resistance R0 # 100 &
and an ideal battery of emf ! # 28.5 V. Resistance R is given by 
R # V/i, where V is the voltmeter reading and i is the current in
resistance R. However, the ammeter reading is not i but rather i$,
which is i plus the current through the voltmeter. Thus, the ratio
of the two meter readings is not R but only an apparent resistance
R$ # V/i$. If R # 85.0 &, what are (a) the ammeter reading, (b)
the voltmeter reading, and (c) R$? (d) If RV is increased, does the
difference between R$ and R increase, decrease, or remain the
same?

39 A 3.00 M& resistor and a 1.00 mF capacitor are connected in
series with an ideal battery of emf V. At 6.00 s after the
connection is made, what is the rate at which (a) the charge of the
capacitor is increasing, (b) energy is being stored in the capacitor,
(c) thermal energy is appearing in the resistor, and (d) energy is
being delivered by the battery?

40 In an RC series circuit, emf ! # 12.0 V, resistance R # 1.40 M&,
and capacitance C # 2.70 mF. (a) Calculate the time constant. (b)
Find the maximum charge that will appear on the capacitor during
charging. (c) How long does it take for the charge to build up to
16.0 mC?

41 A copper wire of radius a # 0.250 mm has an aluminum
jacket of outer radius b 0.450 mm. There is a current i # 2.00 A#

! # 4.00 

43 Figure 27-44 shows the circuit of a flashing lamp, like those
attached to barrels at highway construction sites. The fluores-
cent lamp L (of negligible capacitance) is connected in parallel
across the capacitor C of an RC circuit. There is a current
through the lamp only when the potential difference across it
reaches the breakdown voltage VL; then the capacitor dis-
charges completely through the lamp and the lamp flashes
briefly. For a lamp with breakdown voltage VL # 75.0 V, wired
to a 95.0 V ideal battery and a 0.150 mF capacitor, what
resistance R is needed for two flashes per second?

44 Figure 27-45 shows a section of a circuit. The resistances are
R1 # 2.0 &, R2 # 4.0 &, and R3 # 6.0 &, and the indicated current is
i # 9.0 A.The electric potential difference between points A and B
that connect the section to the rest of the circuit is VA ! VB # 78 V.
(a) Is the device represented by “Box” absorbing or providing 
energy to the circuit, and (b) at what rate?

Box 

A B

i 

R1 

R2 

R3 

Figure 27-45 Problem 44.

45 Six 18.0 & resistors are connected in parallel across a 12.0 V
ideal battery.What is the current through the battery?

46 In Fig. 27-9, what is the potential difference Vd ! Vc between
points d and c if !1 # 4.0 V, !2 # 1.0 V, R1 # R2 # 10 &, and 
R3 # 8.0 &, and the battery is ideal?
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48 In Fig. 27-47a, resistor 3 is a variable resistor and the ideal bat-
tery has emf ! # 18 V. Figure 27-47b gives the current i through the
battery as a function of R3. The horizontal scale is set by R3s # 20 &.
The curve has an asymptote of 2.0 mA as R3 : (.What are (a) resist-
ance R1 and (b) resistance R2?

716 CHAPTER 27 CIRCUITS

47 In the circuit of Fig. 27-46, kV, C 6.5 mF, R1 #
R2 # R3 # 0.73 M&. With C completely uncharged, switch S is
suddenly closed (at t # 0).At t # 0, what are (a) current i1 in resistor
1, (b) current i2 in resistor 2, and (c) current i3 in resistor 3? At t # (
(that is, after many time constants), what are (d) i1, (e) i2, and (f) i3?
What is the potential difference V2 across resistor 2 at (g) t # 0 and
(h) t # (? (i) Sketch V2 versus t between these two extreme times.

#! # 1.2 50 When resistors 1 and 2 are connected in series, the equivalent
resistance is 20.0 &. When they are connected in parallel, the
equivalent resistance is 3.75 &. What are (a) the smaller resistance
and (b) the larger resistance of these two resistors?

51 In Fig. 27-49, R1 # 6.00 &, R2 # 24.0 &, and the ideal battery
has emf ! # 12.0 V. What are the (a) size and (b) direction (left or
right) of current i1? (c) How much energy is dissipated by all four
resistors in 1.00 min?

h 

d 

I 
Lightning 
current 

Figure 27-48 Problem 49.

C 

+ 
– 

S 
R3 

R2 

R1 

Figure 27-46 Problem 47.

R3 R2 

R1 

i  (
m

A
) 

6 

4 

2 

0 
R3 (Ω) 

R3s

(a) (b) 

+ 
– 

Figure 27-47 Problem 48.

49 Side flash. Figure 27-48 indicates one reason no one should
stand under a tree during a lightning storm. If lightning comes down
the side of the tree, a portion can jump over to the person, especially
if the current on the tree reaches a dry region on the bark and there-
after must travel through air to reach the ground. In the figure, part of
the lightning jumps through distance d in air and then travels through
the person (who has negligible resistance relative to that of air be-
cause of the highly conducting salty fluids within the body). The rest
of the current travels through air alongside the tree, for a distance h.
If d/h # 0.380 and the total current is I # 4000 A, what is the current
through the person?

i1 

R1

R2

R2

R2

+ – 

Figure 27-49 Problem 51.

52 (a) In Fig. 27-50, what value must R have if the current in the
circuit is to be 1.5 mA? Take !1 # 2.0 V,!2 # 3.0 V,and r1 # r2 # 3.0 &.
(b) What is the rate at which thermal energy appears in R?

– 
+ 

r1 

1 – 
+ 

r2 

2 

R 

Figure 27-50 Problem 52.

53 A car battery with a 12 V emf and an internal resistance of 
0.030 is being charged with a current of 40 A. What are (a) the 
potential difference V across the terminals, (b) the rate Pr of energy
dissipation inside the battery, and (c) the rate Pemf of energy conver-
sion to chemical form? When the battery is used to supply 40 A to
the starter motor, what are (d) V and (e) Pr?

54 In Fig. 27-51, R1 # R2 # 4.00 & and R3 # 1.50 &. Find the
equivalent resistance between points D and E. (Hint: Imagine that
a battery is connected across those points.)

&

R2 R3

D 

E 

R1

Figure 27-51 Problem 54.

55 A 5.0 km long underground cable extends east to west and
consists of two parallel wires, each of which has resistance 13 /km.
An electrical short develops at distance x from the west end when
a conducting path of resistance R connects the wires (Fig. 27-52).
The resistance of the wires and the short is then 100 & when

&
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VA 

0 

0 

x 

x 

4 

1 2 3

∆VB ∆VC 

V 

V 
(V

) 

Figure 27-55
Problem 58.

*VC # 5.00 V. Resistor 3 has a resistance of 200 &. What is the
resistance of (a) resistor 1 and (b) resistor 2?

measured from the east end and 200 & when measured from the
west end.What are (a) x and (b) R?

West East 

Conducting 
path 

x 

Figure 27-52 Problem 55.

56 The ideal battery in Fig. 27-53a has emf ! # 10.0 V. Plot 1 in
Fig. 27-53b gives the electric potential difference V that can appear
across resistor 1 versus the current i in that resistor when the resistor
is individually tested by putting a variable potential across it. The
scale of the V axis is set by Vs # 18.0 V, and the scale of the i axis is
set by is # 3.00 m+. Plots 2 and 3 are similar plots for resistors 2
and 3, respectively, when they are individually tested by putting a
variable potential across them. What is the current in resistor 2 in
the circuit of Fig. 27-53a?

V 
(V

) 

Vs 

0 

1 

i (mA) 

2 

is 

3 

(b)

R2R1

R3

(a)

+
–

Figure 27-53 Problem 56.

57 (a) In Fig. 27-54, what current does the ammeter read if 
5.0 V (ideal battery), R1 # 2.0 &, R2 # 9.0 &, and R3 # 6.0 &?

(b) The ammeter and battery are now interchanged. Show
that the ammeter reading is unchanged.

! #

58 Figure 27-55 shows a circuit of four resistors that are con-
nected to a larger circuit. The graph below the circuit shows the
electric potential V(x) as a function of position x along the lower
branch of the circuit, through resistor 4; the potential VA is 15.0 V.
The graph above the circuit shows the electric potential V(x)
versus position x along the upper branch of the circuit, through
resistors 1, 2, and 3; the potential differences are *VB # 2.00 V and

+ 
– 

R3 

A 

R2 

R1 

Figure 27-54 Problem 57.

59 (a) In electron-volts, how much work does an ideal battery
with a 20.0 V emf do on an electron that passes through the battery
from the positive to the negative terminal? (b) If 5.17 ' 1018 elec-
trons pass through each second, what is the power of the battery in
watts?

60 Figure 27-56 shows five 8.00 & resistors. Find the equivalent
resistance between points (a) F and H and (b) F and G. (Hint: For
each pair of points, imagine that a battery is connected across the
pair.)

G 

H F 

R R

R 

R R

Figure 27-56 Problem 60.

61 In Fig. 27-57, the ideal batteries have emfs V and
V. What are (a) the current, the dissipation rate in!2 # 4.0  

!1 # 12 

– 
+ 

– +

1 

2 

R1 

R2 

Figure 27-57
Problem 61.

(b) resistor 1 (4.0 &) and (c) resistor 2 (8.0 &), and the energy
transfer rate in (d) battery 1 and (e) battery 2? Is energy being
supplied or absorbed by (f) battery 1 and (g) battery 2?
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67 A 5.7 A current is set up in a circuit for 15.0 min by a
rechargeable battery with a 6.0 V emf. By how much is the chemi-
cal energy of the battery reduced?

68 Figure 27-59 shows a resistor of resistance
R # 6.00 & connected to an ideal battery of
emf ! # 12.0 V by means of two copper wires.
Each wire has length 22.0 cm and radius 
1.00 mm. In dealing with such circuits in this
chapter, we generally neglect the potential
differences along the wires and the transfer of
energy to thermal energy in them. Check
the validity of this neglect for the circuit of
Fig. 27-59: What is the potential difference
across (a) the resistor and (b) each of the two
sections of wire? At what rate is energy lost to thermal energy in
(c) the resistor and (d) each section of wire?

69 In Fig. 27-60, R1 # 100 &, R2 # 50 &, and the ideal batteries
have emfs !1 # 6.0 V, !2 # 10 V, and !3 # 4.0 V. Find (a) the cur-
rent in resistor 1, (b) the current in resistor 2, and (c) the potential
difference between points a and b.

718 CHAPTER 27 CIRCUITS

Wire 1 

Wire 2 

R 

Figure 27-59
Problem 68.

R2 

+ – 

1 

R1 

+ – + – 

3 2 

a b 

Figure 27-60 Problem 69.

+ 
– 

R 

A 

R 

R 

R1

Figure 27-58 Problem 66.

62 A 1.0 mF capacitor with an initial stored energy of 0.60 J is
discharged through a 1.0 M& resistor. (a) What is the initial charge
on the capacitor? (b) What is the current through the resistor when
the discharge starts? Find an expression that gives, as a function of
time t, (c) the potential difference VC across the capacitor, (d) the
potential difference VR across the resistor, and (e) the rate at which
thermal energy is produced in the resistor.

63 The current in a single-loop circuit with one resistance R is 
5.0 A. When an additional resistance of 2.0 is inserted in series
with R, the current drops to 3.0 A.What is R?

64 A certain car battery with a 12.0 V emf has an initial charge of
120 A )h. Assuming that the potential across the terminals stays
constant until the battery is completely discharged, for how many
hours can it deliver energy at the rate of 75.0 W?

65 A total resistance of 5.00 & is to be produced by connecting
an unknown resistance to a 15.0 & resistance. (a) What must be the
value of the unknown resistance, and (b) should it be connected in
series or in parallel? (c) What is the total resistance if the unknown
resistance is connected the other way?

66 In Fig. 27-58, R1 4.00R, the ammeter resistance is zero, and
the battery is ideal. What multiple of !/R gives the current in the
ammeter?

#

&

halliday_c27_689-718v2.0.1.qxd  3/5/14  11:27 AM  Page 718

Uploaded By: anonymousSTUDENTS-HUB.com



719

C H A P T E R  2 8

Magnetic Fields

What Is Physics?
As we have discussed, one major goal of physics is the study of how an electric
field can produce an electric force on a charged object. A closely related goal is
the study of how a magnetic field can produce a magnetic force on a (moving)
charged particle or on a magnetic object such as a magnet. You may already have
a hint of what a magnetic field is if you have ever attached a note to a refrigerator
door with a small magnet or accidentally erased a credit card by moving it near
a magnet.The magnet acts on the door or credit card via its magnetic field.

The applications of magnetic fields and magnetic forces are countless and
changing rapidly every year. Here are just a few examples. For decades, the
entertainment industry depended on the magnetic recording of music and images
on audiotape and videotape. Although digital technology has largely replaced

28-1 MAGNETIC FIELDS AND THE DEFINITION OF B
:

After reading this module, you should be able to . . .

28.01 Distinguish an electromagnet from a permanent
magnet.

28.02 Identify that a magnetic field is a vector quantity and
thus has both magnitude and direction.

28.03 Explain how a magnetic field can be defined in terms
of what happens to a charged particle moving through
the field.

28.04 For a charged particle moving through a uniform mag-
netic field, apply the relationship between force magnitude
FB, charge q, speed v, field magnitude B, and the angle f
between the directions of the velocity vector and the
magnetic field vector .

28.05 For a charged particle sent through a uniform 
magnetic field, find the direction of the magnetic force 

by (1) applying the right-hand rule to find the directionF
:

B

B
:

v:

of the cross product and (2) determining what
effect the charge q has on the direction.

28.06 Find the magnetic force acting on a moving charged
particle by evaluating the cross product in 
unit-vector notation and magnitude-angle notation.

28.07 Identify that the magnetic force vector must always
be perpendicular to both the velocity vector and the
magnetic field vector .

28.08 Identify the effect of the magnetic force on the
particle’s speed and kinetic energy.

28.09 Identify a magnet as being a magnetic dipole.
28.10 Identify that opposite magnetic poles attract each

other and like magnetic poles repel each other.
28.11 Explain magnetic field lines, including where they origi-

nate and terminate and what their spacing represents.

B
:

v:
F
:

B

q(v: ! B
:

)
F
:

B

v: ! B
:

● When a charged particle moves through a magnetic field ,
a magnetic force acts on the particle as given by

where q is the particle’s charge (sign included) and is the
particle’s velocity.
● The right-hand rule for cross products gives the direction

v:
F
:

B " q(v: ! B
:

),

B
:

of . The sign of q then determines whether is 
in the same direction as or in the opposite 
direction.
● The magnitude of is given by

FB " vB sin f,!q!

F
:

B

v: ! B
:

F
:

Bv: ! B
:

Learning Objectives

Key Ideas

where f is the angle between and .B
:

v:
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magnetic recording, the industry still depends on the magnets that control CD
and DVD players and computer hard drives; magnets also drive the speaker
cones in headphones, TVs, computers, and telephones. A modern car comes
equipped with dozens of magnets because they are required in the motors for
engine ignition, automatic window control, sunroof control, and windshield wiper
control. Most security alarm systems, doorbells, and automatic door latches
employ magnets. In short, you are surrounded by magnets.

The science of magnetic fields is physics; the application of magnetic fields is
engineering. Both the science and the application begin with the question “What
produces a magnetic field?”

What Produces a Magnetic Field?
Because an electric field is produced by an electric charge, we might reason-
ably expect that a magnetic field is produced by a magnetic charge. Although
individual magnetic charges (called magnetic monopoles) are predicted by cer-
tain theories, their existence has not been confirmed. How then are magnetic
fields produced? There are two ways.

One way is to use moving electrically charged particles, such as a current in
a wire, to make an electromagnet. The current produces a magnetic field that can
be used, for example, to control a computer hard drive or to sort scrap metal
(Fig. 28-1). In Chapter 29, we discuss the magnetic field due to a current.

The other way to produce a magnetic field is by means of elementary parti-
cles such as electrons because these particles have an intrinsic magnetic field
around them. That is, the magnetic field is a basic characteristic of each particle
just as mass and electric charge (or lack of charge) are basic characteristics.As we
discuss in Chapter 32, the magnetic fields of the electrons in certain materials add
together to give a net magnetic field around the material. Such addition is the
reason why a permanent magnet, the type used to hang refrigerator notes, has a
permanent magnetic field. In other materials, the magnetic fields of the electrons
cancel out, giving no net magnetic field surrounding the material. Such cancella-
tion is the reason you do not have a permanent field around your body, which is
good because otherwise you might be slammed up against a refrigerator door
every time you passed one.

Our first job in this chapter is to define the magnetic field . We do so by
using the experimental fact that when a charged particle moves through a 
magnetic field, a magnetic force acts on the particle.

The Definition of 
We determined the electric field at a point by putting a test particle of charge
q at rest at that point and measuring the electric force acting on the particle.
We then defined as

(28-1)

If a magnetic monopole were available, we could define in a similar way.
Because such particles have not been found, we must define in another way,
in terms of the magnetic force exerted on a moving electrically charged test
particle.

Moving Charged Particle. In principle, we do this by firing a charged parti-
cle through the point at which is to be defined, using various directions and
speeds for the particle and determining the force that acts on the particle at
that point. After many such trials we would find that when the particle’s velocity

F
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B
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F
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:
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E
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B
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F
:
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B
:

B
:

E
:
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Figure 28-1 Using an electromagnet to collect
and transport scrap metal at a steel mill.
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is along a particular axis through the point, force is zero. For all other direc-
tions of , the magnitude of is always proportional to v sin f, where f is the
angle between the zero-force axis and the direction of . Furthermore, the direc-
tion of is always perpendicular to the direction of . (These results suggest
that a cross product is involved.)

The Field. We can then define a magnetic field to be a vector quantity that
is directed along the zero-force axis. We can next measure the magnitude of 

when is directed perpendicular to that axis and then define the magnitude
of in terms of that force magnitude:

where q is the charge of the particle.
We can summarize all these results with the following vector equation:

(28-2)

that is, the force on the particle is equal to the charge q times the cross product
of its velocity and the field (all measured in the same reference frame).
Using Eq. 3-24 for the cross product, we can write the magnitude of as

FB " vB sin f, (28-3)

where f is the angle between the directions of velocity and magnetic field .

Finding the Magnetic Force on a Particle
Equation 28-3 tells us that the magnitude of the force acting on a particle in
a magnetic field is proportional to the charge q and speed v of the particle. Thus,
the force is equal to zero if the charge is zero or if the particle is stationary.
Equation 28-3 also tells us that the magnitude of the force is zero if and areB
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:

Figure 28-2 (a)–(c) The right-hand rule (in which is swept into through the smaller an-
gle f between them) gives the direction of as the direction of the thumb. (d) If q is
positive, then the direction of is in the direction of (e) If q is negative,
then the direction of is opposite that of v: ! B

:
.F

:
B

v: ! B
:

.F
:

B " qv: ! B
:

v: ! B
:

B
:

v:
(a) (b) (c) (d) (e)

v
B B B

Bv !

B
FB

FB
B

Force on positive
particle

Force on negative
particlevCross     into     to get the new vectorB Bv ! .

Bv ! Bv !

either parallel (f " 0 ) or antiparallel (f " 180 ), and the force is at its maximum
when and are perpendicular to each other.

Directions. Equation 28-2 tells us all this plus the direction of . From
Module 3-3, we know that the cross product in Eq. 28-2 is a vector that is
perpendicular to the two vectors and . The right-hand rule (Figs. 28-2a
through c) tells us that  the thumb of the right hand points in the direction
of when the fingers sweep into . If q is positive, then (by Eq. 28-2) the
force has the same sign as and thus must be in the same direction; that
is, for positive q, is directed along the thumb (Fig. 28-2d). If q is negative, thenF

:
B

v: ! B
:

F
:

B

B
:

v:v: ! B
:

B
:

v:
v: ! B

:
F
:
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:
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the force and cross product have opposite signs and thus must be in
opposite directions. For negative q, is directed opposite the thumb (Fig. 28-2e).
Heads up: Neglect of this effect of negative q is a very common error on exams.

Regardless of the sign of the charge, however,

F
:

B

v: ! B
:

F
:

B
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The force acting on a charged particle moving with velocity through a
magnetic field is always perpendicular to and .B

:
v:B

:
v:F

:
B

Thus, never has a component parallel to . This means that cannot change
the particle’s speed v (and thus it cannot change the particle’s kinetic energy).
The force can change only the direction of (and thus the direction of travel);
only in this sense can accelerate the particle.

To develop a feeling for Eq. 28-2, consider Fig. 28-3, which shows some tracks
left by charged particles moving rapidly through a bubble chamber. The chamber,
which is filled with liquid hydrogen, is immersed in a strong uniform magnetic
field that is directed out of the plane of the figure. An incoming gamma ray 
particle—which leaves no track because it is uncharged—transforms into an
electron (spiral track marked e$) and a positron (track marked e%) while it
knocks an electron out of a hydrogen atom (long track marked e$). Check with
Eq. 28-2 and Fig. 28-2 that the three tracks made by these two negative particles
and one positive particle curve in the proper directions.

Unit. The SI unit for that follows from Eqs. 28-2 and 28-3 is the newton
per coulomb-meter per second. For convenience, this is called the tesla (T):

Recalling that a coulomb per second is an ampere, we have

(28-4)

An earlier (non-SI) unit for , still in common use, is the gauss (G), and

1 tesla " 104 gauss. (28-5)

Table 28-1 lists the magnetic fields that occur in a few situations. Note that Earth’s
magnetic field near the planet’s surface is about 10$4 T (" 100 mT or 1 G).

B
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Figure 28-3 The tracks of two electrons (e$)
and a positron (e%) in a bubble chamber
that is immersed in a uniform magnetic field
that is directed out of the plane of the page.

Table 28-1 Some Approximate 
Magnetic Fields

At surface of neutron star 108 T
Near big electromagnet 1.5 T
Near small bar magnet 10$2 T
At Earth’s surface 10$4 T
In interstellar space 10$10 T
Smallest value in 

magnetically 
shielded room 10$14 T

Checkpoint 1
The figure shows three sit-
uations in which a charged
particle with velocity 
travels through a uniform
magnetic field . In each
situation, what is the di-
rection of the magnetic
force on the particle?F
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Magnetic Field Lines
We can represent magnetic fields with field lines, as we did for electric fields.
Similar rules apply: (1) the direction of the tangent to a magnetic field line at
any point gives the direction of at that point, and (2) the spacing of the lines
represents the magnitude of —the magnetic field is stronger where the lines
are closer together, and conversely.

B
:

B
:
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Figure 28-4a shows how the magnetic field near a bar magnet (a permanent
magnet in the shape of a bar) can be represented by magnetic field lines.The lines
all pass through the magnet, and they all form closed loops (even those that are not
shown closed in the figure). The external magnetic effects of a bar magnet are
strongest near its ends, where the field lines are most closely spaced. Thus, the
magnetic field of the bar magnet in Fig. 28-4b collects the iron filings mainly near
the two ends of the magnet.

Two Poles. The (closed) field lines enter one end of a magnet and exit the
other end. The end of a magnet from which the field lines emerge is called the
north pole of the magnet; the other end, where field lines enter the magnet, is
called the south pole. Because a magnet has two poles, it is said to be a magnetic
dipole. The magnets we use to fix notes on refrigerators are short bar magnets.
Figure 28-5 shows two other common shapes for magnets: a horseshoe magnet
and a magnet that has been bent around into the shape of a C so that the pole
faces are facing each other. (The magnetic field between the pole faces can then
be approximately uniform.) Regardless of the shape of the magnets, if we place
two of them near each other we find:

723

Figure 28-4 (a) The magnetic field lines for a
bar magnet. (b) A “cow magnet”—a bar
magnet that is intended to be slipped down
into the rumen of a cow to prevent acciden-
tally ingested bits of scrap iron from reach-
ing the cow’s intestines.The iron filings at
its ends reveal the magnetic field lines.

N 

S 

(a) 

(b)

Courtesy Dr. Richard Cannon, 
Southeast Missouri State 
University, Cape Girardeau

Opposite magnetic poles attract each other, and like magnetic poles repel 
each other.

When you hold two magnets near each other with your hands, this attraction or
repulsion seems almost magical because there is no contact between the two to
visibly justify the pulling or pushing. As we did with the electrostatic force be-
tween two charged particles, we explain this noncontact force in terms of a field
that you cannot see, here the magnetic field.

Earth has a magnetic field that is produced in its core by still unknown
mechanisms. On Earth’s surface, we can detect this magnetic field with a com-
pass, which is essentially a slender bar magnet on a low-friction pivot. This bar
magnet, or this needle, turns because its north-pole end is attracted toward the
Arctic region of Earth. Thus, the south pole of Earth’s magnetic field must be lo-
cated toward the Arctic. Logically, we then should call the pole there a south
pole. However, because we call that direction north, we are trapped into the
statement that Earth has a geomagnetic north pole in that direction.

With more careful measurement we would find that in the Northern Hemi-
sphere, the magnetic field lines of Earth generally point down into Earth and
toward the Arctic. In the Southern Hemisphere, they generally point up out of
Earth and away from the Antarctic—that is, away from Earth’s geomagnetic
south pole.

Figure 28-5 (a) A horseshoe magnet and (b) a C-shaped magnet. (Only some of the external
field lines are shown.)

N S

S

N

(a) (b)

The field lines run from
the north pole to the
south pole.

28-1 MAGNETIC FIELDS AND THE DEFINITION OF B
:
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724 CHAPTER 28 MAGNETIC FIELDS

Direction: To find the direction of , we use the fact that
has the direction of the cross product Because

the charge q is positive, must have the same direction as
which can be determined with the right-hand rule

for cross products (as in Fig. 28-2d). We know that is di-
rected horizontally from south to north and is directed
vertically up. The right-hand rule shows us that the deflect-
ing force must be directed horizontally from west to east,
as Fig. 28-6 shows. (The array of dots in the figure represents
a magnetic field directed out of the plane of the figure. An
array of Xs would have represented a magnetic field di-
rected into that plane.)

If the charge of the particle were negative, the magnetic
deflecting force would be directed in the opposite direction—
that is, horizontally from east to west.This is predicted auto-
matically by Eq. 28-2 if we substitute a negative value for q.

F
:

B

B
:

v:
! B

:
,v:

F
:

B

! B
:

.qv:F
:

B

F
:

B

a "
FB

m
"

6.1 ! 10$15 N
1.67 ! 10$27 kg

" 3.7 ! 1012 m/s2.

Sample Problem 28.01 Magnetic force on a moving charged particle

A uniform magnetic field , with magnitude 1.2 mT, is
directed vertically upward throughout the volume of a labo-
ratory chamber.A proton with kinetic energy 5.3 MeV enters
the chamber, moving horizontally from south to north.What
magnetic deflecting force acts on the proton as it enters the
chamber? The proton mass is 1.67 ! 10$27 kg. (Neglect
Earth’s magnetic field.)

KEY IDEAS

Because the proton is charged and moving through a mag-
netic field, a magnetic force can act on it. Because the ini-
tial direction of the proton’s velocity is not along a magnetic
field line, is not simply zero.

Magnitude: To find the magnitude of , we can use Eq. 28-3
provided we first find the proton’s speed v.

We can find v from the given kinetic energy because
. Solving for v, we obtain

Equation 28-3 then yields

(Answer)

This may seem like a small force, but it acts on a particle of
small mass, producing a large acceleration; namely,

" 6.1 ! 10$15 N.
! (1.2 ! 10$3 T)(sin 90#)

" (1.60 ! 10$19 C)(3.2 ! 107 m/s)
FB " !q!vB sin f

 " 3.2 ! 107 m/s.

 v " A 2K
m

" A (2)(5.3 MeV)(1.60 ! 10$13 J/MeV)
1.67 ! 10$27 kg

K " 1
2 mv2

(FB " !q!vB sin f)
F
:

B

F
:

B

F
:

B

B
:

FB 

N 

S 

E W 

Path of proton

+ 

v 
B 

Figure 28-6 An overhead view of a proton moving from south to
north with velocity in a chamber. A magnetic field is directed
vertically upward in the chamber, as represented by the array of
dots (which resemble the tips of arrows).The proton is deflected
toward the east.

v:

28-2 CROSSED FIELDS: DISCOVERY OF THE ELECTRON

After reading this module, you should be able to . . .

28.12 Describe the experiment of J. J. Thomson.
28.13 For a charged particle moving through a magnetic field

and an electric field, determine the net force on the particle
in both magnitude-angle notation and unit-vector notation.

28.14 In situations where the magnetic force and electric
force on a particle are in opposite directions, determine
the speeds at which the forces cancel, the magnetic force
dominates, and the electric force dominates.

Learning Objectives

● If a charged particle moves through a region containing
both an electric field and a magnetic field, it can be
affected by both an electric force and a magnetic 
force.

● If the fields are perpendicular to each other, they are said to
be crossed fields.
● If the forces are in opposite directions, a particular speed
will result in no deflection of the particle.

Key Ideas

Additional examples, video, and practice available at WileyPLUS
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Crossed Fields: Discovery of the Electron
Both an electric field and a magnetic field can produce a force on a charged
particle. When the two fields are perpendicular to each other, they are said to be
crossed fields. Here we shall examine what happens to charged particles—
namely, electrons—as they move through crossed fields. We use as our example
the experiment that led to the discovery of the electron in 1897 by J. J. Thomson
at Cambridge University.

Two Forces. Figure 28-7 shows a modern, simplified version of Thomson’s
experimental apparatus—a cathode ray tube (which is like the picture tube in an
old-type television set). Charged particles (which we now know as electrons) are
emitted by a hot filament at the rear of the evacuated tube and are accelerated by
an applied potential difference V. After they pass through a slit in screen C, they
form a narrow beam. They then pass through a region of crossed and fields,
headed toward a fluorescent screen S, where they produce a spot of light (on a
television screen the spot is part of the picture). The forces on the charged parti-
cles in the crossed-fields region can deflect them from the center of the screen.
By controlling the magnitudes and directions of the fields, Thomson could thus
control where the spot of light appeared on the screen. Recall that the force on a
negatively charged particle due to an electric field is directed opposite the field.
Thus, for the arrangement of Fig. 28-7, electrons are forced up the page by electric
field and down the page by magnetic field ; that is, the forces are in opposi-
tion. Thomson’s procedure was equivalent to the following series of steps.

1. Set E " 0 and B " 0 and note the position of the spot on screen S due to the
undeflected beam.

2. Turn on and measure the resulting beam deflection.
3. Maintaining , now turn on and adjust its value until the beam returns to the

undeflected position. (With the forces in opposition, they can be made to cancel.)

We discussed the deflection of a charged particle moving through an electric
field between two plates (step 2 here) in Sample Problem 22.04. We found that
the deflection of the particle at the far end of the plates is

(28-6)

where v is the particle’s speed, m its mass, and q its charge, and L is the length of
the plates. We can apply this same equation to the beam of electrons in Fig. 28-7;
if need be, we can calculate the deflection by measuring the deflection of the
beam on screen S and then working back to calculate the deflection y at the end
of the plates. (Because the direction of the deflection is set by the sign of the
particle’s charge, Thomson was able to show that the particles that were lighting
up his screen were negatively charged.)

y "
!q! EL2

2mv2 ,

E
:

B
:
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:
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:
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:

72528-2 CROSSED FIELDS: DISCOVERY OF THE ELECTRON

Figure 28-7 A modern version of J. J.
Thomson’s apparatus for measuring the ra-
tio of mass to charge for the electron. An
electric field is established by connecting
a battery across the deflecting-plate termi-
nals.The magnetic field is set up by means
of a current in a system of coils (not shown).
The magnetic field shown is into the plane
of the figure, as represented by the array of
Xs (which resemble the feathered ends of
arrows).
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● When a uniform magnetic field is applied to a conducting
strip carrying current i, with the field perpendicular to the
direction of the current, a Hall-effect potential difference V is
set up across the strip.
● The electric force on the charge carriers is then balanced
by the magnetic force on them.
● The number density n of the charge carriers can then be de-
termined from

F
:

B

F
:

E

B
:

where l is the thickness of the strip (parallel to ).
● When a conductor moves through a uniform magnetic field

at speed v, the Hall-effect potential difference V across it is

where d is the width perpendicular to both velocity and field .B
:

v:
V " vBd,

B
:

B
:

n "
Bi
Vle

,

Key Ideas

Canceling Forces. When the two fields in Fig. 28-7 are adjusted so that the
two deflecting forces cancel (step 3), we have from Eqs. 28-1 and 28-3

E " vB sin(90#) " 'q'vB

or (opposite forces canceling). (28-7)

Thus, the crossed fields allow us to measure the speed of the charged particles
passing through them. Substituting Eq. 28-7 for v in Eq. 28-6 and rearranging yield

(28-8)

in which all quantities on the right can be measured.Thus, the crossed fields allow us
to measure the ratio m/ of the particles moving through Thomson’s apparatus.
(Caution: Equation 28-7 applies only when the electric and magnetic forces are in
opposite directions.You might see other situations in the homework problems.)

Thomson claimed that these particles are found in all matter.He also claimed that
they are lighter than the lightest known atom (hydrogen) by a factor of more than
1000. (The exact ratio proved later to be 1836.15.) His m/ measurement, coupled
with the boldness of his two claims, is considered to be the “discovery of the electron.”

!q!

!q!

m
!q!

"
B2L2

2yE
,

v "
E
B

!q!!q!

726 CHAPTER 28 MAGNETIC FIELDS

Checkpoint 2
The figure shows four directions for the velocity
vector of a positively charged particle moving
through a uniform electric field (directed out
of the page and represented with an encircled dot)
and a uniform magnetic field . (a) Rank directions
1, 2, and 3 according to the magnitude of the net
force on the particle, greatest first. (b) Of all four
directions, which might result in a net force of zero?

B
:

E
:
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28-3 CROSSED FIELDS: THE HALL EFFECT

After reading this module, you should be able to . . .

28.15 Describe the Hall effect for a metal strip carrying
current, explaining how the electric field is set up and
what limits its magnitude.

28.16 For a conducting strip in a Hall-effect situation, draw the
vectors for the magnetic field and electric field. For the con-
duction electrons, draw the vectors for the velocity, mag-
netic force, and electric force.

28.17 Apply the relationship between the Hall potential

difference V, the electric field magnitude E, and the width of
the strip d.

28.18 Apply the relationship between charge-carrier number
density n, magnetic field magnitude B, current i, and 
Hall-effect potential difference V.

28.19 Apply the Hall-effect results to a conducting object mov-
ing through a uniform magnetic field, identifying the width
across which a Hall-effect potential difference V is set up
and calculating V.

Learning Objectives
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Crossed Fields: The Hall Effect
As we just discussed, a beam of electrons in a vacuum can be deflected by a
magnetic field. Can the drifting conduction electrons in a copper wire also be
deflected by a magnetic field? In 1879, Edwin H. Hall, then a 24-year-old grad-
uate student at the Johns Hopkins University, showed that they can. This Hall
effect allows us to find out whether the charge carriers in a conductor are posi-
tively or negatively charged. Beyond that, we can measure the number of such
carriers per unit volume of the conductor.

Figure 28-8a shows a copper strip of width d, carrying a current i whose
conventional direction is from the top of the figure to the bottom. The charge
carriers are electrons and, as we know, they drift (with drift speed vd) in the
opposite direction, from bottom to top. At the instant shown in Fig. 28-8a,
an external magnetic field , pointing into the plane of the figure, has just 
been turned on. From Eq. 28-2 we see that a magnetic deflecting force will act
on each drifting electron, pushing it toward the right edge of the strip.

As time goes on, electrons move to the right, mostly piling up on the right
edge of the strip, leaving uncompensated positive charges in fixed positions at the
left edge.The separation of positive charges on the left edge and negative charges
on the right edge produces an electric field within the strip, pointing from left
to right in Fig. 28-8b. This field exerts an electric force on each electron, tend-
ing to push it to the left. Thus, this electric force on the electrons, which opposes
the magnetic force on them, begins to build up.

Equilibrium. An equilibrium quickly develops in which the electric force on
each electron has increased enough to match the magnetic force. When this hap-
pens, as Fig. 28-8b shows, the force due to and the force due to are in balance.
The drifting electrons then move along the strip toward the top of the page at ve-
locity with no further collection of electrons on the right edge of the strip and
thus no further increase in the electric field .

A Hall potential difference V is associated with the electric field across strip
width d. From Eq. 24-21, the magnitude of that potential difference is

V " Ed. (28-9)

By connecting a voltmeter across the width, we can measure the potential differ-
ence between the two edges of the strip. Moreover, the voltmeter can tell us
which edge is at higher potential. For the situation of Fig. 28-8b, we would find
that the left edge is at higher potential, which is consistent with our assumption
that the charge carriers are negatively charged.

For a moment, let us make the opposite assumption, that the charge carriers in
current i are positively charged (Fig. 28-8c). Convince yourself that as these charge
carriers move from top to bottom in the strip, they are pushed to the right edge by 
and thus that the right edge is at higher potential. Because that last statement is con-
tradicted by our voltmeter reading, the charge carriers must be negatively charged.

Number Density. Now for the quantitative part. When the electric and mag-
netic forces are in balance (Fig. 28-8b), Eqs. 28-1 and 28-3 give us

eE " evdB. (28-10)

From Eq. 26-7, the drift speed vd is

(28-11)

in which J (" i/A) is the current density in the strip, A is the cross-sectional area of
the strip,and n is the number density of charge carriers (number per unit volume).

In Eq. 28-10, substituting for E with Eq. 28-9 and substituting for vd with
Eq. 28-11, we obtain

(28-12)n "
Bi
Vle
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Figure 28-8 A strip of copper carrying a cur-
rent i is immersed in a magnetic field .
(a) The situation immediately after the
magnetic field is turned on.The curved
path that will then be taken by an electron
is shown. (b) The situation at equilibrium,
which quickly follows. Note that negative
charges pile up on the right side of the strip,
leaving uncompensated positive charges on
the left.Thus, the left side is at a higher po-
tential than the right side. (c) For the same
current direction, if the charge carriers
were positively charged, they would pile up
on the right side, and the right side would
be at the higher potential.
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tive direction of the x axis (Fig. 28-9b). Thus, acts in the
negative direction of the x axis, toward the left face of the
cube (Fig. 28-9c).

Most of the electrons are fixed in place in the atoms
of the cube. However, because the cube is a metal, it con-
tains conduction electrons that are free to move. Some of
those conduction electrons are deflected by to the left
cube face, making that face negatively charged and
leaving the right face positively charged (Fig. 28-9d). This
charge separation produces an electric field directed
from the positively charged right face to the negatively
charged left face (Fig. 28-9e). Thus, the left face is at
a lower electric potential, and the right face is at a higher
electric potential.

(b) What is the potential difference between the faces of
higher and lower electric potential?

KEY IDEAS

1. The electric field created by the charge separation
produces an electric force on each electronF

:
E " qE

:
E
:

E
:

F
:

B

F
:

B

Sample Problem 28.02 Potential difference set up across a moving conductor

Figure 28-9a shows a solid metal cube, of edge length 
d " 1.5 cm, moving in the positive y direction at a constant
velocity of magnitude 4.0 m/s. The cube moves through a
uniform magnetic field of magnitude 0.050 T in the posi-
tive z direction.

(a) Which cube face is at a lower electric potential and
which is at a higher electric potential because of the motion
through the field?

KEY IDEA

Because the cube is moving through a magnetic field , a
magnetic force acts on its charged particles, including its
conduction electrons.

Reasoning: When the cube first begins to move through
the magnetic field, its electrons do also. Because each elec-
tron has charge q and is moving through a magnetic field
with velocity the magnetic force acting on the electron
is given by Eq. 28-2. Because q is negative, the direction of

is opposite the cross product , which is in the posi-! B
:

v:F
:

B

F
:

Bv:,

F
:

B

B
:

B
:

v:

in which l (" A/d) is the thickness of the strip. With this equation we can find n
from measurable quantities.

Drift Speed. It is also possible to use the Hall effect to measure directly the
drift speed vd of the charge carriers, which you may recall is of the order of cen-
timeters per hour. In this clever experiment, the metal strip is moved mechani-
cally through the magnetic field in a direction opposite that of the drift velocity
of the charge carriers. The speed of the moving strip is then adjusted until the
Hall potential difference vanishes. At this condition, with no Hall effect, the
velocity of the charge carriers with respect to the laboratory frame must be zero,
so the velocity of the strip must be equal in magnitude but opposite the direction
of the velocity of the negative charge carriers.

Moving Conductor. When a conductor begins to move at speed v through a
magnetic field, its conduction electrons do also. They are then like the moving
conduction electrons in the current in Figs. 28-8a and b, and an electric field 
and potential difference V are quickly set up. As with the current, equilibrium of
the electric and magnetic forces is established, but we now write that condition in
terms of the conductor’s speed v instead of the drift speed vd in a current as we
did in Eq. 28-10:

eE " evB.

Substituting for E with Eq. 28-9, we find that the potential difference is

V " vBd. (28-13)

Such a motion-caused circuit potential difference can be of serious concern in
some situations, such as when a conductor in an orbiting satellite moves through
Earth’s magnetic field. However, if a conducting line (said to be an electrody-
namic tether) dangles from the satellite, the potential produced along the line
might be used to maneuver the satellite.

E
:
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Figure 28-9 (a) A solid metal cube moves at constant velocity through a uniform magnetic field. (b)–(d) In these front views,
the magnetic force acting on an electron forces the electron to the left face, making that face negative and leaving the oppo-
site face positive. (e)–(f) The resulting weak electric field creates a weak electric force on the next electron, but it too is
forced to the left face. Now (g) the electric field is stronger and (h) the electric force matches the magnetic force.

Calculations: We seek the potential difference V between
the left and right cube faces after equilibrium was reached
(which occurred quickly). We can obtain V with Eq. 28-9 
(V Ed) provided we first find the magnitude E of the
electric field at equilibrium. We can do so with the equation
for the balance of forces (FE " FB).

For FE, we substitute E, and then for FB, we substitute
vB sin f from Eq. 28-3. From Fig. 28-9a, we see that the

angle f between velocity vector and magnetic field vector
is 90 ; thus sin f 1 and FE FB yields

E " vB sin 90# " vB.

This gives us E " vB; so V " Ed becomes

V " vBd.

Substituting known values tells us that the potential differ-
ence between the left and right cube faces is

(Answer) " 0.0030 V " 3.0 mV.

  V " (4.0 m/s)(0.050 T)(0.015 m)

!q!!q!!q!

""#B
:

v:
!q!

!q!

"

(Fig. 28-9f ). Because q is negative, this force is directed
opposite the field —that is, rightward. Thus on each
electron, acts toward the right and acts toward
the left.

2. When the cube had just begun to move through the mag-
netic field and the charge separation had just begun, the
magnitude of began to increase from zero. Thus, the
magnitude of also began to increase from zero and was
initially smaller than the magnitude of . During this
early stage, the net force on any electron was dominated
by , which continuously moved additional electrons to
the left cube face, increasing the charge separation be-
tween the left and right cube faces (Fig. 28-9g).

3. However, as the charge separation increased, eventually
magnitude FE became equal to magnitude FB (Fig. 28-9h).
Because the forces were in opposite directions, the net
force on any electron was then zero, and no additional
electrons were moved to the left cube face. Thus, the
magnitude of could not increase further, and the elec-
trons were then in equilibrium.
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Additional examples, video, and practice available at WileyPLUS
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A Circulating Charged Particle
If a particle moves in a circle at constant speed, we can be sure that the net force
acting on the particle is constant in magnitude and points toward the center of
the circle, always perpendicular to the particle’s velocity. Think of a stone tied to
a string and whirled in a circle on a smooth horizontal surface, or of a satellite
moving in a circular orbit around Earth. In the first case, the tension in the string
provides the necessary force and centripetal acceleration. In the second case,
Earth’s gravitational attraction provides the force and acceleration.

Figure 28-10 shows another example: A beam of electrons is projected into
a chamber by an electron gun G. The electrons enter in the plane of the page with
speed v and then move in a region of uniform magnetic field directed out of
that plane. As a result, a magnetic force continuously deflects the
electrons, and because and are always perpendicular to each other, this
deflection causes the electrons to follow a circular path. The path is visible in the
photo because atoms of gas in the chamber emit light when some of the circulat-
ing electrons collide with them.

We would like to determine the parameters that characterize the circular
motion of these electrons, or of any particle of charge magnitude 'q' and mass m
moving perpendicular to a uniform magnetic field at speed v. From Eq. 28-3,
the force acting on the particle has a magnitude of . From Newton’s second!q! vB

B
:

B
:

v:
F
:

B " qv: ! B
:

B
:
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28-4 A CIRCULATING CHARGED PARTICLE

After reading this module, you should be able to . . .

28.20 For a charged particle moving through a uniform
magnetic field, identify under what conditions it will travel
in a straight line, in a circular path, and in a helical path.

28.21 For a charged particle in uniform circular motion due to
a magnetic force, start with Newton’s second law and
derive an expression for the orbital radius r in terms of the
field magnitude B and the particle’s mass m, charge
magnitude q, and speed v.

28.22 For a charged particle moving along a circular path in
a uniform magnetic field, calculate and relate speed, cen-
tripetal force, centripetal acceleration, radius, period, fre-
quency, and angular frequency, and identify which of the
quantities do not depend on speed.

28.23 For a positive particle and a negative particle moving

along a circular path in a uniform magnetic field, sketch the
path and indicate the magnetic field vector, the velocity
vector, the result of the cross product of the velocity and
field vectors, and the magnetic force vector.

28.24 For a charged particle moving in a helical path in a
magnetic field, sketch the path and indicate the magnetic
field, the pitch, the radius of curvature, the velocity
component parallel to the field, and the velocity compo-
nent perpendicular to the field.

28.25 For helical motion in a magnetic field, apply the
relationship between the radius of curvature and one of
the velocity components.

28.26 For helical motion in a magnetic field, identify pitch p
and relate it to one of the velocity components.

Learning Objectives

● A charged particle with mass m and charge magnitude 
moving with velocity perpendicular to a uniform magnetic
field will travel in a circle. 
● Applying Newton’s second law to the circular motion
yields

from which we find the radius r of the circle to be

!q!vB "
mv2

r
,

B
:

v:
!q!

● The frequency of revolution f, the angular frequency v, and
the period of the motion T are given by

● If the velocity of the particle has a component parallel to the mag-
netic field, the particle moves in a helical path about field vector .B

:

f "
v

2p
"

1
T

"
!q!B
2pm

.

r "
mv
!q!B

.

Key Ideas

law applied to uniform circular motion (Eq. 6-18),

(28-14)F " m 
v2

r
,

(F
:

" ma:)
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73128-4 A CIRCULATING CHARGED PARTICLE

Courtesy Jearl Walker

B

v

FB

G

Figure 28-10 Electrons circulating in a chamber containing gas at low pressure (their path
is the glowing circle). A uniform magnetic field , pointing directly out of the plane of
the page, fills the chamber. Note the radially directed magnetic force ; for circular motion to
occur, must point toward the center of the circle.Use the right-hand rule for cross products to
confirm that gives the proper direction.(Don’t forget the sign of q.)F

:
BF

:
B " qv: ! B

:
F
:

B

F
:

B

B
:

we have

(28-15)

Solving for r, we find the radius of the circular path as

(radius). (28-16)

The period T (the time for one full revolution) is equal to the circumference 
divided by the speed:

(period). (28-17)

The frequency f (the number of revolutions per unit time) is

(frequency). (28-18)

The angular frequency v of the motion is then

(angular frequency). (28-19)

The quantities T, f, and v do not depend on the speed of the particle (provided
the speed is much less than the speed of light). Fast particles move in large circles
and slow ones in small circles, but all particles with the same charge-to-mass ratio

/m take the same time T (the period) to complete one round trip. Using Eq. 28-2,!q!

v " 2p f "
!q!B
m

f "
1
T

"
!q!B
2pm

T "
2pr

v
"

2p

v
mv
!q!B

"
2pm
!q!B

r "
mv
!q!B

!q !vB "
mv2

r
.

you can show that if you are looking in the direction of , the direction of ro-
tation for a positive particle is always counterclockwise, and the direction for
a negative particle is always clockwise.

B
:
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(a) (c)(b)

FB

p

r
q

φv⊥

v⎪⎪

q

φ

v⎪⎪

v⊥

φ

+ +

Particle Spiral path

FB

v

v
B

B

B

B BF

The velocity component 
perpendicular to the field 
causes circling, which is
stretched upward by the 
parallel component.

Checkpoint 3
The figure here shows the circular paths of two particles that travel
at the same speed in a uniform magnetic field , which is directed
into the page. One particle is a proton; the other is an electron
(which is less massive). (a) Which particle follows the smaller circle,
and (b) does that particle travel clockwise or counterclockwise?

B
:

B 

Calculations: Using Eqs. 28-20 and 28-17, we find

(28-21)

Calculating the electron’s speed v from its kinetic energy, we
find that v " 2.81 ! 106 m/s, and so Eq. 28-21 gives us

(Answer)" 9.16 cm.

!
2p(9.11 ! 10$31 kg)

(1.60 ! 10$19 C)(4.55 ! 10$4 T)

p " (2.81 ! 106 m/s)(cos 65.5#)

p " v,T " (v cos f) 
2p m
! q !B

.

Sample Problem 28.03 Helical motion of a charged particle in a magnetic field

An electron with a kinetic energy of 22.5 eV moves into a
region of uniform magnetic field of magnitude 4.55 !
10$4 T. The angle between the directions of and the elec-
tron’s velocity is 65.5°. What is the pitch of the helical
path taken by the electron?

KEY IDEAS

(1) The pitch p is the distance the electron travels parallel to
the magnetic field during one period T of circulation.
(2) The period T is given by Eq. 28-17 for any nonzero angle
between and .B

:
v:

B
:

v:
B
:

B
:

Helical Paths
If the velocity of a charged particle has a component parallel to the (uniform) mag-
netic field, the particle will move in a helical path about the direction of the field
vector. Figure 28-11a, for example, shows the velocity vector of such a particlev:

732 CHAPTER 28 MAGNETIC FIELDS

Figure 28-11 (a) A charged particle moves in
a uniform magnetic field , the particle’s
velocity making an angle f with the field
direction. (b) The particle follows a helical
path of radius r and pitch p. (c) A charged
particle spiraling in a nonuniform magnetic
field. (The particle can become trapped in
this magnetic bottle, spiraling back and
forth between the strong field regions at
either end.) Note that the magnetic force
vectors at the left and right sides have a
component pointing toward the center of
the figure.

v:
B
:

resolved into two components, one parallel to and one perpendicular to it:

(28-20)

The parallel component determines the pitch p of the helix—that is, the distance
between adjacent turns (Fig. 28-11b). The perpendicular component determines
the radius of the helix and is the quantity to be substituted for v in Eq. 28-16.

Figure 28-11c shows a charged particle spiraling in a nonuniform magnetic
field. The more closely spaced field lines at the left and right sides indicate that
the magnetic field is stronger there.When the field at an end is strong enough, the
particle “reflects” from that end.

v, " v cos f  and  v! " v sin f.

B
:

Additional examples, video, and practice available at WileyPLUS
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73328-5 CYCLOTRONS AND SYNCHROTRONS

we get

or (28-22)

Finding mass: Substituting this value for v into Eq. 28-16
gives us

Thus,

Solving this for m and substituting the given data yield

(Answer) " 3.3863 ! 10$25 kg " 203.93 u.

 "
(0.080000 T)2(1.6022 ! 10$19 C)(1.6254 m)2

8(1000.0 V)

m "
B2qx2

8V

x " 2r "
2
B

 A 2mV
q

.

r "
mv
qB

"
m
qB

 A 2qV
m

"
1
B

 A 2mV
q

.

v " A 2qV
m

.

1
2 mv2 $ qV " 0

Sample Problem 28.04 Uniform circular motion of a charged particle in a magnetic field

Figure 28-12 shows the essentials of a mass spectrometer,
which can be used to measure the mass of an ion; an ion of
mass m (to be measured) and charge q is produced in source
S. The initially stationary ion is accelerated by the electric
field due to a potential difference V.The ion leaves S and en-
ters a separator chamber in which a uniform magnetic field 
is perpendicular to the path of the ion. A wide detector lines
the bottom wall of the chamber, and the causes the ion to
move in a semicircle and thus strike the detector. Suppose
that B " 80.000 mT, V " 1000.0 V, and ions of charge q "
%1.6022 ! 10$19 C strike the detector at a point that lies at 
x " 1.6254 m. What is the mass m of the individual ions, in
atomic mass units (Eq. 1-7: 1 u " 1.6605 ! 10$27 kg)?

KEY IDEAS

(1) Because the (uniform) magnetic field causes the
(charged) ion to follow a circular path, we can relate the ion’s
mass m to the path’s radius r with Eq. 28-16 (r " mv/ B).!q!

B
:

B
:

x 

S 

V 
+q 

r 

– 
+ 

B 

Detector 

Figure 28-12 A positive
ion is  accelerated
from its source S by
a potential differ-
ence V, enters a
chamber of uniform
magnetic field ,
travels through a
semicircle of radius r,
and strikes a detector
at a distance x.

B
:

28-5 CYCLOTRONS AND SYNCHROTRONS

After reading this module, you should be able to . . .

28.27 Describe how a cyclotron works, and in a sketch
indicate a particle’s path and the regions where the kinetic
energy is increased.

28.28 Identify the resonance condition.

28.29 For a cyclotron, apply the relationship between the par-
ticle’s mass and charge, the magnetic field, and the fre-
quency of circling.

28.30 Distinguish between a cyclotron and a synchrotron.

Learning Objectives

● In a cyclotron, charged particles are accelerated by elec-
tric forces as they circle in a magnetic field.

● A synchrotron is needed for particles accelerated to nearly
the speed of light.

Key Ideas

From Fig. 28-12 we see that r " x/2 (the radius is half the
diameter). From the problem statement, we know the magni-
tude B of the magnetic field. However, we lack the ion’s
speed v in the magnetic field after the ion has been acceler-
ated due to the potential difference V. (2) To relate v and V,
we use the fact that mechanical energy (Emec " K % U ) is
conserved during the acceleration.
Finding speed: When the ion emerges from the source, its
kinetic energy is approximately zero. At the end of the 
acceleration, its kinetic energy is . Also, during the ac-
celeration, the positive ion moves through a change in 
potential of $V.Thus, because the ion has positive charge q,
its potential energy changes by $qV. If we now write the
conservation of mechanical energy as

(K % (U " 0,

1
2mv2

Additional examples, video, and practice available at WileyPLUS
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Figure 28-13 The elements of a cyclotron,
showing the particle source S and the dees.
A uniform magnetic field is directed up
from the plane of the page. Circulating pro-
tons spiral outward within the hollow dees,
gaining energy every time they cross the
gap between the dees.

Dee Dee 

Beam 

Deflector 
plate 

Oscillator 

S 

The protons spiral outward
in a cyclotron, picking up
energy in the gap.

Cyclotrons and Synchrotrons
Beams of high-energy particles, such as high-energy electrons and protons, have
been enormously useful in probing atoms and nuclei to reveal the fundamental
structure of matter. Such beams were instrumental in the discovery that atomic
nuclei consist of protons and neutrons and in the discovery that protons and
neutrons consist of quarks and gluons. Because electrons and protons are
charged, they can be accelerated to the required high energy if they move
through large potential differences. The required acceleration distance is reason-
able for electrons (low mass) but unreasonable for protons (greater mass).

A clever solution to this problem is first to let protons and other massive
particles move through a modest potential difference (so that they gain a modest
amount of energy) and then use a magnetic field to cause them to circle back
and move through a modest potential difference again. If this procedure is
repeated thousands of times, the particles end up with a very large energy.

Here we discuss two accelerators that employ a magnetic field to repeatedly
bring particles back to an accelerating region, where they gain more and more
energy until they finally emerge as a high-energy beam.

The Cyclotron
Figure 28-13 is a top view of the region of a cyclotron in which the particles
(protons, say) circulate. The two hollow D-shaped objects (each open on its
straight edge) are made of sheet copper.These dees, as they are called, are part of
an electrical oscillator that alternates the electric potential difference across the
gap between the dees. The electrical signs of the dees are alternated so that the
electric field in the gap alternates in direction, first toward one dee and then
toward the other dee, back and forth. The dees are immersed in a large magnetic
field directed out of the plane of the page. The magnitude B of this field is set via
a control on the electromagnet producing the field.

Suppose that a proton, injected by source S at the center of the cyclotron in
Fig. 28-13, initially moves toward a negatively charged dee. It will accelerate
toward this dee and enter it. Once inside, it is shielded from electric fields by the
copper walls of the dee; that is, the electric field does not enter the dee. The mag-
netic field, however, is not screened by the (nonmagnetic) copper dee, so the
proton moves in a circular path whose radius, which depends on its speed, is given
by Eq. 28-16 (r " mv/ B).

Let us assume that at the instant the proton emerges into the center gap from
the first dee, the potential difference between the dees is reversed. Thus, the pro-
ton again faces a negatively charged dee and is again accelerated. This process
continues, the circulating proton always being in step with the oscillations of the
dee potential, until the proton has spiraled out to the edge of the dee system.
There a deflector plate sends it out through a portal.

Frequency. The key to the operation of the cyclotron is that the frequency f
at which the proton circulates in the magnetic field (and that does not depend on
its speed) must be equal to the fixed frequency fosc of the electrical oscillator, or

f " fosc (resonance condition). (28-23)

This resonance condition says that, if the energy of the circulating proton is to
increase, energy must be fed to it at a frequency fosc that is equal to the natural
frequency f at which the proton circulates in the magnetic field.

Combining Eqs. 28-18 ( f " B/2pm) and 28-23 allows us to write the
resonance condition as

B " 2pmfosc. (28-24)

The oscillator (we assume) is designed to work at a single fixed frequency fosc.We

!q!

!q!

!q!

734 CHAPTER 28 MAGNETIC FIELDS
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73528-5 CYCLOTRONS AND SYNCHROTRONS

KEY IDEAS

(1) The kinetic energy of a deuteron exiting the
cyclotron is equal to the kinetic energy it had just before exit-
ing, when it was traveling in a circular path with a radius
approximately equal to the radius R of the cyclotron dees.
(2)We can find the speed v of the deuteron in that circular path
with Eq.28-16 (r " mv/'q'B).

Calculations: Solving that equation for v, substituting R for
r, and then substituting known data, we find

This speed corresponds to a kinetic energy of

(Answer)

or about 17 MeV.

" 2.7 ! 10$12 J,

 " 1
2(3.34 ! 10$27 kg)(3.99 ! 107 m/s)2

K " 1
2 mv2

 " 3.99 ! 107 m/s.

v "
R !q! B

m
"

(0.53 m)(1.60 ! 10$19 C)(1.57 T) 

3.34 ! 10$27 kg

(1
2 mv2)

Sample Problem 28.05 Accelerating a charged particle in a cyclotron

Suppose a cyclotron is operated at an oscillator frequency of
12 MHz and has a dee radius R " 53 cm.
(a) What is the magnitude of the magnetic field needed for
deuterons to be accelerated in the cyclotron? The deuteron
mass is m " 3.34 ! 10$27 kg (twice the proton mass).

KEY IDEA

For a given oscillator frequency fosc, the magnetic field mag-
nitude B required to accelerate any particle in a cyclotron
depends on the ratio m/ of mass to charge for the particle,
according to Eq. 28-24 ( B 2pmfosc).

Calculation: For deuterons and the oscillator frequency fosc "
12 MHz,we find

(Answer)

Note that, to accelerate protons, B would have to be reduced
by a factor of 2, provided the oscillator frequency remained
fixed at 12 MHz.
(b) What is the resulting kinetic energy of the deuterons?

" 1.57 T " 1.6 T.

B "
2pmfosc

!q!
"

(2p)(3.34 ! 10$27 kg)(12 ! 106 s$1)
1.60 ! 10$19 C

"!q!
!q!

then “tune” the cyclotron by varying B until Eq. 28-24 is satisfied, and then many
protons circulate through the magnetic field, to emerge as a beam.

The Proton Synchrotron
At proton energies above 50 MeV, the conventional cyclotron begins to fail because
one of the assumptions of its design—that the frequency of revolution of a charged
particle circulating in a magnetic field is independent of the particle’s speed—is
true only for speeds that are much less than the speed of light. At greater proton
speeds (above about 10% of the speed of light), we must treat the problem relativis-
tically.According to relativity theory, as the speed of a circulating proton approaches
that of light, the proton’s frequency of revolution decreases steadily. Thus, the pro-
ton gets out of step with the cyclotron’s oscillator—whose frequency remains fixed
at f osc—and eventually the energy of the still circulating proton stops increasing.

There is another problem. For a 500 GeV proton in a magnetic field of 1.5 T,
the path radius is 1.1 km.The corresponding magnet for a conventional cyclotron
of the proper size would be impossibly expensive, the area of its pole faces being
about 4 ! 106 m2.

The proton synchrotron is designed to meet these two difficulties. The mag-
netic field B and the oscillator frequency fosc, instead of having fixed values as
in the conventional cyclotron, are made to vary with time during the accelerat-
ing cycle. When this is done properly, (1) the frequency of the circulating pro-
tons remains in step with the oscillator at all times, and (2) the protons follow a
circular — not a spiral — path. Thus, the magnet need extend only along that cir-
cular path, not over some 4 ! 106 m2. The circular path, however, still must be
large if high energies are to be achieved.

Additional examples, video, and practice available at WileyPLUS
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28-6 MAGNETIC FORCE ON A CURRENT-CARRYING WIRE

After reading this module, you should be able to . . .

28.31 For the situation where a current is perpendicular to a
magnetic field, sketch the current, the direction of the mag-
netic field, and the direction of the magnetic force on the
current (or wire carrying the current).

28.32 For a current in a magnetic field, apply the relationship
between the magnetic force magnitude FB, the current i,
the length of the wire L, and the angle f between the
length vector and the field vector .

28.33 Apply the right-hand rule for cross products to find
B
:

L
:

the direction of the magnetic force on a current in a
magnetic field.

28.34 For a current in a magnetic field, calculate the
magnetic force with a cross product of the length
vector and the field vector , in magnitude-angle and
unit-vector notations.

28.35 Describe the procedure for calculating the force on a
current-carrying wire in a magnetic field if the wire is not
straight or if the field is not uniform.

B
:

L
:

F
:

B

Learning Objectives

● A straight wire carrying a current i in a uniform magnetic
field experiences a sideways force

● The force acting on a current element i in a magneticdL
:

F
:

B " iL
:

! B
:

.

field is

● The direction of the length vector or is that of the
current i.

dL
:

L
:

dF
:

B " i dL
:

! B
:

.

Key Ideas

Magnetic Force on a Current-Carrying Wire
We have already seen (in connection with the Hall effect) that a magnetic field
exerts a sideways force on electrons moving in a wire. This force must then be
transmitted to the wire itself, because the conduction electrons cannot escape
sideways out of the wire.

In Fig. 28-14a, a vertical wire, carrying no current and fixed in place at both
ends, extends through the gap between the vertical pole faces of a magnet.
The magnetic field between the faces is directed outward from the page. In
Fig. 28-14b, a current is sent upward through the wire; the wire deflects to the
right. In Fig. 28-14c, we reverse the direction of the current and the wire deflects
to the left.

Figure 28-15 shows what happens inside the wire of Fig. 28-14b. We see one
of the conduction electrons, drifting downward with an assumed drift speed vd.
Equation 28-3, in which we must put f " 90#, tells us that a force of magnitude
evdB must act on each such electron. From Eq. 28-2 we see that this force must
be directed to the right. We expect then that the wire as a whole will experience
a force to the right, in agreement with Fig. 28-14b.

If, in Fig. 28-15, we were to reverse either the direction of the magnetic field or
the direction of the current, the force on the wire would reverse, being directed now
to the left. Note too that it does not matter whether we consider negative charges

F
:

B

736 CHAPTER 28 MAGNETIC FIELDS

Figure 28-14 A flexible wire passes between
the pole faces of a magnet (only the farther
pole face is shown). (a) Without current
in the wire, the wire is straight. (b) With
upward current, the wire is deflected right-
ward. (c) With downward current, the
deflection is leftward.The connections for
getting the current into the wire at one end
and out of it at the other end are not shown.

i = 0 i  

i  

i  

i  

(a) (b) (c) 

B B B 

A force acts on
a current through
a B field.

L 

x 

i 

x 

FB 

B 

vd 
Figure 28-15 A close-up view of a section of the wire of Fig. 28-14b.
The current direction is upward, which means that electrons drift
downward.A magnetic field that emerges from the plane of the
page causes the electrons and the wire to be deflected to the right.
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drifting downward in the wire (the actual case) or positive charges drifting up-
ward. The direction of the deflecting force on the wire is the same. We are safe
then in dealing with a current of positive charge, as we usually do in dealing with
circuits.

Find the Force. Consider a length L of the wire in Fig. 28-15. All the conduc-
tion electrons in this section of wire will drift past plane xx in Fig. 28-15 in a time
t " L/vd.Thus, in that time a charge given by

will pass through that plane. Substituting this into Eq. 28-3 yields

or FB " iLB. (28-25)

Note that this equation gives the magnetic force that acts on a length L of straight
wire carrying a current i and immersed in a uniform magnetic field that is per-
pendicular to the wire.

If the magnetic field is not perpendicular to the wire, as in Fig. 28-16, the
magnetic force is given by a generalization of Eq. 28-25:

(force on a current). (28-26)

Here is a length vector that has magnitude L and is directed along the wire
segment in the direction of the (conventional) current. The force magnitude FB is

FB " iLB sin f, (28-27)

where f is the angle between the directions of and . The direction of is
that of the cross product because we take current i to be a positive quan-
tity. Equation 28-26 tells us that is always perpendicular to the plane defined
by vectors and , as indicated in Fig. 28-16.

Equation 28-26 is equivalent to Eq. 28-2 in that either can be taken as the
defining equation for . In practice, we define from Eq. 28-26 because it is
much easier to measure the magnetic force acting on a wire than that on a single
moving charge.

Crooked Wire. If a wire is not straight or the field is not uniform, we can
imagine the wire broken up into small straight segments and apply Eq. 28-26 to
each segment. The force on the wire as a whole is then the vector sum of all the
forces on the segments that make it up. In the differential limit, we can write

(28-28)

and we can find the resultant force on any given arrangement of currents by
integrating Eq. 28-28 over that arrangement.

In using Eq. 28-28, bear in mind that there is no such thing as an isolated
current-carrying wire segment of length dL.There must always be a way to intro-
duce the current into the segment at one end and take it out at the other end.

dF
:

B " i dL
:

! B
:

,

B
:

B
:

B
:

L
:

F
:

B

L
:

! B
:

F
:

BB
:

L
:

L
:

F
:

B " iL
:

! B
:

B
:

FB ! qvdB sin f !
iL
vd

vdB sin 90"

q ! it ! i 
L
vd

73728-6 MAGNETIC FORCE ON A CURRENT-CARRYING WIRE

Checkpoint 4
The figure shows a current i through a wire in a uni-
form magnetic field , as well as the magnetic force

acting on the wire.The field is oriented so that the
force is maximum. In what direction is the field?
F
:

B

B
:

FB 

i 

y 

x 

z 

Figure 28-16 A wire carrying current i makes
an angle f with magnetic field .The wire
has length L in the field and length vector

(in the direction of the current).A mag-
netic force acts on the wire.F

:
B ! iL

:
# B

:
L
:

B
:

φ i 

L 

FB 

B 

The force is perpendicular
to both the field and the length.
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cular to the wire. We then have sin f 1, so Eq. 28-29 yields

(28-30)

We write the result this way because we know m/L, the linear
density of the wire. Substituting known data then gives us

(Answer)

This is about 160 times the strength of Earth’s magnetic field.

! 1.6 # 10$2 T.

  B !
(46.6 # 10$3 kg/m)(9.8 m/s2)

28 A

B !
mg

iL sin f
!

(m/L)g
i

.

!

28-7 TORQUE ON A CURRENT LOOP

After reading this module, you should be able to . . .

28.36 Sketch a rectangular loop of current in a magnetic
field, indicating the magnetic forces on the four sides,
the direction of the current, the normal vector , and the
direction in which a torque from the forces tends to rotate
the loop.

n:

28.37 For a current-carrying coil in a magnetic field, apply
the relationship between the torque magnitude t, the
number of turns N, the area of each turn A, the current i,
the magnetic field magnitude B, and the angle u between
the normal vector and the magnetic field vector .B

:
n:

Learning Objectives

● Various magnetic forces act on the sections of a current-
carrying coil lying in a uniform external magnetic field, but the
net force is zero.
● The net torque acting on the coil has a magnitude given by

t " NiAB sin u,

where N is the number of turns in the coil, A is the area of
each turn, i is the current, B is the field magnitude, and u is
the angle between the magnetic field and the normal
vector to the coil .n:

B
:

Key Ideas

Torque on a Current Loop
Much of the world’s work is done by electric motors. The forces behind this work
are the magnetic forces that we studied in the preceding section—that is, the
forces that a magnetic field exerts on a wire that carries a current.

738 CHAPTER 28 MAGNETIC FIELDS

where mg is the magnitude of and m is the mass of theF
:

g

Sample Problem 28.06 Magnetic force on a wire carrying current

A straight, horizontal length of copper wire has a current 
i " 28 A through it. What are the magnitude and direction
of the minimum magnetic field needed to suspend the
wire—that is, to balance the gravitational force on it? The
linear density (mass per unit length) of the wire is 46.6 g/m.

KEY IDEAS

(1) Because the wire carries a current, a magnetic force 
can act on the wire if we place it in a magnetic field . To
balance the downward gravitational force on the wire, we
want to be directed upward (Fig. 28-17). (2) The direction
of is related to the directions of and the wire’s length
vector by Eq. 28-26 

Calculations: Because is directed horizontally (and the
current is taken to be positive), Eq. 28-26 and the right-
hand rule for cross products tell us that must be horizon-
tal and rightward (in Fig. 28-17) to give the required
upward .F

:
B

B
:

L
:

(F
:

B ! iL
:

# B
:

).L
:

B
:

F
:

B

F
:

B

F
:

g

B
:

F
:

B

B
:

Figure 28-17 A wire (shown in cross section)
carrying current out of the page.

L B 

FB 

mg 

wire. We also want the minimal field magnitude B for toF
:

B

balance . Thus, we need to maximize sin f in Eq. 28-29. ToF
:

g

The magnitude of is FB " iLB sin f (Eq. 28-27).
Because we want to balance , we want

iLB sin f mg, (28-29)!

F
:

gF
:

B

F
:

B

do so, we set f 90 , thereby arranging for to be perpendi-B
:

"!

Additional examples, video, and practice available at WileyPLUS
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Figure 28-18 shows a simple motor, consisting of a single current-carrying
loop immersed in a magnetic field . The two magnetic forces and 
produce a torque on the loop, tending to rotate it about its central axis. Although
many essential details have been omitted, the figure does suggest how the action
of a magnetic field on a current loop produces rotary motion. Let us analyze that
action.

Figure 28-19a shows a rectangular loop of sides a and b, carrying current
i through uniform magnetic field . We place the loop in the field so that
its long sides, labeled 1 and 3, are perpendicular to the field direction (which is
into the page), but its short sides, labeled 2 and 4, are not. Wires to lead the cur-
rent into and out of the loop are needed but, for simplicity, are not shown.

To define the orientation of the loop in the magnetic field, we use a normal
vector that is perpendicular to the plane of the loop. Figure 28-19b shows
a right-hand rule for finding the direction of . Point or curl the fingers of your
right hand in the direction of the current at any point on the loop. Your extended
thumb then points in the direction of the normal vector 

In Fig. 28-19c, the normal vector of the loop is shown at an arbitrary angle
u to the direction of the magnetic field . We wish to find the net force and net
torque acting on the loop in this orientation.

Net Torque. The net force on the loop is the vector sum of the forces acting
on its four sides. For side 2 the vector in Eq. 28-26 points in the direction of the
current and has magnitude b.The angle between and for side 2 (see Fig. 28-19c)
is 90# $ u.Thus, the magnitude of the force acting on this side is

F2 " ibB sin(90# $ u) " ibB cos u. (28-31)

You can show that the force acting on side 4 has the same magnitude as 2 but
the opposite direction. Thus, and cancel out exactly. Their net force is zero
and, because their common line of action is through the center of the loop, their
net torque is also zero.

The situation is different for sides 1 and 3. For them, is perpendicular to ,
so the forces and have the common magnitude iaB. Because these two
forces have opposite directions, they do not tend to move the loop up or down.
However, as Fig. 28-19c shows, these two forces do not share the same line of
action; so they do produce a net torque. The torque tends to rotate the loop so
as to align its normal vector with the direction of the magnetic field . That
torque has moment arm (b/2) sin u about the central axis of the loop. The magni-
tude t) of the torque due to forces and is then (see Fig. 28-19c)

(28-32)

Coil. Suppose we replace the single loop of current with a coil of N loops, or
turns. Further, suppose that the turns are wound tightly enough that they can be

t % ! #iaB 
b
2

 sin u$ & #iaB 
b
2

 sin u$ ! iabB sin u.

F
:

3F
:

1

B
:

n:

F
:

3F
:

1

B
:

L
:

F
:

4F
:

2

F
:

F
:

4

B
:

L
:

L
:

B
:

n:.

n:
n:

B
:

$F
:

F
:

B
:
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Figure 28-18 The elements of an electric
motor.A rectangular loop of wire, carrying
a current and free to rotate about a fixed
axis, is placed in a magnetic field. Magnetic
forces on the wire produce a torque that
rotates it.A commutator (not shown)
reverses the direction of the current every
half-revolution so that the torque always
acts in the same direction.

i 

i 

N S 

F 

–FB 

Side 2

Side 4 Side 1

i

(b)

n

τ

Side 1

Side 4

Side 2

Side 3

i

b

(a) a
F3

F2

F1

F4

B

θ
b

i

Side 2

Side 3

Side 1

(c)

Rotation

n

F1

F3

B

Figure 28-19 A rectangular loop, of length a
and width b and carrying a current i, is lo-
cated in a uniform magnetic field.A torque t
acts to align the normal vector with the di-
rection of the field. (a) The loop as seen by
looking in the direction of the magnetic
field. (b) A perspective of the loop showing
how the right-hand rule gives the direction
of , which is perpendicular to the plane of
the loop. (c) A side view of the loop, from
side 2.The loop rotates as indicated.

n:

n:
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28-8 THE MAGNETIC DIPOLE MOMENT

After reading this module, you should be able to . . .

28.38 Identify that a current-carrying coil is a magnetic dipole
with a magnetic dipole moment that has the direction of
the normal vector , as given by a right-hand rule.

28.39 For a current-carrying coil, apply the relationship
between the magnitude m of the magnetic dipole moment,
the number of turns N, the area A of each turn, and the
current i.

28.40 On a sketch of a current-carrying coil, draw the direction
of the current, and then use a right-hand rule to determine the
direction of the magnetic dipole moment vector .

28.41 For a magnetic dipole in an external magnetic field, ap-
ply the relationship between the torque magnitude t, the
dipole moment magnitude m, the magnetic field magnitude
B, and the angle u between the dipole moment vector 
and the magnetic field vector .

28.42 Identify the convention of assigning a plus or minus
sign to a torque according to the direction of rotation.

28.43 Calculate the torque on a magnetic dipole by evaluat-
ing a cross product of the dipole moment vector and them:

B
:

m:

m:

n:
m:

external magnetic field vector , in magnitude-angle nota-
tion and unit-vector notation.

28.44 For a magnetic dipole in an external magnetic field,
identify the dipole orientations at which the torque magni-
tude is minimum and maximum.

28.45 For a magnetic dipole in an external magnetic field,
apply the relationship between the orientation energy U,
the dipole moment magnitude m, the external magnetic
field magnitude B, and the angle u between the dipole
moment vector and the magnetic field vector .

28.46 Calculate the orientation energy U by taking a dot prod-
uct of the dipole moment vector and the external magnetic
field vector , in magnitude-angle and unit-vector notations.

28.47 Identify the orientations of a magnetic dipole in an ex-
ternal magnetic field that give the minimum and maximum
orientation energies.

28.48 For a magnetic dipole in a magnetic field, relate the ori-
entation energy U to the work Wa done by an external
torque as the dipole rotates in the magnetic field.

B
:

m:

B
:

m:

B
:

Learning Objectives

● A coil (of area A and N turns, carrying current i) in a uni-
form magnetic field will experience a torque given by

Here is the magnetic dipole moment of the coil, with
magnitude m NiA and direction given by the right-
hand rule.
● The orientation energy of a magnetic dipole in a magnetic

!
m:

t: ! m: # B
:

.

t:B
:

field is

● If an external agent rotates a magnetic dipole from an initial
orientation ui to some other orientation uf and the dipole is
stationary both initially and finally, the work Wa done on the
dipole by the agent is

Wa " (U " Uf $ Ui.

U(u) ! $m: " B
:

.

Key Ideas

approximated as all having the same dimensions and lying in a plane. Then the
turns form a flat coil, and a torque t) with the magnitude given in Eq. 28-32 acts
on each of them.The total torque on the coil then has magnitude

t " Nt) " NiabB sin u " (NiA)B sin u, (28-33)

in which A ( ab) is the area enclosed by the coil. The quantities in parentheses
(NiA) are grouped together because they are all properties of the coil: its number
of turns, its area, and the current it carries. Equation 28-33 holds for all flat coils,
no matter what their shape, provided the magnetic field is uniform. For example,
for the common circular coil, with radius r, we have

t "(Nipr2)B sin u. (28-34)

Normal Vector. Instead of focusing on the motion of the coil, it is simpler to
keep track of the vector , which is normal to the plane of the coil. Equation 28-33
tells us that a current-carrying flat coil placed in a magnetic field will tend to
rotate so that has the same direction as the field. In a motor, the current in
the coil is reversed as begins to line up with the field direction, so that a torque
continues to rotate the coil. This automatic reversal of the current is done via
a commutator that electrically connects the rotating coil with the stationary con-
tacts on the wires that supply the current from some source.

n:
n:

n:

!
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The Magnetic Dipole Moment
As we have just discussed, a torque acts to rotate a current-carrying coil placed in
a magnetic field. In that sense, the coil behaves like a bar magnet placed in the
magnetic field.Thus, like a bar magnet, a current-carrying coil is said to be a mag-
netic dipole. Moreover, to account for the torque on the coil due to the magnetic
field, we assign a magnetic dipole moment to the coil. The direction of is that
of the normal vector to the plane of the coil and thus is given by the same right-
hand rule shown in Fig. 28-19. That is, grasp the coil with the fingers of your right
hand in the direction of current i; the outstretched thumb of that hand gives the
direction of .The magnitude of is given by

m ! NiA (magnetic moment), (28-35)

in which N is the number of turns in the coil, i is the current through the coil, and
A is the area enclosed by each turn of the coil. From this equation, with i in
amperes and A in square meters, we see that the unit of is the ampere – square
meter (A !m2).

Torque. Using , we can rewrite Eq. 28-33 for the torque on the coil due to a
magnetic field as

t ! mB sin u, (28-36)

in which u is the angle between the vectors and .
We can generalize this to the vector relation

(28-37)

which reminds us very much of the corresponding equation for the torque
exerted by an electric field on an electric dipole—namely, Eq. 22-34:

In each case the torque due to the field—either magnetic or electric—is equal to
the vector product of the corresponding dipole moment and the field vector.

Energy. A magnetic dipole in an external magnetic field has an energy that
depends on the dipole’s orientation in the field. For electric dipoles we have
shown (Eq. 22-38) that

In strict analogy, we can write for the magnetic case

(28-38)

In each case the energy due to the field is equal to the negative of the scalar prod-
uct of the corresponding dipole moment and the field vector.

A magnetic dipole has its lowest energy (! "mB cos 0 ! "mB) when its di-
pole moment is lined up with the magnetic field (Fig. 28-20). It has its highest
energy ( mB cos 180 mB) when is directed opposite the field. From 
Eq. 28-38, with U in joules and in teslas, we see that the unit of can be the
joule per tesla (J/T) instead of the ampere – square meter as suggested by 
Eq. 28-35.

Work. If an applied torque (due to “an external agent”) rotates a magnetic
dipole from an initial orientation ui to another orientation uf, then work Wa is
done on the dipole by the applied torque. If the dipole is stationary before and
after the change in its orientation, then work Wa is

Wa ! Uf " Ui, (28-39)

where Uf and Ui are calculated with Eq. 28-38.

m:B
:

m:! "#! $
m:

U(u) ! $m: ! B
:

.

U(u ) ! $p: ! E
:

.

t: ! p: % E
:

.

t: ! m: % B
:

,

B
:

m:

m:

m:

m:m:

n:
m:m:
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Figure 28-20 The orientations of highest and
lowest energy of a magnetic dipole (here
a coil carrying current) in an external mag-
netic field .The direction of the current i
gives the direction of the magnetic 
dipole moment via the right-hand rule
shown for in Fig. 28-19b.n:

m:

B
:

i i 
µ µ 

µ µ 

Highest 
energy 

Lowest 
energy 

B 

The magnetic moment vector
attempts to align with the
magnetic field.

halliday_c28_719-747v2.0.1.qxd  3/5/14  11:45 AM  Page 741

Uploaded By: anonymousSTUDENTS-HUB.com



Table 28-2 Some Magnetic Dipole
Moments

Small bar magnet 5 J/T
Earth 8.0 # 1022 J/T
Proton 1.4 # 10"26 J/T
Electron 9.3 # 10"24 J/T

Checkpoint 5
The figure shows four orientations, at angle u, of a magnetic dipole moment in a
magnetic field. Rank the orientations according to (a) the magnitude of the torque on
the dipole and (b) the orientation energy of the dipole, greatest first.

m:

µ µ µ µ 

µ µ µ µ 

B θ 
θ 

θ 
θ 

1 

4 

2 

3 

tial orientation, so that is perpendicular to and the coil
is again at rest?

KEY IDEA

The work Wa done by the applied torque would be equal to
the change in the coil’s orientation energy due to its change
in orientation.

Calculations: From Eq. 28-39 (Wa ! Uf " Ui), we find

Substituting for m from Eq.28-35 (m ! NiA),we find that

(Answer)

Similarly, we can show that to change the orientation by an-
other 90°, so that the dipole moment is opposite the field,
another 5.4 mJ is required.

! 5.355 % 10$6 J ! 5.4 mJ.

! (250)(100 % 10$6 A)(2.52 % 10$4 m2)(0.85 T)

Wa ! (NiA)B

! mB.

! $mB cos 90# $ ($mB cos 0#) ! 0 " mB

Wa ! U(90#) $ U(0#)

B
:

m:

Sample Problem 28.07 Rotating a magnetic dipole in a magnetic field

Figure 28-21 shows a circular coil with 250 turns, an area A
of 2.52 # 10"4 m2, and a current of 100 mA.The coil is at rest
in a uniform magnetic field of magnitude B ! 0.85 T, with
its magnetic dipole moment initially aligned with .

(a) In Fig. 28-21, what is the direction of the current in the
coil?

Right-hand rule: Imagine cupping the coil with your right
hand so that your right thumb is outstretched in the direc-
tion of .The direction in which your fingers curl around the
coil is the direction of the current in the coil.Thus, in the wires
on the near side of the coil—those we see in Fig. 28-21—the
current is from top to bottom.

(b) How much work would the torque applied by an exter-
nal agent have to do on the coil to rotate it 90$ from its ini-

m:

B
:

m:

Figure 28-21 A side view of a circular coil carrying a current and ori-
ented so that its magnetic dipole moment  is aligned with magnetic
field .B

:

µ µ 

B 

So far, we have identified only a current-carrying coil and a permanent mag-
net as a magnetic dipole. However, a rotating sphere of charge is also a magnetic
dipole, as is Earth itself (approximately). Finally, most subatomic particles, in-
cluding the electron, the proton, and the neutron, have magnetic dipole mo-
ments. As you will see in Chapter 32, all these quantities can be viewed as cur-
rent loops. For comparison, some approximate magnetic dipole moments are
shown in Table 28-2.

Language. Some instructors refer to U in Eq. 28-38 as a potential energy and
relate it to work done by the magnetic field when the orientation of the dipole
changes. Here we shall avoid the debate and say that U is an energy associated
with the dipole orientation.
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743PROBLEMS

Magnetic Field A magnetic field is defined in terms of the
force acting on a test particle with charge q moving through the
field with velocity :

(28-2)

The SI unit for is the tesla (T): 1 T ! 1 N/(A %m) ! 104 gauss.

The Hall Effect When a conducting strip carrying a current i is
placed in a uniform magnetic field , some charge carriers (with
charge e) build up on one side of the conductor, creating a poten-
tial difference V across the strip.The polarities of the sides indicate
the sign of the charge carriers.

A Charged Particle Circulating in a Magnetic Field A
charged particle with mass m and charge magnitude moving with"q"

B
:

B
:

F
:

B ! qv: % B
:

.

v:
F
:

B

B
:B

:

Review & Summary

Magnetic Force on a Current-Carrying Wire A straight
wire carrying a current i in a uniform magnetic field experiences a
sideways force

(28-26)

The force acting on a current element i in a magnetic field is

(28-28)

The direction of the length vector or is that of the current i.

Torque on a Current-Carrying Coil A coil (of area A and N
turns, carrying current i) in a uniform magnetic field will
experience a torque given by

(28-37)

Here is the magnetic dipole moment of the coil, with magnitude
NiA and direction given by the right-hand rule.

Orientation Energy of a Magnetic Dipole The orienta-
tion energy of a magnetic dipole in a magnetic field is

(28-38)

If an external agent rotates a magnetic dipole from an initial orien-
tation ui to some other orientation uf and the dipole is stationary
both initially and finally, the work Wa done on the dipole by the
agent is

Wa ! &U ! Uf " Ui. (28-39)

U(u) ! $m: ! B
:

.

m !
m:

t: ! m: % B
:

.

&:
B
:

dL
:

L
:

dF
:

B ! i dL
:

% B
:

.

dL
:

F
:

B ! iL
:

% B
:

.

velocity perpendicular to a uniform magnetic field will travel in a
circle.Applying Newton’s second law to the circular motion yields

(28-15)

from which we find the radius r of the circle to be

(28-16)

The frequency of revolution f, the angular frequency v, and the 
period of the motion T are given by

(28-19, 28-18, 28-17)f !
v

2p
!

1
T

!
"q"B

2pm
.

r !
mv
"q"B

.

"q"vB !
mv2

r
,

B
:

v:

Problems

4 An electron follows a helical path in a uniform magnetic field
given by At time t ! 0, the electron’s
velocity is given by (a) What is the an-
gle f between and ? The electron’s velocity changes with time.
Do (b) its speed and (c) the angle f change with time? (d) What is
the radius of the helical path?

5 A wire 66.0 cm long carries a 0.750 A current in the positive 
direction of an x axis through a magnetic field 

In unit-vector notation, what is the magnetic force on
the wire?

6 A wire 2.30 m long carries a current of 13.0 A and makes
an angle of 35.0° with a uniform magnetic field of magnitude 
B ! 1.50 T. Calculate the magnetic force on the wire.

7 Figure 28-23 shows a wood cylin-
der of mass m ! 0.150 kg and length
L ! 0.100 m, with N ! 13.0 turns of
wire wrapped around it longitudinally,
so that the plane of the wire coil con-
tains the long central axis of the cylin-
der.The cylinder is released on a plane
inclined at an angle u to the horizon-
tal, with the plane of the coil parallel
to the incline plane. If there is a verti-
cal uniform magnetic field of magni-
tude 0.92 T, what is the least current i
through the coil that keeps the cylinder from rolling down the plane?

(14.0 mT)k̂.
(3.00 mT)ĵ "B

:
!

B
:

v:
v: ! (40î $ 30ĵ " 50k̂) m/s.

B
:

! (20î $ 50ĵ $ 30k̂) mT.
1 A conducting rectangular solid of
dimensions dx 5.00 m, dy 3.00 m,
and dz ! 2.00 m moves with a 
constant velocity 
through a uniform magnetic field

(Fig. 28-22). What
are the resulting (a) electric field
within the solid, in unit-vector nota-
tion, and (b) potential difference
across the solid? (c) Which face be-
comes negatively charged?

2 Figure 28-22 shows a metallic block, with its faces parallel to
coordinate axes. The block is in a uniform magnetic field of magni-
tude 0.020 T. One edge length of the block is 32 cm; the block is not
drawn to scale. The block is moved at 3.5 m/s parallel to each axis,
in turn, and the resulting potential difference V that appears across
the block is measured. With the motion parallel to the y axis,
V ! 12 mV; with the motion parallel to the z axis, V ! 18 mV; with
the motion parallel to the x axis, V ! 0. What are the block lengths
(a) dx, (b) dy, and (c) dz?

3 A particular type of fundamental particle decays by transform-
ing into an electron e" and a positron e'. Suppose the decaying
particle is at rest in a uniform magnetic field of magnitude 
9.57 mT and the e" and e' move away from the decay point in
paths lying in a plane perpendicular to . How long after the decay
do the e" and e' collide?

B
:

B
:

B
:

! (40.0 mT)ĵ

v: ! (20.0 m/s)î

!!

x 

y 

z 
dx 

dz 

dy 

Figure 28-22 Problems 1 
and 2.

L 

θ

i 
m

B

Figure 28-23 Problem 7.
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8 In Fig. 28-24, a charged particle
moves into a region of uniform
magnetic field , goes through half
a circle, and then exits that region.
The particle is either a proton or an
electron (you must decide which).
It spends 160 ns in the region.
(a) What is the magnitude of ? (b) If the particle is sent back
through the magnetic field (along the same initial path) but with
2.00 times its previous kinetic energy, how much time does it spend
in the field during this trip?

9 Prove that the relation t ! NiAB sin u holds not only for the
rectangular loop of Fig. 28-19 but also for a closed loop of any
shape. (Hint: Replace the loop of arbitrary shape with an assembly
of adjacent long, thin, approximately rectangular loops that are
nearly equivalent to the loop of arbitrary shape as far as the distri-
bution of current is concerned.)

10 The bent wire shown in Fig.
28-25 lies in a uniform magnetic
field. Each straight section is 2.0 m
long and makes an angle of u ! 60°
with the x axis, and the wire carries
a current of 3.5 A. What is the net
magnetic force on the wire in unit-
vector notation if the magnetic
field is given by (a) and (b)

?

11 Two concentric, circular wire
loops, of radii r1 20.0 cm and r2 !
40.0 cm, are located in an xy plane;
each carries a clockwise current of
11.0 A (Fig. 28-26). (a) Find the
magnitude of the net magnetic di-
pole moment of the system.
(b) Repeat for reversed current in
the inner loop.

12 A source injects an electron of
speed v ! 1.2 # 107 m/s into a uni-
form magnetic field of magnitude 
B ! 1.0 # 10"3 T. The velocity of the
electron makes an angle u ! 10°
with the direction of the magnetic field. Find the distance d from
the point of injection at which the electron next crosses the field
line that passes through the injection point.

13 A 0.85 kg copper rod rests on two horizontal rails 
1.0 m apart and carries a current of 65 A from one rail to the
other. The coefficient of static friction between rod and rails is
0.50. What are the (a) magnitude and (b) angle (relative to the
vertical) of the smallest magnetic field that puts the rod on the
verge of sliding?

14 Figure 28-27 shows a wire ring of radius a ! 1.8 cm that is
perpendicular to the general direction of a radially symmetric,
diverging magnetic field. The mag-
netic field at the ring is everywhere
of the same magnitude B ! 3.4 mT,
and its direction at the ring every-
where makes an angle u ! 15° with
a normal to the plane of the ring.
The twisted lead wires have no
effect on the problem. Find the

!

4.0î T
4.0k̂ T

B
:

B
:
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magnitude of the force the field exerts on the ring if the ring carries
a current i ! 4.6 mA.

15 (a) Find the frequency of revolution of an electron with an en-
ergy of 189 eV in a uniform magnetic field of magnitude 70.0 mT.
(b) Calculate the radius of the path of this electron if its velocity is
perpendicular to the magnetic field.

16 Figure 28-28 gives the orienta-
tion energy U of a magnetic dipole
in an external magnetic field , as
a function of angle f between the
directions of and the dipole mo-
ment. The vertical axis scale is set
by . The dipole
can be rotated about an axle with
negligible friction in order to
change f. Counterclockwise rota-
tion from f ! 0 yields positive val-
ues of f, and clockwise rotations yield negative values. The di-
pole is to be released at angle f ! 0 with a rotational kinetic
energy of 9.0 # 10"4 J, so that it rotates counterclockwise. To
what maximum value of f will it rotate? (In the language of
Module 8-3, what value f is the turning point in the potential
well of Fig. 28-28?)

17 A current loop, carrying a current of 7.5 A, is in the shape of a
right triangle with sides 30, 40, and 50 cm. The loop is in a uniform
magnetic field of magnitude 120 mT whose direction is parallel to
the current in the 50 cm side of the loop. Find the magnitude of
(a) the magnetic dipole moment of the loop and (b) the torque on
the loop.

18 An electron is accelerated from rest by a potential differ-
ence of 380 V. It then enters a uniform magnetic field of magni-
tude 200 mT with its velocity perpendicular to the field. Calculate
(a) the speed of the electron and (b) the radius of its path in the
magnetic field.

19 Figure 28-29 shows a rectangu-
lar 28-turn coil of wire, of dimen-
sions 10 cm by 5.0 cm. It carries a
current of 0.80 A and is hinged
along one long side. It is mounted in
the xy plane, at angle u ! 25$ to the
direction of a uniform magnetic
field of magnitude 0.50 T. In unit-
vector notation, what is the torque
acting on the coil about the hinge
line?

20 A circular wire loop of radius
15.0 cm carries a current of 3.20 A. It is placed so that the normal
to its plane makes an angle of 41.0° with a uniform magnetic field
of magnitude 12.0 T. (a) Calculate the magnitude of the magnetic
dipole moment of the loop. (b) What is the magnitude of the
torque acting on the loop?

21 A 6.75 g wire of length L 15.0 cm is suspended by a pair of
flexible leads in a uniform mag-
netic field of magnitude 0.440 T
(Fig. 28-30). What are the (a) mag-
nitude and (b) direction (left or
right) of the current required to
remove the tension in the support-
ing leads?

!

Us ! 2.0 % 10$4 J

B
:

B
:

y 

x 
θ θ 

i i

Figure 28-25 Problem 10.
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–180° 180° 
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Figure 28-28 Problem 16.

Figure 28-24 Problem 8.
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Figure 28-29 Problem 19.

Figure 28-26 Problem 11.
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32 In Fig. 28-35, a
metal wire of mass 
m 24.1 mg can slide
with negligible friction on
two horizontal parallel
rails separated by dis-
tance d ! 2.56 cm. The
track lies in a vertical uniform
magnetic field of magnitude
73.5 mT. At time t ! 0, device G is connected to the rails, produc-
ing a constant current i ! 9.13 mA in the wire and rails (even as
the wire moves). At t ! 61.1 ms, what are the wire’s (a) speed and
(b) direction of motion (left or right)?

33 A horizontal power line carries a current of 7000 A from
south to north. Earth’s magnetic field (60.0 mT) is directed toward
the north and inclined downward at 70.0° to the horizontal. Find
the (a) magnitude and (b) direction of the magnetic force on 100 m
of the line due to Earth’s field.

34 At time t1, an electron is sent
along the positive direction of an x
axis, through both an electric field 
and a magnetic field , with di-
rected parallel to the y axis. Figure
28-36 gives the y component Fnet,y of
the net force on the electron due to
the two fields, as a function of the
electron’s speed v at time t1. The
scale of the velocity axis is set by
vs ! 200.0 m/s. The x and z compo-
nents of the net force are zero at t1.
Assuming Bx ! 0, find (a) the magnitude E and (b) in 
unit-vector notation.

B
:

E
:

B
:

E
:

!

currents i in the line segment AD; then treat the two rectangular
loops ABCDA and ADEFA.)

29 A circular coil of 500 turns has a radius of 1.90 cm.
(a) Calculate the current that results in a magnetic dipole moment
of magnitude 1.90 A %m2. (b) Find the maximum magnitude of the
torque that the coil, carrying this current, can experience in a
uniform 35.0 mT magnetic field.

30 A long, rigid conductor, lying along an x axis, carries a current
of 7.0 A in the negative x direction. A magnetic field is present,
given by with x in meters and in milliteslas.
Find, in unit-vector notation, the force on the 2.0 m segment of the
conductor that lies between x ! 1.0 m and x ! 3.0 m.

31 In Fig. 28-34, an electron accelerated from rest through poten-
tial difference V1 2.50 kV enters the gap between two parallel
plates having separation d ! 16.0 mm and potential difference 
V2 100 V.The lower plate is at the lower potential. Neglect fringing
and assume that the electron’s velocity vector is perpendicular to the
electric field vector between the plates. (a) In unit-vector notation,
what uniform magnetic field allows the electron to travel in a straight
line in the gap? (b) If the potential difference is increased slightly, in
what direction does the electron veer from straight-line motion.

!

!

B
:

B
:

! 3.0î " 8.0x2ĵ,
B
:

745PROBLEMS

22 A metal strip 6.50 cm long,
0.850 cm wide, and 0.760 mm thick
moves with constant velocity through
a uniform magnetic field B ! 1.20 mT
directed perpendicular to the strip, as
shown in Fig. 28-31. A potential differ-
ence of 3.30 mV is measured between
points x and y across the strip.
Calculate the speed v.

23 A wire of length 12.5 cm carrying
a current of 2.33 mA is to be formed
into a circular coil and placed in a uni-
form magnetic field of magnitude 5.71 mT. If the torque on the
coil from the field is maximized, what are (a) the angle between 
and the coil’s magnetic dipole moment and (b) the number of turns
in the coil? (c) What is the magnitude of that maximum torque?

24 An electron moves in a circle of radius r ! 5.29 # 10"11 m
with speed 4.12 # 106 m/s. Treat the circular path as a current
loop with a constant current equal to the ratio of the electron’s
charge magnitude to the period of the motion. If the circle lies in
a uniform magnetic field of magnitude B ! 7.10 mT, what is the
maximum possible magnitude of the torque produced on the
loop by the field?

25 A proton circulates in a cyclotron, beginning approximately
at rest at the center. Whenever it passes through the gap between
dees, the electric potential difference between the dees is 350 V.
(a) By how much does its kinetic energy increase with each pas-
sage through the gap? (b) What is its kinetic energy as it completes
100 passes through the gap? Let r100 be the radius of the proton’s
circular path as it completes those 100 passes and enters a dee,
and let r101 be its next radius, as it enters a dee the next time. (c) By
what percentage does the radius increase when it changes from
r100 to r101? That is, what is

26 In Fig. 28-32, a rectangular loop carry-
ing current lies in the plane of a uniform
magnetic field of magnitude 0.050 T. The
loop consists of a single turn of flexible con-
ducting wire that is wrapped around a flexi-
ble mount such that the dimensions of the
rectangle can be changed. (The total length
of the wire is not changed.) As edge length x
is varied from approximately zero to its
maximum value of approximately 4.0 cm,
the magnitude t of the torque on the loop changes. The maximum
value of t is 4.80 # 10"8 N %m.What is the current in the loop?

27 A positron with kinetic energy 950 eV is projected into a uni-
form magnetic field of magnitude 0.732 T, with its velocity vec-
tor making an angle of 89.0° with .
Find (a) the period, (b) the pitch p, and
(c) the radius r of its helical path.

28 Figure 28-33 shows a current loop
ABCDEFA carrying a current i ! 3.00 A.
The sides of the loop are parallel to the co-
ordinate axes shown, with AB ! 20.0 cm,
BC ! 30.0 cm, and FA ! 10.0 cm. In
unit-vector notation, what is the mag-
netic dipole moment of this loop? 
(Hint: Imagine equal and opposite

B
:

B
:

percentage increase !
r101 $ r100

r100
 100%?

B
:

B
:
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Figure 28-31 Problem 22.
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746 CHAPTER 28 MAGNETIC FIELDS

35 A circular loop of wire having a radius of 8.0 cm carries a 
current of 0.20 A. A vector of unit length and parallel to the 
dipole moment of the loop is given by . (This unit
vector gives the orientation of the magnetic dipole moment 
vector.) If the loop is located in a uniform magnetic field given by

find (a) the torque on the loop (in
unit-vector notation) and (b) the orientation energy of the loop.

36 An electron is accelerated from
rest through potential difference V
and then enters a region of uniform
magnetic field, where it undergoes
uniform circular motion. Figure
28-37 gives the radius r of that mo-
tion versus V1/2. The vertical axis
scale is set by , and the
horizontal axis scale is set by

What is the magni-
tude of the magnetic field?

37 An electron moves through a uniform magnetic field given by
At a particular instant, the electron has ve-

locity and the magnetic force acting on it is
. Find Bx.

38 A cyclotron with dee radius 47.0 cm is operated at an oscilla-
tor frequency of 12.0 MHz to accelerate protons. (a) What magni-
tude B of magnetic field is required to achieve resonance? (b) At
that field magnitude, what is the kinetic energy of a proton emerg-
ing from the cyclotron? Suppose, instead, that B ! 1.57 T. (c) What
oscillator frequency is required to achieve resonance now? (d) At
that frequency, what is the kinetic energy of an emerging proton?

39 (a) What uniform magnetic field, applied perpendicular to a
beam of electrons moving at 1.30 # 106 m/s, is required to make
the electrons travel in a circular arc of radius 0.500 m? (b) What is
the period of the motion?

40 The magnetic dipole moment of Earth has magnitude 
8.00 # 1022 J/T. Assume that this is produced by charges flowing in
Earth’s molten outer core. If the radius of their circular path is
3700 km, calculate the current they produce.

41 An electron follows a helical path in a uniform magnetic field
of magnitude 1.30 T. The pitch of the path is 6.00 mm, and the 
magnitude of the magnetic force on the electron is 2.00 10"14 N.
What is the electron’s speed?

42 A particle of mass 12 g and charge 80 mC moves through a
uniform magnetic field, in a region where the free-fall acceleration
is . The velocity of the particle is a constant ,
which is perpendicular to the magnetic field. What, then, is the
magnetic field?

43 An electron has an initial velocity of km/s and
a constant acceleration of in a region in which
uniform electric and magnetic fields are present. If 
find the electric field .

44 A particle undergoes uniform circular motion of radius
28.7 mm in a uniform magnetic field. The magnetic force on the
particle has a magnitude of 1.60 # 10"17 N. What is the kinetic
energy of the particle?

45 A certain particle is sent into a uniform magnetic field, with
the particle’s velocity vector perpendicular to the direction of the
field. Figure 28-38 gives the period T of the particle’s motion

E
:

B
:

! (300 mT)î,
(2.00 % 1012 m/s2)î

(12.0ĵ $ 15.0k̂)

20î km/s$9.8ĵ m/s2

%

(6.4 % 10$19 N)k̂
v: ! (2.0 î " 4.0 ĵ) m/s

B
:

! Bxî " ($3.0Bx)ĵ.

Vs
1/2 ! 40.0 V1/2.

rs ! 9.0 mm

(0.50 T)î " (0.20 T)k̂,B
:

!

0.60î $ 0.80ĵm:

versus the inverse of the field magnitude B. The vertical axis scale
is set by , and the horizontal axis scale is set by

What is the ratio m/q of the particle’s mass to the
magnitude of its charge?
B$1

s ! 10.0 T$1.
Ts ! 80.0 ns

r (
m

m
) 

rs 

0 

V 1/2 (V1/2) 

V s
1/2 

Figure 28-37 Problem 36. Figure 28-38 Problem 45.

T
 (

ns
) 

Ts 

0 
B –1 (T–1) 

Bs
–1

46 A magnetic dipole with a dipole moment of magnitude 
0.020 J/T is released from rest in a uniform magnetic field of mag-
nitude 46 mT. The rotation of the dipole due to the magnetic force
on it is unimpeded. When the dipole rotates through the orienta-
tion where its dipole moment is aligned with the magnetic field, its
kinetic energy is 0.80 mJ. (a) What is the initial angle between the
dipole moment and the magnetic field? (b) What is the angle when
the dipole is next (momentarily) at rest?

47 A strip of copper 75.0 mm thick and 4.5 mm wide is placed in a
uniform magnetic field of magnitude 0.65 T, with perpendicu-
lar to the strip. A current i ! 57 A is then sent through the strip
such that a Hall potential difference V appears across the width of
the strip. Calculate V. (The number of charge carriers per unit 
volume for copper is 8.47 1028 electrons/m3.)

48 An alpha particle travels at a velocity of magnitude 620 m/s
through a uniform magnetic field of magnitude 0.045 T. (An 
alpha particle has a charge of '3.2 # 10"19 C and a mass of 
6.6 # 10"27 kg.) The angle between and is 52°. What is the
magnitude of (a) the force acting on the particle due to the field
and (b) the acceleration of the particle due to ? (c) Does the
speed of the particle increase, decrease, or remain the same?

49 The coil in Fig. 28-39 carries current i 4.60 A in the
direction indicated, is parallel to an xz plane, has 3.00 turns and
an area of 4.00 # 10"3 m2, and lies in a uniform magnetic field

What are (a) the orientation en-
ergy of the coil in the magnetic field and (b) the torque (in unit-
vector notation) on the coil due to the magnetic field?

B
:

! (3.00î $ 3.00ĵ $ 4.00k̂) mT.

!

F
:

B

F
:

B

B
:

v:

B
:

v:
%

B
:

B
:

y 

x 

z i 

Figure 28-39 Problem 49.
50 A proton travels through uniform magnetic and electric
fields. The magnetic field is At one instant the
velocity of the proton is At that instant and in
unit-vector notation, what is the net force acting on the proton
if the electric field is (a) (b) , and
(c) ?4.00î V/m

$4.00k̂ V/m4.00k̂ V/m,

v: ! 2000ĵ m/s.
B
:

! $3.25î mT.
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747PROBLEMS

51 A proton traveling at 42.0° with respect to the direction of a
magnetic field of strength 2.60 mT experiences a magnetic force of
1.17 # 10"17 N. Calculate (a) the proton’s speed, (b) its kinetic en-
ergy in electron-volts, and (c) its momentum.

52 In Fig. 28-40, a particle moves along a circle
in a region of uniform magnetic field of magni-
tude B ! 5.00 mT. The particle is either a proton
or an electron (you must decide which).
It experiences a magnetic force of magnitude 
3.20 # 10"15 N. What are (a) the particle’s speed,
(b) the radius of the circle, and (c) the period of
the motion?

53 An electron of kinetic energy 600 eV circles in a plane per-
pendicular to a uniform magnetic field. The orbit radius is 12.5 cm.
Find (a) the electron’s speed, (b) the magnetic field magnitude,
(c) the circling frequency, and (d) the period of the motion.
(e) Through what potential difference would the electron have to
be accelerated from rest to reach this kinetic energy?

54 In a certain cyclotron a proton moves in a circle of radius
0.500 m. The magnitude of the magnetic field is 1.00 T. (a) What is
the oscillator frequency? (b) What is the kinetic energy of the pro-
ton, in electron-volts?

55 Estimate the total path length traveled by a deuteron in a cy-
clotron of radius 53 cm and operating frequency 12 MHz during
the (entire) acceleration process. Assume that the accelerating
potential between the dees is 120 kV.

56 A proton moves through a uniform magnetic field given by
At time t1, the proton has a velocity

given by and the magnetic force onv: ! vxî " vyĵ " (2.0 km/s)k̂
B
:

! (10î $ 20ĵ " 25k̂) mT.

59 A mass spectrometer (Fig. 28-12) is used to separate uranium
ions of mass 3.92 # 10"25 kg and charge 3.20 # 10"19 C from re-
lated species. The ions are accelerated through a potential differ-
ence of 180 kV and then pass into a uniform magnetic field, where
they are bent in a path of radius 1.00 m. After traveling through
180° and passing through a slit of width 1.00 mm and height
1.00 cm, they are collected in a cup. (a) What is the magnitude of
the (perpendicular) magnetic field in the separator? If the machine
is used to separate out 100 mg of material per hour, calculate
(b) the current of the desired ions in the machine and (c) the ther-
mal energy produced in the cup in 1.00 h.

60 An electric field of 1.50 kV/m and a perpendicular magnetic
field of 0.350 T act on a moving electron to produce no net force.
What is the electron’s speed?

61 An ion source is producing 6Li ions, which have charge 'e
and mass 9.99 10"27 kg. The ions are accelerated by a potential
difference of 25 kV and pass horizontally into a region in which
there is a uniform vertical magnetic field of magnitude B ! 1.2 T.
Calculate the strength of the electric field, to be set up over the
same region, that will allow the 6Li ions to pass through without
any deflection.

62 In a nuclear experiment a proton with kinetic energy 1.2 MeV
moves in a circular path in a uniform magnetic field. What energy
must (a) an alpha particle (q ! '2e, m ! 4.0 u) and (b) a deuteron
(q ! 'e, m ! 2.0 u) have if they are to circulate in the same circu-
lar path?

63 An electron that has an instantaneous velocity of

is moving through the uniform magnetic field 
(a) Find the force on the electron due to the magnetic

field. (b) Repeat your calculation for a proton having the same
velocity.

64 In Fig. 28-42, an electron with an ini-
tial kinetic energy of 5.0 keV enters region
1 at time t ! 0. That region contains a uni-
form magnetic field directed into the page,
with magnitude 0.010 T. The electron goes
through a half-circle and then exits region
1, headed toward region 2 across a gap of
25.0 cm. There is an electric potential dif-
ference &V ! 2000 V across the gap, with a
polarity such that the electron’s speed
increases uniformly as it traverses the gap.
Region 2 contains a uniform magnetic field directed out of the page,
with magnitude 0.020 T. The electron goes through a half-circle
and then leaves region 2. At what time t does it leave?

65 An alpha particle can be produced in certain radioactive
decays of nuclei and consists of two protons and two neutrons.
The particle has a charge of q ! '2e and a mass of 4.00 u, where
u is the atomic mass unit, with 1 u ! 1.661 # 10"27 kg. Suppose
an alpha particle travels in a circular path of radius 4.50 cm in a
uniform magnetic field with B ! 1.20 T. Calculate (a) its speed,
(b) its period of revolution, (c) its kinetic energy, and (d) the po-
tential difference through which it would have to be accelerated
to achieve this energy. (e) If the field magnitude is doubled, what
is the ratio of the new value of kinetic energy to the initial
value?

(0.15 T)ĵ.
B
:

! (0.030 T)î $

v: ! ($5.0 % 106 m/s)î " (3.0 % 106 m/s)ĵ

%

B 

Figure 28-40
Problem 52.

Figure 28-41 Problem 58.
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B2 

Region 1 
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the proton is At that
instant, what are (a) vx and (b) vy?

57 A single-turn current loop, carrying a current of 8.00 A, is in
the shape of a right triangle with sides 50.0, 120, and 130 cm. The
loop is in a uniform magnetic field of magnitude 75.0 mT whose di-
rection is parallel to the current in the 130 cm side of the loop.
What is the magnitude of the magnetic force on (a) the 130 cm
side, (b) the 50.0 cm side, and (c) the 120 cm side? (d) What is the
magnitude of the net force on the loop?

58 Fig. 28-41a, two concentric coils, lying in the same plane, carry
currents in opposite directions. The current in the larger coil 1 is
fixed. Current i2 in coil 2 can be varied. Figure 28-41b gives the net
magnetic moment of the two-coil system as a function of i2. The
vertical axis scale is set by and the hori-
zontal axis scale is set by i2s 20.0 mA. If the current in coil 2 is
then reversed, what is the magnitude of the net magnetic moment
of the two-coil system when i2 ! 7.0 mA?

!
2.0 % 10$5 A 'm2,mnet,s !

(2.0 % 10$17 N)ĵ.F
:

B ! (4.0 % 10$17 N)î "
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C H A P T E R  2 9

Magnetic Fields Due to Currents

748

What Is Physics?
One basic observation of physics is that a moving charged particle produces a
magnetic field around itself. Thus a current of moving charged particles produces
a magnetic field around the current. This feature of electromagnetism, which is
the combined study of electric and magnetic effects, came as a surprise to the
people who discovered it. Surprise or not, this feature has become enormously
important in everyday life because it is the basis of countless electromagnetic
devices. For example, a magnetic field is produced in maglev trains and other
devices used to lift heavy loads.

Our first step in this chapter is to find the magnetic field due to the current in
a very small section of current-carrying wire. Then we shall find the magnetic
field due to the entire wire for several different arrangements of the wire.

29-1 MAGNETIC FIELD DUE TO A CURRENT

After reading this module, you should be able to . . .

29.01 Sketch a current-length element in a wire and indicate
the direction of the magnetic field that it sets up at a given
point near the wire.

29.02 For a given point near a wire and a given current-length
element in the wire, determine the magnitude and direction
of the magnetic field due to that element.

29.03 Identify the magnitude of the magnetic field set up by a
current-length element at a point in line with the direction
of that element.

29.04 For a point to one side of a long straight wire carrying
current, apply the relationship between the magnetic field
magnitude, the current, and the distance to the point.

29.05 For a point to one side of a long straight wire carrying

current, use a right-hand rule to determine the direction of
the field vector.

29.06 Identify that around a long straight wire carrying cur-
rent, the magnetic field lines form circles.

29.07 For a point to one side of the end of a semi-infinite wire
carrying current, apply the relationship between the magnetic
field magnitude, the current, and the distance to the point.

29.08 For the center of curvature of a circular arc of wire car-
rying current, apply the relationship between the magnetic
field magnitude, the current, the radius of curvature, and
the angle subtended by the arc (in radians).

29.09 For a point to one side of a short straight wire carrying
current, integrate the Biot–Savart law to find the magnetic
field set up at the point by the current.

● The magnetic field set up by a current-carrying conductor can
be found from the Biot–Savart law. This law asserts that the
contribution to the field produced by a current-length ele-
ment at a point P located a distance r from the current ele-
ment is

(Biot–Savart law).

Here is a unit vector that points from the element toward P.
The quantity m0, called the permeability constant, has the value

4p ! 10"7 T #m/A ! 1.26 ! 10"6 T #m/A.

r̂

dB
:

$
m0

4p

ids: ! r̂
r2

i ds:
dB

:

● For a long straight wire carrying a current i, the Biot–Savart
law gives, for the magnitude of the magnetic field at a perpen-
dicular distance R from the wire,

(long straight wire).

● The magnitude of the magnetic field at the center of a circular
arc, of radius R and central angle f (in radians), carrying current
i, is

(at center of circular arc).B $
m 0 if
4pR

B $
m 0 i
2pR

Learning Objectives

Key Ideas

halliday_c29_748-773v2.0.1.qxd  3/5/14  11:56 AM  Page 748

Uploaded By: anonymousSTUDENTS-HUB.com



74929-1 MAGNETIC FIELD DUE TO A CURRENT

Calculating the Magnetic Field Due to a Current
Figure 29-1 shows a wire of arbitrary shape carrying a current i. We want to find
the magnetic field at a nearby point P. We first mentally divide the wire into
differential elements ds and then define for each element a length vector that
has length ds and whose direction is the direction of the current in ds. We can
then define a differential current-length element to be i ; we wish to calculate
the field produced at P by a typical current-length element. From experiment
we find that magnetic fields, like electric fields, can be superimposed to find a net
field. Thus, we can calculate the net field at P by summing, via integration, the
contributions from all the current-length elements. However, this summation
is more challenging than the process associated with electric fields because of
a complexity; whereas a charge element dq producing an electric field is a scalar,
a current-length element i producing a magnetic field is a vector, being the
product of a scalar and a vector.

Magnitude. The magnitude of the field produced at point P at distance r
by a current-length element i turns out to be

(29-1)

where u is the angle between the directions of and , a unit vector that points
from ds toward P. Symbol m0 is a constant, called the permeability constant,
whose value is defined to be exactly

m0 $ 4p ! 10"7 T #m/A ! 1.26 ! 10"6 T #m/A. (29-2)

Direction. The direction of , shown as being into the page in Fig. 29-1, is
that of the cross product .We can therefore write Eq. 29-1 in vector form as

(Biot–Savart law). (29-3)

This vector equation and its scalar form, Eq. 29-1, are known as the law of Biot
and Savart (rhymes with “Leo and bazaar”). The law, which is experimentally
deduced, is an inverse-square law. We shall use this law to calculate the net 
magnetic field produced at a point by various distributions of current.

Here is one easy distribution: If current in a wire is either directly toward or
directly away from a point P of measurement, can you see from Eq. 29-1 that the
magnetic field at P from the current is simply zero (the angle u is either 0% for to-
ward or 180 for away, and both result in sin u $ 0)?

Magnetic Field Due to a Current in a Long Straight Wire
Shortly we shall use the law of Biot and Savart to prove that the magnitude of the
magnetic field at a perpendicular distance R from a long (infinite) straight wire
carrying a current i is given by

(long straight wire). (29-4)

The field magnitude B in Eq. 29-4 depends only on the current and the per-
pendicular distance R of the point from the wire. We shall show in our derivation
that the field lines of form concentric circles around the wire, as Fig. 29-2 showsB

:

B $
m 0 i
2pR

%

B
:

dB
:

$
m 0

4p

i ds: ! r̂
r2

ds: ! r̂
dB

:

r̂ds:

dB $
m 0

4p

i ds sin u
r2 ,

ds:
dB

:

ds:

dB
:

B
:

dB
:

ds:

ds:
B
:

Figure 29-1 A current-length element i
produces a differential magnetic field at
point P.The green (the tail of an arrow)
at the dot for point P indicates that is
directed into the page there.

dB
:

!
dB

:
ds:

d B (into 
page) 

Current 
distribution  

i 

P 

θ  
ds 

ids 

r 
ˆ r 

This element of current creates a 
magnetic field at P, into the page.

Figure 29-2 The magnetic field lines produced by a current in a long straight wire form
concentric circles around the wire. Here the current is into the page, as indicated by the !.

Wire with current 
into the page 

B 

B 

The magnetic field vector
at any point is tangent to
a circle.
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and as the iron filings in Fig. 29-3 suggest. The increase in the spacing of the lines
in Fig. 29-2 with increasing distance from the wire represents the 1/R decrease in
the magnitude of predicted by Eq. 29-4. The lengths of the two vectors in the
figure also show the 1/R decrease.

Directions. Plugging values into Eq. 29-4 to find the field magnitude B at a
given radius is easy. What is difficult for many students is finding the direction of
a field vector at a given point.The field lines form circles around a long straight
wire, and the field vector at any point on a circle must be tangent to the circle.
That means it must be perpendicular to a radial line extending to the point from
the wire. But there are two possible directions for that perpendicular vector, as
shown in Fig. 29-4. One is correct for current into the figure, and the other is cor-
rect for current out of the figure. How can you tell which is which? Here is a sim-
ple right-hand rule for telling which vector is correct:

B
:

B
:

B
:

750 CHAPTER 29 MAGNETIC FIELDS DUE TO CURRENTS

Figure 29-3 Iron filings that have been sprinkled onto cardboard collect in concentric circles
when current is sent through the central wire.The alignment, which is along magnetic field
lines, is caused by the magnetic field produced by the current.

Courtesy Education Development Center

B r

Figure 29-4 The magnetic field vector is
perpendicular to the radial line extending
from a long straight wire with current, but
which of the two perpendicular vectors is it?

B
:

Curled–straight right-hand rule: Grasp the element in your right hand with your ex-
tended thumb pointing in the direction of the current.Your fingers will then natu-
rally curl around in the direction of the magnetic field lines due to that element.

The result of applying this right-hand rule to the current in the straight wire
of Fig. 29-2 is shown in a side view in Fig. 29-5a. To determine the direction of the
magnetic field set up at any particular point by this current, mentally wrap your
right hand around the wire with your thumb in the direction of the current. Let
your fingertips pass through the point; their direction is then the direction of the
magnetic field at that point. In the view of Fig. 29-2, at any point is tangent to
a magnetic field line; in the view of Fig. 29-5, it is perpendicular to a dashed radial
line connecting the point and the current.

B
:

B
:

Figure 29-5 A right-hand rule gives the direc-
tion of the magnetic field due to a current in
a wire. (a) The situation of Fig. 29-2, seen
from the side.The magnetic field at any
point to the left of the wire is perpendicular
to the dashed radial line and directed into
the page, in the direction of the fingertips, as
indicated by the !. (b) If the current is re-
versed, at any point to the left is still per-
pendicular to the dashed radial line but now
is directed out of the page, as indicated by
the dot.

B
:

B
:

B B

(a)

i

(b)

i The thumb is in the
current’s direction.
The fingers reveal
the field vector’s
direction, which is
tangent to a circle.
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75129-1 MAGNETIC FIELD DUE TO A CURRENT

Proof of Equation 29-4
Figure 29-6, which is just like Fig. 29-1 except that now the wire is straight and of
infinite length, illustrates the task at hand. We seek the field at point P, a per-
pendicular distance R from the wire. The magnitude of the differential magnetic
field produced at P by the current-length element i located a distance r from P
is given by Eq. 29-1:

The direction of in Fig. 29-6 is that of the vector  —namely, directly
into the page.

Note that at point P has this same direction for all the current-length
elements into which the wire can be divided. Thus, we can find the magnitude of
the magnetic field produced at P by the current-length elements in the upper half
of the infinitely long wire by integrating dB in Eq. 29-1 from 0 to &.

Now consider a current-length element in the lower half of the wire, one that
is as far below P as is above P. By Eq. 29-3, the magnetic field produced at P
by this current-length element has the same magnitude and direction as that from
element i in Fig. 29-6. Further, the magnetic field produced by the lower half
of the wire is exactly the same as that produced by the upper half. To find the
magnitude of the total magnetic field at P, we need only multiply the result of
our integration by 2.We get

(29-5)

The variables u, s, and r in this equation are not independent; Fig. 29-6 shows
that they are related by

and

With these substitutions and integral 19 in Appendix E, Eq. 29-5 becomes

(29-6)

as we wanted. Note that the magnetic field at P due to either the lower half or the
upper half of the infinite wire in Fig. 29-6 is half this value; that is,

(semi-infinite straight wire). (29-7)

Magnetic Field Due to a Current in a Circular Arc of Wire
To find the magnetic field produced at a point by a current in a curved wire, we
would again use Eq. 29-1 to write the magnitude of the field produced by a single
current-length element, and we would again integrate to find the net field
produced by all the current-length elements. That integration can be difficult,
depending on the shape of the wire; it is fairly straightforward, however, when the
wire is a circular arc and the point is the center of curvature.

Figure 29-7a shows such an arc-shaped wire with central angle f, radius R,
and center C, carrying current i. At C, each current-length element i of the
wire produces a magnetic field of magnitude dB given by Eq. 29-1. Moreover, as
Fig. 29-7b shows, no matter where the element is located on the wire, the angle u

ds:

B $
m 0i
4pR

 $
m 0i
2pR " s

(s2 ' R2)1/2 #
0

&

$
m 0i
2pR

,

 B $
m 0i
2p

$&

0

R ds
(s2 ' R2)3/2

sin u $ sin(p " u) $
R1s2 ' R2

.

r $ 2s2 ' R2

B $ 2$&

0
dB $

m 0 i
2p

$&

0

sin u ds
r2 .

B
:

ds:

ds:

dB
:

ds: ! r̂dB
:

dB $
m 0

4p

i ds sin u
r2 .

ds:

B
:

Figure 29-6 Calculating the magnetic field
produced by a current i in a long straight
wire.The field at P associated with the
current-length element i is directed into
the page, as shown.

ds:
dB

:

This element of current
creates a magnetic field
at P, into the page.

i 

θ  

d B  

P  
R  

s  r 

ds 

ˆ r 

Figure 29-7 (a) A wire in the shape of a
circular arc with center C carries current i.
(b) For any element of wire along the arc,
the angle between the directions of and

is 90 . (c) Determining the direction of
the magnetic field at the center C due to the
current in the wire; the field is out of the
page, in the direction of the fingertips, as
indicated by the colored dot at C.

%r̂
ds:

r 

B 

C φ 

R 

i C ds 

(a) (b) 

C 

i 

(c) 

ˆ r 

The right-hand rule
reveals the field’s
direction at the center.
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between the vectors and is 90 ; also, r $ R. Thus, by substituting R for r and
90 for u in Eq. 29-1, we obtain

(29-8)

The field at C due to each current-length element in the arc has this magnitude.
Directions. How about the direction of the differential field set up by

an element? From above we know that the vector must be perpendicular to a
radial line extending through point C from the element, either into the plane of
Fig. 29-7a or out of it.To tell which direction is correct, we use the right-hand rule
for any of the elements, as shown in Fig. 29-7c. Grasping the wire with the thumb
in the direction of the current and bringing the fingers into the region near C, we
see that the vector due to any of the differential elements is out of the plane
of the figure, not into it.

Total Field. To find the total field at C due to all the elements on the arc,
we need to add all the differential field vectors . However, because the vectors
are all in the same direction, we do not need to find components. We just sum the
magnitudes dB as given by Eq. 29-8. Since we have a vast number of those magni-
tudes, we sum via integration. We want the result to indicate how the total field
depends on the angle f of the arc (rather than the arc length). So, in Eq. 29-8 we
switch from ds to df by using the identity ds $ R df. The summation by integra-
tion then becomes

Integrating, we find that

(at center of circular arc). (29-9)

Heads Up. Note that this equation gives us the magnetic field only at the
center of curvature of a circular arc of current. When you insert data into the
equation, you must be careful to express f in radians rather than degrees. For ex-
ample, to find the magnitude of the magnetic field at the center of a full circle of
current, you would substitute 2p rad for f in Eq. 29-9, finding

(at center of full circle). (29-10)B $
m 0i(2p)

4pR
$

m 0i
2R

B $
m0if
4pR

B $ $dB $ $f

0

m 0

4p

iR df

R2 $
m 0i
4pR $f

0
 df.

dB
:

dB
:

dB
:

dB $
m 0

4p

i ds sin 90%

R2 $
m 0

4p

i ds
R2 .

%

%r̂ds:
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straight section at the left, (2) the straight section at the right,
and (3) the circular arc.

Straight sections: For any current-length element in
section 1, the angle u between and is zero (Fig. 29-8b);
so Eq. 29-1 gives us

Thus, the current along the entire length of straight section 1
contributes no magnetic field at C:

B1 $ 0.

dB1 $
m 0

4p

i ds sin u
r2 $

m 0

4p

i ds sin 0
r2 $ 0.

r̂ds:

Sample Problem 29.01 Magnetic field at the center of a circular arc of current

The wire in Fig. 29-8a carries a current i and consists of a 
circular arc of radius R and central angle p/2 rad, and two
straight sections whose extensions intersect the center C of
the arc. What magnetic field (magnitude and direction)
does the current produce at C?

KEY IDEAS

We can find the magnetic field at point C by applying the
Biot–Savart law of Eq. 29-3 to the wire, point by point along
the full length of the wire. However, the application of
Eq. 29-3 can be simplified by evaluating separately for the
three distinguishable sections of the wire—namely, (1) the

B
:

B
:

B
:
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75329-1 MAGNETIC FIELD DUE TO A CURRENT

direction of the current. The direction in which your fingers
curl around the wire indicates the direction of the magnetic
field lines around the wire. They form circles around the
wire, coming out of the page above the arc and going into
the page inside the arc. In the region of point C (inside the
arc), your fingertips point into the plane of the page.Thus,
is directed into that plane.

Net field: Generally, we combine multiple magnetic fields as
vectors. Here, however, only the circular arc produces a
magnetic field at point C. Thus, we can write the magnitude
of the net field as

(Answer)

The direction of is the direction of —namely, into the
plane of Fig. 29-8.

B
:

3B
:

B $ B1 ' B2 ' B3 $ 0 ' 0 '
m 0i
8R

$
m 0i
8R

.

B
:

B
:

3

The same situation prevails in straight section 2, where
the angle u between and for any current-length element
is 180 .Thus,

B2 $ 0.

Circular arc: Application of the Biot–Savart law to evalu-
ate the magnetic field at the center of a circular arc leads to
Eq. 29-9 (B $ m0if/4pR). Here the central angle f of the arc
is p/2 rad.Thus from Eq. 29-9, the magnitude of the magnetic
field at the arc’s center C is

To find the direction of , we apply the right-hand rule
displayed in Fig. 29-5. Mentally grasp the circular arc with
your right hand as in Fig. 29-8c, with your thumb in the 

B
:

3

B3 $
m 0i(p/2)

4pR
$

m 0i
8R

.

B
:

3

%

r̂ds:

Figure 29-8 (a) A wire consists of two straight sections
(1 and 2) and a circular arc (3),and carries current i.
(b) For a current-length element in section 1, the an-
gle between and is zero. (c) Determining the di-
rection of magnetic field at C due to the current in
the circular arc; the field is into the page there.

B
:

3

r̂ds:

i 

1 23 

C 

R 

C 

d s  

i i 

(a) (b) (c)
B3

C

i

r 

ˆ r 

Current directly toward or
away from C does not
create any field there.

Sample Problem 29.02 Magnetic field off to the side of two long straight currents

Figure 29-9a shows two long parallel wires carrying currents
i1 and i2 in opposite directions. What are the magnitude and
direction of the net magnetic field at point P? Assume the
following values: i1 $ 15 A, i2 $ 32 A, and d $ 5.3 cm.

KEY IDEAS

(1) The net magnetic field at point P is the vector sum of
the magnetic fields due to the currents in the two wires. (2)
We can find the magnetic field due to any current by apply-
ing the Biot–Savart law to the current. For points near the
current in a long straight wire, that law leads to Eq. 29-4.

Finding the vectors: In Fig. 29-9a, point P is distance R
from both currents i1 and i2. Thus, Eq. 29-4 tells us that at
point P those currents produce magnetic fields and 
with magnitudes

In the right triangle of Fig. 29-9a, note that the base angles
(between sides R and d) are both 45 .This allows us to write%

B1 $
m 0i1

2pR
  and  B2 $

m 0i2

2pR
.

B
:

2B
:

1

B
:

Figure 29-9 (a) Two wires carry currents i1 and i2 in opposite directions
(out of and into the page). Note the right angle at P. (b) The separate
fields and are combined vectorially to yield the net field .B

:
B
:

2B
:

1

(a) 

P 

d 
i2 

R R

i1 

B2 

x 

B1 

P 

d 
i2 i1 

45° 45°

φ 

(b) 

y 
B 

The two currents create
magnetic fields that must
be added as vectors to get
the net field.

cos 45 $ R/d and replace R with d cos 45 . Then the field
magnitudes B1 and B2 become

B1 $
m 0i1

2pd cos 45%
  and  B2 $

m 0i2

2pd cos 45%
.

%%
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754 CHAPTER 29 MAGNETIC FIELDS DUE TO CURRENTS

We want to combine and to find their vector sum,
which is the net field at P. To find the directions of and

, we apply the right-hand rule of Fig. 29-5 to each current
in Fig. 29-9a. For wire 1, with current out of the page, we
mentally grasp the wire with the right hand, with the thumb
pointing out of the page. Then the curled fingers indicate
that the field lines run counterclockwise. In particular, in the
region of point P, they are directed upward to the left.
Recall that the magnetic field at a point near a long, straight
current-carrying wire must be directed perpendicular to a
radial line between the point and the current. Thus, must
be directed upward to the left as drawn in Fig. 29-9b. (Note
carefully the perpendicular symbol between vector and
the line connecting point P and wire 1.)

Repeating this analysis for the current in wire 2, we find
that is directed upward to the right as drawn in Fig. 29-9b.

Adding the vectors: We can now vectorially add and 
to find the net magnetic field at point P, either by using a
vector-capable calculator or by resolving the vectors into
components and then combining the components of .B

:

B
:

B
:

2B
:

1

B
:

2

B
:

1

B
:

1

B
:

2

B
:

1B
:

B
:

2B
:

1 However, in Fig. 29-9b, there is a third method: Because 
and are perpendicular to each other, they form the legs
of a right triangle, with as the hypotenuse. So,

(Answer)

The angle f between the directions of and in Fig. 29-9b
follows from

which, with B1 and B2 as given above, yields

The angle between and the x axis shown in Fig. 29-9b is
then

f ' 45 $ 25 ' 45 $ 70 . (Answer)%%%%

B
:

f $ tan"1 
i1

i2
$ tan"1 

15 A
32 A

$ 25%.

f $ tan"1 
B1

B2
,

B
:

2B
:

 $ 1.89 ! 10"4 T ! 190 mT.

 $
(4p ! 10"7 T #m/A)2(15 A)2 ' (32 A)2

(2p)(5.3 ! 10"2 m)(cos 45%)

B $ 2B1
2 ' B2

2 $
m 0

2pd(cos 45%)
2i1

2 ' i2
2

B
:

B
:

2

B
:

1

29-2 FORCE BETWEEN TWO PARALLEL CURRENTS
Learning Objectives

29.11 Identify that parallel currents attract each other, and an-
tiparallel currents repel each other.

29.12 Describe how a rail gun works.

● Parallel wires carrying currents in the same direction attract
each other, whereas parallel wires carrying currents in oppo-
site directions repel each other. The magnitude of the force
on a length L of either wire is

After reading this module, you should be able to . . . 

29.10 Given two parallel or antiparallel currents, find the
magnetic field of the first current at the location of the
second current and then find the force acting on that
second current.

Key Ideas

Force Between Two Parallel Currents
Two long parallel wires carrying currents exert forces on each other. Figure 29-10
shows two such wires, separated by a distance d and carrying currents ia and ib.
Let us analyze the forces on these wires due to each other.

We seek first the force on wire b in Fig. 29-10 due to the current in wire a.
That current produces a magnetic field and it is this magnetic field that actu-
ally causes the force we seek. To find the force, then, we need the magnitude and
direction of the field at the site of wire b.The magnitude of at every point of
wire b is, from Eq. 29-4,

(29-11)Ba $
m0 ia

2pd
.

B
:

aB
:

a

B
:

a,

where d is the wire separation, and ia and ib are the currents
in the wires.

Fba $ ibLBa sin 90% $
m 0Liaib

2pd
,

Additional examples, video, and practice available at WileyPLUS
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75529-2 FORCE BETWEEN TWO PARALLEL CURRENTS

The curled–straight right-hand rule tells us that the direction of at wire b is
down, as Fig. 29-10 shows. Now that we have the field, we can find the force it pro-
duces on wire b. Equation 28-26 tells us that the force on a length L of wire b
due to the external magnetic field is

(29-12)

where is the length vector of the wire. In Fig. 29-10, vectors and are per-
pendicular to each other, and so with Eq. 29-11, we can write

(29-13)

The direction of is the direction of the cross product Applying
the right-hand rule for cross products to and in Fig. 29-10, we see that 
is directly toward wire a, as shown.

The general procedure for finding the force on a current-carrying wire is this:

F
:

baB
:

aL
:

L
:

! B
:

a.F
:

ba

Fba $ ibLBa sin 90% $
m0Liaib

2pd
.

B
:

aL
:

L
:

F
:

ba $ ibL
:

! B
:

a,

B
:

a

F
:

ba

B
:

a

To find the force on a current-carrying wire due to a second current-carrying wire,
first find the field due to the second wire at the site of the first wire.Then find the
force on the first wire due to that field.

Parallel currents attract each other, and antiparallel currents repel each other.

We could now use this procedure to compute the force on wire a due to the
current in wire b. We would find that the force is directly toward wire b; hence,
the two wires with parallel currents attract each other. Similarly, if the two cur-
rents were antiparallel, we could show that the two wires repel each other. Thus,

The force acting between currents in parallel wires is the basis for the defini-
tion of the ampere, which is one of the seven SI base units. The definition,
adopted in 1946, is this: The ampere is that constant current which, if maintained
in two straight, parallel conductors of infinite length, of negligible circular cross
section, and placed 1 m apart in vacuum, would produce on each of these con-
ductors a force of magnitude 2 ! 10"7 newton per meter of wire length.

Rail Gun
The basics of a rail gun are shown in Fig. 29-11a. A large current is sent out along
one of two parallel conducting rails, across a conducting “fuse” (such as a narrow
piece of copper) between the rails, and then back to the current source along the
second rail. The projectile to be fired lies on the far side of the fuse and fits
loosely between the rails. Immediately after the current begins, the fuse element
melts and vaporizes, creating a conducting gas between the rails where the fuse
had been.

The curled–straight right-hand rule of Fig. 29-5 reveals that the currents in the
rails of Fig. 29-11a produce magnetic fields that are directed downward between the
rails.The net magnetic field exerts a force on the gas due to the current i through
the gas (Fig. 29-11b). With Eq. 29-12 and the right-hand rule for cross products, we
find that points outward along the rails.As the gas is forced outward along the rails,
it pushes the projectile, accelerating it by as much as 5 ! 106g, and then launches it
with a speed of 10 km/s, all within 1 ms. Someday rail guns may be used to launch 
materials into space from mining operations on the Moon or an asteroid.

F
:

F
:

B
:

Figure 29-10 Two parallel wires carrying cur-
rents in the same direction attract each
other. is the magnetic field at wire b pro-
duced by the current in wire a. is the re-
sulting force acting on wire b because it
carries current in .B

:
a

F
:

ba

B
:

a

Figure 29-11 (a) A rail gun, as a current i is
set up in it.The current rapidly causes the
conducting fuse to vaporize. (b) The cur-
rent produces a magnetic field between
the rails, and the field causes a force to
act on the conducting gas, which is part of
the current path.The gas propels the pro-
jectile along the rails, launching it.

F
:

B
:

Projectile 

Conducting fuse 

Conducting rail 

i 

i 

Conducting
gas 

(a) 

(b) 

i 

i i B 

F 

ia 

ib 

d 
a 

b 

L 

Fba 

Ba (due to ia ) 

L 

The field due to a
at the position of b
creates a force on b.

Checkpoint 1
The figure here shows three long, straight, parallel, equally spaced wires with identical cur-
rents either into or out of the page. Rank the wires according to the magnitude of the force
on each due to the currents in the other two wires, greatest first.

a b c
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756 CHAPTER 29 MAGNETIC FIELDS DUE TO CURRENTS

29-3 AMPERE’S LAW

After reading this module, you should be able to . . .

29.13 Apply Ampere’s law to a loop that encircles current.
29.14 With Ampere’s law, use a right-hand rule for determin-

ing the algebraic sign of an encircled current.
29.15 For more than one current within an Amperian loop, de-

termine the net current to be used in Ampere’s law.

29.16 Apply Ampere’s law to a long straight wire with current,
to find the magnetic field magnitude inside and outside the
wire, identifying that only the current encircled by the
Amperian loop matters.

● Ampere’s law states that

(Ampere’s law).

The line integral in this equation is evaluated around a closed loop called an Amperian loop. The current i on the right side is the
net current encircled by the loop.

% B
:

! ds: $ m 0 ienc

Learning Objectives

Key Idea

Ampere’s Law
We can find the net electric field due to any distribution of charges by first writ-
ing the differential electric field due to a charge element and then summing
the contributions of from all the elements. However, if the distribution is
complicated, we may have to use a computer. Recall, however, that if the distribu-
tion has planar, cylindrical, or spherical symmetry, we can apply Gauss’ law to
find the net electric field with considerably less effort.

Similarly, we can find the net magnetic field due to any distribution of currents
by first writing the differential magnetic field (Eq. 29-3) due to a current-length
element and then summing the contributions of from all the elements.Again we
may have to use a computer for a complicated distribution. However, if the distri-
bution has some symmetry, we may be able to apply Ampere’s law to find the mag-
netic field with considerably less effort. This law, which can be derived from the
Biot–Savart law, has traditionally been credited to André-Marie Ampère
(1775–1836), for whom the SI unit of current is named. However, the law actually
was advanced by English physicist James Clerk Maxwell.Ampere’s law is

(Ampere’s law). (29-14)

The loop on the integral sign means that the scalar (dot) product is to be
integrated around a closed loop, called an Amperian loop. The current ienc is the
net current encircled by that closed loop.

To see the meaning of the scalar product and its integral, let us first apply
Ampere’s law to the general situation of Fig. 29-12. The figure shows cross sections
of three long straight wires that carry currents i1, i2, and i3 either directly into
or directly out of the page. An arbitrary Amperian loop lying in the plane of
the page encircles two of the currents but not the third. The counterclockwise
direction marked on the loop indicates the arbitrarily chosen direction of inte-
gration for Eq. 29-14.

To apply Ampere’s law, we mentally divide the loop into differential vec-
tor elements that are everywhere directed along the tangent to the loop in
the direction of integration. Assume that at the location of the element 
shown in Fig. 29-12, the net magnetic field due to the three currents is .
Because the wires are perpendicular to the page, we know that the magnetic

B
:

ds:
ds:

B
:

! ds:  

B
:

! ds: 

% B
:

! ds: $ m0ienc

dB
:

dB
:

dE
:

dE
:
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75729-3 AMPERE’S LAW

field at due to each current is in the plane of Fig. 29-12; thus, their net mag-
netic field at must also be in that plane. However, we do not know the ori-
entation of within the plane. In Fig. 29-12, is arbitrarily drawn at an angle u
to the direction of . The scalar product on the left side of Eq. 29-14 is
equal to B cos u ds.Thus,Ampere’s law can be written as

(29-15)

We can now interpret the scalar product as being the product of a length ds
of the Amperian loop and the field component B cos u tangent to the loop. Then
we can interpret the integration as being the summation of all such products
around the entire loop.

Signs. When we can actually perform this integration, we do not need to
know the direction of before integrating. Instead, we arbitrarily assume to be
generally in the direction of integration (as in Fig. 29-12).Then we use the follow-
ing curled–straight right-hand rule to assign a plus sign or a minus sign to each of
the currents that make up the net encircled current ienc:

B
:

B
:

B
:

! ds:

% B
:

! ds: $ % B cos u ds $ m0ienc.

B
:

! ds:ds:
B
:

B
:

ds:B
:

ds:

Figure 29-12 Ampere’s law applied to an
arbitrary Amperian loop that encircles two
long straight wires but excludes a third
wire. Note the directions of the currents.

i3

i1

i2

Direction of 
integration 

ds 
θ 

Amperian 
loop 

B 

Only the currents
encircled by the
loop are used in
Ampere’s law.

Curl your right hand around the Amperian loop, with the fingers pointing in the
direction of integration.A current through the loop in the general direction of your
outstretched thumb is assigned a plus sign, and a current generally in the opposite
direction is assigned a minus sign.

Finally, we solve Eq. 29-15 for the magnitude of . If B turns out positive, then
the direction we assumed for is correct. If it turns out negative, we neglect the
minus sign and redraw in the opposite direction.

Net Current. In Fig. 29-13 we apply the curled–straight right-hand rule for
Ampere’s law to the situation of Fig. 29-12. With the indicated counterclockwise
direction of integration, the net current encircled by the loop is

ienc $ i1 " i2.
(Current i3 is not encircled by the loop.) We can then rewrite Eq. 29-15 as

(29-16)

You might wonder why, since current i3 contributes to the magnetic-field mag-
nitude B on the left side of Eq. 29-16, it is not needed on the right side.The answer
is that the contributions of current i3 to the magnetic field cancel out because the
integration in Eq. 29-16 is made around the full loop. In contrast, the contributions
of an encircled current to the magnetic field do not cancel out.

We cannot solve Eq. 29-16 for the magnitude B of the magnetic field because for
the situation of Fig. 29-12 we do not have enough information to simplify and solve
the integral.However,we do know the outcome of the integration; it must be equal to
m0(i1 " i2), the value of which is set by the net current passing through the loop.

We shall now apply Ampere’s law to two situations in which symmetry does
allow us to simplify and solve the integral, hence to find the magnetic field.

Magnetic Field Outside a Long Straight Wire with Current
Figure 29-14 shows a long straight wire that carries current i directly out of the
page. Equation 29-4 tells us that the magnetic field produced by the current has
the same magnitude at all points that are the same distance r from the wire; that is,
the field has cylindrical symmetry about the wire. We can take advantage of that
symmetry to simplify the integral in Ampere’s law (Eqs. 29-14 and 29-15) if we en-
circle the wire with a concentric circular Amperian loop of radius r, as in Fig. 29-14.
The magnetic field  then has the same magnitude B at every point on the loop. We
shall integrate counterclockwise, so that has the direction shown in Fig. 29-14.ds:

B
:

B
:

% B cos u ds $ m0(i1 " i2).

B
:

B
:

B
:

Figure 29-13 A right-hand rule for Ampere’s
law, to determine the signs for currents
encircled by an Amperian loop.The situa-
tion is that of Fig. 29-12.

+i1

–i2
Direction of 
integration 

This is how to assign a
sign to a current used in
Ampere’s law.

Figure 29-14 Using Ampere’s law to find the
magnetic field that a current i produces
outside a long straight wire of circular cross
section.The Amperian loop is a concentric
circle that lies outside the wire.

i  

(   = 0) θ 

r 
Amperian 
loop Wire 

surface 

B 

ds 

All of the current is
encircled and thus all
is used in Ampere’s law.
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We can further simplify the quantity B cos u in Eq. 29-15 by noting that is
tangent to the loop at every point along the loop, as is . Thus, and are
either parallel or antiparallel at each point of the loop, and we shall arbitrarily
assume the former. Then at every point the angle u between and is 0 , so
cos u $ cos 0 $ 1.The integral in Eq. 29-15 then becomes

Note that & ds is the summation of all the line segment lengths ds around the
circular loop; that is, it simply gives the circumference 2pr of the loop.

Our right-hand rule gives us a plus sign for the current of Fig. 29-14.The right
side of Ampere’s law becomes 'm0i, and we then have

B(2pr) $ m0i

or (outside straight wire). (29-17)

With a slight change in notation, this is Eq. 29-4, which we derived earlier—with
considerably more effort—using the law of Biot and Savart. In addition, because
the magnitude B turned out positive, we know that the correct direction of 
must be the one shown in Fig. 29-14.

Magnetic Field Inside a Long Straight Wire with Current
Figure 29-15 shows the cross section of a long straight wire of radius R that
carries a uniformly distributed current i directly out of the page. Because the
current is uniformly distributed over a cross section of the wire, the magnetic
field produced by the current must be cylindrically symmetrical. Thus, to find
the magnetic field at points inside the wire, we can again use an Amperian loop of
radius r, as shown in Fig. 29-15, where now r ( R. Symmetry again suggests that 
is tangent to the loop, as shown; so the left side of Ampere’s law again yields

(29-18)

Because the current is uniformly distributed, the current ienc encircled by the loop
is proportional to the area encircled by the loop; that is,

(29-19)

Our right-hand rule tells us that ienc gets a plus sign. Then Ampere’s law gives us

or (inside straight wire). (29-20)

Thus, inside the wire, the magnitude B of the magnetic field is proportional to r ,
is zero at the center, and is maximum at r $ R (the surface). Note that Eqs. 29-17
and 29-20 give the same value for B at the surface.

B $ ' m0i
2pR2 ( r

B(2pr) $ m0i 
pr2

pR2

ienc $ i 
pr2

pR2 .

% B
:

! ds: $ B % ds $ B(2pr).

B
:

B
:

B
:

B $
m0i
2pr

% B
:

! ds: $ % B cos u ds $ B % ds $ B(2pr).

%

%B
:

ds:

ds:B
:

ds:
B
:
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Figure 29-15 Using Ampere’s law to find the
magnetic field that a current i produces in-
side a long straight wire of circular cross
section.The current is uniformly distrib-
uted over the cross section of the wire and
emerges from the page.An Amperian loop
is drawn inside the wire.

R 

Amperian 
loop 

r 

Wire 
surface 

i  

ds 

B 

Only the current encircled
by the loop is used in
Ampere’s law.

Checkpoint 2
The figure here shows three equal currents i (two parallel
and one antiparallel) and four Amperian loops. Rank the
loops according to the magnitude of along each,
greatest first.

& B
:

! ds:  

c d

b 

a 

i i 

i 
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75929-3 AMPERE’S LAW

Sample Problem 29.03 Ampere’s law to find the field inside a long cylinder of current

A

Figure 29-16 (a)–(b) To find the magnetic field at a point within this conducting cylinder, we use a concentric Amperian
loop through the point.We then need the current encircled by the loop. (c)–(h) Because the current density is nonuni-
form, we start with a thin ring and then sum (via integration) the currents in all such rings in the encircled area.

Amperian
loop

r
a

r

b

We want the
magnetic field at
the dot at radius r.

We start with a ring
that is so thin that
we can approximate
the current density as
being uniform within it.

a

Our job is to sum
the currents in all
rings from this
smallest one ...

r

... to this largest
one, which has the
same radius as the
Amperian loop.

dr

Its area dA is the
product of the ring’s
circumference
and the width dr.

dA

The current within the
ring is the product of
the current density J
and the ring’s area dA.

So, we put a concentric
Amperian loop through
the dot.

We need to find the
current in the area
encircled by the loop.

(g) (h)(e) ( f )

(a) (b) (c) (d)

Figure 29-16a shows the cross section of a long conducting
cylinder with inner radius a $ 2.0 cm and outer radius 
b $ 4.0 cm.The cylinder carries a current out of the page, and
the magnitude of the current density in the cross section is
given by J $ cr2, with c $ 3.0 ! 106 A/m4 and r in meters.
What is the magnetic field at the dot in Fig. 29-16a, which is
at radius r $ 3.0 cm from the central axis of the cylinder?

KEY IDEAS

The point at which we want to evaluate is inside the mate-
rial of the conducting cylinder, between its inner and outer
radii. We note that the current distribution has cylindrical
symmetry (it is the same all around the cross section for any
given radius). Thus, the symmetry allows us to use Ampere’s
law to find at the point. We first draw the Amperian loop
shown in Fig. 29-16b. The loop is concentric with the cylin-
der and has radius r $ 3.0 cm because we want to evaluate

at that distance from the cylinder’s central axis.B
:

B
:

B
:

B
:

Next, we must compute the current ienc that is encircled
by the Amperian loop. However, we cannot set up a propor-
tionality as in Eq. 29-19, because here the current is not uni-
formly distributed. Instead, we must integrate the current
density magnitude from the cylinder’s inner radius a to the
loop radius r , using the steps shown in Figs. 29-16c through h.

Calculations: We write the integral as

Note that in these steps we took the differential area dA to
be the area of the thin ring in Figs. 29-16d–f and then

 $
pc(r 4 " a4)

2
.

 $ 2pc $r

a
  r 3 dr $ 2pc " r 4

4 #
a

r

  ienc $ $ J dA $ $r

a
  cr2(2pr dr)
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760 CHAPTER 29 MAGNETIC FIELDS DUE TO CURRENTS

29-4 SOLENOIDS AND TOROIDS
Learning Objectives

unit length n of the solenoid.
29.20 Explain how Ampere’s law is used to find the magnetic

field inside a toroid.
29.21 Apply the relationship between a toroid’s internal mag-

netic field B, the current i, the radius r, and the total num-
ber of turns N.

After reading this module, you should be able to . . . 

29.17 Describe a solenoid and a toroid and sketch their
magnetic field lines.

29.18 Explain how Ampere’s law is used to find the magnetic
field inside a solenoid.

29.19 Apply the relationship between a solenoid’s internal
magnetic field B, the current i, and the number of turns per

replaced it with its equivalent, the product of the ring’s cir-
cumference 2pr and its thickness dr.

For the Amperian loop, the direction of integration indi-
cated in Fig. 29-16b is (arbitrarily) clockwise. Applying the
right-hand rule for Ampere’s law to that loop, we find that we
should take ienc as negative because the current is directed out
of the page but our thumb is directed into the page.

We next evaluate the left side of Ampere’s law 
as we did in Fig. 29-15, and we again obtain Eq. 29-18. Then
Ampere’s law,

gives us

B(2pr) $ "
m 0pc

2
 (r 4 " a 4).

% B
:

! ds: $ m 0 ienc ,

Solving for B and substituting known data yield

Thus, the magnetic field at a point 3.0 cm from the central
axis has magnitude

B $ 2.0 ! 10"5 T (Answer)

and forms magnetic field lines that are directed opposite our
direction of integration, hence counterclockwise in Fig. 29-16b.

B
:

 $ "2.0 ! 10"5 T.

! [(0.030 m)4 " (0.020 m)4]

 $ "
(4p ! 10 "7 T #m/A)(3.0 ! 10 6 A/m4)

4(0.030 m)

B $ "
m0 c
4r

 (r4 " a4)

● Inside a long solenoid carrying current i, at points not near
its ends, the magnitude B of the magnetic field is

B $ m0in (ideal solenoid),

where n is the number of turns per unit length.

● At a point inside a toroid, the magnitude B of the magnetic
field is

(toroid),

where r is the distance from the center of the toroid to the point.

B $
m 0 iN

2p
 
1
r

Key Ideas

Solenoids and Toroids
Magnetic Field of a Solenoid
We now turn our attention to another situation in which Ampere’s law proves
useful. It concerns the magnetic field produced by the current in a long, tightly
wound helical coil of wire. Such a coil is called a solenoid (Fig. 29-17). We assume
that the length of the solenoid is much greater than the diameter.

Figure 29-18 shows a section through a portion of a “stretched-out” sole-
noid. The solenoid’s magnetic field is the vector sum of the fields produced by
the individual turns (windings) that make up the solenoid. For points veryFigure 29-17 A solenoid carrying current i.

i 

i 

Additional examples, video, and practice available at WileyPLUS
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76129-4 SOLENOIDS AND TOROIDS

close to a turn, the wire behaves magnetically almost like a long straight wire,
and the lines of there are almost concentric circles. Figure 29-18 suggests
that the field tends to cancel between adjacent turns. It also suggests that, at
points inside the solenoid and reasonably far from the wire, is approxi-
mately parallel to the (central) solenoid axis. In the limiting case of an ideal
solenoid, which is infinitely long and consists of tightly packed (close-packed)
turns of square wire, the field inside the coil is uniform and parallel to the so-
lenoid axis.

At points above the solenoid, such as P in Fig. 29-18, the magnetic field set
up by the upper parts of the solenoid turns (these upper turns are marked !)
is directed to the left (as drawn near P) and tends to cancel the field set up at P
by the lower parts of the turns (these lower turns are marked "), which is di-
rected to the right (not drawn). In the limiting case of an ideal solenoid, the
magnetic field outside the solenoid is zero. Taking the external field to be zero
is an excellent assumption for a real solenoid if its length is much greater than
its diameter and if we consider external points such as point P that are not at
either end of the solenoid. The direction of the magnetic field along the sole-
noid axis is given by a curled – straight right-hand rule: Grasp the solenoid with
your right hand so that your fingers follow the direction of the current in the
windings; your extended right thumb then points in the direction of the axial
magnetic field.

Figure 29-19 shows the lines of for a real solenoid. The spacing of these
lines in the central region shows that the field inside the coil is fairly strong
and uniform over the cross section of the coil. The external field, however, is
relatively weak.

Ampere’s Law. Let us now apply Ampere’s law,

(29-21)

to the ideal solenoid of Fig. 29-20, where is uniform within the solenoid and
zero outside it, using the rectangular Amperian loop abcda. We write as
the sum of four integrals, one for each loop segment:

(29-22)' $d

c
 B

:
! ds: ' $a

d
 B

:
! ds:.% B

:
! ds: $ $b

a
 B

:
! ds: ' $c

b
 B

:
! ds:

& B
:

! ds:
B
:

% B
:

! ds: $ m 0 ienc ,

B
:

B
:

B
:

Figure 29-18 A vertical cross section through the central axis of a “stretched-out” solenoid.
The back portions of five turns are shown, as are the magnetic field lines due to a current
through the solenoid. Each turn produces circular magnetic field lines near itself. Near the
solenoid’s axis, the field lines combine into a net magnetic field that is directed along the
axis.The closely spaced field lines there indicate a strong magnetic field. Outside the sole-
noid the field lines are widely spaced; the field there is very weak.

P 

Figure 29-19 Magnetic field lines for a real
solenoid of finite length.The field is strong
and uniform at interior points such as P1

but relatively weak at external points such
as P2.

P2 

P1 

Figure 29-20 Application of Ampere’s law to
a section of a long ideal solenoid carrying
a current i.The Amperian loop is the rec-
tangle abcda.

a b 

d c 
h 

i 

B 
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762 CHAPTER 29 MAGNETIC FIELDS DUE TO CURRENTS

i

(a)

Amperian loop 

r 

i 

(b) 
B 

Figure 29-21 (a) A toroid carrying a current i.
(b) A horizontal cross section of the toroid.
The interior magnetic field (inside the
bracelet-shaped tube) can be found by ap-
plying Ampere’s law with the Amperian
loop shown.

The first integral on the right of Eq. 29-22 is Bh, where B is the magnitude of
the uniform field inside the solenoid and h is the (arbitrary) length of the
segment from a to b. The second and fourth integrals are zero because for every
element ds of these segments, either is perpendicular to ds or is zero, and thus
the product is zero. The third integral, which is taken along a segment that
lies outside the solenoid, is zero because B 0 at all external points. Thus,

for the entire rectangular loop has the value Bh.
Net Current. The net current ienc encircled by the rectangular Amperian

loop in Fig. 29-20 is not the same as the current i in the solenoid windings because
the windings pass more than once through this loop. Let n be the number of turns
per unit length of the solenoid; then the loop encloses nh turns and

ienc $ i(nh).

Ampere’s law then gives us
Bh $ m0inh

or B $ m0in (ideal solenoid). (29-23)

Although we derived Eq. 29-23 for an infinitely long ideal solenoid, it
holds quite well for actual solenoids if we apply it only at interior points and
well away from the solenoid ends. Equation 29-23 is consistent with the ex-
perimental fact that the magnetic field magnitude B within a solenoid does
not depend on the diameter or the length of the solenoid and that B is uni-
form over the solenoidal cross section. A solenoid thus provides a practical
way to set up a known uniform magnetic field for experimentation, just as a
parallel-plate capacitor provides a practical way to set up a known uniform
electric field.

Magnetic Field of a Toroid
Figure 29-21a shows a toroid, which we may describe as a (hollow) solenoid that
has been curved until its two ends meet, forming a sort of hollow bracelet. What
magnetic field is set up inside the toroid (inside the hollow of the bracelet)? We
can find out from Ampere’s law and the symmetry of the bracelet.

From the symmetry, we see that the lines of form concentric circles inside
the toroid, directed as shown in Fig. 29-21b. Let us choose a concentric circle of
radius r as an Amperian loop and traverse it in the clockwise direction. Ampere’s
law (Eq. 29-14) yields

(B)(2pr) $ m0iN,

where i is the current in the toroid windings (and is positive for those windings
enclosed by the Amperian loop) and N is the total number of turns.This gives

(toroid). (29-24)

In contrast to the situation for a solenoid, B is not constant over the cross section
of a toroid.

It is easy to show, with Ampere’s law, that B $ 0 for points outside an ideal
toroid (as if the toroid were made from an ideal solenoid). The direction of the
magnetic field within a toroid follows from our curled–straight right-hand rule:
Grasp the toroid with the fingers of your right hand curled in the direction of
the current in the windings; your extended right thumb points in the direction
of the magnetic field.

B $
m 0iN

2p

1
r

B
:

B
:

& B
:

! ds:
$

B
:

! ds:
B
:

B
:

halliday_c29_748-773v2.0.1.qxd  3/5/14  11:57 AM  Page 762

Uploaded By: anonymousSTUDENTS-HUB.com



76329-5 A CURRENT-CARRYING COIL AS A MAGNETIC DIPOLE 

Calculation: Because B does not depend on the diameter of
the windings, the value of n for five identical layers is simply
five times the value for each layer. Equation 29-23 then tells us

(Answer)

To a good approximation, this is the field magnitude through-
out most of the solenoid.

 $ 2.42 ! 10 "2 T $ 24.2 mT.

B $ m0 in $ (4p ! 10 "7 T #m/A)(5.57 A) 
5 ! 850 turns

1.23 m

Sample Problem 29.04 The field inside a solenoid (a long coil of current)

A solenoid has length L $ 1.23 m and inner diameter 
d $ 3.55 cm, and it carries a current i $ 5.57 A. It consists of
five close-packed layers, each with 850 turns along length L.
What is B at its center?

KEY IDEA

The magnitude B of the magnetic field along the solenoid’s
central axis is related to the solenoid’s current i and number
of turns per unit length n by Eq. 29-23 (B $ m0 in).

29-5 A CURRENT-CARRYING COIL AS A MAGNETIC DIPOLE
Learning Objectives

current i, number of turns N, and area per turn A.
29.24 For a point along the central axis, apply the relationship

between the magnetic field magnitude B, the magnetic
moment m, and the distance z from the center of the coil.

● The magnetic field produced by a current-carrying coil, which is a magnetic dipole, at a point P located a distance z along the
coil’s perpendicular central axis is parallel to the axis and is given by

where is the dipole moment of the coil. This equation applies only when z is much greater than the dimensions of the coil.m:

B
:

(z) $
m 0

2p

m:

z3 ,

After reading this module, you should be able to . . . 

29.22 Sketch the magnetic field lines of a flat coil that is
carrying current.

29.23 For a current-carrying coil, apply the relationship be-
tween the dipole moment magnitude m and the coil’s

Key Idea

A Current-Carrying Coil as a Magnetic Dipole
So far we have examined the magnetic fields produced by current in a long
straight wire, a solenoid, and a toroid. We turn our attention here to the field
produced by a coil carrying a current. You saw in Module 28-8 that such a coil
behaves as a magnetic dipole in that, if we place it in an external magnetic field ,
a torque given by

(29-25)

acts on it. Here is the magnetic dipole moment of the coil and has the magni-
tude NiA, where N is the number of turns, i is the current in each turn, and A is
the area enclosed by each turn. (Caution: Don’t confuse the magnetic dipole
moment with the permeability constant m0.)

Recall that the direction of is given by a curled–straight right-hand rule:
Grasp the coil so that the fingers of your right hand curl around it in the direction
of the current; your extended thumb then points in the direction of the dipole
moment .m:

m:
m:

m:

t: $ m: ! B
:

t:
B
:

Additional examples, video, and practice available at WileyPLUS
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Magnetic Field of a Coil
We turn now to the other aspect of a current-carrying coil as a magnetic dipole.
What magnetic field does it produce at a point in the surrounding space? The
problem does not have enough symmetry to make Ampere’s law useful; so we
must turn to the law of Biot and Savart. For simplicity, we first consider only a
coil with a single circular loop and only points on its perpendicular central axis,
which we take to be a z axis. We shall show that the magnitude of the magnetic
field at such points is

(29-26)

in which R is the radius of the circular loop and z is the distance of the point in
question from the center of the loop. Furthermore, the direction of the mag-
netic field is the same as the direction of the magnetic dipole moment of
the loop.

Large z. For axial points far from the loop, we have z R in Eq. 29-26. With
that approximation, the equation reduces to

Recalling that pR2 is the area A of the loop and extending our result to include
a coil of N turns, we can write this equation as

Further, because and have the same direction, we can write the equation in
vector form, substituting from the identity NiA:

(current-carrying coil). (29-27)

Thus, we have two ways in which we can regard a current-carrying coil as a
magnetic dipole: (1) it experiences a torque when we place it in an external
magnetic field; (2) it generates its own intrinsic magnetic field, given, for dis-
tant points along its axis, by Eq. 29-27. Figure 29-22 shows the magnetic field of
a current loop; one side of the loop acts as a north pole (in the direction of )m:

B
:

(z) $
m0

2p

m:

z3

m $
m:B

:

B(z) $
m 0

2p

NiA
z3 .

B(z) !
m 0iR2

2z3 .

)

m:B
:

B(z) $
m 0 iR2

2(R2 ' z2)3/2 ,
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N 

S 

i 

i 

B 

µ µ 

Figure 29-22 A current loop produces a magnetic field like that of a bar magnet and thus has
associated north and south poles.The magnetic dipole moment of the loop, its direction
given by a curled–straight right-hand rule, points from the south pole to the north pole, in
the direction of the field within the loop.B

:

m:
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and the other side as a south pole, as suggested by the lightly drawn magnet in
the figure. If we were to place a current-carrying coil in an external magnetic
field, it would tend to rotate just like a bar magnet would.

76529-5 A CURRENT-CARRYING COIL AS A MAGNETIC DIPOLE 

Checkpoint 3
The figure here shows four arrangements of circular loops of radius r or 2r, centered
on vertical axes (perpendicular to the loops) and carrying identical currents in the di-
rections indicated. Rank the arrangements according to the magnitude of the net
magnetic field at the dot, midway between the loops on the central axis, greatest first.

(a) (b) (c) (d) 

Figure 29-23 Cross section through a current
loop of radius R.The plane of the loop is
perpendicular to the page, and only the
back half of the loop is shown.We use the
law of Biot and Savart to find the magnetic
field at point P on the central perpendicu-
lar axis of the loop.

α 

z 

P 
α 

⊥dB 

dB  
dB<

R 

ds 

r 

ˆ r 

The perpendicular 
components
just cancel. We add 
only the parallel 
components.

Proof of Equation 29-26
Figure 29-23 shows the back half of a circular loop of radius R carrying a current
i. Consider a point P on the central axis of the loop, a distance z from its plane.
Let us apply the law of Biot and Savart to a differential element ds of the loop,
located at the left side of the loop. The length vector for this element points
perpendicularly out of the page. The angle u between and in Fig. 29-23 is 90 ;
the plane formed by these two vectors is perpendicular to the plane of the page
and contains both and From the law of Biot and Savart (and the right-hand
rule), the differential field produced at point P by the current in this element
is perpendicular to this plane and thus is directed in the plane of the figure,
perpendicular to , as indicated in Fig. 29-23.

Let us resolve into two components: dB, along the axis of the loop and
perpendicular to this axis. From the symmetry, the vector sum of all the per-

pendicular components due to all the loop elements ds is zero. This leaves
only the axial (parallel) components dB, and we have

For the element in Fig. 29-23, the law of Biot and Savart (Eq. 29-1) tells us
that the magnetic field at distance r is

We also have
dB, $ dB cos a.

Combining these two relations, we obtain

(29-28)

Figure 29-23 shows that r and a are related to each other. Let us express each in
terms of the variable z, the distance between point P and the center of the loop.
The relations are

(29-29)r $ 2R2 ' z2

dB,$
m 0 i cos a ds

4pr2 .

dB $
m 0

4p

i ds sin 90%

r2 .

ds:

B $ $ dB,.

dB#

dB#

dB
:

r̂

dB
:

ds:.r̂

%r̂ds:
ds:
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and (29-30)

Substituting Eqs. 29-29 and 29-30 into Eq. 29-28, we find

Note that i, R, and z have the same values for all elements ds around the loop; so
when we integrate this equation, we find that

or, because is simply the circumference 2pR of the loop,

This is Eq. 29-26, the relation we sought to prove.

B(z) $
m 0iR2

2(R2 ' z2)3/2 .

$ ds

 $
m 0 iR

4p(R2 ' z2)3/2  $ ds

  B $ $ dB,

dB,$
m 0iR

4p(R2 ' z2)3/2  ds.

cos a $
R
r

$
R1R2 ' z2

.

766 CHAPTER 29 MAGNETIC FIELDS DUE TO CURRENTS

The Biot–Savart Law The magnetic field set up by a current-
carrying conductor can be found from the Biot–Savart law. This
law asserts that the contribution to the field produced by a 
current-length element at a point P located a distance r from
the current element is

(Biot–Savart law). (29-3)

Here is a unit vector that points from the element toward P. The
quantity m0, called the permeability constant, has the value

4p ! 10"7 T #m/A ! 1.26 ! 10"6 T #m/A.

Magnetic Field of a Long Straight Wire For a long
straight wire carrying a current i, the Biot–Savart law gives, for the
magnitude of the magnetic field at a perpendicular distance R
from the wire,

(long straight wire). (29-4)

Magnetic Field of a Circular Arc The magnitude of the
magnetic field at the center of a circular arc, of radius R and central
angle f (in radians), carrying current i, is

(at center of circular arc). (29-9)

Force Between Parallel Currents Parallel wires carrying
currents in the same direction attract each other, whereas parallel
wires carrying currents in opposite directions repel each other.The
magnitude of the force on a length L of either wire is

(29-13)

where d is the wire separation, and ia and ib are the currents in the
wires.

Fba $ ibLBa sin 90% $
m 0Liaib

2pd
,

B $
m 0 if
4pR

B $
m 0 i
2pR

r̂

dB
:

$
m0

4p

ids: ! r̂
r2

i ds:
dB

:

Review & Summary

Ampere’s Law Ampere’s law states that

(Ampere’s law). (29-14)

The line integral in this equation is evaluated around a closed loop
called an Amperian loop. The current i on the right side is the net
current encircled by the loop. For some current distributions,
Eq. 29-14 is easier to use than Eq. 29-3 to calculate the magnetic
field due to the currents.

Fields of a Solenoid and a Toroid Inside a long solenoid
carrying current i, at points not near its ends, the magnitude B of
the magnetic field is

B $ m0in (ideal solenoid), (29-23)

where n is the number of turns per unit length. Thus the internal
magnetic field is uniform. Outside the solenoid, the magnetic field
is approximately zero.

At a point inside a toroid, the magnitude B of the magnetic
field is

(toroid), (29-24)

where r is the distance from the center of the toroid to the point.

Field of a Magnetic Dipole The magnetic field produced by
a current-carrying coil, which is a magnetic dipole, at a point P lo-
cated a distance z along the coil’s perpendicular central axis is par-
allel to the axis and is given by

(29-27)

where is the dipole moment of the coil. This equation applies
only when z is much greater than the dimensions of the coil.

m:

B
:

(z) $
m 0

2p

m:

z3 ,

B $
m 0 iN

2p

1
r

% B
:

! ds: $ m 0 ienc
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767PROBLEMS

and (b) is perpendicular to the plane
of the page after being rotated 90
counterclockwise as indicated?

7 In Fig. 29-26, four long straight
wires are perpendicular to the page,
and their cross sections form a
square of edge length a $ 13.5 cm.
Each wire carries 7.50 A, and the currents are out of the page in
wires 1, 3, and 4 and into the page in wire 2. In unit-vector notation,
what is the net magnetic force per meter of wire length on wire 4?

8 In Fig. 29-26, four long straight wires are perpendicular to the
page, and their cross sections form a square of edge length 
a $ 7.00 cm. Each wire carries 15.0 A,
and all the currents are out of the page.
In unit-vector notation, what is the net
magnetic force per meter of wire length
on wire 1?

9 In Fig. 29-28, length a is 2.3 cm
(short) and current i is 18 A. What are
the (a) magnitude and (b) direction
(into or out of the page) of the mag-
netic field at point P? 

10 In Fig. 29-29, five long parallel
wires in an xy plane are separated by
distance d $ 8.00 cm, have lengths of
20.0 m, and carry identical currents of
3.00 A out of the page. Each wire 
experiences a magnetic force due to
the currents in the other wires. In
unit-vector notation, what is the net
magnetic force on (a) wire 1, (b) wire
2, (c) wire 3, (d) wire 4, and (e) wire 5?

11 In Fig. 29-29, five long parallel wires in an xy plane are separated
by distance d $ 50.0 cm. The currents into the page are i1 $ 2.00 A,
i3 $ 0.250 A, i4 $ 6.00 A, and i5 $ 2.00 A; the current out of the page
is i2 $ 4.00 A. What is the magnitude of the net force per unit length
acting on wire 3 due to the currents in the other wires?

12 Figure 29-30a shows, in cross section, two long, parallel wires
carrying current and separated by distance L. The ratio i1/i2 of their
currents is 4.00; the directions of the currents are not indicated.
Figure 29-30b shows the y component By of their net magnetic field
along the x axis to the right of wire 2. The vertical scale is set by 
Bys $ 4.0 nT, and the horizontal scale is set by xs $ 40.0 cm. (a) At
what value of x * 0 is By maximum? (b) If i2 $ 3 mA, what is the
value of that maximum? What is the direction (into or out of the
page) of (c) i1 and (d) i2?

%
1 In Fig. 29-24, point P1 is at dis-
tance R $ 24.0 cm on the perpendi-
cular bisector of a straight wire of
length L $ 18.0 cm carrying current
i $ 58.2 mA. (Note that the wire is
not long.) What are the (a) magnitude
and (b) direction of the magnetic
field at P1 due to i? (c) If R is in-
creased, what happens to the magnitude of the field?

2 Figure 29-25a shows a length of
wire carrying a current i and bent 
into a circular coil of one turn. In 
Fig. 29-25b the same length of wire has
been bent to give a coil of two turns,
each of half the original radius. (a) If Ba

and Bb are the magnitudes of the mag-
netic fields at the centers of the two
coils, what is the ratio Bb/Ba? (b) What
is the ratio mb/ma of the dipole moment
magnitudes of the coils?

3 In Fig. 29-24, point P2 is at perpendicular distance R $ 25.1 cm
from one end of a straight wire of length L $ 13.6 cm carrying cur-
rent i $ 0.500 A. (Note that the wire is not long.) (a) What is the
magnitude of the magnetic field at P2? (b) If the point of measure-
ment is moved from P2 to P1, does the field magnitude increase,
decrease, or remain the same?

4 Equation 29-4 gives the magnitude B of the magnetic field
set up by a current in an infinitely long straight wire, at a point P
at perpendicular distance R from the wire. Suppose that point P
is actually at perpendicular distance R from the midpoint of a
wire with a finite length L. Using Eq. 29-4 to calculate B then re-
sults in a certain percentage error. What value must the ratio
L/R exceed if the percentage error is to be less than 3.00%? That
is, what L/R gives

5 In Fig. 29-26, four long straight wires are perpendicular to 
the page, and their cross sections form a square of edge length 
a $ 40 cm. The currents are out of the page in wires 1 and 4 and into
the page in wires 2 and 3, and each wire carries 12 A. In unit-vector
notation, what is the net magnetic field at the square’s center?

(B from Eq. 29-4) " (B actual)
(B actual)

 (100%) $ 3.00%?

Problems

L  

i
R

P 2 

R

P 1 

Figure 29-24 Problems 1 and 3.

Figure 29-25 Problem 2.

(a) (b) 

i 
i 

a x

a  

y  

a  a  

4 3

1 2

Figure 29-26 Problems 5, 7, and 8.

6 In Fig. 29-27, part of a long insulated wire carrying current 
i $ 5.78 mA is bent into a circular section of radius R $ 1.54 cm. In
unit-vector notation, what is the magnetic field at the center of curva-
ture C if the circular section (a) lies in the plane of the page as shown

Figure 29-27 Problem 6.

P 

C 
i i 

i 

y 

x 

P

i  

2a  

a  a

a  

Figure 29-28 Problem 9.

Figure 29-29 Problems 10
and 11.

y 

z 

1 2 3 4 5 

d  d  d  d  

Figure 29-30 Problem 12.

x 

y 

1 2 

L 

(a) (b) 

0 

Bys 

0 

–Bys 

xs B y
 (

nT
) 

x (cm) 
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13 In Fig. 29-31, a conductor car-
ries 2.0 A along the closed path
abcdefgha running along 8 of the 12
edges of a cube of edge length 
10 cm. (a) Taking the path to be a
combination of three square cur-
rent loops (bcfgb, abgha, and
cdefc), find the net magnetic mo-
ment of the path in unit-vector no-
tation. (b) What is the magnitude of
the net magnetic field at the xyz co-
ordinates of (0, 5.0 m, 0)?

14 Figure 29-32 shows two closed
paths wrapped around two con-
ducting loops carrying currents 
i1 $ 6.0 A and i2 $ 3.0 A. What is
the value of the integral 
for (a) path 1 and (b) path 2?

15 Figure 29-33 shows wire 1 in
cross section; the wire is long and
straight, carries a current of 2.50 mA
out of the page, and is at distance
d1 $ 4.00 cm from a surface. Wire
2, which is parallel to wire 1 and
also long, is at horizontal distance
d2 $ 5.00 cm from wire 1 and car-
ries a current of 6.80 mA into the
page. What is the x component of
the magnetic force per unit length
on wire 2 due to wire 1?

16 An electron is shot into one end of a solenoid. As it enters
the uniform magnetic field within the solenoid, its speed is 
500 m/s and its velocity vector makes an angle of 30 with the
central axis of the solenoid. The solenoid carries 4.0 A and has
8000 turns along its length. How many revolutions does the elec-
tron make along its helical path within the solenoid by the time
it emerges from the solenoid’s opposite end? (In a real solenoid,
where the field is not uniform at the two ends, the number of
revolutions would be slightly less than the answer here.)

17 A toroid having a square cross section, 5.00 cm on a side,
and an inner radius of 19.0 cm has 460 turns and carries a current
of 0.400 A. (It is made up of a square solenoid — instead of a
round one as in Fig. 29-17—bent into a doughnut shape.) What is
the magnetic field inside the toroid at (a) the inner radius and
(b) the outer radius?

18 Figure 29-34 shows an
arrangement known as Helmholtz
coil. It consists of two circular
coaxial coils, each of 200 turns and
radius R $ 20.0 cm, separated by a
distance s $ R. The two coils carry
equal currents i $ 20.2 mA in the
same direction. Find the magni-
tude of the net magnetic field at P,
midway between the coils.

19 Figure 29-35 shows a cross section of a long thin ribbon of
width w $ 6.20 cm that is carrying a uniformly distributed total
current i $ 4.61 mA into the page. In unit-vector notation, what

%

& B: ! ds:

is the magnetic field at a point P
in the plane of the ribbon at a dis-
tance d $ 1.61 cm from its edge?
(Hint: Imagine the ribbon as being
constructed from many long, thin,
parallel wires.)

20 A solenoid 1.30 m long and
2.60 cm in diameter carries a current of 22.0 A. The magnetic
field inside the solenoid is 23.0 mT. Find the length of the wire
forming the solenoid.

21 In Fig. 29-36, a long straight wire carries a current i1 $ 30.0 A
and a rectangular loop carries current i2 $ 20.0 A. Take the di-
mensions to be a $ 1.00 cm, b $ 8.00 cm, and L $ 20.0 cm. In
unit-vector notation, what is the net force on the loop due to i1?

B
:
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Figure 29-32 Problem 14.

i1 i2 
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2 

Figure 29-34
Problem 18.
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i i 

Figure 29-31 Problem 13.
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Figure 29-33 Problem 15.
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Figure 29-35 Problem 19.

P  

y  
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Figure 29-37 Problem 22.
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Figure 29-36 Problem 21.
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i2 

a 

y 

x 

22 Figure 29-37a shows, in cross section, three current-carrying
wires that are long, straight, and parallel to one another. Wires 1
and 2 are fixed in place on an x axis, with separation d. Wire 1 has
a current of 0.750 A, but the direction of the current is not given.
Wire 3, with a current of 0.250 A out of the page, can be moved
along the x axis to the right of wire 2. As wire 3 is moved, the
magnitude of the net magnetic force on wire 2 due to the cur-
rents in wires 1 and 3 changes. The x component of that force is
F2x and the value per unit length of wire 2 is F2x/L2. Figure 29-37b
gives F2x/L2 versus the position x of wire 3. The plot has an as-
ymptote F2x/L2 $ "0.627 mN/m as x : &. The horizontal scale is
set by xs $ 24.0 cm. What are the (a) size and (b) direction (into
or out of the page) of the current in wire 2?

F
:

2

23 Figure 29-38 shows a cross section across a diameter of a
long cylindrical conductor of radius a $ 2.00 cm carrying uni-
form current 170 A. What is the magnitude of the current’s mag-
netic field at radial distance (a) 0, (b) 6.00 mm, (c) 2.00 cm
(wire’s surface), and (d) 5.90 cm?
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24 Eight wires cut the page per-
pendicularly at the points shown
in Fig. 29-39. A wire labeled with
the integer k (k $ 1, 2, . . . , 8) car-
ries the current ki, where 
i $ 6.00 mA. For those wires with
odd k, the current is out of the
page; for those with even k, it is
into the page. Evaluate 
along the closed path indicated
and in the direction shown.

25 Each of the eight conductors
in Fig. 29-40 carries 5.0 A of current into or out of the page. Two
paths are indicated for the line integral . What is the
value of the integral for (a) path 1 and (b) path 2?

& B: ! ds:

& B: ! ds:

769PROBLEMS

(a) At what radial distance from the axis will the direction of the
resulting magnetic field be at 45.0 to the axial direction? (b)
What is the magnitude of the magnetic field there?

28 In Fig. 29-42, two semicircular
arcs have radii R2 $ 7.80 cm and 
R1 $ 2.86 cm, carry current i $ 0.281 A,
and have the same center of curva-
ture C. What are the (a) magnitude
and (b) direction (into or out of the
page) of the net magnetic field at
C?

29 A 470-turn solenoid having a length of 25 cm and a
diameter of 10 cm carries a current of 0.29 A. Calculate the mag-
nitude of the magnetic field inside the solenoid.

30 A solenoid that is 95.0 cm long has a radius of 2.00 cm and a
winding of 1500 turns; it carries a current of 3.60 A. Calculate
the magnitude of the magnetic field inside the solenoid.

31 Figure 29-43 shows two very
long straight wires (in cross sec-
tion) that each carry a current of
4.00 A directly out of the page.
Distance d1 $ 6.00 m and distance
d2 $ 8.00 m. What is the magnitude
of the net magnetic field at point P,
which lies on a perpendicular bi-
sector to the wires?

32 Figure 29-44a shows an ele-
ment of length ds $ 1.00 mm in a
very long straight wire carrying current. The current in that ele-
ment sets up a differential magnetic field at points in the
surrounding space. Figure 29-44b gives the magnitude dB of the
field for points 3.5 cm from the element, as a function of angle u
between the wire and a straight line to the point. The vertical
scale is set by dBs $ 120 pT. What is the magnitude of the mag-
netic field set up by the entire wire at perpendicular distance 
3.5 cm from the wire?

dB
:

B
:

%

Figure 29-38
Problem 23.

a 
r 

Figure 29-40 Problem 25.

1 2 

Figure 29-41
Problem 26.

R 

R 
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Pipe 

P 

C 

R1 

R2 i 
i 

Figure 29-42 Problem 28.

Figure 29-43 Problem 31.

d2 
d1 P 

Wire ds 
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(b) 
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pT
) 

π π/2 
θ  (rad) 

Figure 29-44 Problem 32.

Figure 29-39 Problem 24.
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8 

26 In Fig. 29-41, a long circular pipe with outside radius 
R $ 2.6 cm carries a (uniformly distributed) current i $ 2.12 mA
into the page. A wire runs parallel to the pipe at a distance of
3.00R from center to center. Find the (a) magnitude and (b) di-
rection (into or out of the page) of the current in the wire such
that the net magnetic field at point P has the same magnitude as
the net magnetic field at the center of the pipe but is in the oppo-
site direction.

27 A long solenoid with 10.0 turns/cm and a radius of 7.00 cm
carries a current of 35.0 mA. A current of 5.00 A exists in a
straight conductor located along the central axis of the solenoid.

33 A long solenoid has 123 turns/cm and carries current i. An
electron moves within the solenoid in a circle of radius 2.30 cm
perpendicular to the solenoid axis. The speed of the electron is
0.0187c (c $ speed of light). Find the current i in the solenoid.
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41 A surveyor is using a magnetic compass 12.2 m below
a power line in which there is a steady current of 200 A. (a) What
is the magnetic field at the site of the compass due to the power
line? (b) Will this field interfere seriously with the compass read-
ing? The horizontal component of Earth’s magnetic field at the
site is 20 mT.

42 In Fig. 29-48a, two circular loops, with different currents but
the same radius of 2.0 cm, are centered on a y axis. They are ini-
tially separated by distance L $ 6.0 cm, with loop 2 positioned at
the origin of the axis. The currents in the two loops produce a net
magnetic field at the origin, with y component By. That compo-
nent is to be measured as loop 2 is gradually moved in the posi-
tive direction of the y axis. Figure 29-48b gives By as a function of
the position y of loop 2. The curve approaches an asymptote of
By $ 7.20 mT as y : &. The horizontal scale is set by ys $ 10.0 cm.
What are (a) current i1 in loop 1 and (b) current i2 in loop 2?

770 CHAPTER 29 MAGNETIC FIELDS DUE TO CURRENTS
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Figure 29-48 Problem 42.

34 In Fig. 29-45, two long straight
wires at separation d $ 30.0 cm carry
currents i1 $ 3.61 mA and i2 $ 4.00i1

out of the page. (a) Where on the x axis
is the net magnetic field equal to zero?
(b) If the two currents are doubled, is
the zero-field point shifted toward wire
1, shifted toward wire 2, or unchanged?

35 The current density inside a long, solid, cylindrical wire of
radius  a 4.5 mm is in the direction of the central axis, and its
magnitude varies linearly with radial distance r from the axis ac-
cording to J $ J0r/a, where J0 $ 420 A/m2. Find the magnitude of
the magnetic field at (a) r $ 0, (b) r $ a/2, and (c) r $ a.

36 In Fig. 29-46, point P is at perpen-
dicular distance R $ 1.50 cm from a
very long straight wire carrying a cur-
rent. The magnetic field set up at
point P is due to contributions from all
the identical current-length elements 
i along the wire. What is the dis-
tance s to the element making (a) the greatest contribution to field 
and (b) 10.0% of the greatest contribution?

37 What is the magnitude of the magnetic dipole moment of
the solenoid described in Problem 29?

38 In a particular region there is a uniform current density of
18 A/m2 in the positive z direction. What is the value of 
when that line integral is calculated along a closed path consist-
ing of the three straight-line segments from (x, y, z) coordinates
(4d, 0, 0) to (4d, 3d, 0) to (0, 0, 0) to (4d, 0, 0), where d $ 20 cm?

39 A circular loop of radius 12 cm carries a current of 7.2 A. A
flat coil of radius 0.82 cm, having 50 turns and a current of 1.3 A,
is concentric with the loop. The plane of the loop is perpendicu-
lar to the plane of the coil. Assume the loop’s magnetic field is
uniform across the coil. What is the magnitude of (a) the mag-
netic field produced by the loop at its center and (b) the torque
on the coil due to the loop?

40 The current-carrying wire loop in Fig. 29-47a lies all in one
plane and consists of a semicircle of radius 25.0 cm, a smaller
semicircle with the same center, and two radial lengths. The
smaller semicircle is rotated out of that plane by angle u, until it
is perpendicular to the plane (Fig. 29-47b). Figure 29-47c gives
the magnitude B of the net magnetic field at the center of curva-
ture versus angle u. The vertical scale is set by Ba $ 10.0 mT and
Bb $ 12.0 mT. What is the radius of the smaller semicircle?

& B: ! ds:

m:

B
:

ds:

B
:

$
J
:

43 A student makes a short electromagnet by winding 280 turns
of wire around a wooden cylinder of diameter d $ 5.0 cm. The coil
is connected to a battery producing a current of 3.8 A in the
wire. (a) What is the magnitude of the magnetic dipole moment
of this device? (b) At what axial distance d will the magnetic
field have the magnitude 5.0 mT (approximately one-tenth that
of Earth’s magnetic field)?

44 Figure 29-49 shows, in cross
section, two long straight wires held
against a plastic cylinder of radius
15.0 cm. Wire 1 carries current 
i1 $ 60.0 mA out of the page and is
fixed in place at the left side of the
cylinder. Wire 2 carries current 
i2 $ 40.0 mA out of the page and
can be moved around the cylinder.
At what (positive) angle u2 should
wire 2 be positioned such that, at the origin, the net magnetic
field due to the two currents has magnitude 80.0 nT?

45 In Fig. 29-50, two long straight wires are
perpendicular to the page and separated by
distance d1 $ 0.75 cm. Wire 1 carries 6.5 A
into the page. What are the (a) magnitude
and (b) direction (into or out of the page) of
the current in wire 2 if the net magnetic
field due to the two currents is zero at point
P located at distance d2 $ 2.50 cm from
wire 2? If the current in wire 2 is then
reversed, what are the (c) size and (d)
direction of the net field at point P?

z )

Figure 29-45 Problem 34.

y 

x 
i1 i2 

d 

Figure 29-46 Problem 36.

Wire 

R 

P 

s 

Figure 29-47 Problem 40.
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z 
y 

x 

z 

Bb 

Ba 0   /4 π 
 (rad) θ 

  /2 π 

B 
( 

 T
) 

µ 

(a) 

(b) 

(c) 

Figure 29-49 Problem 44.

y 

x

Wire 1 

Wire 2

2 θ 

P  

d1

d2

Wire 1 

Wire 2 

Figure 29-50 Problem 45.
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51 In Fig. 29-56, two long straight
wires (shown in cross section) carry
the currents i1 $ 30.0 mA and 
i2 $ 50.0 mA directly out of the page.
They are equal distances from the
origin, where they set up a magnetic
field . To what value must current i1

be changed in order to rotate 25
clockwise?

52 In Fig. 29-57, a wire forms a semi-
circle of radius R $ 9.26 cm and two
(radial) straight segments each of
length L $ 13.1 cm. The wire carries
current i $ 32.3 mA. What are the (a)
magnitude and (b) direction (into or
out of the page) of the net magnetic
field at the semicircle’s center of curvature C?

53 Figure 29-58 shows a snapshot
of a proton moving at velocity 

toward a long
straight wire with current i 470 mA.
At the instant shown, the proton’s
distance from the wire is d $ 2.89 cm.
In unit-vector notation, what is the
magnetic force on the proton due to the current?

54 A straight conductor carrying
current i $ 15 A splits into iden-
tical semicircular arcs as shown in
Fig. 29-59. What is the magnetic
field at the center C of the resulting
circular loop?

55 One long wire lies along an x
axis and carries a current of 60 A in
the positive x direction. A second long wire is perpendicular to
the xy plane, passes through the point (0, 4.0 m, 0), and carries a

$
("380 m/s)ĵv:

 

$

%B
:

B
:

771PROBLEMS

46 In Fig. 29-51a, wire 1 consists of a circular arc and two radial
lengths; it carries current i1 $ 0.20 A in the direction indicated.
Wire 2, shown in cross section, is long, straight, and perpendicu-
lar to the plane of the figure. Its distance from the center of the
arc is equal to the radius R of the arc, and it carries a current i2

that can be varied. The two currents set up a net magnetic field 
at the center of the arc. Figure 29-51b gives the square of the
field’s magnitude B2 plotted versus the square of the current .
The vertical scale is set by What angle is
subtended by the arc?

Bs
2 $ 10.0 ! 10"10 T2.

i2
2

B
:

50 Figure 29-55a shows two wires, each carrying a current.
Wire 1 consists of a circular arc of radius R and two radial
lengths; it carries current i1 $ 1.5 A in the direction indicated.
Wire 2 is long and straight; it carries a current i2 that can be var-
ied; and it is at distance R/2 from the center of the arc. The net
magnetic field due to the two currents is measured at the 
center of curvature of the arc. Figure 29-56b is a plot of the com-
ponent of in the direction perpendicular to the figure as a
function of current i2. The horizontal scale is set by i2s $ 1.00 A.
What is the angle subtended by the arc?

B
:

B
:

Figure 29-55 Problem 50.

R 

i1

i2

R __
 2 

(a) (b) 

0 i2s 

B 

i2 (A) 

47 In Fig. 29-52, a current i $ 2.2 A
is set up in a long hairpin conductor
formed by bending a wire into a
semicircle of radius R $ 8.5 mm.
Point b is midway between the
straight sections and so distant from the semicircle that each
straight section can be approximated as being an infinite wire.
What are the (a) magnitude and (b) direction (into or out of the
page) of at a and the (c) magnitude and (d) direction of 

at b?

48 A current is set up in a wire
loop consisting of a semicircle of
radius 4.50 cm, a smaller concentric
semicircle, and two radial straight
lengths, all in the same plane.
Figure 29-53a shows the arrange-
ment but is not drawn to scale. The
magnitude of the magnetic field produced at the center of curva-
ture is 47.25 mT. The smaller semicircle is then flipped over
(rotated) until the loop is again entirely in the same plane 
(Fig. 29-53b). The magnetic field produced at the (same) center
of curvature now has magnitude 15.75 mT, and its direction is re-
versed from the initial magnetic field. What is the radius of the
smaller semicircle?

49 Figure 29-54 shows two current
segments. The lower segment car-
ries a current of  i1 $ 0.40 A and
includes a semicircular arc with
radius 5.0 cm, angle 180 , and center
point P. The upper segment carries
current i2 $ 3i1 and includes a circu-
lar arc with radius 4.0 cm, angle 
120 , and the same center point P.
What are the (a) magnitude and (b) direction of the net mag-
netic field at P for the indicated current directions? What are
the (c) magnitude and (d) direction of if i1 is reversed?B

:
B
:

%

%

B
:

B
:

x 

y 

i1

i2

Figure 29-56 Problem 51.

Figure 29-57 Problem 52.

i

C 

i  

L L 

R 

Figure 29-58 Problem 53.
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Bs
2 

1 0 
i 2

2 (A2)
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B
2  (
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0  
T

2 ) 

R 

i1

i2

(a) (b) 

Figure 29-51 Problem 46.

Figure 29-52 Problem 47.

i  
R 

ba 

Figure 29-53 Problem 48.

(a) (b) 

Figure 29-54 Problem 49.

θ 

P 

i1 

i2 

Figure 29-59 Problem 54.

i  i  
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57 In Fig. 29-61, two circular arcs have radii a $ 18.9 cm and
b $ 10.7 cm, subtend angle u $ 74.0 , carry current i $ 0.411 A,
and share the same center of curvature P. What are the (a) mag-
nitude and (b) direction (into or out of the page) of the net mag-
netic field at P?

%

58 In Fig. 29-62, current i $ 56.2 mA is set up in a loop having
two radial lengths and two semicircles of radii a $ 5.72 cm and 
b $ 8.57 cm with a common center P. What are the (a) magni-
tude and (b) direction (into or out of the page) of the magnetic
field at P and the (c) magnitude and (d) direction of the loop’s
magnetic dipole moment?

772 CHAPTER 29 MAGNETIC FIELDS DUE TO CURRENTS

60 Two long straight thin wires with current lie against an
equally long plastic cylinder, at radius R $ 20.0 cm from the
cylinder’s central axis. Figure 29-64a shows, in cross section, the
cylinder and wire 1 but not wire 2. With wire 2 fixed in place,
wire 1 is moved around the cylinder, from angle u1 $ 0 to angle
u1 $ 180 , through the first and second quadrants of the xy coor-
dinate system. The net magnetic field at the center of the 
cylinder is measured as a function of u1. Figure 29-64b gives the x
component Bx of that field as a function of u1 (the vertical scale
is set by Bxs $ 6.0 mT), and Fig. 29-64c gives the y component By

(the vertical scale is set by Bys $ 4.0 mT). (a) At what angle u2 is
wire 2 located? What are the (b) size and (c) direction (into or
out of the page) of the current in wire 1 and the (d) size and (e)
direction of the current in wire 2?

B
:

%
%

2 1 

Figure 29-60 Problem 56.

Figure 29-64 Problem 60.

Bys 

0 

–Bys 
0° 0° 90° 180° 90° 180° 

θ 1 

B y
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  T
) 

µ 

B x
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  T
) 

µ 

Bxs 

0 

θ 1 

(c) (b) 

y 

x 

Wire 1 
θ 

(a) 

1 

P 

i  i  
θ 

a  

b  

Figure 29-61 Problem 57.

Figure 29-62 Problem 58.

b 

a 
P 

i 

Figure 29-63
Problem 59.

i  

R 

i  

θ 

Connecting arc 

current of 40 A in the positive z direction. What is the magnitude
of the resulting magnetic field at (a) the point (0, 2.0 m, 0) and
(b) the point (2.0 m, 4.0 m, 0)?

56 In Fig. 29-60, two concentric circular loops of wire carrying
current in the same direction lie in the same plane. Loop 1 has
radius 1.50 cm and carries 4.00 mA. Loop 2 has radius 2.50 cm
and carries 6.00 mA. Loop 2 is to be rotated about a diameter
while the net magnetic field set up by the two loops at their
common center is measured. (a) Through what angle must loop 2
be rotated so that the magnitude of that net field is 200 nT? (b)
What is the least possible magnitude of the net field?

B
:

61 Two long straight wires are parallel and 16 cm apart. They
are to carry equal currents such that the magnetic field at a point
halfway between them has magnitude 450 mT. (a) Should the
currents be in the same or opposite directions? (b) How much
current is needed?

62 Figure 29-65 shows, in cross section, four thin wires that are
parallel, straight, and very long. They carry identical currents in
the directions indicated. Initially all four wires are at distance 
d $ 15.0 cm from the origin of the coordinate system, where
they create a net magnetic field . (a) To what value of x mustB

:

59 A wire with current i $ 9.50 A is shown in Fig. 29-63. Two
semi-infinite straight sections, both tangent to the same circle,
are connected by a circular arc that has a central angle u and
runs along the circumference of the circle. The arc and the two
straight sections all lie in the same plane. If the magnetic field is
B $ 0 at the circle’s center, what is u?
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773PROBLEMS

Figure 29-65
Problem 62.

x 

y 

4 

3 

2 

1 
d 

d 
d d 

you move wire 1 along the x axis in order to rotate counter-
clockwise by 50 ? (b) With wire 1 in that new position, to what
value of x must you move wire 3 along the x axis to rotate by
30 back to its initial orientation?%

B
:

%
B
: 63 At a certain location in the Philippines, Earth’s magnetic

field of 39 mT is horizontal and directed due north. Suppose the
net field is zero exactly 2.0 cm above a long, straight, horizontal
wire that carries a constant current. What are the (a) magnitude
and (b) direction of the current?

halliday_c29_748-773v2.0.1.qxd  3/5/14  11:58 AM  Page 773

Uploaded By: anonymousSTUDENTS-HUB.com



C H A P T E R  3 0

774

Induction and Inductance

What Is Physics?
In Chapter 29 we discussed the fact that a current produces a magnetic field.That
fact came as a surprise to the scientists who discovered the effect. Perhaps even
more surprising was the discovery of the reverse effect: A magnetic field can
produce an electric field that can drive a current.This link between a magnetic field
and the electric field it produces (induces) is now called Faraday’s law of induction.

30-1 FARADAY’S LAW AND LENZ’S LAW

After reading this module, you should be able to . . .

30.01 Identify that the amount of magnetic field piercing a
surface (not skimming along the surface) is the magnetic
flux !B through the surface.

30.02 Identify that an area vector for a flat surface is a vector
that is perpendicular to the surface and that has a magni-
tude equal to the area of the surface.

30.03 Identify that any surface can be divided into area ele-
ments (patch elements) that are each small enough and
flat enough for an area vector to be assigned to it, with
the vector perpendicular to the element and having a mag-
nitude equal to the area of the element.

30.04 Calculate the magnetic flux !B through a surface by
integrating the dot product of the magnetic field vector 
and the area vector (for patch elements) over the sur-
face, in magnitude-angle notation and unit-vector notation.

30.05 Identify that a current is induced in a conducting loop
while the number of magnetic field lines intercepted by the
loop is changing.

dA
:

B
:

dA
:

30.06 Identify that an induced current in a conducting loop
is driven by an induced emf.

30.07 Apply Faraday’s law, which is the relationship between
an induced emf in a conducting loop and the rate at which
magnetic flux through the loop changes.

30.08 Extend Faraday’s law from a loop to a coil with multiple
loops.

30.09 Identify the three general ways in which the magnetic
flux through a coil can change.

30.10 Use a right-hand rule for Lenz’s law to determine 
the direction of induced emf and induced current in a
conducting loop.

30.11 Identify that when a magnetic flux through a loop
changes, the induced current in the loop sets up a
magnetic field to oppose that change.

30.12 If an emf is induced in a conducting loop containing
a battery, determine the net emf and calculate the corre-
sponding current in the loop.

● The magnetic flux !B through an area A in a magnetic field
is defined as

where the integral is taken over the area. The SI unit of
magnetic flux is the weber, where 1 Wb " 1 T #m2. 
● If is perpendicular to the area and uniform over it, the flux is

● If the magnetic flux !B through an area bounded by a
closed conducting loop changes with time, a current and

(B
:

 ! A, B
: uniform). !B " BA

B
:

!B " ! B
:

! dA
:

,

B
:

an emf are produced in the loop; this process is called
induction. The induced emf is

(Faraday’s law).

● If the loop is replaced by a closely packed coil of N turns, the
induced emf is

● An induced current has a direction such that the magnetic
field due to the current opposes the change in the magnetic
flux that induces the current. The induced emf has the same
direction as the induced current.

! " $N 
d!B

dt
.

! " $ 
d!B

dt

Learning Objectives

Key Ideas
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77530-1 FARADAY’S LAW AND LENZ’S LAW

The observations by Michael Faraday and other scientists that led to this law
were at first just basic science. Today, however, applications of that basic science
are almost everywhere. For example, induction is the basis of the electric guitars
that revolutionized early rock and still drive heavy metal and punk today. It is
also the basis of the electric generators that power cities and transportation lines
and of the huge induction furnaces that are commonplace in foundries where
large amounts of metal must be melted rapidly.

Before we get to applications like the electric guitar, we must examine two
simple experiments about Faraday’s law of induction.

Two Experiments
Let us examine two simple experiments to prepare for our discussion of Faraday’s
law of induction.

First Experiment. Figure 30-1 shows a conducting loop connected to a sensitive
ammeter. Because there is no battery or other source of emf included, there is no
current in the circuit. However, if we move a bar magnet toward the loop, a current
suddenly appears in the circuit.The current disappears when the magnet stops. If we
then move the magnet away, a current again suddenly appears, but now in the oppo-
site direction. If we experimented for a while, we would discover the following:

1. A current appears only if there is relative motion between the loop and the
magnet (one must move relative to the other); the current disappears when
the relative motion between them ceases.

2. Faster motion produces a greater current.
3. If moving the magnet’s north pole toward the loop causes, say, clockwise

current, then moving the north pole away causes counterclockwise current.
Moving the south pole toward or away from the loop also causes currents, but
in the reversed directions.

The current produced in the loop is called an induced current; the work done
per unit charge to produce that current (to move the conduction electrons that
constitute the current) is called an induced emf; and the process of producing the
current and emf is called induction.

Second Experiment. For this experiment we use the apparatus of Fig. 30-2,
with the two conducting loops close to each other but not touching. If we close
switch S, to turn on a current in the right-hand loop, the meter suddenly and
briefly registers a current—an induced current—in the left-hand loop. If we
then open the switch, another sudden and brief induced current appears in
the left-hand loop, but in the opposite direction. We get an induced current (and
thus an induced emf) only when the current in the right-hand loop is changing
(either turning on or turning off) and not when it is constant (even if it is large).

The induced emf and induced current in these experiments are apparently
caused when something changes—but what is that “something”? Faraday knew.

Faraday’s Law of Induction
Faraday realized that an emf and a current can be induced in a loop, as in our
two experiments, by changing the amount of magnetic field passing through the
loop. He further realized that the “amount of magnetic field” can be visualized
in terms of the magnetic field lines passing through the loop. Faraday’s law of
induction, stated in terms of our experiments, is this:

An emf is induced in the loop at the left in Figs. 30-1 and 30-2 when the number
of magnetic field lines that pass through the loop is changing.

Figure 30-1 An ammeter registers a current
in the wire loop when the magnet is moving
with respect to the loop.

N 

S 

The magnet’s motion
creates a current in
the loop.

Figure 30-2 An ammeter registers a current
in the left-hand wire loop just as switch S is
closed (to turn on the current in the right-
hand wire loop) or opened (to turn off the
current in the right-hand loop). No motion
of the coils is involved.

S 

+ 
– 

Closing the switch
causes a current in
the left-hand loop.
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The actual number of field lines passing through the loop does not matter; the
values of the induced emf and induced current are determined by the rate at
which that number changes.

In our first experiment (Fig. 30-1), the magnetic field lines spread out from
the north pole of the magnet. Thus, as we move the north pole closer to the loop,
the number of field lines passing through the loop increases.That increase appar-
ently causes conduction electrons in the loop to move (the induced current) and
provides energy (the induced emf) for their motion.When the magnet stops mov-
ing, the number of field lines through the loop no longer changes and the induced
current and induced emf disappear.

In our second experiment (Fig. 30-2), when the switch is open (no current),
there are no field lines. However, when we turn on the current in the right-hand
loop, the increasing current builds up a magnetic field around that loop and at the
left-hand loop. While the field builds, the number of magnetic field lines through
the left-hand loop increases. As in the first experiment, the increase in field lines
through that loop apparently induces a current and an emf there. When the
current in the right-hand loop reaches a final, steady value, the number of field
lines through the left-hand loop no longer changes, and the induced current and
induced emf disappear.

A Quantitative Treatment
To put Faraday’s law to work, we need a way to calculate the amount of magnetic
field that passes through a loop. In Chapter 23, in a similar situation, we needed to
calculate the amount of electric field that passes through a surface. There we
defined an electric flux . Here we define a magnetic flux: Suppose
a loop enclosing an area A is placed in a magnetic field .Then the magnetic flux
through the loop is

(magnetic flux through area A). (30-1)

As in Chapter 23, is a vector of magnitude dA that is perpendicular to a
differential area dA. As with electric flux, we want the component of the field
that pierces the surface (not skims along it). The dot product of the field and the
area vector automatically gives us that piercing component.

Special Case. As a special case of Eq. 30-1, suppose that the loop lies in a
plane and that the magnetic field is perpendicular to the plane of the loop.
Then we can write the dot product in Eq. 30-1 as B dA cos 0° " B dA. If the
magnetic field is also uniform, then B can be brought out in front of the inte-
gral sign. The remaining then gives just the area A of the loop. Thus, Eq.
30-1 reduces to

(30-2)

Unit. From Eqs. 30-1 and 30-2, we see that the SI unit for magnetic flux is the 
tesla–square meter, which is called the weber (abbreviated Wb):

1 weber " 1 Wb " 1 T #m2. (30-3)

Faraday’s Law. With the notion of magnetic flux, we can state Faraday’s law
in a more quantitative and useful way:

(B
:

 ! area A, B
:

 uniform).!B " BA

! dA

dA
:

!B " !B
:

! dA
:

B
:

!E " ! E
:

! dA
:

776 CHAPTER 30 INDUCTION AND INDUCTANCE

The magnitude of the emf ! induced in a conducting loop is equal to the rate at
which the magnetic flux !B through that loop changes with time.

As you will see below, the induced emf ! tends to oppose the flux change, so

halliday_c30_774-810v2.0.1.qxd  3/5/14  12:07 PM  Page 776

Uploaded By: anonymousSTUDENTS-HUB.com



77730-1 FARADAY’S LAW AND LENZ’S LAW

Faraday’s law is formally written as

(Faraday’s law), (30-4)

with the minus sign indicating that opposition. We often neglect the minus sign in
Eq. 30-4, seeking only the magnitude of the induced emf.

If we change the magnetic flux through a coil of N turns, an induced emf
appears in every turn and the total emf induced in the coil is the sum of these
individual induced emfs. If the coil is tightly wound (closely packed), so that
the same magnetic flux !B passes through all the turns, the total emf induced in
the coil is

(coil of N turns). (30-5)

Here are the general means by which we can change the magnetic flux
through a coil:

1. Change the magnitude B of the magnetic field within the coil.
2. Change either the total area of the coil or the portion of that area that lies

within the magnetic field (for example, by expanding the coil or sliding it into
or out of the field).

3. Change the angle between the direction of the magnetic field and the plane
of the coil (for example, by rotating the coil so that field is first perpendicu-
lar to the plane of the coil and then is along that plane).

B
:

B
:

! " $N 
d!B

dt

! " $
d!B

dt

Checkpoint 1
The graph gives the magnitude B(t) of a uniform
magnetic field that exists throughout a conduct-
ing loop, with the direction of the field perpendi-
cular to the plane of the loop. Rank the five
regions of the graph according to the magnitude
of the emf induced in the loop, greatest first.

a b c d e 
t 

B 

KEY IDEAS

1. Because it is located in the interior of the solenoid, coil C
lies within the magnetic field produced by current i in the
solenoid; thus, there is a magnetic flux !B through coil C.

2. Because current i decreases, flux !B also decreases.
3. As !B decreases, emf ! is induced in coil C.
4. The flux through each turn of coil C depends on the area

A and orientation of that turn in the solenoid’s magnetic
field . Because is uniform and directed perpendicular
to area A, the flux is given by Eq. 30-2 (!B " BA).

5. The magnitude B of the magnetic field in the interior of
a solenoid depends on the solenoid’s current i and its
number n of turns per unit length, according to Eq. 29-23
(B " m0in).

B
:B

:

Sample Problem 30.01 Induced emf in coil due to a solenoid

The long solenoid S shown (in cross section) in Fig. 30-3 has
220 turns/cm and carries a current i " 1.5 A; its diameter D
is 3.2 cm. At its center we place a 130-turn closely packed
coil C of diameter d " 2.1 cm. The current in the solenoid is
reduced to zero at a steady rate in 25 ms. What is the magni-
tude of the emf that is induced in coil C while the current in
the solenoid is changing?

Figure 30-3 A coil C is located inside a solenoid S, which carries
current i.

Axis 

i 

i 

C 

S 
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Lenz’s Law
Soon after Faraday proposed his law of induction, Heinrich Friedrich Lenz
devised a rule for determining the direction of an induced current in a loop:

778 CHAPTER 30 INDUCTION AND INDUCTANCE

Now we can write

We are interested only in magnitudes; so we ignore the mi-
nus signs here and in Eq. 30-5, writing

(Answer)" 75 mV.

" 7.5 % 10 $2 V

 ! " N 
d!B

dt
" (130 turns)(5.76 % 10 $4 V)

" $5.76 % 10 $4 V.

 " $5.76 % 10 $4 Wb/s

 "
(0 $ 1.44 % 10 $5 Wb)

25 % 10 $3 s

d!B

dt
"

&!B

&t
"

!B, f $ !B,i

&t

Calculations: Because coil C consists of more than one
turn, we apply Faraday’s law in the form of Eq. 30-5 
(! " $N d!B/dt), where the number of turns N is 130 and
d!B/dt is the rate at which the flux changes.

Because the current in the solenoid decreases at a
steady rate, flux !B also decreases at a steady rate, and so we
can write d!B/dt as &!B/&t. Then, to evaluate &!B, we need
the final and initial flux values. The final flux !B,f is zero be-
cause the final current in the solenoid is zero.To find the ini-
tial flux !B,i, we note that area A is pd 2 (" 3.464 % 10$4 m2)
and the number n is 220 turns/cm, or 22 000 turns/m. Sub- 
stituting Eq. 29-23 into Eq. 30-2 then leads to

 " 1.44 % 10 $5 Wb.

% (3.464 % 10 $4 m2)
 " (4p % 10 $7 T #m/A)(1.5 A)(22 000 turns/m)

!B, i " BA " (m0 in)A

1
4

An induced current has a direction such that the magnetic field due to the current
opposes the change in the magnetic flux that induces the current.

Furthermore, the direction of an induced emf is that of the induced current. The
key word in Lenz’s law is “opposition.” Let’s apply the law to the motion of the
north pole toward the conducting loop in Fig. 30-4.

1. Opposition to Pole Movement. The approach of the magnet’s north pole in
Fig. 30-4 increases the magnetic flux through the loop and thereby induces a
current in the loop. From Fig. 29-22, we know that the loop then acts as a
magnetic dipole with a south pole and a north pole, and that its magnetic
dipole moment is directed from south to north. To oppose the magnetic
flux increase being caused by the approaching magnet, the loop’s north pole
(and thus ) must face toward the approaching north pole so as to repel it
(Fig. 30-4). Then the curled – straight right-hand rule for (Fig. 29-22) tells
us that the current induced in the loop must be counterclockwise in Fig. 30-4.

If we next pull the magnet away from the loop, a current will again be
induced in the loop. Now, however, the loop will have a south pole facing
the retreating north pole of the magnet, so as to oppose the retreat. Thus, the
induced current will be clockwise.

2. Opposition to Flux Change. In Fig. 30-4, with the magnet initially distant, no
magnetic flux passes through the loop. As the north pole of the magnet then
nears the loop with its magnetic field directed downward, the flux through
the loop increases. To oppose this increase in flux, the induced current i must
set up its own field directed upward inside the loop, as shown in Fig. 30-5a;
then the upward flux of field opposes the increasing downward flux of
field . The curled–straight right-hand rule of Fig. 29-22 then tells us that i
must be counterclockwise in Fig. 30-5a.

B
:

B
:

ind

B
:

ind

B
:

m:
m:

m:

Figure 30-4 Lenz’s law at work.As the mag-
net is moved toward the loop, a current is
induced in the loop.The current produces
its own magnetic field, with magnetic di-
pole moment oriented so as to oppose
the motion of the magnet.Thus, the in-
duced current must be counterclockwise
as shown.

m:

N 

S 

i 

N 

S 

µ µ 

The magnet’s motion
creates a magnetic
dipole that opposes
the motion.

Additional examples, video, and practice available at WileyPLUS
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77930-1 FARADAY’S LAW AND LENZ’S LAW

Heads Up. The flux of always opposes the change in the flux of , but 
is not always opposite . For example, if we next pull the magnet away

from the loop in Fig. 30-4, the magnet’s flux B is still downward through the
loop, but it is now decreasing. The flux of must now be downward inside
the loop, to oppose that decrease (Fig. 30-5b). Thus, and are now in the
same direction. In Figs. 30-5c and d, the south pole of the magnet approaches
and retreats from the loop, again with opposition to change.

B
:

B
:

ind

B
:

ind

!
B
:

B
:

ind

B
:

B
:

ind

A

Figure 30-5 The direction of the current i induced in a loop is such that the current’s magnetic field opposes the change in the magnetic
field inducing i.The field is always directed opposite an increasing field and in the same direction as a decreasing field

.The curled–straight right-hand rule gives the direction of the induced current based on the direction of the induced field.B
:

(b, d)
B
: 

(a, c)B
:

indB
:

B
:

ind

i

Bind

B

i

BindB

i

BBind

B

Bind

i

i

Bind

B

i

BindB

i

B
Bind

B

Bind

i

i

Bind

B

i

BindB

i

BBindB

Bind

i

Increasing the external
field B induces a current
with a field Bind that
opposes the change.

The induced 
current creates 
this field, trying
to offset the 
change. 

The fingers are 
in the current's 
direction; the
thumb is in the 
induced field's 
direction.

Decreasing the external
field B induces a current
with a field Bind that
opposes the change.

Increasing the external
field B induces a current
with a field Bind that
opposes the change.

Decreasing the external
field B induces a current
with a field Bind that
opposes the change.

(a) (b) (c) (d)

Checkpoint 2
The figure shows three situations in which identical circular
conducting loops are in uniform magnetic fields that are either
increasing (Inc) or decreasing (Dec) in magnitude at identical rates.
In each, the dashed line coincides with a diameter. Rank the situa-
tions according to the magnitude of the current induced in the loops,
greatest first.

Inc 

Inc 

Inc 

Dec 

Dec 

Inc 

(a) (b) (c) 
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780 CHAPTER 30 INDUCTION AND INDUCTANCE

At t " 10 s, then,

(Answer)

Direction: To find the direction of !ind, we first note that in
Fig. 30-6 the flux through the loop is out of the page and in-
creasing. Because the induced field Bind (due to the induced
current) must oppose that increase, it must be into the page.
Using the curled–straight right-hand rule (Fig. 30-5c), we find
that the induced current is clockwise around the loop, and
thus so is the induced emf !ind.

(b) What is the current in the loop at t " 10 s?

KEY IDEA

The point here is that two emfs tend to move charges
around the loop.

Calculation: The induced emf !ind tends to drive a current
clockwise around the loop; the battery’s emf !bat tends to
drive a current counterclockwise. Because !ind is greater
than !bat, the net emf !net is clockwise, and thus so is the
current. To find the current at t " 10 s, we use Eq. 27-2 
(i " !/R):

(Answer) "
5.152 V $ 2.0 V

2.0 '
" 1.58 A " 1.6 A.

  i "
enet

R
"
e ind $ ebat

R

" 5.152 V " 5.2 V.

 ! ind "
p (0.20 m)2

2
 [8.0(10) ( 2.0]

Figure 30-6 shows a conducting loop consisting of a half-circle
of radius r " 0.20 m and three straight sections. The half-
circle lies in a uniform magnetic field that is directed out
of the page; the field magnitude is given by B " 4.0t2 (
2.0t ( 3.0, with B in teslas and t in seconds. An ideal battery
with emf !bat " 2.0 V is connected to the loop.The resistance
of the loop is 2.0 '.

(a) What are the magnitude and direction of the emf !ind

induced around the loop by field at t " 10 s?

KEY IDEAS

1. According to Faraday’s law, the magnitude of !ind is
equal to the rate d!B/dt at which the magnetic flux
through the loop changes.

2. The flux through the loop depends on how much of the
loop’s area lies within the flux and how the area is ori-
ented in the magnetic field .

3. Because is uniform and is perpendicular to the plane
of the loop, the flux is given by Eq. 30-2 (!B " BA).
(We don’t need to integrate B over the area to get
the flux.)

4. The induced field Bind (due to the induced current) must
always oppose the change in the magnetic flux.

Magnitude: Using Eq. 30-2 and realizing that only the field
magnitude B changes in time (not the area A), we rewrite
Faraday’s law, Eq. 30-4, as

Because the flux penetrates the loop only within the half-
circle, the area A in this equation is . Substituting this
and the given expression for B yields

 "
p r2

2
 (8.0t ( 2.0).

 e ind " A
dB
dt

"
p r2

2
d
dt

 (4.0t 2 ( 2.0t ( 3.0)

1
2pr2

! ind "
d!B

dt
"

d(BA)
dt

" A 
dB
dt

.

B
:

B
:

B
:

B
:

Figure 30-6 A battery is connected to a conducting loop that 
includes a half-circle of radius r lying in a uniform magnetic 
field.The field is directed out of the page; its magnitude is 
changing.

r 

r/2 

bat 

– +

Sample Problem 30.02 Induced emf and current due to a changing uniform B field

KEY IDEAS

1. Because the magnitude of the magnetic field is chang-
ing with time, the magnetic flux !B through the loop is
also changing.

2. The changing flux induces an emf ! in the loop according
to Faraday’s law, which we can write as ! " d!B/dt.

3. To use that law, we need an expression for the flux !B at

B
:

Sample Problem 30.03 Induced emf due to a changing nonuniform B field

Figure 30-7 shows a rectangular loop of wire immersed in a
nonuniform and varying magnetic field that is perpendi-
cular to and directed into the page. The field’s magnitude is
given by B " 4t2x2, with B in teslas, t in seconds, and x in
meters. (Note that the function depends on both time and
position.) The loop has width W " 3.0 m and height H "
2.0 m. What are the magnitude and direction of the induced
emf ! around the loop at t " 0.10 s?

B
:
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78130-2 INDUCTION AND ENERGY TRANSFERS

dA to be the area of a vertical strip of height H and width dx
(as shown in Fig. 30-7). Then dA " H dx, and the flux
through the loop is

Treating t as a constant for this integration and inserting the
integration limits x " 0 and x " 3.0 m, we obtain

where we have substituted H " 2.0 m and !B is in webers.
Now we can use Faraday’s law to find the magnitude of ! at
any time t :

in which ! is in volts.At t " 0.10 s,

! " (144 V/s)(0.10 s) " 14 V. (Answer)

The flux of through the loop is into the page in
Fig. 30-7 and is increasing in magnitude because B is in-
creasing in magnitude with time. By Lenz’s law, the field Bind

of the induced current opposes this increase and so is di-
rected out of the page. The curled–straight right-hand rule
in Fig. 30-5a then tells us that the induced current is counter-
clockwise around the loop, and thus so is the induced emf !.

B
:

! "
d!B

dt
"

d(72t2)
dt

" 144t,

!B " 4t2H  !3.0

0
 x2 dx " 4t2H # x3

3 $
0

3.0

" 72t2,

!B " ! B
:

! dA
:

" ! B dA " ! BH dx " ! 4t2x2H dx.

any time t. However, because B is not uniform over the
area enclosed by the loop, we cannot use Eq. 30-2 (!B "
BA) to find that expression; instead we must use Eq. 30-1

.

Calculations: In Fig. 30-7, is perpendicular to the plane
of the loop (and hence parallel to the differential area 
vector ); so the dot product in Eq. 30-1 gives B dA.
Because the magnetic field varies with the coordinate x but
not with the coordinate y, we can take the differential area

dA
:

B
:

(!B " ! B
:

! dA
:

)

Figure 30-7 A closed conducting loop, of width W and height H, lies
in a nonuniform, varying magnetic field that points directly into the
page. To apply Faraday’s law, we use the vertical strip of height H,
width dx, and area dA.

W 

H 

y 

x 
dx 

dA 

B 

If the field varies with position,
we must integrate to get the
flux through the loop.

We start with a strip
so thin that we can
approximate the field as
being uniform within it.

30-2 INDUCTION AND ENERGY TRANSFERS

After reading this module, you should be able to . . .

30.13 For a conducting loop pulled into or out of a magnetic
field, calculate the rate at which energy is transferred to
thermal energy.

30.14 Apply the relationship between an induced current and
the rate at which it produces thermal energy.

30.15 Describe eddy currents.

Learning Objectives

● The induction of a current by a changing flux means that energy is being transferred to that current. The energy can then be
transferred to other forms, such as thermal energy.

Key Idea

Induction and Energy Transfers
By Lenz’s law, whether you move the magnet toward or away from the loop in
Fig. 30-1, a magnetic force resists the motion, requiring your applied force to do
positive work. At the same time, thermal energy is produced in the material of
the loop because of the material’s electrical resistance to the current that is
induced by the motion. The energy you transfer to the closed loop ( magnet sys-
tem via your applied force ends up in this thermal energy. (For now, we neglect
energy that is radiated away from the loop as electromagnetic waves during the

Additional examples, video, and practice available at WileyPLUS

halliday_c30_774-810v2.0.1.qxd  3/5/14  12:08 PM  Page 781

Uploaded By: anonymousSTUDENTS-HUB.com



induction.) The faster you move the magnet, the more rapidly your applied force
does work and the greater the rate at which your energy is transferred to thermal
energy in the loop; that is, the power of the transfer is greater.

Regardless of how current is induced in a loop, energy is always transferred
to thermal energy during the process because of the electrical resistance of the
loop (unless the loop is superconducting). For example, in Fig. 30-2, when switch S
is closed and a current is briefly induced in the left-hand loop, energy is trans-
ferred from the battery to thermal energy in that loop.

Figure 30-8 shows another situation involving induced current.A rectangular
loop of wire of width L has one end in a uniform external magnetic field that is
directed perpendicularly into the plane of the loop. This field may be produced,
for example, by a large electromagnet. The dashed lines in Fig. 30-8 show the
assumed limits of the magnetic field; the fringing of the field at its edges is
neglected.You are to pull this loop to the right at a constant velocity .

Flux Change. The situation of Fig. 30-8 does not differ in any essential way
from that of Fig. 30-1. In each case a magnetic field and a conducting loop are in
relative motion; in each case the flux of the field through the loop is changing
with time. It is true that in Fig. 30-1 the flux is changing because is changing and
in Fig. 30-8 the flux is changing because the area of the loop still in the magnetic
field is changing, but that difference is not important. The important difference
between the two arrangements is that the arrangement of Fig. 30-8 makes calcu-
lations easier. Let us now calculate the rate at which you do mechanical work as
you pull steadily on the loop in Fig. 30-8.

Rate of Work. As you will see, to pull the loop at a constant velocity , you
must apply a constant force to the loop because a magnetic force of equal mag-
nitude but opposite direction acts on the loop to oppose you. From Eq. 7-48, the
rate at which you do work—that is, the power—is then

P " Fv, (30-6)

where F is the magnitude of your force. We wish to find an expression for P in
terms of the magnitude B of the magnetic field and the characteristics of the
loop—namely, its resistance R to current and its dimension L.

As you move the loop to the right in Fig. 30-8, the portion of its area within
the magnetic field decreases. Thus, the flux through the loop also decreases and,
according to Faraday’s law, a current is produced in the loop. It is the presence of
this current that causes the force that opposes your pull.

Induced emf. To find the current, we first apply Faraday’s law. When x is the
length of the loop still in the magnetic field, the area of the loop still in the field is
Lx.Then from Eq. 30-2, the magnitude of the flux through the loop is

!B " BA " BLx. (30-7)

F
:

v:

B
:

v:

782 CHAPTER 30 INDUCTION AND INDUCTANCE

Figure 30-8 You pull a closed conduct-
ing loop out of a magnetic field at
constant velocity . While the loop
is moving, a clockwise current i is
induced in the loop, and the loop seg-
ments still within the magnetic field
experience forces , , and .F

:
3F

:
2F

:
1

v:

i 

x 

b 

L 
F1 

F2 

F3 

B 

v 

Decreasing the area
decreases the flux,
inducing a current.
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78330-2 INDUCTION AND ENERGY TRANSFERS

As x decreases, the flux decreases. Faraday’s law tells us that with this flux
decrease, an emf is induced in the loop. Dropping the minus sign in Eq. 30-4 and
using Eq. 30-7, we can write the magnitude of this emf as

(30-8)

in which we have replaced dx/dt with v, the speed at which the loop moves.
Figure 30-9 shows the loop as a circuit: induced emf ! is represented on the

left, and the collective resistance R of the loop is represented on the right.
The direction of the induced current i is obtained with a right-hand rule as in
Fig. 30-5b for decreasing flux; applying the rule tells us that the current must be
clockwise, and ! must have the same direction.

Induced Current. To find the magnitude of the induced current, we cannot
apply the loop rule for potential differences in a circuit because, as you will see in
Module 30-3, we cannot define a potential difference for an induced emf.
However, we can apply the equation i " !/R.With Eq. 30-8, this becomes

(30-9)

Because three segments of the loop in Fig. 30-8 carry this current through the
magnetic field, sideways deflecting forces act on those segments. From Eq. 28-26
we know that such a deflecting force is, in general notation,

(30-10)

In Fig. 30-8, the deflecting forces acting on the three segments of the loop are
marked and . Note, however, that from the symmetry, forces and 
are equal in magnitude and cancel. This leaves only force , which is directed
opposite your force on the loop and thus is the force opposing you. So, .

Using Eq. 30-10 to obtain the magnitude of and noting that the angle
between and the length vector for the left segment is 90 , we write

F " F1 " iLB sin 90) " iLB. (30-11)

Substituting Eq. 30-9 for i in Eq. 30-11 then gives us

(30-12)

Because B, L, and R are constants, the speed v at which you move the loop is con-
stant if the magnitude F of the force you apply to the loop is also constant.

Rate of Work. By substituting Eq. 30-12 into Eq. 30-6, we find the rate at
which you do work on the loop as you pull it from the magnetic field:

(rate of doing work). (30-13)

Thermal Energy. To complete our analysis, let us find the rate at which
thermal energy appears in the loop as you pull it along at constant speed. We
calculate it from Eq. 26-27,

P " i 2R. (30-14)

Substituting for i from Eq. 30-9, we find

(thermal energy rate), (30-15)

which is exactly equal to the rate at which you are doing work on the loop
(Eq. 30-13). Thus, the work that you do in pulling the loop through the magnetic
field appears as thermal energy in the loop.

P " % BLv
R &2

R "
B2L2v2

R

P " Fv "
B2L2v2

R

F "
B2L2v

R
.

)L
:

B
:

F
:

1

F
:

" $F
:

1F
:

F
:

1

F
:

3F
:

2F
:

3F
:

2,F
:

1,

F
:

d " iL
:

% B
:

.

i "
BLv

R
.

! "
d!B

dt
"

d
dt

 BLx " BL 
dx
dt

" BLv,

Figure 30-9 A circuit diagram for the loop of
Fig. 30-8 while the loop is moving.

i 

i 

R 
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Eddy Currents
Suppose we replace the conducting loop of Fig. 30-8 with a solid conducting
plate. If we then move the plate out of the magnetic field as we did the loop 
(Fig. 30-10a), the relative motion of the field and the conductor again induces a
current in the conductor. Thus, we again encounter an opposing force and must
do work because of the induced current. With the plate, however, the conduc-
tion electrons making up the induced current do not follow one path as they
do with the loop. Instead, the electrons swirl about within the plate as if they
were caught in an eddy (whirlpool) of water. Such a current is called an eddy
current and can be represented, as it is in Fig. 30-10a, as if it followed a single
path.

As with the conducting loop of Fig. 30-8, the current induced in the plate
results in mechanical energy being dissipated as thermal energy. The dissipa-
tion is more apparent in the arrangement of Fig. 30-10b; a conducting plate,
free to rotate about a pivot, is allowed to swing down through a magnetic field
like a pendulum. Each time the plate enters and leaves the field, a portion
of its mechanical energy is transferred to its thermal energy. After several
swings, no mechanical energy remains and the warmed-up plate just hangs
from its pivot.

784 CHAPTER 30 INDUCTION AND INDUCTANCE

Figure 30-10 (a) As you pull a solid conduct-
ing plate out of a magnetic field, eddy cur-
rents are induced in the plate.A typical
loop of eddy current is shown. (b) A con-
ducting plate is allowed to swing like a pen-
dulum about a pivot and into a region of
magnetic field.As it enters and leaves the
field, eddy currents are induced in the
plate.

Checkpoint 3
The figure shows four wire loops, with edge lengths of either L or 2L.All four loops
will move through a region of uniform magnetic field (directed out of the page) at
the same constant velocity. Rank the four loops according to the maximum magni-
tude of the emf induced as they move through the field, greatest first.

B
:

a b

c d

B 

Eddy 
current 
loop 

(a) 

B 

Pivot

(b)

B

30-3 INDUCED ELECTRIC FIELDS

After reading this module, you should be able to . . .

30.16 Identify that a changing magnetic field induces an elec-
tric field, regardless of whether there is a conducting loop.

30.17 Apply Faraday’s law to relate the electric field 
induced along a closed path (whether it has conducting

E
:

material or not) to the rate of change d!/dt of the magnetic
flux encircled by the path.

30.18 Identify that an electric potential cannot be associated
with an induced electric field.

Learning Objectives

● An emf is induced by a changing magnetic flux even if the
loop through which the flux is changing is not a physical
conductor but an imaginary line. The changing magnetic field
induces an electric field at every point of such a loop; the
induced emf is related to by

! " ' E
:

! ds:.

E
:

E
:

Key Ideas
● Using the induced electric field, we can write Faraday’s law
in its most general form as

(Faraday’s law).

A changing magnetic field induces an electric field .E
:

' E
:

! ds: " $ 
d!B

dt
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78530-3 INDUCED ELECTRIC FIELDS

Induced Electric Fields
Let us place a copper ring of radius r in a uniform external magnetic field, as in
Fig. 30-11a. The field—neglecting fringing—fills a cylindrical volume of radius R.
Suppose that we increase the strength of this field at a steady rate, perhaps by
increasing—in an appropriate way—the current in the windings of the electro-
magnet that produces the field. The magnetic flux through the ring will then
change at a steady rate and—by Faraday’s law—an induced emf and thus an
induced current will appear in the ring. From Lenz’s law we can deduce that the
direction of the induced current is counterclockwise in Fig. 30-11a.

If there is a current in the copper ring, an electric field must be present along the
ring because an electric field is needed to do the work of moving the conduction
electrons. Moreover, the electric field must have been produced by the changing
magnetic flux. This induced electric field is just as real as an electric field pro-
duced by static charges; either field will exert a force on a particle of charge q0.

By this line of reasoning, we are led to a useful and informative restatement
of Faraday’s law of induction:

q0E
:

E
:

The striking feature of this statement is that the electric field is induced even if
there is no copper ring. Thus, the electric field would appear even if the changing
magnetic field were in a vacuum.

To fix these ideas, consider Fig. 30-11b, which is just like Fig. 30-11a except
the copper ring has been replaced by a hypothetical circular path of radius r. We
assume, as previously, that the magnetic field is increasing in magnitude at
a constant rate dB/dt. The electric field induced at various points around the

B
:

A changing magnetic field produces an electric field.

Figure 30-11 (a) If the magnetic field increases at a steady rate, a constant induced current
appears, as shown, in the copper ring of radius r. (b) An induced electric field exists even
when the ring is removed; the electric field is shown at four points. (c) The complete
picture of the induced electric field, displayed as field lines. (d) Four similar closed paths that
enclose identical areas. Equal emfs are induced around paths 1 and 2, which lie entirely within
the region of changing magnetic field.A smaller emf is induced around path 3, which only
partially lies in that region. No net emf is induced around path 4, which lies entirely outside
the magnetic field.

R 

Copper 
ring 

r 

i 
(a)

Circular
path

(b)

(c) (d)

Electric field
lines

R r

1

3

4

R
R

2

B B

E

E

E

E

B B
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circular path must—from the symmetry—be tangent to the circle, as Fig. 30-11b
shows.* Hence, the circular path is an electric field line. There is nothing special
about the circle of radius r, so the electric field lines produced by the changing
magnetic field must be a set of concentric circles, as in Fig. 30-11c.

As long as the magnetic field is increasing with time, the electric field repre-
sented by the circular field lines in Fig. 30-11c will be present. If the magnetic
field remains constant with time, there will be no induced electric field and thus
no electric field lines. If the magnetic field is decreasing with time (at a constant
rate), the electric field lines will still be concentric circles as in Fig. 30-11c, but
they will now have the opposite direction. All this is what we have in mind when
we say “A changing magnetic field produces an electric field.”

A Reformulation of Faraday’s Law
Consider a particle of charge q0 moving around the circular path of Fig. 30-11b.
The work W done on it in one revolution by the induced electric field is W " !q0,
where ! is the induced emf—that is, the work done per unit charge in moving the
test charge around the path. From another point of view, the work is

(30-16)

where q0E is the magnitude of the force acting on the test charge and 2pr is the
distance over which that force acts. Setting these two expressions for W equal to
each other and canceling q0, we find that

! " 2prE. (30-17)

Next we rewrite Eq. 30-16 to give a more general expression for the work
done on a particle of charge q0 moving along any closed path:

(30-18)

(The loop on each integral sign indicates that the integral is to be taken around
the closed path.) Substituting !q0 for W, we find that

(30-19)

This integral reduces at once to Eq. 30-17 if we evaluate it for the special case of
Fig. 30-11b.

Meaning of emf. With Eq. 30-19, we can expand the meaning of induced emf.
Up to this point, induced emf has meant the work per unit charge done in maintain-
ing current due to a changing magnetic flux, or it has meant the work done per unit
charge on a charged particle that moves around a closed path in a changing mag-
netic flux. However, with Fig. 30-11b and Eq. 30-19, an induced emf can exist without
the need of a current or particle: An induced emf is the sum—via integration—of
quantities around a closed path, where is the electric field induced by
a changing magnetic flux and is a differential length vector along the path.ds:

E
:

E
:

! ds:

! " ' E
:

! ds:.

W " ' F
:

! ds: " q0 ' E
:

! ds:.

W " ! F
:

! ds: " (q0E)(2pr),

786 CHAPTER 30 INDUCTION AND INDUCTANCE

*Arguments of symmetry would also permit the lines of around the circular path to be radial,
rather than tangential. However, such radial lines would imply that there are free charges, distributed
symmetrically about the axis of symmetry, on which the electric field lines could begin or end; there
are no such charges.

E
:

If we combine Eq. 30-19 with Faraday’s law in Eq. 30-4 (! " $d!B/dt), we 
can rewrite Faraday’s law as

(Faraday’s law). (30-20)' E
:

! ds: " $
d!B

dt
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78730-3 INDUCED ELECTRIC FIELDS

This equation says simply that a changing magnetic field induces an electric field.
The changing magnetic field appears on the right side of this equation, the elec-
tric field on the left.

Faraday’s law in the form of Eq. 30-20 can be applied to any closed path that
can be drawn in a changing magnetic field. Figure 30-11d, for example, shows four
such paths, all having the same shape and area but located in different positions
in the changing field. The induced emfs for paths 1 and 2 are equal
because these paths lie entirely in the magnetic field and thus have the same
value of d!B/dt. This is true even though the electric field vectors at points along
these paths are different, as indicated by the patterns of electric field lines in the
figure. For path 3 the induced emf is smaller because the enclosed flux !B (hence
d!B/dt) is smaller, and for path 4 the induced emf is zero even though the electric
field is not zero at any point on the path.

A New Look at Electric Potential
Induced electric fields are produced not by static charges but by a changing mag-
netic flux.Although electric fields produced in either way exert forces on charged
particles, there is an important difference between them. The simplest evidence
of this difference is that the field lines of induced electric fields form closed loops,
as in Fig. 30-11c. Field lines produced by static charges never do so but must start
on positive charges and end on negative charges. Thus, a field line from a charge
can never loop around and back onto itself as we see for each of the field lines
in Fig. 30-11c.

In a more formal sense, we can state the difference between electric fields
produced by induction and those produced by static charges in these words:

! (" ( E
:

! ds:)

Electric potential has meaning only for electric fields that are produced by static
charges; it has no meaning for electric fields that are produced by induction.

You can understand this statement qualitatively by considering what happens
to a charged particle that makes a single journey around the circular path in
Fig. 30-11b. It starts at a certain point and, on its return to that same point, has
experienced an emf ! of, let us say, 5 V; that is, work of 5 J/C has been done on the
particle by the electric field, and thus the particle should then be at a point that is
5 V greater in potential. However, that is impossible because the particle is back
at the same point, which cannot have two different values of potential. Thus, po-
tential has no meaning for electric fields that are set up by changing magnetic
fields.

We can take a more formal look by recalling Eq. 24-18, which defines the
potential difference between two points i and f in an electric field in terms of
an integration between those points:

(30-21)

In Chapter 24 we had not yet encountered Faraday’s law of induction; so the elec-
tric fields involved in the derivation of Eq. 24-18 were those due to static charges.
If i and f in Eq. 30-21 are the same point, the path connecting them is a closed
loop, Vi and Vf are identical, and Eq. 30-21 reduces to

(30-22)

However, when a changing magnetic flux is present, this integral is not zero but
is $d!B/dt, as Eq. 30-20 asserts. Thus, assigning electric potential to an induced
electric field leads us to a contradiction. We must conclude that electric potential
has no meaning for electric fields associated with induction.

' E
:

! ds: " 0.

Vf $ Vi " $!f

i
 E

:
! ds:.

E
:
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788 CHAPTER 30 INDUCTION AND INDUCTANCE

Checkpoint 4
The figure shows five lettered regions in which a uniform magnetic field extends either
directly out of the page or into the page, with the direction indicated only for region a.
The field is increasing in magnitude at the same steady rate in all five regions; the
regions are identical in area.Also shown are four numbered paths along which 
has the magnitudes given below in terms of a quantity “mag.” Determine whether the
magnetic field is directed into or out of the page for regions b through e.

Path 1 2 3 4
mag 2(mag) 3(mag) 0( E

:
! ds:

( E
:

! ds:

1 

3 

2 

4 a 

b d 

c 

e 

the minus sign, we find that

or (Answer) (30-25)

Equation 30-25 gives the magnitude of the electric field at
any point for which r * R (that is, within the magnetic field).
Substituting given values yields, for the magnitude of at 
r " 5.2 cm,

(Answer)

(b) Find an expression for the magnitude E of the induced
electric field at points that are outside the magnetic field, at
radius r from the center of the magnetic field. Evaluate the
expression for r " 12.5 cm.

KEY IDEAS

Here again an electric field is induced by the changing mag-
netic field, according to Faraday’s law, except that now we
use a circular path of integration with radius r + R because
we want to evaluate E for points outside the magnetic field.
Proceeding as in (a), we again obtain Eq. 30-23. However,
we do not then obtain Eq. 30-24 because the new path of
integration is now outside the magnetic field, and so the
magnetic flux encircled by the new path is only that in the
area pR2 of the magnetic field region.

Calculations: We can now write

!B " BA " B(pR2). (30-26)

 " 0.0034 V/m " 3.4 mV/m.

  E "
(5.2 % 10 $2 m)

2
 (0.13 T/s)

E
:

E "
r
2

dB
dt

.

E(2pr) " (pr2) 
dB
dt

Sample Problem 30.04 Induced electric field due to changing B field, inside and outside

In Fig. 30-11b, take R 8.5 cm and dB/dt 0.13 T/s.

(a) Find an expression for the magnitude E of the induced
electric field at points within the magnetic field, at radius r
from the center of the magnetic field. Evaluate the expres-
sion for r " 5.2 cm.

KEY IDEA

An electric field is induced by the changing magnetic field,
according to Faraday’s law.

Calculations: To calculate the field magnitude E, we ap-
ply Faraday’s law in the form of Eq. 30-20. We use a circu-
lar path of integration with radius r R because we want
E for points within the magnetic field. We assume from
the symmetry that in Fig. 30-11b is tangent to the circu-
lar path at all points. The path vector is also always tan-
gent to the circular path; so the dot product in Eq.
30-20 must have the magnitude E ds at all points on the
path. We can also assume from the symmetry that E has
the same value at all points along the circular path. Then
the left side of Eq. 30-20 becomes

(30-23)

(The integral is the circumference 2pr of the circular
path.)

Next, we need to evaluate the right side of Eq. 30-20.
Because is uniform over the area A encircled by the path
of integration and is directed perpendicular to that area, the
magnetic flux is given by Eq. 30-2:

!B " BA " B(pr 2). (30-24)

Substituting this and Eq. 30-23 into Eq. 30-20 and dropping

B
:

( ds

' E
:

! ds: " ' E ds " E ' ds " E(2pr).

E
:

! ds:
ds:

E
:

*

""
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78930-4 INDUCTORS AND INDUCTANCE

Substituting this and Eq. 30-23 into Eq. 30-20 (without the
minus sign) and solving for E yield

(Answer) (30-27)

Because E is not zero here, we know that an electric field is
induced even at points that are outside the changing mag-
netic field, an important result that (as you will see in
Module 31-6) makes transformers possible.

With the given data, Eq. 30-27 yields the magnitude of
at r " 12.5 cm:

(Answer)" 3.8 % 10 $3 V/m " 3.8 mV/m. 

  E "
(8.5 % 10 $2 m)2

(2)(12.5 % 10 $2 m)
 (0.13 T/s)

E
:

E "
R2

2r
dB
dt

.

Figure 30-12 A plot of the induced electric field E(r).

6 

4 

2 

0 
0 10 20 30 40 

r  (cm) 

E 
(m

V
/m

) 

Equations 30-25 and 30-27 give the same result for 
r " R. Figure 30-12 shows a plot of E(r). Note that the in-
side and outside plots meet at r " R.

30-4 INDUCTORS AND INDUCTANCE

After reading this module, you should be able to . . .

30.19 Identify an inductor.
30.20 For an inductor, apply the relationship between

inductance L, total flux N!, and current i.

30.21 For a solenoid, apply the relationship between the
inductance per unit length L/l, the area A of each turn,
and the number of turns per unit length n.

Learning Objectives

● An inductor is a device that can be used to produce a known
magnetic field in a specified region. If a current i is established
through each of the N windings of an inductor, a magnetic flux
!B links those windings. The inductance L of the inductor is

(inductance defined).L "
N!B

i

Key Ideas
● The SI unit of inductance is the henry (H), where 1 henry 
1 H " 1 T # m2/A. 
● The inductance per unit length near the middle of a long so-
lenoid of cross-sectional area A and n turns per unit length is

(solenoid).
L
l

" m0 n2A

"

Inductors and Inductance
We found in Chapter 25 that a capacitor can be used to produce a desired elec-
tric field. We considered the parallel-plate arrangement as a basic type of ca-
pacitor. Similarly, an inductor (symbol ) can be used to produce a desired
magnetic field. We shall consider a long solenoid (more specifically, a short
length near the middle of a long solenoid, to avoid any fringing effects) as our
basic type of inductor.

If we establish a current i in the windings (turns) of the solenoid we are
taking as our inductor, the current produces a magnetic flux !B through the
central region of the inductor. The inductance of the inductor is then defined in
terms of that flux as

(inductance defined), (30-28)L "
N!B

i

Additional examples, video, and practice available at WileyPLUS
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790 CHAPTER 30 INDUCTION AND INDUCTANCE

The crude inductors with which Michael
Faraday discovered the law of induction. In
those days amenities such as insulated wire
were not commercially available. It is said
that Faraday insulated his wires by wrap-
ping them with strips cut from one of his
wife’s petticoats.

The Royal Institution/Bridgeman Art Library/NY

in which N is the number of turns. The windings of the inductor are said to be
linked by the shared flux, and the product N!B is called the magnetic flux linkage.
The inductance L is thus a measure of the flux linkage produced by the inductor
per unit of current.

Because the SI unit of magnetic flux is the tesla–square meter, the SI unit of
inductance is the tesla–square meter per ampere (T #m2/A). We call this the
henry (H), after American physicist Joseph Henry, the codiscoverer of the law of
induction and a contemporary of Faraday.Thus,

1 henry " 1 H " 1 T #m2/A. (30-29)

Through the rest of this chapter we assume that all inductors, no matter what
their geometric arrangement, have no magnetic materials such as iron in their
vicinity. Such materials would distort the magnetic field of an inductor.

Inductance of a Solenoid
Consider a long solenoid of cross-sectional area A. What is the inductance
per unit length near its middle? To use the defining equation for inductance
(Eq. 30-28), we must calculate the flux linkage set up by a given current in the so-
lenoid windings. Consider a length l near the middle of this solenoid. The flux
linkage there is

N!B " (nl)(BA),

in which n is the number of turns per unit length of the solenoid and B is the 
magnitude of the magnetic field within the solenoid.

The magnitude B is given by Eq. 29-23,

B " m0in,

and so from Eq. 30-28,

(30-30)

Thus, the inductance per unit length near the center of a long solenoid is

(solenoid). (30-31)

Inductance—like capacitance—depends only on the geometry of the device.
The dependence on the square of the number of turns per unit length is to be
expected. If you, say, triple n, you not only triple the number of turns (N) but you
also triple the flux (!B " BA " m0inA) through each turn, multiplying the flux
linkage N!B and thus the inductance L by a factor of 9.

If the solenoid is very much longer than its radius, then Eq. 30-30 gives its
inductance to a good approximation. This approximation neglects the spreading
of the magnetic field lines near the ends of the solenoid, just as the parallel-plate
capacitor formula (C " ´0A/d) neglects the fringing of the electric field lines near
the edges of the capacitor plates.

From Eq. 30-30, and recalling that n is a number per unit length, we can see
that an inductance can be written as a product of the permeability constant m0

and a quantity with the dimensions of a length. This means that m0 can be ex-
pressed in the unit henry per meter:

(30-32)

The latter is the more common unit for the permeability constant.

 " 4p % 10 $7 H/m.
 m0 " 4p % 10 $7 T #m/A

L
l

" m0n2A

" m0n2 lA.

L "
N!B

i
"

(nl)(BA)
i

"
(nl)(m 0 in)(A)

i
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79130-5 SELF-INDUCTION

30-5 SELF-INDUCTION

After reading this module, you should be able to . . .

30.22 Identify that an induced emf appears in a coil when
the current through the coil is changing.

30.23 Apply the relationship between the induced emf in 
a coil, the coil’s inductance L, and the rate di/dt at
which the current is changing.

30.24 When an emf is induced in a coil because the current
in the coil is changing, determine the direction of the emf
by using Lenz’s law to show that the emf always opposes
the change in the current, attempting to maintain the initial
current.

Learning Objectives

● If a current i in a coil changes with time, an emf is induced in the coil. This self-induced emf is

● The direction of is found from Lenz’s law: The self-induced emf acts to oppose the change that produces it.!L

!L " $L 
di
dt

.

Key Ideas

Self-Induction
If two coils—which we can now call inductors—are near each other, a current i in
one coil produces a magnetic flux !B through the second coil.We have seen that if
we change this flux by changing the current, an induced emf appears in the second
coil according to Faraday’s law.An induced emf appears in the first coil as well.

An induced emf !L appears in any coil in which the current is changing.

This process (see Fig. 30-13) is called self-induction, and the emf that appears is
called a self-induced emf. It obeys Faraday’s law of induction just as other
induced emfs do.

For any inductor, Eq. 30-28 tells us that

N!B " Li. (30-33)
Faraday’s law tells us that

(30-34)

By combining Eqs. 30-33 and 30-34 we can write

(self-induced emf). (30-35)

Thus, in any inductor (such as a coil, a solenoid, or a toroid) a self-induced emf
appears whenever the current changes with time. The magnitude of the current
has no influence on the magnitude of the induced emf; only the rate of change of
the current counts.

Direction. You can find the direction of a self-induced emf from Lenz’s law.
The minus sign in Eq. 30-35 indicates that—as the law states—the self-induced
emf !L has the orientation such that it opposes the change in current i. We can
drop the minus sign when we want only the magnitude of !L.

Suppose that you set up a current i in a coil and arrange to have the current
increase with time at a rate di/dt. In the language of Lenz’s law, this increase in
the current in the coil is the “change” that the self-induction must oppose.
Thus, a self-induced emf must appear in the coil, pointing so as to oppose the
increase in the current, trying (but failing) to maintain the initial condition, as

!L " $L 
di
dt

!L " $ 
d(N!B)

dt
.

Figure 30-13 If the current in a coil is changed
by varying the contact position on a vari-
able resistor, a self-induced emf !L will ap-
pear in the coil while the current is changing.

i 

i 

L – 
+ 

R 
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792 CHAPTER 30 INDUCTION AND INDUCTANCE

Figure 30-14 (a) The current i is increasing,
and the self-induced emf !L appears along
the coil in a direction such that it opposes
the increase.The arrow representing !L can
be drawn along a turn of the coil or along-
side the coil. Both are shown. (b) The cur-
rent i is decreasing, and the self-induced
emf appears in a direction such that it
opposes the decrease.

i (increasing) 

(a) 

i (decreasing) 

(b) 

L 

L 

L 

L 

The changing 
current changes 
the flux, which
creates an emf 
that opposes 
the change.

Checkpoint 5
The figure shows an emf !L induced in a coil.Which of
the following can describe the current through the coil:
(a) constant and rightward, (b) constant and leftward,
(c) increasing and rightward, (d) decreasing and rightward, (e) increasing and left-
ward, (f) decreasing and leftward?

L 

30-6 RL CIRCUITS

After reading this module, you should be able to . . .

30.25 Sketch a schematic diagram of an RL circuit in which
the current is rising.

30.26 Write a loop equation (a differential equation) for an
RL circuit in which the current is rising.

30.27 For an RL circuit in which the current is rising, apply
the equation i(t) for the current as a function of time.

30.28 For an RL circuit in which the current is rising, find equa-
tions for the potential difference V across the resistor, the rate
di/dt at which the current changes, and the emf of the inductor,
as functions of time.

30.29 Calculate an inductive time constant tL.
30.30 Sketch a schematic diagram of an RL circuit in which

the current is decaying.

30.31 Write a loop equation (a differential equation) for an
RL circuit in which the current is decaying.

30.32 For an RL circuit in which the current is decaying,
apply the equation i(t) for the current as a function of time.

30.33 From an equation for decaying current in an RL circuit,
find equations for the potential difference V across the
resistor, the rate di/dt at which current is changing, and the
emf of the inductor, as functions of time.

30.34 For an RL circuit, identify the current through the induc-
tor and the emf across it just as current in the circuit begins
to change (the initial condition) and a long time later when
equilibrium is reached (the final condition).

Learning Objectives

shown in Fig. 30-14a. If, instead, the current decreases with time, the self-induced
emf must point in a direction that tends to oppose the decrease (Fig. 30-14b),
again trying to maintain the initial condition.

Electric Potential. In Module 30-3 we saw that we cannot define an electric
potential for an electric field (and thus for an emf) that is induced by a changing
magnetic flux. This means that when a self-induced emf is produced in the induc-
tor of Fig. 30-13, we cannot define an electric potential within the inductor itself,
where the flux is changing. However, potentials can still be defined at points of
the circuit that are not within the inductor—points where the electric fields are
due to charge distributions and their associated electric potentials.

Moreover, we can define a self-induced potential difference VL across an
inductor (between its terminals, which we assume to be outside the region of
changing flux). For an ideal inductor (its wire has negligible resistance), the mag-
nitude of VL is equal to the magnitude of the self-induced emf !L.

If, instead, the wire in the inductor has resistance r, we mentally separate the
inductor into a resistance r (which we take to be outside the region of changing
flux) and an ideal inductor of self-induced emf !L. As with a real battery of emf
! and internal resistance r, the potential difference across the terminals of a real
inductor then differs from the emf. Unless otherwise indicated, we assume here
that inductors are ideal.

● If a constant emf is introduced into a single-loop circuit
containing a resistance R and an inductance L, the current
rises to an equilibrium value of !/R according to

(rise of current).i "
!

R
 (1 $ e$t/tL)

!
Key Ideas

Here tL ( L/R) governs the rate of rise of the current and is
called the inductive time constant of the circuit. 
● When the source of constant emf is removed, the current
decays from a value i0 according to

(decay of current).i " i0 e$t/tL

"
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RL Circuits
In Module 27-4 we saw that if we suddenly introduce an emf ! into a single-loop
circuit containing a resistor R and a capacitor C, the charge on the capacitor does
not build up immediately to its final equilibrium value C! but approaches it in an
exponential fashion:

(30-36)

The rate at which the charge builds up is determined by the capacitive time
constant tC, defined in Eq. 27-36 as

tC " RC. (30-37)

If we suddenly remove the emf from this same circuit, the charge does not
immediately fall to zero but approaches zero in an exponential fashion:

(30-38)

The time constant tC describes the fall of the charge as well as its rise.
An analogous slowing of the rise (or fall) of the current occurs if we intro-

duce an emf ! into (or remove it from) a single-loop circuit containing a resis-
tor R and an inductor L. When the switch S in Fig. 30-15 is closed on a, for
example, the current in the resistor starts to rise. If the inductor were not pres-
ent, the current would rise rapidly to a steady value !/R. Because of the induc-
tor, however, a self-induced emf !L appears in the circuit; from Lenz’s law, this
emf opposes the rise of the current, which means that it opposes the battery
emf ! in polarity. Thus, the current in the resistor responds to the difference be-
tween two emfs, a constant ! due to the battery and a variable !L (" $L di/dt)
due to self-induction. As long as this !L is present, the current will be less
than !/R.

As time goes on, the rate at which the current increases becomes less rapid
and the magnitude of the self-induced emf, which is proportional to di/dt,
becomes smaller. Thus, the current in the circuit approaches !/R asymptotically.

We can generalize these results as follows:

q " q0e$t/tC.

q " C!(1 $ e$t/tC).

Initially, an inductor acts to oppose changes in the current through it. A long time
later, it acts like ordinary connecting wire.

Figure 30-15 An RL circuit.When switch S is
closed on a, the current rises and approaches
a limiting value !/R.

S a 

b R 

L – 
+ 

Now let us analyze the situation quantitatively.With the switch S in Fig. 30-15
thrown to a, the circuit is equivalent to that of Fig. 30-16. Let us apply the loop
rule, starting at point x in this figure and moving clockwise around the loop along
with current i.

1. Resistor. Because we move through the resistor in the direction of current i,
the electric potential decreases by iR. Thus, as we move from point x to
point y, we encounter a potential change of $iR.

2. Inductor. Because current i is changing, there is a self-induced emf L in the
inductor.The magnitude of !L is given by Eq. 30-35 as L di/dt.The direction of
!L is upward in Fig. 30-16 because current i is downward through the inductor
and increasing. Thus, as we move from point y to point z, opposite the direc-
tion of !L, we encounter a potential change of $L di/dt.

3. Battery. As we move from point z back to starting point x, we encounter a
potential change of (! due to the battery’s emf.

Thus, the loop rule gives us

$iR $ L 
di
dt

( ! " 0

!

Figure 30-16 The circuit of Fig. 30-15 with the
switch closed on a.We apply the loop rule
for the circuit clockwise, starting at x.

R 

L – 
+ 

i 
y x 

z 

L 
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794 CHAPTER 30 INDUCTION AND INDUCTANCE

Figure 30-17 The variation with time of (a) VR, the potential difference across the resistor in
the circuit of Fig. 30-16, and (b) VL, the potential difference across the inductor in that cir-
cuit.The small triangles represent successive intervals of one inductive time constant tL "
L/R.The figure is plotted for R " 2000 ', L " 4.0 H, and ! " 10 V.

10 
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4 
2 
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V R
 (

V
) 

t (ms) 
(a) 

0 2 4 6 8

V L
 (

V
)
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(b)

10
8
6
4
2

The resistor’s potential
difference turns on.
The inductor’s potential
difference turns off.

or (RL circuit). (30-39)

Equation 30-39 is a differential equation involving the variable i and its first
derivative di/dt. To solve it, we seek the function i(t) such that when i(t) and its
first derivative are substituted in Eq. 30-39, the equation is satisfied and the initial
condition i(0) " 0 is satisfied.

Equation 30-39 and its initial condition are of exactly the form of Eq. 27-32
for an RC circuit, with i replacing q, L replacing R, and R replacing 1/C.The solu-
tion of Eq. 30-39 must then be of exactly the form of Eq. 27-33 with the same
replacements.That solution is

(30-40)

which we can rewrite as

(rise of current). (30-41)

Here tL, the inductive time constant, is given by

(time constant). (30-42)

Let’s examine Eq. 30-41 for just after the switch is closed (at time t " 0) and
for a time long after the switch is closed . If we substitute t " 0 into
Eq. 30-41, the exponential becomes e$0 1. Thus, Eq. 30-41 tells us that the cur-
rent is initially i " 0, as we expected. Next, if we let t go to ,, then the exponential
goes to e$, " 0. Thus, Eq. 30-41 tells us that the current goes to its equilibrium
value of !/R.

We can also examine the potential differences in the circuit. For example,
Fig. 30-17 shows how the potential differences VR (" iR) across the resistor and
VL (" L di/dt) across the inductor vary with time for particular values of !, L,
and R. Compare this figure carefully with the corresponding figure for an RC
circuit (Fig. 27-16).

"
(t : ,)

tL "
L
R

i "
!

R
 (1 $ e$t/tL)

i "
!

R
 (1 $ e$Rt/L),

L 
di
dt

( Ri " !
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79530-6 RL CIRCUITS

To show that the quantity tL (" L/R) has the dimension of time (as it must,
because the argument of the exponential function in Eq. 30-41 must be dimen-
sionless), we convert from henries per ohm as follows:

The first quantity in parentheses is a conversion factor based on Eq. 30-35, and
the second one is a conversion factor based on the relation V " iR.

Time Constant. The physical significance of the time constant follows from
Eq. 30-41. If we put t " tL " L/R in this equation, it reduces to

(30-43)

Thus, the time constant tL is the time it takes the current in the circuit to reach
about 63% of its final equilibrium value !/R. Since the potential difference VR

across the resistor is proportional to the current i, a graph of the increasing
current versus time has the same shape as that of VR in Fig. 30-17a.

Current Decay. If the switch S in Fig. 30-15 is closed on a long enough for the
equilibrium current !/R to be established and then is thrown to b, the effect will
be to remove the battery from the circuit. (The connection to b must actually be
made an instant before the connection to a is broken. A switch that does this is
called a make-before-break switch.) With the battery gone, the current through
the resistor will decrease. However, it cannot drop immediately to zero but must
decay to zero over time. The differential equation that governs the decay can be
found by putting ! " 0 in Eq. 30-39:

(30-44)

By analogy with Eqs. 27-38 and 27-39, the solution of this differential equation
that satisfies the initial condition i(0) " i0 " !/R is

(decay of current). (30-45)

We see that both current rise (Eq. 30-41) and current decay (Eq. 30-45) in an RL
circuit are governed by the same inductive time constant, tL.

We have used i0 in Eq. 30-45 to represent the current at time t " 0. In our
case that happened to be !/R, but it could be any other initial value.

i "
!

R
 e$t/tL " i0e$t/tL

L 
di
dt

( iR " 0.

i "
!

R
(1 $ e$1) " 0.63 

!

R
.

1 
H
'

" 1 
H
' % 1 V # s

1 H #A & % 1 '#A
1 V & " 1 s.

Checkpoint 6
The figure shows three circuits with identical batteries, inductors, and resistors. Rank
the circuits according to the current through the battery (a) just after the switch is
closed and (b) a long time later, greatest first. (If you have trouble here, work through
the next sample problem and then try again.)

(1) (2) (3) 
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796 CHAPTER 30 INDUCTION AND INDUCTANCE

Calculations: We now have a circuit with three identical 
resistors in parallel; from Eq. 27-23, their equivalent resist-
ance is Req " R/3 " (9.0 ')/3 " 3.0 '. The equivalent
circuit shown in Fig. 30-18d then yields the loop equation 
! $ iReq " 0, or

(Answer)i "
!

Req
"

18 V
3.0 '

" 6.0 A.

Figure 30-18a shows a circuit that contains three identical
resistors with resistance R " 9.0 ', two identical inductors
with inductance L " 2.0 mH, and an ideal battery with emf
! " 18 V.

(a) What is the current i through the battery just after the
switch is closed?

KEY IDEA

Just after the switch is closed, the inductor acts to oppose a
change in the current through it.

Calculations: Because the current through each inductor
is zero before the switch is closed, it will also be zero just
afterward. Thus, immediately after the switch is closed, the
inductors act as broken wires, as indicated in Fig. 30-18b.
We then have a single-loop circuit for which the loop rule
gives us

! $ iR " 0.

Substituting given data, we find that

(Answer)

(b) What is the current i through the battery long after the
switch has been closed?

KEY IDEA

Long after the switch has been closed, the currents in the
circuit have reached their equilibrium values, and the
inductors act as simple connecting wires, as indicated in
Fig. 30-18c.

i "
!

R
"

18 V
9.0 '

" 2.0 A.

Figure 30-18 (a) A multiloop RL circuit with an open switch. (b) The
equivalent circuit just after the switch has been closed. (c) The
equivalent circuit a long time later. (d) The single-loop circuit that
is equivalent to circuit (c).

L 
– 
+ 

R 

R 

R 

L 

– 
+ 

R 

R 

R 

(a) (b)

– 
+ 

R 

R 

R 

(c)

– 
+ 

R/3 

(d)

Initially, an inductor
acts like broken wire.

Long later, it acts
like ordinary wire.

Sample Problem 30.05 RL circuit, immediately after switching and after a long time

Calculations: According to that solution, current i in-
creases exponentially from zero to its final equilibrium
value of !/R. Let t0 be the time that current i takes to reach
half its equilibrium value.Then Eq. 30-41 gives us

We solve for t0 by canceling !/R, isolating the exponential,
and taking the natural logarithm of each side.We find

(Answer)" 0.10 s. 

t0 " tL ln 2 " 
L
R

 ln 2 "
53 % 10 $3 H

0.37 '
 ln 2

1
2

!

R
"

!

R
 (1 $ e$t0 /tL).

A solenoid has an inductance of 53 mH and a resistance of
0.37 '. If the solenoid is connected to a battery, how long
will the current take to reach half its final equilibrium
value? (This is a real solenoid because we are considering its
small, but nonzero, internal resistance.)

KEY IDEA

We can mentally separate the solenoid into a resistance and
an inductance that are wired in series with a battery, as in 
Fig. 30-16. Then application of the loop rule leads to 
Eq. 30-39, which has the solution of Eq. 30-41 for the current
i in the circuit.

Sample Problem 30.06 RL circuit, current during the transition

Additional examples, video, and practice available at WileyPLUS
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79730-7 ENERGY STORED IN A MAGNETIC FIELD

Energy Stored in a Magnetic Field
When we pull two charged particles of opposite signs away from each other, we
say that the resulting electric potential energy is stored in the electric field of the
particles. We get it back from the field by letting the particles move closer
together again. In the same way we say energy is stored in a magnetic field, but
now we deal with current instead of electric charges.

To derive a quantitative expression for that stored energy, consider again
Fig. 30-16, which shows a source of emf ! connected to a resistor R and an induc-
tor L. Equation 30-39, restated here for convenience,

(30-46)

is the differential equation that describes the growth of current in this circuit.
Recall that this equation follows immediately from the loop rule and that the
loop rule in turn is an expression of the principle of conservation of energy for
single-loop circuits. If we multiply each side of Eq. 30-46 by i, we obtain

(30-47)

which has the following physical interpretation in terms of the work done by the
battery and the resulting energy transfers:

1. If a differential amount of charge dq passes through the battery of emf ! in
Fig. 30-16 in time dt, the battery does work on it in the amount ! dq. The
rate at which the battery does work is (! dq)/dt, or !i. Thus, the left side of
Eq. 30-47 represents the rate at which the emf device delivers energy to the
rest of the circuit.

2. The rightmost term in Eq. 30-47 represents the rate at which energy appears as
thermal energy in the resistor.

3. Energy that is delivered to the circuit but does not appear as thermal
energy must, by the conservation-of-energy hypothesis, be stored in the
magnetic field of the inductor. Because Eq. 30-47 represents the principle of
conservation of energy for RL circuits, the middle term must represent
the rate dUB/dt at which magnetic potential energy UB is stored in the
magnetic field.

Thus

(30-48)
dUB

dt
" Li 

di
dt

.

! i " Li 
di
dt

( i2R,

! "  L 
di
dt

( iR,

30-7 ENERGY STORED IN A MAGNETIC FIELD

After reading this module, you should be able to . . .

30.35 Describe the derivation of the equation for the
magnetic field energy of an inductor in an RL circuit 
with a constant emf source. 

30.36 For an inductor in an RL circuit, apply the relationship
between the magnetic field energy U, the inductance L,
and the current i.

Learning Objectives

● If an inductor L carries a current i, the inductor’s magnetic field stores an energy given by

(magnetic energy).UB " 1
2Li2

Key Idea
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798 CHAPTER 30 INDUCTION AND INDUCTANCE

We can write this as

dUB " Li di.

Integrating yields

or (magnetic energy), (30-49)

which represents the total energy stored by an inductor L carrying a current i.
Note the similarity in form between this expression for the energy stored in a
magnetic field and the expression for the energy stored in an electric field by a
capacitor with capacitance C and charge q; namely,

(30-50)

(The variable i2 corresponds to q2, and the constant L corresponds to 1/C.)

UE " 
q2

2C
.

UB " 12 Li2

!UB

0
 dUB " !i

0
 Li di

be satisfied? Using Eq. 30-49 twice allows us to rewrite this
energy condition as

or (30-52)

This equation tells us that, as the current increases from its
initial value of 0 to its final value of i,, the magnetic field
will have half its final stored energy when the current has in-
creased to this value. In general, we know that i is given by
Eq. 30-41, and here i, (see Eq. 30-51) is !/R; so Eq. 30-52
becomes

By canceling !/R and rearranging, we can write this as

which yields

or t " 1.2tL. (Answer)

Thus, the energy stored in the magnetic field of the coil by
the current will reach half its equilibrium value 1.2 time 
constants after the emf is applied.

t
-L

" $ln 0.293 " 1.23

e$t/tL " 1 $
112

" 0.293,

!

R
 (1 $ e$t/tL) " 

!12R
.

i " % 112 & i,.

1
2 Li2 " (1

2)
1
2 Li,

2

A coil has an inductance of 53 mH and a resistance of
0.35 '.

(a) If a 12 V emf is applied across the coil, how much energy
is stored in the magnetic field after the current has built up
to its equilibrium value?

KEY IDEA

The energy stored in the magnetic field of a coil at any time
depends on the current through the coil at that time, accord-
ing to Eq. 30-49 .

Calculations: Thus, to find the energy UB, stored at equi-
librium, we must first find the equilibrium current. From
Eq. 30-41, the equilibrium current is

(30-51)

Then substitution yields

(Answer)

(b) After how many time constants will half this equilibrium
energy be stored in the magnetic field?

Calculations: Now we are being asked: At what time t will
the relation

UB " 12 UB,

" 31 J. 

 UB, " 1
2 Li,

2 " (1
2)(53 % 10 $3 H)(34.3 A)2

i, " 
!

R
 "

12 V
0.35 '

" 34.3 A.

(UB " 1
2 Li2)

Sample Problem 30.07 Energy stored in a magnetic field

Additional examples, video, and practice available at WileyPLUS
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79930-8 ENERGY DENSITY OF A MAGNETIC FIELD

Energy Density of a Magnetic Field
Consider a length l near the middle of a long solenoid of cross-sectional area A
carrying current i; the volume associated with this length is Al. The energy UB

stored by the length l of the solenoid must lie entirely within this volume because
the magnetic field outside such a solenoid is approximately zero. Moreover,
the stored energy must be uniformly distributed within the solenoid because the
magnetic field is (approximately) uniform everywhere inside.

Thus, the energy stored per unit volume of the field is

or, since

we have

(30-53)

Here L is the inductance of length l of the solenoid.
Substituting for L/l from Eq. 30-31, we find

(30-54)

where n is the number of turns per unit length. From Eq. 29-23 (B " m0in) we can
write this energy density as

(magnetic energy density). (30-55)

This equation gives the density of stored energy at any point where the magni-
tude of the magnetic field is B. Even though we derived it by considering the
special case of a solenoid, Eq. 30-55 holds for all magnetic fields, no matter how
they are generated.The equation is comparable to Eq. 25-25,

(30-56)

which gives the energy density (in a vacuum) at any point in an electric field.
Note that both uB and uE are proportional to the square of the appropriate field
magnitude, B or E.

uE " 1
2 ´0E2,

uB "
B2

2m0

uB " 1
2m0n2i2,

uB "
Li2

2Al
"

L
l

i2

2A
.

UB " 1
2Li2,

uB "
UB

Al

30-8 ENERGY DENSITY OF A MAGNETIC FIELD

After reading this module, you should be able to . . .

30.37 Identify that energy is associated with any magnetic
field.

30.38 Apply the relationship between energy density uB of a
magnetic field and the magnetic field magnitude B.

Learning Objectives

● If B is the magnitude of a magnetic field at any point (in an inductor or anywhere else), the density of stored magnetic energy
at that point is

(magnetic energy density).uB "
B2

2m0

Key Idea
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800 CHAPTER 30 INDUCTION AND INDUCTANCE

Mutual Induction
In this section we return to the case of two interacting coils, which we first dis-
cussed in Module 30-1, and we treat it in a somewhat more formal manner. We
saw earlier that if two coils are close together as in Fig. 30-2, a steady current i in
one coil will set up a magnetic flux ! through the other coil (linking the other
coil). If we change i with time, an emf ! given by Faraday’s law appears in the sec-
ond coil; we called this process induction. We could better have called it mutual
induction, to suggest the mutual interaction of the two coils and to distinguish it
from self-induction, in which only one coil is involved.

Let us look a little more quantitatively at mutual induction. Figure 30-19a
shows two circular close-packed coils near each other and sharing a common
central axis. With the variable resistor set at a particular resistance R, the battery
produces a steady current i1 in coil 1. This current creates a magnetic field repre-
sented by the lines of in the figure. Coil 2 is connected to a sensitive meter but
contains no battery; a magnetic flux !21 (the flux through coil 2 associated with
the current in coil 1) links the N2 turns of coil 2.

We define the mutual inductance M21 of coil 2 with respect to coil 1 as

(30-57)M21 "
N2!21

i1
,

B
:

1

Checkpoint 7
The table lists the number of turns per unit length, current, and cross-sectional area
for three solenoids. Rank the solenoids according to the magnetic energy density
within them, greatest first.

Turns per 
Solenoid Unit Length Current Area

a 2n1 i1 2A1

b n1 2i1 A1

c n1 i1 6A1

30-9 MUTUAL INDUCTION

After reading this module, you should be able to . . .

30.39 Describe the mutual induction of two coils and sketch
the arrangement.

30.40 Calculate the mutual inductance of one coil with respect
to a second coil (or some second current that is changing).

30.41 Calculate the emf induced in one coil by a second coil
in terms of the mutual inductance and the rate of change
of the current in the second coil.

Learning Objectives

● If coils 1 and 2 are near each other, a changing current in either coil can induce an emf in the other. This mutual induction is
described by

and

where M (measured in henries) is the mutual inductance. 

! 1 " $M 
di2

dt
,

! 2 " $M 
di1

dt

Key Idea
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80130-9 MUTUAL INDUCTION

which has the same form as Eq. 30-28,

L " N!/i, (30-58)

the definition of inductance.We can recast Eq. 30-57 as

M21i1 " N2!21. (30-59)

If we cause i1 to vary with time by varying R, we have

(30-60)

The right side of this equation is, according to Faraday’s law, just the magnitude
of the emf !2 appearing in coil 2 due to the changing current in coil 1.Thus, with a
minus sign to indicate direction,

(30-61)

which you should compare with Eq. 30-35 for self-induction (! " $L di/dt).
Interchange. Let us now interchange the roles of coils 1 and 2, as in Fig. 30-19b;

that is, we set up a current i2 in coil 2 by means of a battery, and this produces a
magnetic flux !12 that links coil 1. If we change i2 with time by varying R, we then
have, by the argument given above,

(30-62)

Thus, we see that the emf induced in either coil is proportional to the rate of
change of current in the other coil. The proportionality constants M21 and M12

seem to be different. However, they turn out to be the same, although we cannot
prove that fact here. Thus, we have

M21 " M12 " M, (30-63)

and we can rewrite Eqs. 30-61 and 30-62 as

(30-64)

and (30-65)! 1 " $M 
di2

dt
.

! 2 " $M 
di1

dt

! 1 " $M12 
di2

dt
.

! 2 " $M21 
di1

dt
,

M21 
di1

dt
" N2 

d!21

dt
.

Figure 30-19 Mutual induction. (a) The mag-
netic field produced by current i1 in coil
1 extends through coil 2. If i1 is varied (by
varying resistance R), an emf is induced in
coil 2 and current registers on the meter
connected to coil 2. (b) The roles of the
coils interchanged.

B
:

1

+ – 

i 1

N 1

Coil 1 Coil 2 

B1

N 2    21Φ  

(a) 

+ –

i 2

N 2

Coil 1 Coil 2
(b)

N 1    12Φ

B2

B2

B1

R R

0 0
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802 CHAPTER 30 INDUCTION AND INDUCTANCE

Substituting Eq. 30-68 for B1 and for A2 in Eq. 30-67
yields

.

Substituting this result into Eq. 30-66, we find

(Answer) (30-69)

(b) What is the value of M for N1 " N2 " 1200 turns,
R2 " 1.1 cm, and R1 " 15 cm?

Calculations: Equation 30-69 yields

(Answer)

Consider the situation if we reverse the roles of the two
coils—that is, if we produce a current i2 in the smaller coil
and try to calculate M from Eq. 30-57 in the form

The calculation of !12 (the nonuniform flux of the smaller
coil’s magnetic field encompassed by the larger coil) is not
simple. If we were to do the calculation numerically using
a computer, we would find M to be 2.3 mH, as above! This
emphasizes that Eq. 30-63 (M21 " M12 " M) is not obvious.

M "
N1!12

i2
.

" 2.29 % 10 $3 H " 2.3 mH. 

  M "
(p)(4p % 10 $7 H/m)(1200)(1200)(0.011 m)2

(2)(0.15 m)

M "
N2 !21

i1
"

pm0 N1N2R2
2

2R1
.

N2 !21 "
pm0 N1N2 R2

2 i1

2R1

pR2
2

Figure 30-20 shows two circular close-packed coils, the
smaller (radius R2, with N2 turns) being coaxial with the
larger (radius R1, with N1 turns) and in the same plane.

(a) Derive an expression for the mutual inductance M for
this arrangement of these two coils, assuming that R1 . R2.

KEY IDEA

The mutual inductance M for these coils is the ratio of the
flux linkage (N!) through one coil to the current i in the
other coil, which produces that flux linkage. Thus, we need
to assume that currents exist in the coils; then we need to
calculate the flux linkage in one of the coils.

Calculations: The magnetic field through the larger coil
due to the smaller coil is nonuniform in both magnitude and
direction; so the flux through the larger coil due to the
smaller coil is nonuniform and difficult to calculate.
However, the smaller coil is small enough for us to assume
that the magnetic field through it due to the larger coil is ap-
proximately uniform. Thus, the flux through it due to the
larger coil is also approximately uniform. Hence, to find M
we shall assume a current i1 in the larger coil and calculate
the flux linkage N2!21 in the smaller coil:

(30-66)

The flux !21 through each turn of the smaller coil is,
from Eq. 30-2,

!21 " B1A2,

where B1 is the magnitude of the magnetic field at points
within the small coil due to the larger coil and is
the area enclosed by the turn. Thus, the flux linkage in the
smaller coil (with its N2 turns) is

N2!21 " N2B1A2. (30-67)

To find B1 at points within the smaller coil, we can use
Eq. 29-26,

with z set to 0 because the smaller coil is in the plane of the
larger coil. That equation tells us that each turn of the larger
coil produces a magnetic field of magnitude m0i1/2R1 at
points within the smaller coil. Thus, the larger coil (with its
N1 turns) produces a total magnetic field of magnitude

(30-68)

at points within the smaller coil.

B1 " N1 
m0 i1

2R1

B(z) "
m0 iR2

2(R2 ( z2 )3/2 ,

A2 (" pR2
2)

M "
N2 !21

i1
.

Sample Problem 30.08 Mutual inductance of two parallel coils

Figure 30-20 A small coil is located at the center of a large coil.The
mutual inductance of the coils can be determined by sending
current i1 through the large coil.

R1
R2

i1 
+ – 

Additional examples, video, and practice available at WileyPLUS
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803PROBLEMS

Magnetic Flux The magnetic flux B through an area A in a
magnetic field is defined as 

(30-1)

where the integral is taken over the area. The SI unit of magnetic
flux is the weber, where 1 Wb " 1 T #m2. If is perpendicular to
the area and uniform over it, Eq. 30-1 becomes

(30-2)

Faraday’s Law of Induction If the magnetic flux B through an
area bounded by a closed conducting loop changes with time, a current
and an emf are produced in the loop; this process is called induction.
The induced emf is

(Faraday’s law). (30-4)

If the loop is replaced by a closely packed coil of N turns, the induced
emf is

(30-5)

Lenz’s Law An induced current has a direction such that
the magnetic field due to the current opposes the change in the
magnetic flux that induces the current. The induced emf has the
same direction as the induced current.

Emf and the Induced Electric Field An emf is induced by
a changing magnetic flux even if the loop through which the flux is
changing is not a physical conductor but an imaginary line. The
changing magnetic field induces an electric field at every point
of such a loop; the induced emf is related to by

(30-19)

where the integration is taken around the loop. From Eq. 30-19 we
can write Faraday’s law in its most general form,

(Faraday’s law). (30-20)

A changing magnetic field induces an electric field .

Inductors An inductor is a device that can be used to produce a
known magnetic field in a specified region. If a current i is estab-
lished through each of the N windings of an inductor, a magnetic
flux !B links those windings.The inductance L of the inductor is

(inductance defined). (30-28)L "
N!B

i

E
:

' E
:

! ds: " $ 
d!B

dt

! " ' E
:

! ds:,

E
:

E
:

! " $N 
d!B

dt
.

! " $ 
d!B

dt

!

(B
:

 ! A, B
: uniform). !B " BA

B
:

!B " ! B
:

! dA
:

,

B
:

!

Review & Summary

The SI unit of inductance is the henry (H), where 1 henry 1 H 
1 T #m2/A.The inductance per unit length near the middle of a long
solenoid of cross-sectional area A and n turns per unit length is

(solenoid). (30-31)

Self-Induction If a current i in a coil changes with time, an emf
is induced in the coil.This self-induced emf is

(30-35)

The direction of !L is found from Lenz’s law: The self-induced emf
acts to oppose the change that produces it.

Series RL Circuits If a constant emf ! is introduced into a sin-
gle-loop circuit containing a resistance R and an inductance L, the
current rises to an equilibrium value of !/R:

(rise of current). (30-41)

Here tL (" L/R) is the inductive time constant. When the source of
constant emf is removed, the current decays from a value i0

according to

(decay of current). (30-45)

Magnetic Energy If an inductor L carries a current i, the
inductor’s magnetic field stores an energy given by

(magnetic energy). (30-49)

If B is the magnitude of a magnetic field at any point (in an
inductor or anywhere else), the density of stored magnetic energy
at that point is

(magnetic energy density). (30-55)

Mutual Induction If coils 1 and 2 are near each other, a chang-
ing current in either coil can induce an emf in the other. This mu-
tual induction is described by

(30-64)

and (30-65)

where M (measured in henries) is the mutual inductance.

! 1 " $M 
di2

dt
,

! 2 " $M 
di1

dt

uB "
B2

2m0

UB " 1
2Li2

i " i0 e$t/tL

i "
!

R
 (1 $ e$t/tL)

!L " $L 
di
dt

.

L
l

" m0 n2A

""

Problems

1 In Fig. 30-21, a metal rod is
forced to move with constant veloc-
ity along two parallel metal rails,
connected with a strip of metal at
one end. A magnetic field of magni-
tude B " 0.125 T points out of the
page. (a) If the rails are separated
by L " 25.0 cm and the speed of 

v:

the rod is 38.0 cm/s, what emf is generated? (b) If the rod has a
resistance of 18.0 ' and the rails and connector have negligible
resistance, what is the current in the rod? (c) At what rate is energy
being transferred to thermal energy? (d) What is the magnitude of
the leftward force that causes the rod to move?

2 Coil 1 has L1 " 35 mH and N1 " 100 turns. Coil 2 has L2 " 40 mH
and N2 " 200 turns. The coils are fixed in place; their mutual 

Figure 30-21
Problems 1 and 3.

L 

B 

v 
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804 CHAPTER 30 INDUCTION AND INDUCTANCE

inductance M is 9.0 mH. A 6.0 mA current in coil 1 is changing at
the rate of 4.0 A/s. (a) What magnetic flux !12 links coil 1, and (b)
what self-induced emf appears in that coil? (c) What magnetic flux
!21 links coil 2, and (d) what mutually induced emf appears in that
coil?

3 The conducting rod shown in Fig. 30-21 has length L and is be-
ing pulled along horizontal, frictionless conducting rails at a con-
stant velocity . The rails are connected at one end with a metal
strip. A uniform magnetic field , directed out of the page, fills the
region in which the rod moves.Assume that L " 10 cm, v " 5.0 m/s,
and B " 2.4 T.What are the (a) magnitude and (b) direction (up or
down the page) of the emf induced in the rod? What are the (c)
size and (d) direction of the current in the conducting loop?
Assume that the resistance of the rod is 0.40 ' and that the resist-
ance of the rails and metal strip is negligibly small. (e) At what rate
is thermal energy being generated in the rod? (f) What external
force on the rod is needed to maintain ? (g) At what rate does
this force do work on the rod? (h) What is the magnitude of the
magnetic force on the rod?

4 A coil C of N turns is placed
around a long solenoid S of radius
R and n turns per unit length, as in Fig.
30-22. (a) Show that the mutual induc-
tance for the coil–solenoid combina-
tion is given by M " m0pR2nN. (b)
Explain why M does not depend on
the shape, size, or possible lack of close
packing of the coil.

5 If 50.0 cm of copper wire (diameter " 3.00 mm) is formed into
a circular loop and placed perpendicular to a uniform magnetic
field that is increasing at the constant rate of 30.0 mT/s, at what
rate is thermal energy generated in the loop?

6 Figure 30-23 shows a copper strip of width
W " 20.0 cm that has been bent to form a
shape that consists of a tube of radius 
R " 1.8 cm plus two parallel flat extensions.
Current i " 35 mA is distributed uniformly
across the width so that the tube is effectively
a one-turn solenoid.Assume that the magnetic
field outside the tube is negligible and the
field inside the tube is uniform. What are (a)
the magnetic field magnitude inside the tube
and (b) the inductance of the tube (excluding
the flat extensions)?

7 Figure 30-24 shows two parallel 
loops of wire having a common axis.
The smaller loop (radius r) is above
the larger loop (radius R) by a 
distance x R. Consequently, the
magnetic field due to the counter-
clockwise current i in the larger loop
is nearly uniform throughout the
smaller loop. Suppose that x is in-
creasing at the constant rate dx/dt " v.
(a) Find an expression for the mag-
netic flux through the area of the
smaller loop as a function of x. (Hint: See Eq. 29-27.) In the smaller
loop, find (b) an expression for the induced emf and (c) the 
direction of the induced current.

.

v:

B
:

v:

8 Suppose the emf of the battery in the circuit shown in Fig. 30-16
varies with time t so that the current is given by i(t) 3.0 ( 5.0t,
where i is in amperes and t is in seconds. Take R " 8.0 ' and 
L " 6.0 H, and find an expression for the battery emf as a function
of t. (Hint: Apply the loop rule.)

9 The magnetic field of a cylindrical magnet that has a
pole-face diameter of 3.3 cm can be varied sinusoidally between
29.6 T and 31.2 T at a frequency of 15 Hz. (The current in a wire
wrapped around a permanent magnet is varied to give this varia-
tion in the net field.) At a radial distance of 1.6 cm, what is the
amplitude of the electric field induced by the variation?

10 At t " 0, a battery is connected to a series arrangement of a
resistor and an inductor. At what multiple of the inductive time
constant will the energy stored in the inductor’s magnetic field be
0.250 of its steady-state value?

11 Inductors in series. Two inductors L1 and L2 are connected in
series and are separated by a large distance so that the magnetic
field of one cannot affect the other. (a) Show that the equivalent
inductance is given by

Leq " L1 ( L2.

(Hint: Review the derivations for resistors in series and capacitors
in series. Which is similar here?) (b) What is the generalization of
(a) for N inductors in series?

12 A 12 H inductor carries a current of 5.0 A. At what rate
must the current be changed to produce a 60 V emf in the
inductor?

13 A rectangular loop of N closely
packed turns is positioned near a
long straight wire as shown in Fig.
30-25. What is the mutual inductance 
M for the loop–wire combination if 
N " 150, a " 1.0 cm, b " 9.5 cm, and 
l " 30 cm?

14 In Fig. 30-26, ! " 100 V, R1 " 10.0 ', R2 " 20.0 ', R3 " 30.0 ',
and L " 3.50 H. Immediately after
switch S is closed, what are (a) i1

and (b) i2? (Let currents in the indi-
cated directions have positive val-
ues and currents in the opposite
directions have negative values.) A
long time later, what are (c) i1 and
(d) i2? The switch is then reopened.
Just then, what are (e) i1 and (f) i2?
A long time later, what are (g) i1

and (h) i2?

15 A coil is connected in series with a 23.0 k' resistor. An ideal
50.0 V battery is applied across the two devices, and the current
reaches a value of 2.00 mA after 5.00 ms. (a) Find the inductance of
the coil. (b) How much energy is
stored in the coil at this same mo-
ment?

16 The current i through a 4.6 H in-
ductor varies with time t as shown by
the graph of Fig. 30-27, where the ver-
tical axis scale is set by is " 16 A and
the horizontal axis scale is set by 
ts " 6.0 ms. The inductor has a 

"

Figure 30-22 Problem 4.
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Figure 30-26 Problem 14.Figure 30-23
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is 

0 ts 

i (
A

) 

t (ms) 

halliday_c30_774-810v2.0.1.qxd  3/5/14  12:10 PM  Page 804

Uploaded By: anonymousSTUDENTS-HUB.com



21 In Fig. 30-30, a wire forms a
closed circular loop, of radius 
R " 0.32 m and resistance 0.056 '.
The circle is centered on a long
straight wire; at time t " 0, the cur-
rent in the long straight wire is 5.0 A
rightward. Thereafter, the current
changes according to i " 5.0 A $ (2.0 A/s2)t2. (The straight wire
is insulated; so there is no electrical contact between it and the
wire of the loop.) What is the magnitude of the current induced
in the loop at times t / 0?

22 A circular loop of wire 50 mm in radius carries a current of 
80 A. Find the (a) magnetic field strength and (b) energy density at
the center of the loop.

23 The current in an RL circuit drops from 2.30 A to 3.40 mA in
0.025 s following removal of the battery from the circuit. If L is 
10 H, find the resistance R in the circuit.

24 A coil with an inductance of 2.0 H and a resistance of 12 ' is
suddenly connected to an ideal battery with ! " 100 V. At 0.10 s
after the connection is made, what is the rate at which (a) energy
is being stored in the magnetic field, (b) thermal energy is ap-
pearing in the resistance, and (c) energy is being delivered by the
battery?

805PROBLEMS

resistance of 12 '. Find the magnitude of the induced emf ! during
time intervals (a) 0 to 2 ms, (b) 2 ms to 5 ms, and (c) 5 ms to 6 ms.
(Ignore the behavior at the ends of the intervals.)

17 Two coils are at fixed locations. When coil 1 has no current
and the current in coil 2 increases at the rate 21.0 A/s, the emf in
coil 1 is 25.0 mV. (a) What is their mutual inductance? (b) When
coil 2 has no current and coil 1 has a current of 1.35 A, what is the
flux linkage in coil 2?

18 The switch in Fig. 30-15 is closed on a at time t " 0.What is the
ratio !L/! of the inductor’s self-induced emf to the battery’s emf
(a) just after t " 0 and (b) at t " 3.50tL? (c) At what multiple of tL

will !L/! " 0.250?

19 Two identical long wires of radius a 0.530 mm are parallel
and carry identical currents in opposite directions. Their center-to-
center separation is d " 20.0 cm. Neglect the flux within the wires
but consider the flux in the region between the wires. What is the
inductance per unit length of the wires?

20 In Fig. 30-28, the inductor has 20 turns and the ideal battery
has an emf of 16 V. Figure 30-29 gives the magnetic flux !
through each turn versus the current i through the inductor. The
vertical axis scale is set by !s " 4.0 % 10$4 T#m2, and the hori-
zontal axis scale is set by is " 2.00 A. If switch S is closed at time
t " 0, at what rate di/dt will the current be changing at 
t " 1.5tL?

"

R 

Figure 30-30 Problem 21.

Figure 30-33 Problem 30.
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R 
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25 A length of copper wire carries a current of 3.5 A uniformly
distributed through its cross section. Calculate the energy density
of (a) the magnetic field and (b) the electric field at the surface of
the wire. The wire diameter is 2.5 mm, and its resistance per unit
length is 3.3 '/km.

26 In Fig. 30-31, two straight con-
ducting rails form a right angle. A
conducting bar in contact with the
rails starts at the vertex at time 
t " 0 and moves with a constant ve-
locity of 8.90 m/s along them.
A magnetic field with B " 0.350 T 
is directed out of the page.
Calculate (a) the flux through the triangle formed by the rails and
bar at t " 3.00 s and (b) the emf around the triangle at that time.
(c) If the emf is ! " at n, where a and n are constants, what is the
value of n?

27 A solenoid having an inductance of 9.70 mH is connected in
series with a 1.20 k resistor. (a) If a 14.0 V battery is connected
across the pair, how long will it take for the current through the re-
sistor to reach 40.0% of its final value? (b) What is the current
through the resistor at time t " 0.50tL?

28 In Fig. 30-32, a wire loop of lengths 
L " 50.0 cm and W 20.0 cm lies in a mag-
netic field . What are the (a) magnitude 
and (b) direction (clockwise or counterclock-
wise—or “none” if 0) of the emf induced
in the loop if 
What are (c) and (d) the direction if 

What are (e) and
(f) the direction if What are (g) 
and (h) the direction if What are
(i) and (j) the direction if 

29 A solenoid that is 85.0 cm long has a cross-sectional area of
17.0 cm2. There are 1210 turns of wire carrying a current of 6.60 A.
(a) Calculate the energy density of the magnetic field inside the so-
lenoid. (b) Find the total energy stored in the magnetic field there
(neglect end effects).

B
:

" (5.00 % 10$2 T/m #s)yt î?!
B
:

" (3.00 % 10$2 T/m #s)xt ĵ?
!10 $2 T/m #s)ytk̂?B
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Figure 30-31 Problem 26.
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30 Figure 30-33a shows a circuit consisting of an ideal battery
with emf ! " 6.00 mV, a resistance R, and a small wire loop of area
5.0 cm2. For the time interval t " 10 s to t " 20 s, an external mag-
netic field is set up throughout the loop. The field is uniform, its
direction is into the page in Fig. 30-33a, and the field magnitude is
given by B " at, where B is in teslas, a is a constant, and t is in
seconds. Figure 30-33b gives the current i in the circuit before, dur-
ing, and after the external field is set up. The vertical axis scale is
set by is " 4.0 mA. Find the constant a in the equation for the field
magnitude.

Figure 30-32
Problem 28.
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806 CHAPTER 30 INDUCTION AND INDUCTANCE

35 In Fig. 30-36, after switch S is
closed at time t 0, the emf of the
source is automatically adjusted to
maintain a constant current i through
S. (a) Find the current through the in-
ductor as a function of time. (b) At
what time is the current through the
resistor equal to twice the current
through the inductor?

36 A toroidal inductor with an inductance of 110 mH encloses a
volume of 0.0200 m3. If the average energy density in the toroid is
70.0 J/m3, what is the current through the inductor?

37 At t " 0, a battery is connected to a series arrangement of a
resistor and an inductor. If the inductive time constant is 60.0 ms, at
what time is the rate at which energy is dissipated in the resistor
equal to the rate at which energy is stored in the inductor’s mag-
netic field?

38 Two solenoids are part of the spark coil of an automobile.
When the current in one solenoid falls from 6.0 A to zero in 2.5 ms,
an emf of 26 kV is induced in the other solenoid. What is the
mutual inductance M of the solenoids?

39 A small circular loop of area 2.00 cm2 is placed in the plane
of, and concentric with, a large circular loop of radius 1.00 m. The 
current in the large loop is changed at a constant rate from 50.0 A
to $50.0 A (a change in direction) in a time of 1.00 s, starting at 
t " 0. What is the magnitude of the magnetic field at the center
of the small loop due to the current in the large loop at (a) t " 0,
(b) t " 0.500 s, and (c) t " 1.00 s? (d) From t " 0 to t " 1.00 s, is 
reversed? Because the inner loop is small, assume is uniform
over its area. (e) What emf is induced in the small loop at 
t " 0.500 s?

40 In Fig. 30-37, a rectangular loop
of wire with length a 2.2 cm,
width b 0.80 cm, and resistance 
R " 0.40 m' is placed near an infi-
nitely long wire carrying current 
i " 6.9 A. The loop is then moved
away from the wire at constant speed
v " 3.2 mm/s. When the center of the
loop is at distance r " 1.5b, what are
(a) the magnitude of the magnetic flux through the loop and (b) the
current induced in the loop?

41 In Fig. 30-38, a stiff wire bent into a semicircle of radius 
a " 1.4 cm is rotated at constant angular speed 30 rev/s in a uni-
form 20 mT magnetic field.What are the (a) frequency and (b) am-
plitude of the emf induced in the loop?

"
"

B
:

B
:

B
:

"
31 A rectangular coil of N turns and of length a and width b is ro-
tated at frequency f in a uniform magnetic field , as indicated in
Fig. 30-34. The coil is connected to co-rotating cylinders, against
which metal brushes slide to make contact. (a) Show that the emf
induced in the coil is given (as a function of time t) by

! " 2pfNabB sin(2pf t) " !0 sin(2pf t).

This is the principle of the commercial alternating-current gen-
erator. (b) What value of Nab gives an emf with !0 " 220 V
when the loop is rotated at 60.0 rev/s in a uniform magnetic field
of 0.400 T?

B
:

Figure 30-35 Problem 34.

x 

y 

1 2

2 

1 

0 
x (cm) 

xs 

u B
 (

nJ
/m

3 )

(a) 

(b) 

b 

a 

R 

Sliding contacts 
B 

Figure 30-34 Problem 31.

Figure 30-38 Problem 41.
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Figure 30-37 Problem 40.

Figure 30-36 Problem 35.
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32 A rectangular loop (area " 0.15 m2) turns in a uniform mag-
netic field, B " 0.20 T. When the angle between the field and the
normal to the plane of the loop is p/2 rad and increasing at 
0.90 rad/s, what emf is induced in the loop?

33 For the circuit of Fig. 30-16, assume that ! " 10.0 V,
R " 112 , and L 5.50 H. The ideal battery is connected at
time t 0. (a) How much energy is delivered by the battery dur-
ing the first 2.00 s? (b) How much of this energy is stored in the
magnetic field of the inductor? (c) How much of this energy is
dissipated in the resistor?

34 Figure 30-35a shows, in cross section, two wires that are
straight, parallel, and very long. The ratio i1/i2 of the current carried
by wire 1 to that carried by wire 2 is 0.25. Wire 1 is fixed in place.
Wire 2 can be moved along the positive side of the x axis so as to
change the magnetic energy density uB set up by the two currents at
the origin. Figure 30-35b gives uB as a function of the position x of
wire 2.The curve has an asymptote of uB " 1.96 nJ/m3 as , and
the horizontal axis scale is set by xs " 30.0 cm. What is the value of
(a) i1 and (b) i2?

x : ,

"
"'
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49 Two coils connected as shown in Fig. 30-43 separately have in-
ductances L1 and L2. Their mutual inductance is M. (a) Show that
this combination can be replaced by a single coil of equivalent in-
ductance given by

Leq " L1 ( L2 ( 2M.

(b) How could the coils in Fig. 30-43 be reconnected to yield an
equivalent inductance of

Leq " L1 ( L2 $ 2M?

(This problem is an extension of Problem 11, but the requirement
that the coils be far apart has been removed.)

42 The current in an RL circuit builds up to one-third of its
steady-state value in 3.00 s. Find the inductive time constant.

43 As seen in Fig. 30-39, a square
loop of wire has sides of length 
3.0 cm. A magnetic field is directed
out of the page; its magnitude is
given by B " 5.0t2y, where B is in tes-
las, t is in seconds, and y is in 
meters. At t " 2.5 s, what are the
(a) magnitude and (b) direction of
the emf induced in the loop?

44 Figure 30-40a shows a wire 
that forms a rectangle (W 20 cm,
H 40 cm) and has a resistance of 5.0 m . Its interior is split into
three equal areas, with magnetic fields , and .The fields are
uniform within each region and directly out of or into the page as
indicated. Figure 30-40b gives the change in the z components Bz

of the three fields with time t; the vertical axis scale is set by 
Bs " 4.0 mT and Bb " $2.5Bs, and the horizontal axis scale is set 
by ts " 2.0 s. What are the (a) magnitude and (b) direction of the
current induced in the wire?

B
:

3B
:

1, B
:

2

'"
"
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perpendicular to the fold diameter and makes equal angles (of 45°)
with the planes of the semicircles. The magnetic field is reduced to
zero at a uniform rate during a time interval of 7.9 ms. During this
interval, what are the (a) magnitude and (b) direction (clockwise
or counterclockwise when viewed along the direction of ) of the
emf induced in the loop?

B
:

45 What must be the magnitude of a uniform electric field if it is
to have the same energy density as that possessed by a 20 mT 
magnetic field?

46 A wire loop of radius 25 cm and
resistance 8.5 ' is located in a uniform
magnetic field that changes in mag-
nitude as given in Fig. 30-41. The verti-
cal axis scale is set by Bs " 0.80 T, and
the horizontal axis scale is set by 
ts " 6.00 s. The loop’s plane is perpen-
dicular to . What emf is induced in the loop during time intervals
(a) 0 to 2.0 s, (b) 2.0 s to 4.0 s, and (c) 4.0 s to 6.0 s?

47 A long solenoid has a diameter of 12.0 cm. When a current i
exists in its windings, a uniform magnetic field of magnitude 
B " 30.0 mT is produced in its interior. By decreasing i, the field is
caused to decrease at the rate of 6.50 mT/s. Calculate the magni-
tude of the induced electric field (a) 4.20 cm and (b) 10.3 cm from
the axis of the solenoid.

48 Figure 30-42 shows a closed loop of wire that consists of a pair
of equal semicircles, of radius 3.7 cm, lying in mutually perpendicu-
lar planes.The loop was formed by folding a flat circular loop along
a diameter until the two halves became perpendicular to each
other. A uniform magnetic field of magnitude 61 mT is directedB
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50 Inductors in parallel. Two inductors L1 and L2 are connected
in parallel and separated by a large distance so that the magnetic
field of one cannot affect the other. (a) Show that the equivalent
inductance is given by

(Hint: Review the derivations for resistors in parallel and
capacitors in parallel. Which is similar here?) (b) What is the gen-
eralization of (a) for N inductors in parallel?

51 A small loop of area 3.1 mm2 is placed inside a long solenoid
that has 672 turns/cm and carries a sinusoidally varying current i of
amplitude 1.28 A and angular frequency 212 rad/s.The central axes
of the loop and solenoid coincide.What is the amplitude of the emf
induced in the loop?

1
Leq

"
1

L1
(

1
L2

.
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808 CHAPTER 30 INDUCTION AND INDUCTANCE

55 Figure 30-46 shows a rod of
length L 12.0 cm that is forced to
move at constant speed v 5.00 m/s
along horizontal rails. The rod, rails,
and connecting strip at the right
form a conducting loop. The rod has
resistance 0.400 '; the rest of the
loop has negligible resistance. A cur-
rent i " 100 A through the long
straight wire at distance a " 5.00
mm from the loop sets up a (nonuni-
form) magnetic field through the
loop. Find the (a) emf and (b) cur-
rent induced in the loop. (c) At what rate is thermal energy gener-
ated in the rod? (d) What is the magnitude of the force that must
be applied to the rod to make it move at constant speed? (e) At
what rate does this force do work on the rod?

56 A wooden toroidal core with a square cross section has an in-
ner radius of 10 cm and an outer radius of 12 cm. It is wound with
one layer of wire (of diameter 1.0 mm and resistance per meter
0.025 '/m).What are (a) the inductance and (b) the inductive time
constant of the resulting toroid? Ignore the thickness of the insula-
tion on the wire.

"
"

57 At a given instant the current
and self-induced emf in an inductor
are directed as indicated in Fig. 30-47.
(a) Is the current increasing or de-
creasing? (b) The induced emf is 23 V,
and the rate of change of the current is 18 kA/s; find the inductance.

58 For the wire arrangement in Fig.
30-48, a 12.0 cm and b 16.0 cm.
The current in the long straight wire
is i "6.50t2 $ 10.0t, where i is in am-
peres and t is in seconds. (a) Find the
emf in the square loop at t " 3.00 s.
(b) What is the direction of the in-
duced current in the loop?

59 A battery is connected to a
series RL circuit at time t 0. At what multiple of tL will the cur-
rent be 1.00% less than its equilibrium value?

60 A circular region in an xy
plane is penetrated by a uniform
magnetic field in the positive direc-
tion of the z axis. The field’s magni-
tude B (in teslas) increases with
time t (in seconds) according to 
B " at, where a is a constant. The
magnitude E of the electric field set
up by that increase in the magnetic
field is given by Fig. 30-49 versus ra-
dial distance r ; the vertical axis scale is set by Es " 600 mN/C, and
the horizontal axis scale is set by rs " 4.00 cm. Find a.

61 A circular coil has a 15.0 cm radius and consists of 30.0
closely wound turns of wire. An externally produced magnetic
field of magnitude 2.60 mT is perpendicular to the coil. (a) If no
current is in the coil, what magnetic flux links its turns? (b) When
the current in the coil is 2.80 A in a certain direction, the net
flux through the coil is found to vanish. What is the inductance of
the coil?

62 A certain elastic conducting material is stretched into a
circular loop of 10.0 cm radius. It is placed with its plane perpendi-
cular to a uniform 0.800 T magnetic field. When released, the ra-
dius of the loop starts to shrink at an instantaneous rate of
75.0 cm/s.What emf is induced in the loop at that instant?

63 The inductor arrangement of Fig. 30-50, with L1 " 50.0 mH,
L2 " 80.0 mH, L3 " 20.0 mH, and L4 " 15.0 mH, is to be con-
nected to a varying current source. What is the equivalent induc-
tance of the arrangement? (First see Problems 11 and 50.)

"

""
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Figure 30-45 Problem 54.

52 At a certain place, Earth’s magnetic field has magnitude 
B " 0.590 gauss and is inclined downward at an angle of 70.0) to
the horizontal. A flat horizontal circular coil of wire with a radius
of 10.0 cm has 2500 turns and a total resistance of 85.0 '. It is con-
nected in series to a meter with 140 ' resistance.The coil is flipped
through a half-revolution about a diameter, so that it is again hori-
zontal. How much charge flows through the meter during the flip?

53 A square wire loop with 2.00 m
sides is perpendicular to a uniform
magnetic field, with half the area of
the loop in the field as shown in Fig.
30-44. The loop contains an ideal
battery with emf ! " 12.0 V. If the
magnitude of the field varies with
time according to B " 0.603 $ 1.25t,
with B in teslas and t in seconds, what
are (a) the net emf in the circuit and
(b) the direction of the (net) current
around the loop?

54 In Fig. 30-45a, a circular loop of wire is concentric with a so-
lenoid and lies in a plane perpendicular to the solenoid’s central
axis. The loop has radius 6.00 cm. The solenoid has radius 2.00
cm, consists of 5000 turns/m, and has a current isol varying with
time t as given in Fig. 30-45b, where the vertical axis scale is set
by is " 1.00 A and the horizontal axis scale is set by ts " 2.0 s.
Figure 30-45c shows, as a function of time, the energy Eth that is
transferred to thermal energy of the loop; the vertical axis scale
is set by Es " 100.0 nJ. What is the loop’s resistance?

Figure 30-44 Problem 53.

B 

bat 

64 A uniform magnetic field is perpendicular to the plane of a
circular loop of diameter 12 cm formed from wire of diameter 
2.5 mm and resistivity 1.69 % 10$8 '#m. At what rate must the
magnitude of change to induce a 10 A current in the loop?B

:

B
:

Figure 30-47 Problem 57.
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67 In Fig. 30-52, a 120-turn coil of radius 1.8 cm and resistance 5.3 '
is coaxial with a solenoid of 220 turns/cm and diameter 3.2 cm.The so-
lenoid current drops from 0.42 A to zero in time interval &t " 0.67 s.
What current is induced in the coil during &t?

75 In Fig. 30-56, R " 15 ', L 15 H, the ideal battery has 
10 V, and the fuse in the upper branch is an ideal 3.0 A fuse.

It has zero resistance as long as the current through it remains less
than 3.0 A. If the current reaches 3.0 A, the fuse “blows” and

! "
"

809PROBLEMS

Figure 30-52 Problem 67.

Coil 

Solenoid 

71 In Fig. 30-54, a circular loop of wire 10 cm
in diameter (seen edge-on) is placed with its
normal at an angle u " 20° with the direction
of a uniform magnetic field of magnitude 
1.5 T. The loop is then rotated such that ro-
tates in a cone about the field direction at the
rate 100 rev/min; angle u remains unchanged
during the process. What is the emf induced in
the loop?

72 The inductance of a closely packed coil of
400 turns is 8.0 mH. Calculate the magnetic flux through the coil
when the current is 12.0 mA.

73 One hundred turns of (insulated) copper wire are wrapped
around a wooden cylindrical core of cross-sectional area 
1.90 % 10 $3 m2. The two ends of the wire are connected to a re-
sistor. The total resistance in the circuit is 9.50 '. If an externally
applied uniform longitudinal magnetic field in the core changes
from 1.60 T in one direction to 1.60 T in the opposite direction,
how much charge flows through a point in the circuit during the
change?

74 A wire is bent into three circular segments, each of radius 
r " 10 cm, as shown in Fig. 30-55. Each segment is a quadrant of a
circle, ab lying in the xy plane, bc lying in the yz plane, and ca lying
in the zx plane. (a) If a uniform magnetic field points in the posi-
tive x direction, what is the magnitude of the emf developed in the
wire when B increases at the rate of 9.0 mT/s? (b) What is the di-
rection of the current in segment bc?

B
:

N
:

B
:

N
:

(a) (b) (c) 

A 
B 

Bs 

0 
t (s) 

ts 

B 
(m

T
) 

qs 

0 
t (s) 

ts 

q 
(m

C
) 

Figure 30-51 Problem 66.

R2 R1 

Path 1 

Path 2 

Path 3 

Figure 30-53 Problem 70.

B 

N 
θ 

Loop

Figure 30-54
Problem 71.

Figure 30-55 Problem 74.

r 

r 

r 

a 

b 

c 

z 

y 

x 

65 Two long, parallel copper wires of diameter 4.0 mm carry cur-
rents of 7.0 A in opposite directions. (a) Assuming that their cen-
tral axes are 20 mm apart, calculate the magnetic flux per meter of
wire that exists in the space between those axes. (b) What percent-
age of this flux lies inside the wires? (c) Repeat part (a) for parallel
currents.

66 In Fig. 30-51a, a uniform magnetic field increases in
magnitude with time t as given by Fig. 30-51b, where the verti-
cal axis scale is set by Bs " 9.0 mT and the horizontal scale 
is set by ts " 3.0 s. A circular conducting loop of area 
8.0 % 10$4 m2 lies in the field, in the plane of the page. The
amount of charge q passing point A on the loop is given in Fig.
30-51c as a function of t, with the vertical axis scale set by qs "
12 mC and the horizontal axis scale again set by ts " 1.5 s. What
is the loop’s resistance?

B
:

68 A loop antenna of area 2.00 cm2 and resistance 5.21 m'
is perpendicular to a uniform magnetic field of magnitude 
21.0 mT. The field magnitude drops to zero in 2.96 ms. How
much thermal energy is produced in the loop by the change in
field?

69 An electric generator contains a coil of 100 turns of wire, each
forming a rectangular loop 50.0 cm by 30.0 cm. The coil is placed
entirely in a uniform magnetic field with magnitude B " 4.30 T
and with initially perpendicular to the coil’s plane. What is the
maximum value of the emf produced when the coil is spun at 
1278 rev/min about an axis perpendicular to ?

70 Figure 30-53 shows two circular regions R1 and R2 with radii 
r1 " 20.0 cm and r2 " 30.0 cm. In R1 there is a uniform magnetic
field of magnitude B1 " 60.0 mT directed into the page, and in R2

there is a uniform magnetic field of magnitude B2 " 75.0 mT
directed out of the page (ignore fringing). Both fields are decreas-
ing at the rate of 8.50 mT/s. Calculate for (a) path 1,
(b) path 2, and (c) path 3.

( E
:

! ds:

B
:

B
:
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77 In Fig. 30-58, the magnetic flux
through the loop increases according to
the relation !B " 3.0t2 ( 7.0t, where !B is
in milliwebers and t is in seconds. (a)
What is the magnitude of the emf induced
in the loop when t 1.5 s? (b) Is the di-
rection of the current through R to the
right or left?

"

810 CHAPTER 30 INDUCTION AND INDUCTANCE

thereafter has infinite resistance. Switch S is closed at time t 0.
(a) When does the fuse blow? (Hint: Equation 30-41 does not ap-
ply. Rethink Eq. 30-39.) (b) Sketch a graph of the current i
through the inductor as a function of time. Mark the time at which
the fuse blows.

"

B 

mg 

L 

a a

Figure 30-57 Problem 76.

Figure 30-58 Problem 77.

R 

B 

Fuse 

R 
+ 
– S 

L 

Figure 30-56 Problem 75.

76 In Fig. 30-57, a long rectangular conducting loop, of width L,
resistance R, and mass m, is hung in a horizontal, uniform magnetic
field that is directed into the page and that exists only above line
aa. The loop is then dropped; during its fall, it accelerates until it
reaches a certain terminal speed vt. Ignoring air drag, find an ex-
pression for vt.

B
:
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811

Electromagnetic Oscillations
and Alternating Current

31-1 LC OSCILLATIONS

After reading this module, you should be able to . . .

31.01 Sketch an LC oscillator and explain which quantities
oscillate and what constitutes one period of the oscillation.

31.02 For an LC oscillator, sketch graphs of the potential
difference across the capacitor and the current through
the inductor as functions of time, and indicate the period
T on each graph.

31.03 Explain the analogy between a block–spring oscillator
and an LC oscillator.

31.04 For an LC oscillator, apply the relationships between
the angular frequency v (and the related frequency f
and period T ) and the values of the inductance and
capacitance.

31.05 Starting with the energy of a block–spring system,
explain the derivation of the differential equation for charge
q in an LC oscillator and then identify the solution for q(t).

31.06 For an LC oscillator, calculate the charge q on the ca-
pacitor for any given time and identify the amplitude Q of
the charge oscillations.

31.07 Starting from the equation giving the charge q(t)
on the capacitor in an LC oscillator, find the current i(t)
in the inductor as a function of time.

31.08 For an LC oscillator, calculate the current i in the
inductor for any given time and identify the amplitude I
of the current oscillations.

31.09 For an LC oscillator, apply the relationship between
the charge amplitude Q, the current amplitude I, and the
angular frequency v.

31.10 From the expressions for the charge q and the current
i in an LC oscillator, find the magnetic field energy UB(t)
and the electric field energy UE(t) and the total energy.

31.11 For an LC oscillator, sketch graphs of the magnetic
field energy UB(t), the electric field energy UE(t), and the
total energy, all as functions of time.

31.12 Calculate the maximum values of the magnetic field
energy UB and the electric field energy UE and also
calculate the total energy.

Learning Objectives

● In an oscillating LC circuit, energy is shuttled periodically
between the electric field of the capacitor and the magnetic
field of the inductor; instantaneous values of the two forms of
energy are

where q is the instantaneous charge on the capacitor and i is
the instantaneous current through the inductor. 
● The total energy U (! UE " UB) remains constant.
● The principle of conservation of energy leads to

(LC oscillations)

as the differential equation of LC oscillations (with no
resistance).

L
d2q
dt2 "

1
C

 q ! 0

UE !
q2

2C
  and  UB !

Li2

2
,

● The solution of this differential equation is

q ! Q cos(vt " f) (charge),

in which Q is the charge amplitude (maximum charge 
on the capacitor) and the angular frequency v of the 
oscillations is

● The phase constant f is determined by the initial conditions
(at t ! 0) of the system.
● The current i in the system at any time t is

i ! #vQ sin(vt " f) (current),

in which vQ is the current amplitude I.

v !
11LC

.

Key Ideas
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UB UE 
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(h) 

UB UE 
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UB UE 

(g) 

C L 

UB UE 
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+ + 

– – 

i = 0 

i max i 

+ + 

– – 

i 

– – 

+ + 

+ + + + 

– – – – 

i = 0 

– – – – 

+ + + + 

Entirely
electrical
energy

Entirely
electrical
energy

Entirely
magnetic
energy

Entirely
magnetic
energy

812 CHAPTER 31 ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

What Is Physics?
We have explored the basic physics of electric and magnetic fields and how
energy can be stored in capacitors and inductors. We next turn to the associated
applied physics, in which the energy stored in one location can be transferred to
another location so that it can be put to use. For example, energy produced at a
power plant can show up at your home to run a computer. The total worth of this
applied physics is now so high that its estimation is almost impossible. Indeed,
modern civilization would be impossible without this applied physics.

In most parts of the world, electrical energy is transferred not as a direct
current but as a sinusoidally oscillating current (alternating current, or ac). The
challenge to both physicists and engineers is to design ac systems that transfer
energy efficiently and to build appliances that make use of that energy. Our first
step here is to study the oscillations in a circuit with inductance L and capacitance C.

LC Oscillations, Qualitatively
Of the three circuit elements, resistance R, capacitance C, and inductance L, we have
so far discussed the series combinations RC (in Module 27-4) and RL (in Module
30-6). In these two kinds of circuit we found that the charge, current, and potential
difference grow and decay exponentially. The time scale of the growth or decay is
given by a time constant t, which is either capacitive or inductive.

We now examine the remaining two-element circuit combination LC. You will
see that in this case the charge, current, and potential difference do not decay expo-
nentially with time but vary sinusoidally (with period T and angular frequency v).
The resulting oscillations of the capacitor’s electric field and the inductor’s magnetic
field are said to be electromagnetic oscillations. Such a circuit is said to oscillate.

Parts a through h of Fig. 31-1 show succeeding stages of the oscillations in
a simple LC circuit. From Eq. 25-21, the energy stored in the electric field of the

Figure 31-1 Eight stages in a single cycle of
oscillation of a resistanceless LC circuit.
The bar graphs by each figure show the
stored magnetic and electrical energies.The
magnetic field lines of the inductor and the
electric field lines of the capacitor are
shown. (a) Capacitor with maximum
charge, no current. (b) Capacitor discharg-
ing, current increasing. (c) Capacitor fully
discharged, current maximum. (d)
Capacitor charging but with polarity
opposite that in (a), current decreasing. (e)
Capacitor with maximum charge having
polarity opposite that in (a), no current. ( f )
Capacitor discharging, current increasing
with direction opposite that in (b). (g)
Capacitor fully discharged, current
maximum. (h) Capacitor charging, current
decreasing.
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81331-1 LC OSCILLATIONS

capacitor at any time is

(31-1)

where q is the charge on the capacitor at that time. From Eq. 30-49, the energy
stored in the magnetic field of the inductor at any time is

(31-2)

where i is the current through the inductor at that time.
We now adopt the convention of representing instantaneous values of the

electrical quantities of a sinusoidally oscillating circuit with small letters, such
as q, and the amplitudes of those quantities with capital letters, such as Q. With
this convention in mind, let us assume that initially the charge q on the capac-
itor in Fig. 31-1 is at its maximum value Q and that the current i through the
inductor is zero. This initial state of the circuit is shown in Fig. 31-1a. The bar
graphs for energy included there indicate that at this instant, with zero current
through the inductor and maximum charge on the capacitor, the energy UB of the
magnetic field is zero and the energy UE of the electric field is a maximum.As the
circuit oscillates, energy shifts back and forth from one type of stored energy to
the other, but the total amount is conserved.

The capacitor now starts to discharge through the inductor, positive charge
carriers moving counterclockwise, as shown in Fig. 31-1b. This means that a cur-
rent i, given by dq/dt and pointing down in the inductor, is established. As the
capacitor’s charge decreases, the energy stored in the electric field within the
capacitor also decreases. This energy is transferred to the magnetic field that
appears around the inductor because of the current i that is building up there.
Thus, the electric field decreases and the magnetic field builds up as energy is
transferred from the electric field to the magnetic field.

The capacitor eventually loses all its charge (Fig. 31-1c) and thus also loses its
electric field and the energy stored in that field. The energy has then been fully
transferred to the magnetic field of the inductor. The magnetic field is then at
its maximum magnitude, and the current through the inductor is then at its
maximum value I.

Although the charge on the capacitor is now zero, the counterclockwise
current must continue because the inductor does not allow it to change suddenly
to zero. The current continues to transfer positive charge from the top plate to
the bottom plate through the circuit (Fig. 31-1d). Energy now flows from the
inductor back to the capacitor as the electric field within the capacitor builds
up again. The current gradually decreases during this energy transfer. When,
eventually, the energy has been transferred completely back to the capacitor
(Fig. 31-1e), the current has decreased to zero (momentarily). The situation
of Fig. 31-1e is like the initial situation, except that the capacitor is now charged
oppositely.

The capacitor then starts to discharge again but now with a clockwise current
(Fig. 31-1f ). Reasoning as before, we see that the clockwise current builds to a
maximum (Fig. 31-1g) and then decreases (Fig. 31-1h), until the circuit eventually
returns to its initial situation (Fig. 31-1a). The process then repeats at some
frequency f and thus at an angular frequency v ! 2pf. In the ideal LC circuit with
no resistance, there are no energy transfers other than that between the electric
field of the capacitor and the magnetic field of the inductor. Because of the con-
servation of energy, the oscillations continue indefinitely. The oscillations need
not begin with the energy all in the electric field; the initial situation could be any
other stage of the oscillation.

UB !
Li2

2
,

UE !
q2

2C
,
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814 CHAPTER 31 ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

To determine the charge q on the capacitor as a function of time, we can put
in a voltmeter to measure the time-varying potential difference (or voltage) vC

that exists across the capacitor C. From Eq. 25-1 we can write

which allows us to find q. To measure the current, we can connect a small resis-
tance R in series with the capacitor and inductor and measure the time-varying
potential difference vR across it; vR is proportional to i through the relation

vR ! iR.

We assume here that R is so small that its effect on the behavior of the circuit is
negligible. The variations in time of vC and vR, and thus of q and i, are shown in
Fig. 31-2.All four quantities vary sinusoidally.

In an actual LC circuit, the oscillations will not continue indefinitely because
there is always some resistance present that will drain energy from the elec-
tric and magnetic fields and dissipate it as thermal energy (the circuit may
become warmer). The oscillations, once started, will die away as Fig. 31-3 sug-
gests. Compare this figure with Fig. 15-17, which shows the decay of mechanical
oscillations caused by frictional damping in a block–spring system.

vC ! ! 1
C " q,

Figure 31-3 An oscilloscope trace showing
how the oscillations in an RLC circuit actu-
ally die away because energy is dissipated in
the resistor as thermal energy.

Courtesy Agilent Technologies

Figure 31-2 (a) The potential difference 
across the capacitor in the circuit of Fig. 31-1 as a
function of time.This quantity is proportional to
the charge on the capacitor. (b) A potential pro-
portional to the current in the circuit of Fig. 31-1.
The letters refer to the correspondingly labeled
oscillation stages in Fig. 31-1.

v C
  (

= 
q/

C)
 

a  

v R
 (

= 
iR

) c  e  g  a  c  e  g

t 

t 

(a) 

(b) 

Checkpoint 1
A charged capacitor and an inductor are connected in series at time t ! 0. In terms
of the period T of the resulting oscillations, determine how much later the following
reach their maximum value: (a) the charge on the capacitor; (b) the voltage across
the capacitor, with its original polarity; (c) the energy stored in the electric field; and
(d) the current.

The Electrical–Mechanical Analogy
Let us look a little closer at the analogy between the oscillating LC system of
Fig. 31-1 and an oscillating block–spring system. Two kinds of energy are
involved in the block–spring system. One is potential energy of the compressed
or extended spring; the other is kinetic energy of the moving block. These two
energies are given by the formulas in the first energy column in Table 31-1.

Table 31-1 Comparison of the Energy in Two Oscillating Systems

Block–Spring System LC Oscillator

Element Energy Element Energy

Spring Potential, Capacitor Electrical,

Block Kinetic, Inductor Magnetic,

v ! dx/dt i ! dq/dt

1
2Li21

2mv2

1
2(1/C)q21

2kx2
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81531-1 LC OSCILLATIONS

The table also shows, in the second energy column, the two kinds of energy
involved in LC oscillations. By looking across the table, we can see an analogy
between the forms of the two pairs of energies—the mechanical energies of the
block–spring system and the electromagnetic energies of the LC oscillator. The
equations for v and i at the bottom of the table help us see the details of the analogy.
They tell us that q corresponds to x and i corresponds to v (in both equations, the
former is differentiated to obtain the latter). These correspondences then suggest
that, in the energy expressions, 1/C corresponds to k and L corresponds to m. Thus,

q corresponds to x, 1/C corresponds to k,
i corresponds to v, and L corresponds to m.

These correspondences suggest that in an LC oscillator, the capacitor is mathemat-
ically like the spring in a block–spring system and the inductor is like the block.

In Module 15-1 we saw that the angular frequency of oscillation of a (fric-
tionless) block–spring system is

(block–spring system). (31-3)

The correspondences listed above suggest that to find the angular frequency of
oscillation for an ideal (resistanceless) LC circuit, k should be replaced by 1/C
and m by L, yielding

(LC circuit). (31-4)

LC Oscillations, Quantitatively
Here we want to show explicitly that Eq. 31-4 for the angular frequency of LC
oscillations is correct. At the same time, we want to examine even more closely the
analogy between LC oscillations and block–spring oscillations.We start by extend-
ing somewhat our earlier treatment of the mechanical block–spring oscillator.

The Block–Spring Oscillator
We analyzed block–spring oscillations in Chapter 15 in terms of energy transfers
and did not—at that early stage—derive the fundamental differential equation
that governs those oscillations. We do so now.

We can write, for the total energy U of a block–spring oscillator at any instant,

(31-5)

where Ub and Us are, respectively, the kinetic energy of the moving block and the
potential energy of the stretched or compressed spring. If there is no friction—
which we assume—the total energy U remains constant with time, even though
v and x vary. In more formal language, dU/dt ! 0. This leads to

(31-6)

Substituting v ! dx/dt and dv/dt ! d 2x/dt2, we find

(block–spring oscillations). (31-7)

Equation 31-7 is the fundamental differential equation that governs the friction-
less block–spring oscillations.

The general solution to Eq. 31-7 is (as we saw in Eq. 15-3)

x ! X cos(vt " f) (displacement), (31-8)

m 
d2x
dt2 " kx ! 0

dU
dt

!
d
dt

 (1
2 mv2 " 1

2 kx2) ! mv 
dv
dt

" kx 
dx
dt

! 0.

U ! Ub " Us ! 1
2 mv2 " 1

2 kx2,

v !
11LC

v ! A k
m
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816 CHAPTER 31 ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

in which X is the amplitude of the mechanical oscillations (xm in Chapter 15), v is
the angular frequency of the oscillations, and f is a phase constant.

The LC Oscillator
Now let us analyze the oscillations of a resistanceless LC circuit, proceeding
exactly as we just did for the block–spring oscillator. The total energy U present
at any instant in an oscillating LC circuit is given by

(31-9)

in which UB is the energy stored in the magnetic field of the inductor and UE is the
energy stored in the electric field of the capacitor. Since we have assumed the cir-
cuit resistance to be zero, no energy is transferred to thermal energy and U remains
constant with time. In more formal language, dU/dt must be zero.This leads to

(31-10)

However, i ! dq/dt and di/dt ! d2q/dt2. With these substitutions, Eq. 31-10 becomes

(LC oscillations). (31-11)

This is the differential equation that describes the oscillations of a resistanceless
LC circuit. Equations 31-11 and 31-7 are exactly of the same mathematical form.

Charge and Current Oscillations
Since the differential equations are mathematically identical, their solutions must
also be mathematically identical. Because q corresponds to x, we can write the
general solution of Eq. 31-11, by analogy to Eq. 31-8, as

q ! Q cos(vt " f) (charge), (31-12)

where Q is the amplitude of the charge variations, v is the angular frequency of
the electromagnetic oscillations, and f is the phase constant. Taking the first de-
rivative of Eq. 31-12 with respect to time gives us the current:

(current). (31-13)

The amplitude I of this sinusoidally varying current is

I ! vQ, (31-14)

and so we can rewrite Eq. 31-13 as

i ! #I sin(vt " f). (31-15)

Angular Frequencies
We can test whether Eq. 31-12 is a solution of Eq. 31-11 by substituting Eq. 31-12
and its second derivative with respect to time into Eq. 31-11. The first derivative
of Eq. 31-12 is Eq. 31-13. The second derivative is then

Substituting for q and d 2q/dt2 in Eq. 31-11, we obtain

#Lv2Q cos(vt " f) "
1
C

 Q cos(vt " f) ! 0.

d2q
dt2 ! #v2Q cos(vt " f).

i !
dq
dt

! #vQ sin(vt " f)

L 
d 2q
dt2 "

1
C

 q ! 0

dU
dt

!
d
dt ! Li2

2
"

q2

2C " ! Li 
di
dt

"
q
C

dq
dt

! 0.

U ! UB " UE !
Li2

2
"

q2

2C
,
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81731-1 LC OSCILLATIONS

Canceling Q cos(vt " f) and rearranging lead to

Thus, Eq. 31-12 is indeed a solution of Eq. 31-11 if v has the constant value
. Note that this expression for v is exactly that given by Eq. 31-4.

The phase constant f in Eq. 31-12 is determined by the conditions that exist
at any certain time—say, t ! 0. If the conditions yield f ! 0 at t ! 0, Eq. 31-12
requires that q ! Q and Eq. 31-13 requires that i ! 0; these are the initial con-
ditions represented by Fig. 31-1a.

Electrical and Magnetic Energy Oscillations
The electrical energy stored in the LC circuit at time t is, from Eqs. 31-1 and 31-12,

(31-16)

The magnetic energy is, from Eqs. 31-2 and 31-13,

Substituting for v from Eq. 31-4 then gives us

(31-17)

Figure 31-4 shows plots of UE(t) and UB(t) for the case of f ! 0. Note that

1. The maximum values of UE and UB are both Q2/2C.
2. At any instant the sum of UE and UB is equal to Q2/2C, a constant.
3. When UE is maximum, UB is zero, and conversely.

UB !
Q2

2C
 sin2(vt " f).

UB ! 1
2Li2 ! 1

2Lv2Q2 sin2(vt " f).

UE !
q2

2C
!

Q2

2C
 cos2(vt " f).

1/1LC

v !
11LC

.

Figure 31-4 The stored magnetic energy and
electrical energy in the circuit of Fig. 31-1
as a function of time. Note that their sum
remains constant. T is the period of
oscillation.

E
ne

rg
y 

T/2 
Time 

T 

UB (t) 

UE (t) 

U (= UB + UE ) 

0 

Q2 

2C 

The electrical and magnetic
energies vary but the total
is constant.

Checkpoint 2
A capacitor in an LC oscillator has a maximum potential difference of 17 V and a
maximum energy of 160 mJ.When the capacitor has a potential difference of 5 V and
an energy of 10 mJ, what are (a) the emf across the inductor and (b) the energy stored
in the magnetic field?

Calculations: At any time t during the oscillations, the loop
rule and Fig. 31-1 give us

vL(t) ! vC(t); (31-18)

that is, the potential difference vL across the inductor must
always be equal to the potential difference vC across the
capacitor, so that the net potential difference around the
circuit is zero. Thus, we will find vL(t) if we can find vC(t),
and we can find vC(t) from q(t) with Eq. 25-1 (q ! CV).

Because the potential difference vC(t) is maximum
when the oscillations begin at time t ! 0, the charge q on the
capacitor must also be maximum then. Thus, phase constant
f must be zero; so Eq. 31-12 gives us

q ! Q cos vt. (31-19)

Sample Problem 31.01 LC oscillator: potential change, rate of current change

A 1.5 mF capacitor is charged to 57 V by a battery, which is
then removed.At time t ! 0, a 12 mH coil is connected in se-
ries with the capacitor to form an LC oscillator (Fig. 31-1).

(a) What is the potential difference vL(t) across the inductor
as a function of time?

KEY IDEAS

(1) The current and potential differences of the circuit (both
the potential difference of the capacitor and the potential
difference of the coil) undergo sinusoidal oscillations.
(2) We can still apply the loop rule to these oscillating
potential differences, just as we did for the nonoscillating
circuits of Chapter 27.
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818 CHAPTER 31 ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

31-2 DAMPED OSCILLATIONS IN AN RLC CIRCUIT

After reading this module, you should be able to . . .

31.13 Draw the schematic of a damped RLC circuit and
explain why the oscillations are damped.

31.14 Starting with the expressions for the field energies
and the rate of energy loss in a damped RLC circuit,
write the differential equation for the charge q on the
capacitor.

31.15 For a damped RLC circuit, apply the expression for
charge q(t).

31.16 Identify that in a damped RLC circuit, the charge
amplitude and the amplitude of the electric field energy
decrease exponentially with time.

31.17 Apply the relationship between the angular frequency
of a given damped RLC oscillator and the angular

frequency v of the circuit if R is removed.
31.18 For a damped RLC circuit, apply the expression for

the electric field energy UE as a function of time.

v$

Learning Objectives

● Oscillations in an LC circuit are damped when a
dissipative element R is also present in the circuit. 
Then

(RLC circuit).L 
d 2q
dt2 " R 

dq
dt

"
1
C

 q ! 0

● The solution of this differential equation is
q ! Qe#Rt/2L cos(v$t " f),

where
We consider only situations with small R and thus small
damping; then v$ # v.

v$ ! 2v2 # (R/2L)2.

Key Ideas

(Note that this cosine function does indeed yield maximum
q (! Q) when t ! 0.) To get the potential difference vC(t),
we divide both sides of Eq. 31-19 by C to write

and then use Eq. 25-1 to write

vC ! VC cos vt. (31-20)

Here, VC is the amplitude of the oscillations in the potential
difference vC across the capacitor.

Next, substituting vC vL from Eq. 31-18, we find

vL ! VC cos vt. (31-21)

We can evaluate the right side of this equation by first not-
ing that the amplitude VC is equal to the initial (maximum)
potential difference of 57 V across the capacitor. Then we
find v with Eq. 31-4:

Thus, Eq. 31-21 becomes

vL ! (57 V) cos(7500 rad/s)t. (Answer)

 ! 7454 rad/s # 7500 rad/s.

 v !
11LC

!
1

[(0.012 H)(1.5 % 10#6 F)]0.5

!

q
C

!
Q
C

 cos vt,

(b) What is the maximum rate (di/dt)max at which the current
i changes in the circuit?

KEY IDEA

With the charge on the capacitor oscillating as in Eq. 31-12,
the current is in the form of Eq. 31-13. Because f ! 0, that
equation gives us

i ! #vQ sin vt.

Calculations: Taking the derivative, we have

We can simplify this equation by substituting CVC for Q
(because we know C and VC but not Q) and for v
according to Eq. 31-4.We get

This tells us that the current changes at a varying (sinu-
soidal) rate, with its maximum rate of change being

(Answer)
VC

L
!

57 V
0.012 H

! 4750 A/s # 4800 A/s.

di
dt

! #
1

LC
 CVC cos vt ! #

VC

L
 cos vt.

1/1LC

di
dt

!
d
dt

 (#vQ sin vt) ! #v2Q cos vt.

Additional examples, video, and practice available at WileyPLUS
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81931-2 DAMPED OSCILLATIONS IN AN RLC CIRCUIT

Damped Oscillations in an RLC Circuit
A circuit containing resistance, inductance, and capacitance is called an RLC
circuit. We shall here discuss only series RLC circuits like that shown in Fig. 31-5.
With a resistance R present, the total electromagnetic energy U of the circuit (the
sum of the electrical energy and magnetic energy) is no longer constant; instead,
it decreases with time as energy is transferred to thermal energy in the resistance.
Because of this loss of energy, the oscillations of charge, current, and potential
difference continuously decrease in amplitude, and the oscillations are said to be
damped, just as with the damped block–spring oscillator of Module 15-5.

To analyze the oscillations of this circuit, we write an equation for the total
electromagnetic energy U in the circuit at any instant. Because the resistance
does not store electromagnetic energy, we can use Eq. 31-9:

(31-22)

Now, however, this total energy decreases as energy is transferred to thermal
energy. The rate of that transfer is, from Eq. 26-27,

(31-23)

where the minus sign indicates that U decreases. By differentiating Eq. 31-22 with
respect to time and then substituting the result in Eq. 31-23, we obtain

Substituting dq/dt for i and d 2q/dt2 for di/dt, we obtain

(RLC circuit), (31-24)

which is the differential equation for damped oscillations in an RLC circuit.
Charge Decay. The solution to Eq. 31-24 is

q ! Qe#Rt/2L cos(v$t " f), (31-25)

in which
(31-26)

where , as with an undamped oscillator. Equation 31-25 tells us how
the charge on the capacitor oscillates in a damped RLC circuit; that equation is
the electromagnetic counterpart of Eq. 15-42, which gives the displacement of
a damped block–spring oscillator.

Equation 31-25 describes a sinusoidal oscillation (the cosine function) with
an exponentially decaying amplitude Qe#Rt/2L (the factor that multiplies the
cosine). The angular frequency v$ of the damped oscillations is always less than
the angular frequency v of the undamped oscillations; however, we shall here
consider only situations in which R is small enough for us to replace v$ with v.

Energy Decay. Let us next find an expression for the total electromagnetic
energy U of the circuit as a function of time. One way to do so is to monitor
the energy of the electric field in the capacitor, which is given by Eq. 31-1 
(UE ! q2/2C). By substituting Eq. 31-25 into Eq. 31-1, we obtain

(31-27)

Thus, the energy of the electric field oscillates according to a cosine-squared
term, and the amplitude of that oscillation decreases exponentially with time.

UE !
q2

2C
!

[Qe#Rt/2L cos(v$t " f)]2

2C
!

Q2

2C
 e#Rt/L cos2(v$t " f).

v ! 1/1LC

v$ ! 2v2 # (R/2L)2 ,

L 
d 2q
dt2 " R 

dq
dt

"
1
C

 q ! 0

dU
dt

! Li 
di
dt

"
q
C

dq
dt

! #i2R.

dU
dt

! #i2R,

U ! UB " UE !
Li2

2
"

q2

2C
.

Figure 31-5 A series RLC circuit. As the
charge contained in the circuit oscillates
back and forth through the resistance,
electromagnetic energy is dissipated as
thermal energy, damping (decreasing the
amplitude of) the oscillations.

C L 

R 
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820 CHAPTER 31 ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

31-3 FORCED OSCILLATIONS OF THREE SIMPLE CIRCUITS

After reading this module, you should be able to . . .

31.19 Distinguish alternating current from direct current.
31.20 For an ac generator, write the emf as a function of

time, identifying the emf amplitude and driving angular
frequency.

31.21 For an ac generator, write the current as a function of
time, identifying its amplitude and its phase constant with
respect to the emf.

31.22 Draw a schematic diagram of a (series) RLC circuit
that is driven by a generator.

31.23 Distinguish driving angular frequency vd from natural
angular frequency v.

31.24 In a driven (series) RLC circuit, identify the conditions
for resonance and the effect of resonance on the current
amplitude.

31.25 For each of the three basic circuits (purely resistive
load, purely capacitive load, and purely inductive load),

draw the circuit and sketch graphs and phasor diagrams
for voltage v(t) and current i(t).

31.26 For the three basic circuits, apply equations for voltage
v(t) and current i(t).

31.27 On a phasor diagram for each of the basic circuits,
identify angular speed, amplitude, projection on the verti-
cal axis, and rotation angle.

31.28 For each basic circuit, identify the phase constant, and
interpret it in terms of the relative orientations of the cur-
rent phasor and voltage phasor and also in terms of lead-
ing and lagging.

31.29 Apply the mnemonic “ELI positively is the ICE man.”
31.30 For each basic circuit, apply the relationships between

the voltage amplitude V and the current amplitude I.
31.31 Calculate capacitive reactance XC and inductive

reactance XL.

Learning Objectives

Solving for t and then substituting given data yield

(Answer)

(b) How many oscillations are completed within this time?

KEY IDEA

The time for one complete oscillation is the period T !
2p/v, where the angular frequency for LC oscillations is
given by Eq. 31-4 .

Calculation: In the time interval &t ! 0.0111 s, the number
of complete oscillations is

(Answer)

Thus, the amplitude decays by 50% in about 13 complete
oscillations. This damping is less severe than that shown in
Fig. 31-3, where the amplitude decays by a little more than
50% in one oscillation.

 !
0.0111 s

2p[(12 % 10#3 H)(1.6 % 10#6 F)]1/2 # 13. 

&t
T

!
&t

2p 1LC

(v ! 1/1LC)

 ! 0.0111 s # 11 ms. 

  t ! #
2L
R

 ln 0.50 ! #
(2)(12 % 10#3 H)(ln 0.50)

1.5 '

Sample Problem 31.02 Damped RLC circuit: charge amplitude

A series RLC circuit has inductance L 12 mH, capaci-
tance C ! 1.6 mF, and resistance R ! 1.5 ' and begins to
oscillate at time t ! 0.

(a) At what time t will the amplitude of the charge oscilla-
tions in the circuit be 50% of its initial value?  (Note that we
do not know that initial value.)

KEY IDEA

The amplitude of the charge oscillations decreases expo-
nentially with time t: According to Eq. 31-25, the charge
amplitude at any time t is Qe#Rt/2L, in which Q is the ampli-
tude at time t ! 0.

Calculations: We want the time when the charge amplitude
has decreased to 0.50Q— that is, when

Qe#Rt/2L ! 0.50Q.

We can now cancel Q (which also means that we can answer
the question without knowing the initial charge). Taking the
natural logarithms of both sides (to eliminate the exponen-
tial function), we have

#
Rt
2L

! ln 0.50.

!

Additional examples, video, and practice available at WileyPLUS
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82131-3 FORCED OSCILLATIONS OF THREE SIMPLE CIRCUITS

Alternating Current
The oscillations in an RLC circuit will not damp out if an external emf device
supplies enough energy to make up for the energy dissipated as thermal energy
in the resistance R. Circuits in homes, offices, and factories, including countless
RLC circuits, receive such energy from local power companies. In most countries
the energy is supplied via oscillating emfs and currents—the current is said to be
an alternating current, or ac for short. (The nonoscillating current from a battery
is said to be a direct current, or dc.) These oscillating emfs and currents vary si-
nusoidally with time, reversing direction (in North America) 120 times per sec-
ond and thus having frequency f ! 60 Hz.

Electron Oscillations. At first sight this may seem to be a strange arrange-
ment. We have seen that the drift speed of the conduction electrons in household
wiring may typically be 4 % 10#5 m/s. If we now reverse their direction every ,
such electrons can move only about 3 10#7 m in a half-cycle.At this rate, a typi-
cal electron can drift past no more than about 10 atoms in the wiring before it is
required to reverse its direction. How, you may wonder, can the electron ever get
anywhere?

Although this question may be worrisome, it is a needless concern. The con-
duction electrons do not have to “get anywhere.” When we say that the current in
a wire is one ampere, we mean that charge passes through any plane cutting
across that wire at the rate of one coulomb per second. The speed at which the
charge carriers cross that plane does not matter directly; one ampere may corre-
spond to many charge carriers moving very slowly or to a few moving very
rapidly. Furthermore, the signal to the electrons to reverse directions—which
originates in the alternating emf provided by the power company’s generator—
is propagated along the conductor at a speed close to that of light. All electrons,
no matter where they are located, get their reversal instructions at about the
same instant. Finally, we note that for many devices, such as lightbulbs and toast-
ers, the direction of motion is unimportant as long as the electrons do move so as
to transfer energy to the device via collisions with atoms in the device.

Why ac? The basic advantage of alternating current is this: As the current
alternates, so does the magnetic field that surrounds the conductor. This makes
possible the use of Faraday’s law of induction, which, among other things,
means that we can step up (increase) or step down (decrease) the magnitude of
an alternating potential difference at will, using a device called a transformer,
as we shall discuss later. Moreover, alternating current is more readily adapt-
able to rotating machinery such as generators and motors than is (nonalternat-
ing) direct current.

Emf and Current. Figure 31-6 shows a simple model of an ac generator. As
the conducting loop is forced to rotate through the external magnetic field , a
sinusoidally oscillating emf ! is induced in the loop:

! ! !m sin vdt. (31-28)

B
:

%

1
120 s

● A series RLC circuit may be set into forced oscillation at a
driving angular frequency vd by an external alternating emf

! ! !m sin vdt.
● The current driven in the circuit is

i ! I sin(vdt # f),

where f is the phase constant of the current.
● The alternating potential difference across a resistor has

amplitude VR IR; the current is in phase with the potential
difference.
● For a capacitor, VC ! IXC, in which XC ! 1/vdC is the
capacitive reactance; the current here leads the potential
difference by 90( (f ! #90( ! #p/2 rad).
● For an inductor, VL ! IXL, in which XL ! vdL is the
inductive reactance; the current here lags the potential
difference by 90( (f ! "90( ! "p/2 rad).

!

Key Ideas

Figure 31-6 The basic mechanism of an
alternating-current generator is a conduct-
ing loop rotated in an external magnetic
field. In practice, the alternating emf
induced in a coil of many turns of wire is
made accessible by means of slip rings
attached to the rotating loop. Each ring is
connected to one end of the loop wire and
is electrically connected to the rest of the
generator circuit by a conducting brush
against which the ring slips as the loop
(and it) rotates.

Slip rings 

Metal 
brush 

i 

i 

i 

i 

B 
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822 CHAPTER 31 ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

Figure 31-7 A single-loop circuit containing a
resistor, a capacitor, and an inductor.A
generator, represented by a sine wave in a
circle, produces an alternating emf that es-
tablishes an alternating current; the direc-
tions of the emf and current are indicated
here at only one instant.

i 

i 

i C 

R 

L 

Figure 31-8 A resistor is connected across an
alternating-current generator.

iR R vR 

The angular frequency vd of the emf is equal to the angular speed with which the
loop rotates in the magnetic field, the phase of the emf is vdt, and the amplitude of
the emf is !m (where the subscript stands for maximum). When the rotating loop
is part of a closed conducting path, this emf produces (drives) a sinusoidal (alter-
nating) current along the path with the same angular frequency vd, which then is
called the driving angular frequency. We can write the current as

i ! I sin(vdt # f), (31-29)

in which I is the amplitude of the driven current. (The phase vdt # f of the cur-
rent is traditionally written with a minus sign instead of as vdt " f.) We include
a phase constant f in Eq. 31-29 because the current i may not be in phase with
the emf !. (As you will see, the phase constant depends on the circuit to which
the generator is connected.) We can also write the current i in terms of the
driving frequency fd of the emf, by substituting 2pfd for vd in Eq. 31-29.

Forced Oscillations
We have seen that once started, the charge, potential difference, and current in
both undamped LC circuits and damped RLC circuits (with small enough R)
oscillate at angular frequency . Such oscillations are said to be free
oscillations (free of any external emf), and the angular frequency v is said to be
the circuit’s natural angular frequency.

When the external alternating emf of Eq. 31-28 is connected to an RLC
circuit, the oscillations of charge, potential difference, and current are said to be
driven oscillations or forced oscillations. These oscillations always occur at the
driving angular frequency vd:

v ! 1/1LC

Whatever the natural angular frequency v of a circuit may be, forced oscillations
of charge, current, and potential difference in the circuit always occur at the driv-
ing angular frequency vd.

However,as you will see in Module 31-4, the amplitudes of the oscillations very much
depend on how close vd is to v.When the two angular frequencies match—a condi-
tion known as resonance—the amplitude I of the current in the circuit is maximum.

Three Simple Circuits
Later in this chapter, we shall connect an external alternating emf device to 
a series RLC circuit as in Fig. 31-7. We shall then find expressions for the
amplitude I and phase constant f of the sinusoidally oscillating current in
terms of the amplitude !m and angular frequency vd of the external emf. First,
let’s consider three simpler circuits, each having an external emf and only one
other circuit element: R, C, or L. We start with a resistive element (a purely re-
sistive load).

A Resistive Load
Figure 31-8 shows a circuit containing a resistance element of value R and an
ac generator with the alternating emf of Eq. 31-28. By the loop rule, we have

! # vR ! 0.
With Eq. 31-28, this gives us

vR ! !m sin vdt.

Because the amplitude VR of the alternating potential difference (or voltage)
across the resistance is equal to the amplitude !m of the alternating emf, we can
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82331-3 FORCED OSCILLATIONS OF THREE SIMPLE CIRCUITS

write this as
vR ! VR sin vdt. (31-30)

From the definition of resistance (R ! V/i), we can now write the current iR in the
resistance as

(31-31)

From Eq. 31-29, we can also write this current as

iR ! IR sin(vdt # f), (31-32)

where IR is the amplitude of the current iR in the resistance. Comparing Eqs.
31-31 and 31-32, we see that for a purely resistive load the phase constant f ! 0°.
We also see that the voltage amplitude and current amplitude are related by

VR ! IRR (resistor). (31-33)

Although we found this relation for the circuit of Fig. 31-8, it applies to any
resistance in any ac circuit.

By comparing Eqs. 31-30 and 31-31, we see that the time-varying quantities
vR and iR are both functions of sin vdt with f ! 0°. Thus, these two quantities are
in phase, which means that their corresponding maxima (and minima) occur at
the same times. Figure 31-9a, which is a plot of vR(t) and iR(t), illustrates this fact.
Note that vR and iR do not decay here because the generator supplies energy to
the circuit to make up for the energy dissipated in R.

The time-varying quantities vR and iR can also be represented geometrically
by phasors. Recall from Module 16-6 that phasors are vectors that rotate around
an origin. Those that represent the voltage across and current in the resistor of
Fig. 31-8 are shown in Fig. 31-9b at an arbitrary time t. Such phasors have the
following properties:

Angular speed: Both phasors rotate counterclockwise about the origin with an
angular speed equal to the angular frequency vd of vR and iR.

Length: The length of each phasor represents the amplitude of the alternating
quantity: VR for the voltage and IR for the current.

Projection: The projection of each phasor on the vertical axis represents the
value of the alternating quantity at time t: vR for the voltage and iR for
the current.

Rotation angle: The rotation angle of each phasor is equal to the phase of the

iR !
vR

R
!

VR

R
 sin vdt.

vR, iR

T

IR

 = 0° = 0 rad

VR

0

Instants
represented in (b)(a) (b)

iR
vR

VR

IR

Rotation of
phasors at

rate   d 

t dtω
vR

iR

T/2

ωφ

For a resistive load,
the current and potential
difference are in phase.

“In phase” means
that they peak at
the same time.

Figure 31-9 (a) The current iR and the potential difference vR across the resistor are plotted
on the same graph, both versus time t.They are in phase and complete one cycle in one
period T. (b) A phasor diagram shows the same thing as (a).
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824 CHAPTER 31 ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

Figure 31-10 A capacitor is connected across
an alternating-current generator.

iC vC C 

alternating quantity at time t. In Fig. 31-9b, the voltage and current are in
phase; so their phasors always have the same phase vdt and the same rotation
angle, and thus they rotate together.

Mentally follow the rotation. Can you see that when the phasors have
rotated so that vdt ! 90° (they point vertically upward), they indicate that just
then vR ! VR and iR ! IR? Equations 31-30 and 31-32 give the same results.

Checkpoint 3
If we increase the driving frequency in a circuit with a purely resistive load, do 
(a) amplitude VR and (b) amplitude IR increase, decrease, or remain the same?

We can leave the argument of the sine in this form for con-
venience,or we can write it as (377 rad/s)t or as (377 s#1)t.

(b) What are the current iR(t) in the resistance and the 
amplitude IR of iR(t)?

KEY IDEA

In an ac circuit with a purely resistive load, the alternating
current iR(t) in the resistance is in phase with the alternating
potential difference vR(t) across the resistance; that is, the
phase constant f for the current is zero.

Calculations: Here we can write Eq. 31-29 as

iR ! IR sin(vdt # f) ! IR sin vdt. (31-35)

From Eq. 31-33, the amplitude IR is

(Answer)

Substituting this and vd ! 2pfd ! 120p into Eq. 31-35, we
have

iR ! (0.180 A) sin(120pt). (Answer)

IR !
VR

R
!

36.0 V
200 '

! 0.180 A.

Sample Problem 31.03 Purely resistive load: potential difference and current 

In Fig. 31-8, resistance R is 200 and the sinusoidal alter-
nating emf device operates at amplitude !m ! 36.0 V and
frequency fd ! 60.0 Hz.

(a) What is the potential difference vR(t) across the resistance
as a function of time t, and what is the amplitude VR of vR(t)?

KEY IDEA

In a circuit with a purely resistive load, the potential differ-
ence vR(t) across the resistance is always equal to the potential
difference (t) across the emf device.

Calculations: For our situation, vR(t) !(t) and VR !m.
Since !m is given, we can write

VR ! !m ! 36.0 V. (Answer)

To find vR(t), we use Eq. 31-28 to write

vR(t) ! !(t) ! !m sin vdt (31-34)

and then substitute !m ! 36.0 V and

vd ! 2pfd ! 2p(60 Hz) ! 120p
to obtain

vR ! (36.0 V) sin(120pt). (Answer)

!!

!

'

A Capacitive Load
Figure 31-10 shows a circuit containing a capacitance and a generator with the
alternating emf of Eq. 31-28. Using the loop rule and proceeding as we did when
we obtained Eq. 31-30, we find that the potential difference across the capacitor is

vC ! VC sin vdt, (31-36)

where VC is the amplitude of the alternating voltage across the capacitor. From
the definition of capacitance we can also write

qC ! CvC ! CVC sin vdt. (31-37)

Our concern, however, is with the current rather than the charge. Thus, we differ-

Additional examples, video, and practice available at WileyPLUS
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82531-3 FORCED OSCILLATIONS OF THREE SIMPLE CIRCUITS

entiate Eq. 31-37 to find

(31-38)

We now modify Eq. 31-38 in two ways. First, for reasons of symmetry of nota-
tion, we introduce the quantity XC, called the capacitive reactance of a capacitor,
defined as

(capacitive reactance). (31-39)

Its value depends not only on the capacitance but also on the driving angular
frequency vd. We know from the definition of the capacitive time constant 
(t ! RC) that the SI unit for C can be expressed as seconds per ohm. Applying
this to Eq. 31-39 shows that the SI unit of XC is the ohm, just as for resistance R.

Second, we replace cos vdt in Eq. 31-38 with a phase-shifted sine:

cos vdt ! sin(vdt " 90°).

You can verify this identity by shifting a sine curve 90° in the negative direction.
With these two modifications, Eq. 31-38 becomes

(31-40)

From Eq. 31-29, we can also write the current iC in the capacitor of Fig. 31-10 as

iC ! IC sin(vdt # f), (31-41)

where IC is the amplitude of iC. Comparing Eqs. 31-40 and 31-41, we see that for
a purely capacitive load the phase constant f for the current is #90°. We also
see that the voltage amplitude and current amplitude are related by

VC ! ICXC (capacitor). (31-42)

Although we found this relation for the circuit of Fig. 31-10, it applies to any
capacitance in any ac circuit.

Comparison of Eqs. 31-36 and 31-40, or inspection of Fig. 31-11a, shows that
the quantities vC and iC are 90°, p/2 rad, or one-quarter cycle, out of phase.
Furthermore, we see that iC leads vC, which means that, if you monitored the
current iC and the potential difference vC in the circuit of Fig. 31-10, you would
find that iC reaches its maximum before vC does, by one-quarter cycle.

iC ! ! VC

XC
" sin(vdt " 90().

XC !
1

vdC

iC !
dqC

dt
! vdCVC  cos vdt.

Figure 31-11 (a) The current in the capacitor leads
the voltage by 90° (! p/2 rad). (b) A phasor dia-
gram shows the same thing.

vC, iC 

T 
iC 

vC 

0 

Instants 
represented in (b) 

(a) (b)

iC

vC VC

IC
Rotation of

phasors at
rate   d 

dtω
T/2 

IC 

VC 

= –90° = –   /2 rad φ π ω

t 

For a capacitive load, the
current leads the potential
difference by 90º.

“Leads” means that the
current peaks at an
earlier time than the
potential difference.

halliday_c31_811-846v2.0.1.qxd  3/5/14  12:22 PM  Page 825

Uploaded By: anonymousSTUDENTS-HUB.com



826 CHAPTER 31 ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

An Inductive Load
Figure 31-12 shows a circuit containing an inductance and a generator with the al-
ternating emf of Eq. 31-28. Using the loop rule and proceeding as we did to
obtain Eq. 31-30, we find that the potential difference across the inductance is

vL ! VL sin vdt, (31-45)

KEY IDEA

In an ac circuit with a purely capacitive load, the alternating
current iC(t) in the capacitance leads the alternating poten-
tial difference vC(t) by 90(; that is, the phase constant f for
the current is #90°, or #p/2 rad.

Calculations: Thus, we can write Eq. 31-29 as

iC ! IC sin(vdt # f) ! IC sin(vdt " p/2). (31-44)

We can find the amplitude IC from Eq. 31-42 (VC ! ICXC) if
we first find the capacitive reactance XC. From Eq. 31-39
(XC ! 1/vdC), with vd ! 2pfd, we can write

Then Eq. 31-42 tells us that the current amplitude is

(Answer)

Substituting this and vd ! 2pfd ! 120p into Eq. 31-44, we
have

iC ! (0.203 A) sin(120pt " p/2). (Answer)

IC !
VC

XC
!

36.0 V
177 '

! 0.203 A.

 ! 177 '.

  XC !
1

2pfdC
!

1
(2p)(60.0 Hz)(15.0 % 10#6 F)

Sample Problem 31.04 Purely capacitive load: potential difference and current 

In Fig. 31-10, capacitance C is 15.0 mF and the sinusoidal 
alternating emf device operates at amplitude !m ! 36.0 V
and frequency fd ! 60.0 Hz.

(a) What are the potential difference vC(t) across the 
capacitance and the amplitude VC of vC(t)?

KEY IDEA

In a circuit with a purely capacitive load, the potential dif-
ference vC(t) across the capacitance is always equal to the
potential difference !(t) across the emf device.

Calculations: Here we have vC(t) ! !(t) and VC ! !m.
Since !m is given, we have

VC ! !m ! 36.0 V. (Answer)

To find vC(t), we use Eq. 31-28 to write

vC(t) ! !(t) ! !m sin vdt. (31-43)

Then, substituting !m ! 36.0 V and vd ! 2pfd ! 120p into
Eq. 31-43, we have

vC ! (36.0 V) sin(120pt). (Answer)

(b) What are the current iC(t) in the circuit as a function of
time and the amplitude IC of iC(t)?

iL vL L 

Figure 31-12 An inductor is connected across
an alternating-current generator.

This relation between iC and vC is illustrated by the phasor diagram of
Fig. 31-11b.As the phasors representing these two quantities rotate counterclock-
wise together, the phasor labeled IC does indeed lead that labeled VC, and by an
angle of 90°; that is, the phasor IC coincides with the vertical axis one-quarter
cycle before the phasor VC does. Be sure to convince yourself that the phasor
diagram of Fig. 31-11b is consistent with Eqs. 31-36 and 31-40.

Checkpoint 4
The figure shows, in (a), a sine curve S(t) ! sin(vdt) and three
other sinusoidal curves A(t), B(t), and C(t), each of the form
sin(vdt # f). (a) Rank the three other curves according to the
value of f, most positive first and most negative last. (b) Which
curve corresponds to which phasor in (b) of the figure? (c)
Which curve leads the others?

t 

A 

B S 
C 

(a) 

1
2 3

4

(b)

Additional examples, video, and practice available at WileyPLUS
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82731-3 FORCED OSCILLATIONS OF THREE SIMPLE CIRCUITS

vL, iL 

T 

iL 

vL 

0 

Instants 
represented in (b) 

(a)

t 

VL 
IL 

T/2 

= +90° = +   /2 rad φ π 

For an inductive load,
the current lags the
potential difference
by 90º.

iL

vL VL

IL

  ω

Rotation of
phasors at

rate   d

dtω

“Lags” means that the
current peaks at a
later time than the
potential difference.

(b)

Figure 31-13 (a) The current in the inductor
lags the voltage by 90° (! p/2 rad). (b) A
phasor diagram shows the same thing.

where VL is the amplitude of vL. From Eq. 30-35 (!L ! #L di/dt), we can write
the potential difference across an inductance L in which the current is changing
at the rate diL/dt as

(31-46)

If we combine Eqs. 31-45 and 31-46, we have

(31-47)

Our concern, however, is with the current, so we integrate:

(31-48)

We now modify this equation in two ways. First, for reasons of symmetry of
notation, we introduce the quantity XL, called the inductive reactance of an
inductor, which is defined as

XL ! vdL (inductive reactance). (31-49)

The value of XL depends on the driving angular frequency vd. The unit of the
inductive time constant tL indicates that the SI unit of XL is the ohm, just as it is
for XC and for R.

Second, we replace #cos vdt in Eq. 31-48 with a phase-shifted sine:

#cos vdt ! sin(vdt # 90°).

You can verify this identity by shifting a sine curve 90° in the positive direction.
With these two changes, Eq. 31-48 becomes

(31-50)

From Eq. 31-29, we can also write this current in the inductance as

iL ! IL sin(vdt # f), (31-51)

where IL is the amplitude of the current iL. Comparing Eqs. 31-50 and 31-51, we
see that for a purely inductive load the phase constant f for the current is "90°.
We also see that the voltage amplitude and current amplitude are related by

VL ! ILXL (inductor). (31-52)

Although we found this relation for the circuit of Fig. 31-12, it applies to any
inductance in any ac circuit.

Comparison of Eqs. 31-45 and 31-50, or inspection of Fig. 31-13a, shows
that the quantities iL and vL are 90° out of phase. In this case, however, iL lags
vL; that is, monitoring the current iL and the potential difference vL in the cir-
cuit of Fig. 31-12 shows that iL reaches its maximum value after vL does, by
one-quarter cycle. The phasor diagram of Fig. 31-13b also contains this informa-
tion. As the phasors rotate counterclockwise in the figure, the phasor labeled IL

does indeed lag that labeled VL, and by an angle of 90°. Be sure to convince your-
self that Fig. 31-13b represents Eqs. 31-45 and 31-50.

iL ! ! VL

XL
" sin(vdt # 90().

iL ! $diL !
VL

L $ sin vd t dt ! #! VL

vdL " cos vdt.

diL

dt
!

VL

L
 sin vdt.

vL ! L 
diL

dt
.

Checkpoint 5
If we increase the driving frequency in a circuit with a purely capacitive load, do
(a) amplitude VC and (b) amplitude IC increase, decrease, or remain the same? If,
instead, the circuit has a purely inductive load, do (c) amplitude VL and (d) amplitude
IL increase, decrease, or remain the same?
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828 CHAPTER 31 ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

(for inductor), and in it the letter I (for current) comes after
the letter E (for emf or voltage). Thus, for an inductor, the
current lags (comes after) the voltage. Similarly, ICE (which
contains a C for capacitor) means that the current leads
(comes before) the voltage.You might also use the modified
mnemonic “ELI positively is the ICE man” to remember
that the phase constant f is positive for an inductor.

If you have difficulty in remembering whether XC is
equal to vdC (wrong) or 1/vdC (right), try remembering that
C is in the “cellar”—that is, in the denominator.

Problem-Solving Tactics

Leading and Lagging in AC Circuits: Table 31-2 summa-
rizes the relations between the current i and the voltage v
for each of the three kinds of circuit elements we have con-
sidered. When an applied alternating voltage produces an
alternating current in these elements, the current is always
in phase with the voltage across a resistor, always leads the
voltage across a capacitor, and always lags the voltage
across an inductor.

Many students remember these results with the
mnemonic “ELI the ICE man.” ELI contains the letter L

Table 31-2 Phase and Amplitude Relations for Alternating Currents and Voltages

Circuit Resistance Phase of Phase Constant Amplitude
Element Symbol or Reactance the Current (or Angle) f Relation

Resistor R R In phase with vR 0( (! 0 rad) VR ! IRR
Capacitor C XC ! 1/vdC Leads vC by 90( (! p/2 rad) #90( (! #p/2 rad) VC ! ICXC

Inductor L XL ! vdL Lags vL by 90( (! p/2 rad) "90( (! "p/2 rad) VL ! ILXL

KEY IDEA

In an ac circuit with a purely inductive load, the alternating
current iL(t) in the inductance lags the alternating potential
difference vL(t) by 90°. (In the mnemonic of the problem-
solving tactic, this circuit is “positively an ELI circuit,”
which tells us that the emf E leads the current I and that f is
positive.)

Calculations: Because the phase constant f for the 
current is "90°, or "p/2 rad, we can write Eq. 31-29 as

iL ! IL sin(vdt # f) ! IL sin(vdt # p/2). (31-54)

We can find the amplitude IL from Eq. 31-52 (VL ! ILXL) if
we first find the inductive reactance XL. From Eq. 31-49 
(XL ! vdL), with vd ! 2pfd, we can write

Then Eq. 31-52 tells us that the current amplitude is

(Answer)

Substituting this and vd ! 2pfd ! 120p into Eq. 31-54, we
have

iL ! (0.415 A) sin(120pt # p/2). (Answer)

IL !
VL

XL
!

36.0 V
86.7 '

! 0.415 A.

! 86.7 '.
XL ! 2p fdL ! (2p)(60.0 Hz)(230 % 10#3 H)

Sample Problem 31.05 Purely inductive load: potential difference and current

In Fig. 31-12, inductance L is 230 mH and the sinusoidal 
alternating emf device operates at amplitude !m ! 36.0 V
and frequency fd ! 60.0 Hz.

(a) What are the potential difference vL(t) across the induc-
tance and the amplitude VL of vL(t)?

KEY IDEA

In a circuit with a purely inductive load, the potential differ-
ence vL(t) across the inductance is always equal to the
potential difference !(t) across the emf device.

Calculations: Here we have vL(t) ! !(t) and VL ! !m.
Since !m is given, we know that

VL ! !m ! 36.0 V. (Answer)

To find vL(t), we use Eq. 31-28 to write

vL(t) ! !(t) ! !m sin vdt. (31-53)

Then, substituting !m ! 36.0 V and vd ! 2pfd ! 120p into
Eq. 31-53, we have

vL ! (36.0 V) sin(120pt). (Answer)

(b) What are the current iL(t) in the circuit as a function of
time and the amplitude IL of iL(t)?

Additional examples, video, and practice available at WileyPLUS
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82931-4 THE SERIES RLC CIRCUIT

The Series RLC Circuit
We are now ready to apply the alternating emf of Eq. 31-28,

! ! !m sin vdt (applied emf), (31-55)

to the full RLC circuit of Fig. 31-7. Because R, L, and C are in series, the same
current

i ! I sin(vdt # f) (31-56)

is driven in all three of them. We wish to find the current amplitude I and the
phase constant f and to investigate how these quantities depend on the driving
angular frequency vd . The solution is simplified by the use of phasor diagrams as
introduced for the three basic circuits of Module 31-3: capacitive load, inductive
load, and resistive load. In particular we shall make use of how the voltage phasor
is related to the current phasor for each of those basic circuits. We shall find that
series RLC circuits can be separated into three types: mainly capacitive circuits,
mainly inductive circuits, and circuits that are in resonance.

31-4 THE SERIES RLC CIRCUIT

After reading this module, you should be able to . . .

31.32 Draw the schematic diagram of a series RLC
circuit.

31.33 Identify the conditions for a mainly inductive circuit, a
mainly capacitive circuit, and a resonant circuit.

31.34 For a mainly inductive circuit, a mainly capacitive
circuit, and a resonant circuit, sketch graphs for voltage
v(t) and current i(t) and sketch phasor diagrams, indicat-
ing leading, lagging, or resonance.

31.35 Calculate impedance Z.
31.36 Apply the relationship between current amplitude I,

impedance Z, and emf amplitude !m.
31.37 Apply the relationships between phase constant f

and voltage amplitudes VL and VC, and also between 

phase constant f, resistance R, and reactances XL

and XC.
31.38 Identify the values of the phase constant f correspon-

ding to a mainly inductive circuit, a mainly capacitive
circuit, and a resonant circuit.

31.39 For resonance, apply the relationship between 
the driving angular frequency vd, the natural angular 
frequency v, the inductance L, and the capacitance C.

31.40 Sketch a graph of current amplitude versus the ratio
vd/v, identifying the portions corresponding to a mainly
inductive circuit, a mainly capacitive circuit, and a resonant
circuit and indicating what happens to the curve for an
increase in the resistance.

Learning Objectives

● For a series RLC circuit with an external emf given by

and current given by

the current amplitude is given by

(current amplitude).!
!m1R2 " (vdL # 1/vdC)2

I !
em1R2 " (XL # XC)2

i ! I sin(vdt # f),

! ! !m sin vdt,

● The phase constant is given by

(phase constant).

● The impedance Z of the circuit is

(impedance).

● We relate the current amplitude and the impedance with
I ! !m /Z.

● The current amplitude I is maximum (I ! !m /R) when the
driving angular frequency vd equals the natural angular fre-
quency v of the circuit, a condition known as resonance. Then
XC ! XL, f ! 0, and the current is in phase with the emf.

Z ! 2R2 " (XL # XC)2

tan f !
XL # XC

R

Key Ideas
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830 CHAPTER 31 ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

Figure 31-14 (a) A phasor representing the
alternating current in the driven RLC cir-
cuit of Fig. 31-7 at time t.The amplitude I,
the instantaneous value i, and the phase
(vdt # f) are shown. (b) Phasors repre-
senting the voltages across the inductor,
resistor, and capacitor, oriented with re-
spect to the current phasor in (a). (c) A
phasor representing the alternating emf
that drives the current of (a). (d) The emf
phasor is equal to the vector sum of the
three voltage phasors of (b). Here, voltage
phasors VL and VC have been added vecto-
rially to yield their net phasor (VL # VC).

        φ

(a)

 – ω

i I

dt

vR

(b)

vL

vC

VL

VR

VC

        φ – ωdt

This is ahead
of I by 90º.

This is in
phase with I.

This is behind
I by 90º.

(c)

m

       ωdt

(d)

VL – VC

VRφ
ωdt

m

        φ – ωdt

This   is the angle
between I and the
driving emf.

φ

The Current Amplitude
We start with Fig. 31-14a, which shows the phasor representing the current of
Eq. 31-56 at an arbitrary time t. The length of the phasor is the current ampli-
tude I, the projection of the phasor on the vertical axis is the current i at time t, and
the angle of rotation of the phasor is the phase vdt # f of the current at time t.

Figure 31-14b shows the phasors representing the voltages across R, L, and C
at the same time t. Each phasor is oriented relative to the angle of rotation of
current phasor I in Fig. 31-14a, based on the information in Table 31-2:

Resistor: Here current and voltage are in phase; so the angle of rotation of volt-
age phasor VR is the same as that of phasor I.

Capacitor: Here current leads voltage by 90°; so the angle of rotation of voltage
phasor VC is 90( less than that of phasor I.

Inductor: Here current lags voltage by 90°; so the angle of rotation of voltage
phasor vL is 90( greater than that of phasor I.

Figure 31-14b also shows the instantaneous voltages vR, vC, and vL across R, C,
and L at time t; those voltages are the projections of the corresponding phasors
on the vertical axis of the figure.

Figure 31-14c shows the phasor representing the applied emf of Eq. 31-55.
The length of the phasor is the emf amplitude !m, the projection of the phasor
on the vertical axis is the emf ! at time t, and the angle of rotation of the phasor is
the phase vdt of the emf at time t.

From the loop rule we know that at any instant the sum of the voltages vR, vC,
and vL is equal to the applied emf !:

! ! vR " vC " vL. (31-57)

Thus, at time t the projection ! in Fig. 31-14c is equal to the algebraic sum of the
projections vR, vC, and vL in Fig. 31-14b. In fact, as the phasors rotate together, this
equality always holds. This means that phasor !m in Fig. 31-14c must be equal to
the vector sum of the three voltage phasors VR, VC, and VL in Fig. 31-14b.

That requirement is indicated in Fig. 31-14d, where phasor !m is drawn as the
sum of phasors VR, VL, and VC. Because phasors VL and VC have opposite direc-
tions in the figure, we simplify the vector sum by first combining VL and VC to
form the single phasor VL # VC. Then we combine that single phasor with VR to
find the net phasor.Again, the net phasor must coincide with phasor !m, as shown.

halliday_c31_811-846v2.0.1.qxd  3/5/14  12:22 PM  Page 830

Uploaded By: anonymousSTUDENTS-HUB.com



83131-4 THE SERIES RLC CIRCUIT

Both triangles in Fig. 31-14d are right triangles. Applying the Pythagorean
theorem to either one yields

(31-58)

From the voltage amplitude information displayed in the rightmost column of
Table 31-2, we can rewrite this as

(31-59)

and then rearrange it to the form

. (31-60)

The denominator in Eq. 31-60 is called the impedance Z of the circuit for the
driving angular frequency vd:

(impedance defined). (31-61)

We can then write Eq. 31-60 as

(31-62)

If we substitute for XC and XL from Eqs. 31-39 and 31-49, we can write
Eq. 31-60 more explicitly as

(current amplitude). (31-63)

We have now accomplished half our goal: We have obtained an expression
for the current amplitude I in terms of the sinusoidal driving emf and the circuit
elements in a series RLC circuit.

The value of I depends on the difference between vdL and 1/vdC in
Eq. 31-63 or, equivalently, the difference between XL and XC in Eq. 31-60. In
either equation, it does not matter which of the two quantities is greater because
the difference is always squared.

The current that we have been describing in this module is the steady-state
current that occurs after the alternating emf has been applied for some 
time. When the emf is first applied to a circuit, a brief transient current
occurs. Its duration (before settling down into the steady-state current) is
determined by the time constants tL ! L/R and tC ! RC as the inductive and
capacitive elements “turn on.” This transient current can, for example, destroy
a motor on start-up if it is not properly taken into account in the motor’s
circuit design.

The Phase Constant
From the right-hand phasor triangle in Fig. 31-14d and from Table 31-2 we can
write

(31-64)

which gives us

(phase constant). (31-65)

This is the other half of our goal: an equation for the phase constant f in the si-
nusoidally driven series RLC circuit of Fig. 31-7. In essence, it gives us three dif-

tan f !
XL # XC

R

tan ) !
VL # VC

VR
!

IXL # IXC

IR
,

I !
em2R2 " (vdL # 1/vdC)2

I !
!m

Z
.

Z ! 2R2 " (XL # XC)2

I !
!m2R2 " (XL # XC)2

! m
2 ! (IR)2 " (IXL # IXC)2,

!m
2 ! VR

2 " (VL # VC)2.
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832 CHAPTER 31 ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

(b)

m

I

 , i

i

t

Positive φ

(c)

m

I

Negative   means that the
current leads the emf (ICE ) :
the phasor is vertical earlier
and the curve peaks earlier.

φ

(a)

m

I

Positive   means that the
current lags the emf (ELI ):
the phasor is vertical later
and the curve peaks later.

φ

(d)

m

I

 , i

i

t

Negative φ

( f )

m

I

 , i

i

t

Zero φ
Zero   means that the current
and emf are in phase: the
phasors are vertical together
and the curves peak together.

φ

(e)

m I

Figure 31-15 Phasor diagrams and
graphs of the alternating emf ! and
current i for the driven RLC circuit
of Fig. 31-7. In the phasor diagram of
(a) and the graph of (b), the current i
lags the driving emf ! and the cur-
rent’s phase constant f is positive. In
(c) and (d), the current i leads the
driving emf ! and its phase constant
f is negative. In (e) and ( f ), the cur-
rent i is in phase with the driving emf
! and its phase constant f is zero.

ferent results for the phase constant, depending on the relative values of the
reactances XL and XC:

XL * XC: The circuit is said to be more inductive than capacitive. Equation 31-65
tells us that f is positive for such a circuit, which means that phasor I rotates
behind phasor !m (Fig. 31-15a). A plot of ! and i versus time is like that in 
Fig. 31-15b. (Figures 31-14c and d were drawn assuming XL * XC.)

XC * XL: The circuit is said to be more capacitive than inductive. Equation 31-65
tells us that f is negative for such a circuit, which means that phasor I rotates
ahead of phasor !m (Fig. 31-15c). A plot of ! and i versus time is like that in
Fig. 31-15d.

XC ! XL: The circuit is said to be in resonance, a state that is discussed next.
Equation 31-65 tells us that f ! 0( for such a circuit, which means that phasors
!m and I rotate together (Fig. 31-15e). A plot of ! and i versus time is like that
in Fig. 31-15f.

As illustration, let us reconsider two extreme circuits: In the purely inductive
circuit of Fig. 31-12, where XL is nonzero and XC ! R ! 0, Eq. 31-65 tells us that 
the circuit’s phase constant is f ! "90( (the greatest value of f), consistent with
Fig. 31-13b. In the purely capacitive circuit of Fig. 31-10, where XC is nonzero and
XL ! R ! 0, Eq. 31-65 tells us that the circuit’s phase constant is f ! #90( (the
least value of f), consistent with Fig. 31-11b.

Resonance
Equation 31-63 gives the current amplitude I in an RLC circuit as a function of
the driving angular frequency vd of the external alternating emf. For a given
resistance R, that amplitude is a maximum when the quantity vdL # 1/vdC in the
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83331-4 THE SERIES RLC CIRCUIT

denominator is zero—that is, when

or (maximum I). (31-66)

Because the natural angular frequency v of the RLC circuit is also equal to
the maximum value of I occurs when the driving angular frequency

matches the natural angular frequency—that is, at resonance. Thus, in an RLC
circuit, resonance and maximum current amplitude I occur when

(resonance). (31-67)

Resonance Curves. Figure 31-16 shows three resonance curves for sinu-
soidally driven oscillations in three series RLC circuits differing only in R. Each
curve peaks at its maximum current amplitude I when the ratio vd/v is 1.00, but
the maximum value of I decreases with increasing R. (The maximum I is always
!m/R; to see why, combine Eqs. 31-61 and 31-62.) In addition, the curves in-
crease in width (measured in Fig. 31-16 at half the maximum value of I) with
increasing R.

vd ! v !
11LC

1/1LC,

vd !
11LC

vdL !
1

vdC

C
ur

re
nt

 a
m

pl
itu

de
 I 

0.90 0.95 1.00 1.05 1.10 
ωd/ ω 

R = 10    Ω 

R = 100    Ω 

R = 30    Ω 

m I

Driving      equal to natural
• high current amplitude
• circuit is in resonance
• equally capacitive and inductive
• XC equals XL
• current and emf in phase
• zero

ωd ω

φ

m

I

m

I
Low driving
• low current amplitude
• ICE side of the curve
• more capacitive
• XC is greater
• current leads emf
• negative

ωd

φ

High driving
• low current amplitude
• ELI side of the curve
• more inductive
• XL is greater
• current lags emf
• positive

ωd

φ

A

Figure 31-16 Resonance curves for the
driven RLC circuit of Fig. 31-7 with 
L ! 100 mH, C ! 100 pF, and three
values of R.The current amplitude I of
the alternating current depends on how
close the driving angular frequency vd is
to the natural angular frequency v.The
horizontal arrow on each curve meas-
ures the curve’s half-width, which is the
width at the half-maximum level and is
a measure of the sharpness of the reso-
nance.To the left of vd/v ! 1.00, the cir-
cuit is mainly capacitive, with XC * XL;
to the right, it is mainly inductive, with
XL * XC.
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834 CHAPTER 31 ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

We then find

(Answer)

(b) What is the phase constant f of the current in the 
circuit relative to the driving emf?

KEY IDEA

The phase constant depends on the inductive reactance, the
capacitive reactance, and the resistance of the circuit,
according to Eq. 31-65.

Calculation: Solving Eq. 31-65 for f leads to

(Answer)

The negative phase constant is consistent with the fact that
the load is mainly capacitive; that is, XC * XL. In the com-
mon mnemonic for driven series RLC circuits, this circuit is
an ICE circuit—the current leads the driving emf.

! #24.3( ! #0.424 rad.

f ! tan#1 
XL # XC

R
! tan#1 

86.7 ' # 177 '
200 '

I !
!m

Z
!

36.0 V
219 '

! 0.164 A.

Sample Problem 31.06 Current amplitude, impedance, and phase constant

In Fig. 31-7, let R ! 200 ', C ! 15.0 mF, L ! 230 mH,
fd ! 60.0 Hz, and !m ! 36.0 V. (These parameters are those
used in the earlier sample problems.)

(a) What is the current amplitude I?

KEY IDEA

The current amplitude I depends on the amplitude !m of the
driving emf and on the impedance Z of the circuit, accord-
ing to Eq. 31-62 (I ! !m/Z).

Calculations: So, we need to find Z, which depends on resis-
tance R, capacitive reactance XC, and inductive reactance XL.
The circuit’s resistance is the given resistance R. Its capacitive
reactance is due to the given capacitance and, from an earlier
sample problem, XC ! 177 '. Its inductive reactance is due
to the given inductance and, from another sample problem,
XL ! 86.7 '.Thus, the circuit’s impedance is

! 219 '.

! 2(200 ')2 " (86.7 ' # 177 ')2

 Z ! 2R2 " (XL # XC)2

To make physical sense of Fig. 31-16, consider how the reactances XL and
XC change as we increase the driving angular frequency vd, starting with a value
much less than the natural frequency v. For small vd, reactance XL (! vdL) is
small and reactance XC (! 1/vdC) is large. Thus, the circuit is mainly capacitive
and the impedance is dominated by the large XC, which keeps the current low.

As we increase vd, reactance XC remains dominant but decreases while reac-
tance XL increases. The decrease in XC decreases the impedance, allowing the
current to increase, as we see on the left side of any resonance curve in Fig. 31-16.
When the increasing XL and the decreasing XC reach equal values, the current is
greatest and the circuit is in resonance, with vd ! v.

As we continue to increase vd, the increasing reactance XL becomes pro-
gressively more dominant over the decreasing reactance XC. The impedance
increases because of XL and the current decreases, as on the right side of any
resonance curve in Fig. 31-16. In summary, then: The low-angular-frequency side
of a resonance curve is dominated by the capacitor’s reactance, the high-angular-
frequency side is dominated by the inductor’s reactance, and resonance occurs in
the middle.

Checkpoint 6
Here are the capacitive reactance and inductive reactance, respectively, for three
sinusoidally driven series RLC circuits: (1) 50 ', 100 '; (2) 100 ', 50 '; (3) 50 ', 50 '.
(a) For each, does the current lead or lag the applied emf, or are the two in phase?
(b) Which circuit is in resonance?

Additional examples, video, and practice available at WileyPLUS
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83531-5 POWER IN ALTERNATING-CURRENT CIRCUITS

31-5 POWER IN ALTERNATING-CURRENT CIRCUITS

After reading this module, you should be able to . . .

31.41 For the current, voltage, and emf in an ac circuit,
apply the relationship between the rms values and the
amplitudes.

31.42 For an alternating emf connected across a capacitor,
an inductor, or a resistor, sketch graphs of the sinusoidal
variation of the current and voltage and indicate the peak
and rms values.

31.43 Apply the relationship between average power Pavg,
rms current Irms, and resistance R.

31.44 In a driven RLC circuit, calculate the power of each
element.

31.45 For a driven RLC circuit in steady state, explain what
happens to (a) the value of the average stored energy with
time and (b) the energy that the generator puts into the
circuit.

31.46 Apply the relationship between the power factor cos f,
the resistance R, and the impedance Z.

31.47 Apply the relationship between the average power
Pavg, the rms emf , the rms current Irms, and the power
factor cos f.

31.48 Identify what power factor is required in order to maxi-
mize the rate at which energy is supplied to a resistive load.

!rms

Learning Objectives

● In a series RLC circuit, the average power Pavg of the
generator is equal to the production rate of thermal energy in
the resistor:

Pavg ! I 2
rmsR ! !rmsIrms cos f.

● The abbreviation rms stands for root-mean-square; the
rms quantities are related to the maximum quantities by

and The term
cos f is called the power factor of the circuit.

!rms ! !m /12.V/12,Irms ! I/12, Vrms !

Key Ideas

Power in Alternating-Current Circuits
In the RLC circuit of Fig. 31-7, the source of energy is the alternating-current
generator. Some of the energy that it provides is stored in the electric field in the
capacitor, some is stored in the magnetic field in the inductor, and some is dis-
sipated as thermal energy in the resistor. In steady-state operation, the average
stored energy remains constant.The net transfer of energy is thus from the gener-
ator to the resistor, where energy is dissipated.

The instantaneous rate at which energy is dissipated in the resistor can be
written, with the help of Eqs. 26-27 and 31-29, as

P ! i2R ! [I sin(vdt # f)]2R ! I 2R sin2(vdt # f). (31-68)

The average rate at which energy is dissipated in the resistor, however, is the aver-
age of Eq. 31-68 over time. Over one complete cycle, the average value of sin u,
where u is any variable, is zero (Fig. 31-17a) but the average value of sin2 u is 
(Fig. 31-17b). (Note in Fig. 31-17b how the shaded areas under the curve but
above the horizontal line marked exactly fill in the unshaded spaces below
that line.) Thus, we can write, from Eq. 31-68,

(31-69)

The quantity is called the root-mean-square, or rms, value of the current i:

(rms current). (31-70)

We can now rewrite Eq. 31-69 as

(average power). (31-71)Pavg ! I rms
2 R

Irms !
I12

I/1 2

Pavg !
I 2R

2
! ! I12 "

2

R.

"1
2

1
2

Figure 31-17 (a) A plot of sin u versus u.The
average value over one cycle is zero. (b) A
plot of sin2 u versus u.The average value
over one cycle is .1
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Equation 31-71 has the same mathematical form as Eq. 26-27 (P ! i2R); the
message here is that if we switch to the rms current, we can compute the aver-
age rate of energy dissipation for alternating-current circuits just as for direct-
current circuits.

We can also define rms values of voltages and emfs for alternating-current
circuits:

(rms voltage; rms emf). (31-72)

Alternating-current instruments, such as ammeters and voltmeters, are usually
calibrated to read Irms, Vrms, and !rms. Thus, if you plug an alternating-current
voltmeter into a household electrical outlet and it reads 120 V, that is an rms
voltage. The maximum value of the potential difference at the outlet is

or 170 V. Generally scientists and engineers report rms values in-
stead of maximum values.

Because the proportionality factor in Eqs. 31-70 and 31-72 is the same
for all three variables, we can write Eqs. 31-62 and 31-60 as

(31-73)

and, indeed, this is the form that we almost always use.
We can use the relationship Irms ! !rms/Z to recast Eq. 31-71 in a useful

equivalent way.We write

(31-74)

From Fig. 31-14d, Table 31-2, and Eq. 31-62, however, we see that R/Z is just the
cosine of the phase constant f:

(31-75)

Equation 31-74 then becomes

(average power), (31-76)

in which the term cos f is called the power factor. Because cos f ! cos(#f),
Eq. 31-76 is independent of the sign of the phase constant f.

To maximize the rate at which energy is supplied to a resistive load in an
RLC circuit, we should keep the power factor cos f as close to unity as possible.
This is equivalent to keeping the phase constant f in Eq. 31-29 as close to zero as
possible. If, for example, the circuit is highly inductive, it can be made less so by
putting more capacitance in the circuit, connected in series. (Recall that putting
an additional capacitance into a series of capacitances decreases the equivalent
capacitance Ceq of the series.) Thus, the resulting decrease in Ceq in the circuit
reduces the phase constant and increases the power factor in Eq. 31-76. Power
companies place series-connected capacitors throughout their transmission sys-
tems to get these results.

Pavg ! !rmsIrms cos f

cos f !
VR

!m
!

IR
IZ

!
R
Z

.

Pavg !
!rms

Z
IrmsR ! !rmsIrms 

R
Z

.

Irms !
!rms

Z
!

!rms2R2 " (XL # XC)2
,

1/12

12 % (120 V),

Vrms !
V12

  and  !rms !
!m12

836 CHAPTER 31 ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

Checkpoint 7
(a) If the current in a sinusoidally driven series RLC circuit leads the emf, would we
increase or decrease the capacitance to increase the rate at which energy is supplied
to the resistance? (b) Would this change bring the resonant angular frequency of the
circuit closer to the angular frequency of the emf or put it farther away?
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83731-5 POWER IN ALTERNATING-CURRENT CIRCUITS

determined by the rms value of the driving emf and the cir-
cuit’s impedance Z (which we know), according to Eq. 31-73:

Substituting this into Eq. 31-76 then leads to

(Answer)

Second way: Instead, we can write

(Answer)

(c) What new capacitance Cnew is needed to maximize Pavg if
the other parameters of the circuit are not changed?

KEY IDEAS

(1) The average rate Pavg at which energy is supplied
and dissipated is maximized if the circuit is brought into
resonance with the driving emf. (2) Resonance occurs
when XC ! XL.

Calculations: From the given data, we have XC * XL. Thus,
we must decrease XC to reach resonance. From Eq. 31-39
(XC ! 1/vdC), we see that this means we must increase C to
the new value Cnew.

Using Eq. 31-39, we can write the resonance condition
XC ! XL as

Substituting 2pfd for vd (because we are given fd and not vd)
and then solving for Cnew, we find

(Answer)

Following the procedure of part (b), you can show that with
Cnew, the average power of energy dissipation Pavg would
then be at its maximum value of 

Pavg, max ! 72.0 W.

! 3.32 % 10#5 F ! 33.2 mF.

Cnew !
1

2p fdXL
!

1
(2p)(60 Hz)(80.0 ')

1
vdCnew

! XL.

 !
(120 V)2

(211.90 ')2  (200 ') ! 64.1 W.

Pavg ! Irms
2 R !

!rms
2

Z2  R 

!
(120 V)2

211.90 '
 (0.9438) ! 64.1 W.

Pavg ! !rmsIrms cos f !
!2

rms

Z
 cos f

Irms !
!rms

Z
.

Sample Problem 31.07 Driven RLC circuit: power factor and average power

A series RLC circuit, driven with at fre-
quency fd 60.0 Hz, contains a resistance R 200 , an'!!

!rms ! 120 V

inductance with inductive reactance XL ! 80.0 ', and a
capacitance with capacitive reactance XC ! 150 '.

(a) What are the power factor cos f and phase constant f of
the circuit?

KEY IDEA

The power factor cos f can be found from the resistance R
and impedance Z via Eq. 31-75 (cos f ! R/Z).

Calculations: To calculate Z, we use Eq. 31-61:

Equation 31-75 then gives us

(Answer)

Taking the inverse cosine then yields

f ! cos#1 0.944 ! +19.3°.

The inverse cosine on a calculator gives only the positive an-
swer here, but both 19.3 and 19.3 have a cosine of 0.944.
To determine which sign is correct, we must consider
whether the current leads or lags the driving emf. Because
XC * XL, this circuit is mainly capacitive, with the current
leading the emf.Thus, f must be negative:

f ! #19.3°. (Answer)

We could, instead, have found f with Eq. 31-65.A calculator
would then have given us the answer with the minus  sign.

(b) What is the average rate Pavg at which energy is
dissipated in the resistance?

KEY IDEAS

There are two ways and two ideas to use: (1) Because the
circuit is assumed to be in steady-state operation, the rate at
which energy is dissipated in the resistance is equal to the
rate at which energy is supplied to the circuit, as given by
Eq. 31-76 (Pavg ! !rmsIrms cos f). (2) The rate at which
energy is dissipated in a resistance R depends on the square
of the rms current Irms through it, according to Eq. 31-71
(Pavg ! I 2

rms R).

First way: We are given the rms driving emf !rms and we
already know cos f from part (a). The rms current Irms is

(#("

cos f !
R
Z

!
200 '

211.90 '
! 0.9438 # 0.944.

! 2(200 ')2 " (80.0 ' # 150 ')2 ! 211.90 '.

  Z ! 2R2 " (XL # XC)2

Additional examples, video, and practice available at WileyPLUS
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838 CHAPTER 31 ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

Transformers
Energy Transmission Requirements
When an ac circuit has only a resistive load, the power factor in Eq. 31-76 is 
cos 0° ! 1 and the applied rms emf !rms is equal to the rms voltage Vrms across the
load. Thus, with an rms current Irms in the load, energy is supplied and dissipated
at the average rate of

Pavg ! !I ! IV. (31-77)

(In Eq. 31-77 and the rest of this module, we follow conventional practice and drop
the subscripts identifying rms quantities. Engineers and scientists assume that all
time-varying currents and voltages are reported as rms values; that is what the me-
ters read.) Equation 31-77 tells us that, to satisfy a given power requirement, we
have a range of choices for I and V, provided only that the product IV is as required.

In electrical power distribution systems it is desirable for reasons of safety
and for efficient equipment design to deal with relatively low voltages at both the
generating end (the electrical power plant) and the receiving end (the home or
factory). Nobody wants an electric toaster to operate at, say, 10 kV. However, in
the transmission of electrical energy from the generating plant to the consumer,
we want the lowest practical current (hence the largest practical voltage) to mini-
mize I 2R losses (often called ohmic losses) in the transmission line.

As an example, consider the 735 kV line used to transmit electrical energy
from the La Grande 2 hydroelectric plant in Quebec to Montreal, 1000 km away.
Suppose that the current is 500 A and the power factor is close to unity. Then
from Eq. 31-77, energy is supplied at the average rate

Pavg ! !I ! (7.35 % 105 V)(500 A) ! 368 MW.

31-6 TRANSFORMERS

After reading this module, you should be able to . . .

31.49 For power transmission lines, identify why the
transmission should be at low current and high voltage.

31.50 Identify the role of transformers at the two ends of a
transmission line.

31.51 Calculate the energy dissipation in a transmission line.
31.52 Identify a transformer’s primary and secondary.
31.53 Apply the relationship between the voltage and

number of turns on the two sides of a transformer.
31.54 Distinguish between a step-down transformer and a

step-up transformer.

31.55 Apply the relationship between the current and number
of turns on the two sides of a transformer.

31.56 Apply the relationship between the power into and out
of an ideal transformer.

31.57 Identify the equivalent resistance as seen from the
primary side of a transformer.

31.58 Apply the relationship between the equivalent
resistance and the actual resistance.

31.59 Explain the role of a transformer in impedance
matching.

Learning Objectives

● A transformer (assumed to be ideal) is an iron core on
which are wound a primary coil of Np turns and a secondary
coil of Ns turns. If the primary coil is connected across an
alternating-current generator, the primary and secondary
voltages are related by

(transformation of voltage).

● The currents through the coils are related by

Vs ! Vp
Ns

Np

(transformation of currents).

● The equivalent resistance of the secondary circuit, as seen
by the generator, is

where R is the resistive load in the secondary circuit. The
ratio Np/Ns is called the transformer’s turns ratio.

Req ! ! Np

Ns
"2

R,

Is ! Ip
Np

Ns

Key Ideas
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The resistance of the transmission line is about 0.220 '/km; thus, there is a total
resistance of about 220 ' for the 1000 km stretch. Energy is dissipated due to that
resistance at a rate of about

Pavg ! I 2R ! (500 A)2(220 ') ! 55.0 MW,

which is nearly 15% of the supply rate.
Imagine what would happen if we doubled the current and halved the volt-

age. Energy would be supplied by the plant at the same average rate of 368 MW
as previously, but now energy would be dissipated at the rate of about

Pavg ! I 2R ! (1000 A)2(220 ') ! 220 MW,

which is almost 60% of the supply rate. Hence the general energy transmission
rule:Transmit at the highest possible voltage and the lowest possible current.

The Ideal Transformer
The transmission rule leads to a fundamental mismatch between the requirement
for efficient high-voltage transmission and the need for safe low-voltage gener-
ation and consumption. We need a device with which we can raise (for trans-
mission) and lower (for use) the ac voltage in a circuit, keeping the product
current voltage essentially constant. The transformer is such a device. It has
no moving parts, operates by Faraday’s law of induction, and has no simple
direct-current counterpart.

The ideal transformer in Fig. 31-18 consists of two coils, with different num-
bers of turns, wound around an iron core. (The coils are insulated from the core.)
In use, the primary winding, of Np turns, is connected to an alternating-current
generator whose emf ! at any time t is given by

! ! !m sin vt. (31-78)

The secondary winding, of Ns turns, is connected to load resistance R, but its
circuit is an open circuit as long as switch S is open (which we assume for the
present). Thus, there can be no current through the secondary coil. We assume
further for this ideal transformer that the resistances of the primary and second-
ary windings are negligible. Well-designed, high-capacity transformers can have
energy losses as low as 1%; so our assumptions are reasonable.

For the assumed conditions, the primary winding (or primary) is a pure
inductance and the primary circuit is like that in Fig. 31-12. Thus, the (very small)
primary current, also called the magnetizing current Imag, lags the primary voltage
Vp by 90°; the primary’s power factor (! cos f in Eq. 31-76) is zero; so no power
is delivered from the generator to the transformer.

However, the small sinusoidally changing primary current Imag produces a
sinusoidally changing magnetic flux ,B in the iron core. The core acts to
strengthen the flux and to bring it through the secondary winding (or secondary).
Because ,B varies, it induces an emf !turn (! d,B/dt) in each turn of the
secondary. In fact, this emf per turn !turn is the same in the primary and the
secondary. Across the primary, the voltage Vp is the product of !turn and the num-
ber of turns Np; that is, Vp ! !turnNp. Similarly, across the secondary the voltage is
Vs ! !turnNs.Thus, we can write

or (transformation of voltage). (31-79)

If Ns * Np, the device is a step-up transformer because it steps the primary’s voltage
Vp up to a higher voltage Vs. Similarly, if Ns - Np, it is a step-down transformer.

Vs ! Vp 
Ns

Np

!turn !
Vp

Np
!

Vs

Ns
,

%

83931-6 TRANSFORMERS

Figure 31-18 An ideal transformer (two coils
wound on an iron core) in a basic trans-
former circuit.An ac generator produces
current in the coil at the left (the primary).
The coil at the right (the secondary) is con-
nected to the resistive load R when switch S
is closed.

R Vp Vs 

S 

Np 

Ns 

Φ B 

Primary Secondary 
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840 CHAPTER 31 ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

With switch S open, no energy is transferred from the generator to the rest of
the circuit, but when we close S to connect the secondary to the resistive load R,
energy is transferred. (In general, the load would also contain inductive and
capacitive elements, but here we consider just resistance R.) Here is the process:

1. An alternating current Is appears in the secondary circuit, with corresponding
energy dissipation rate in the resistive load.

2. This current produces its own alternating magnetic flux in the iron core, and
this flux induces an opposing emf in the primary windings.

3. The voltage Vp of the primary, however, cannot change in response to this
opposing emf because it must always be equal to the emf ! that is provided by
the generator; closing switch S cannot change this fact.

4. To maintain Vp, the generator now produces (in addition to Imag) an alternat-
ing current Ip in the primary circuit; the magnitude and phase constant of
Ip are just those required for the emf induced by Ip in the primary to exactly
cancel the emf induced there by Is. Because the phase constant of Ip is not 90°
like that of Imag, this current Ip can transfer energy to the primary.

Energy Transfers. We want to relate Is to Ip. However, rather than analyze the
foregoing complex process in detail, let us just apply the principle of conservation
of energy.The rate at which the generator transfers energy to the primary is equal
to IpVp. The rate at which the primary then transfers energy to the secondary (via
the alternating magnetic field linking the two coils) is IsVs. Because we assume
that no energy is lost along the way, conservation of energy requires that

IpVp ! IsVs.

Substituting for Vs from Eq. 31-79, we find that

(transformation of currents). (31-80)

This equation tells us that the current Is in the secondary can differ from the
current Ip in the primary, depending on the turns ratio Np/Ns.

Current Ip appears in the primary circuit because of the resistive load R in
the secondary circuit. To find Ip, we substitute Is ! Vs/R into Eq. 31-80 and then
we substitute for Vs from Eq. 31-79.We find

(31-81)

This equation has the form Ip ! Vp/Req, where equivalent resistance Req is

(31-82)

This Req is the value of the load resistance as “seen” by the generator; the genera-
tor produces the current Ip and voltage Vp as if the generator were connected to a
resistance Req.

Impedance Matching
Equation 31-82 suggests still another function for the transformer. For maximum
transfer of energy from an emf device to a resistive load, the resistance of the emf
device must equal the resistance of the load. The same relation holds for ac
circuits except that the impedance (rather than just the resistance) of the genera-
tor must equal that of the load. Often this condition is not met. For example, in
a music-playing system, the amplifier has high impedance and the speaker set has
low impedance. We can match the impedances of the two devices by coupling
them through a transformer that has a suitable turns ratio Np/Ns.

Req ! ! Np

Ns
"2

R.

Ip !
1
R ! Ns

Np
"2

Vp.

Is ! Ip 
Np

Ns

Is
2R (! Vs

2/R)
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Checkpoint 8
An alternating-current emf device in a certain circuit has a smaller resistance than that
of the resistive load in the circuit; to increase the transfer of energy from the device to
the load, a transformer will be connected between the two. (a) Should Ns be greater
than or less than Np? (b) Will that make it a step-up or step-down transformer?

Eq. 31-77 yields

(Answer)

Similarly, in the secondary circuit,

(Answer)

You can check that Is ! Ip(Np/Ns) as required by Eq.31-80.

(c) What is the resistive load Rs in the secondary circuit? What
is the corresponding resistive load Rp in the primary circuit?

One way: We can use V ! IR to relate the resistive load to the
rms voltage and current.For the secondary circuit,we find

(Answer)

Similarly, for the primary circuit we find

(Answer)

Second way: We use the fact that Rp equals the equivalent re-
sistive load “seen” from the primary side of the transformer,
which is a resistance modified by the turns ratio and given by
Eq. 31-82 (Req ! (Np/Ns)2R). If we substitute Rp for Req and Rs

for R, that equation yields

(Answer)! 926 " ! 930 ".

 Rp ! " Np

Ns
#2

Rs ! (70.83)2(0.1846 ")

Rp !
Vp

Ip
!

8.5 # 10 3 V
9.176 A

! 926 " ! 930 ".

Rs !
Vs

Is
!

120 V
650 A

! 0.1846 " ! 0.18 ".

Is !
Pavg

Vs
!

78 # 10 3 W
120 V

! 650 A.

Ip !
Pavg

Vp
!

78 # 103 W
8.5 # 103 V

! 9.176 A ! 9.2 A.

Sample Problem 31.08 Transformer: turns ratio, average power, rms currents

A transformer on a utility pole operates at Vp 8.5 kV on
the primary side and supplies electrical energy to a number
of nearby houses at Vs ! 120 V, both quantities being rms
values.Assume an ideal step-down transformer, a purely resis-
tive load, and a power factor of unity.

(a) What is the turns ratio Np/Ns of the transformer?

KEY IDEA

The turns ratio Np/Ns is related to the (given) rms primary
and secondary voltages via Eq. 31-79 (Vs ! VpNs/Np).

Calculation: We can write Eq. 31-79 as

(31-83)

(Note that the right side of this equation is the inverse of the
turns ratio.) Inverting both sides of Eq. 31-83 gives us

(Answer)

(b) The average rate of energy consumption (or dissipation) in
the houses served by the transformer is 78 kW.What are the rms
currents in the primary and secondary of the transformer?

KEY IDEA

For a purely resistive load, the power factor cos f is unity; thus,
the average rate at which energy is supplied and dissipated is
given by Eq.31-77 (Pavg ! !I ! IV).

Calculations: In the primary circuit, with Vp 8.5 kV,!

Np

Ns
!

Vp

Vs
!

8.5 # 10 3 V
120 V

! 70.83 ! 71.

Vs

Vp
!

Ns

Np
.

!

LC Energy Transfers In an oscillating LC circuit, energy is
shuttled periodically between the electric field of the capacitor and
the magnetic field of the inductor; instantaneous values of the two
forms of energy are

(31-1, 31-2)

where q is the instantaneous charge on the capacitor and i is the

UE !
q2

2C
and UB !

Li2

2
,

Review & Summary

instantaneous current through the inductor. The total energy 
U (! UE $ UB) remains constant.

LC Charge and Current Oscillations The principle of con-
servation of energy leads to

(LC oscillations) (31-11)L
d2q
dt2 $

1
C

 q ! 0

Additional examples, video, and practice available at WileyPLUS

halliday_c31_811-846v2.0.1.qxd  3/5/14  12:24 PM  Page 841

Uploaded By: anonymousSTUDENTS-HUB.com



842 CHAPTER 31 ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

as the differential equation of LC oscillations (with no resistance).
The solution of Eq. 31-11 is

q ! Q cos(vt $ f) (charge), (31-12)

in which Q is the charge amplitude (maximum charge on the capac-
itor) and the angular frequency v of the oscillations is

(31-4)

The phase constant f in Eq. 31-12 is determined by the initial con-
ditions (at t ! 0) of the system.

The current i in the system at any time t is

i ! %vQ sin(vt $ f) (current), (31-13)

in which vQ is the current amplitude I.

Damped Oscillations Oscillations in an LC circuit are damped
when a dissipative element R is also present in the circuit.Then

(RLC circuit). (31-24)

The solution of this differential equation is

q ! Qe%Rt/2L cos(v&t $ f), (31-25)

where (31-26)

We consider only situations with small R and thus small damping;
then v& ! v.

Alternating Currents; Forced Oscillations A series RLC
circuit may be set into forced oscillation at a driving angular fre-
quency vd by an external alternating emf

! ! !m sin vdt. (31-28)

The current driven in the circuit is   

i ! I sin(vdt % f), (31-29)

where f is the phase constant of the current.

Resonance The current amplitude I in a series RLC circuit 
driven by a sinusoidal external emf is a maximum (I ! !m/R) when
the driving angular frequency vd equals the natural angular 
frequency v of the circuit (that is, at resonance). Then XC ! XL,
f ! 0, and the current is in phase with the emf.

Single Circuit Elements The alternating potential difference
across a resistor has amplitude VR ! IR; the current is in phase
with the potential difference.

For a capacitor,VC ! IXC, in which XC ! 1/vdC is the capacitive
reactance; the current here leads the potential difference by 90°
(f ! %90° ! %p/2 rad).

v& ! 2v2 % (R/2L)2.

L 
d 2q
dt2 $ R 

dq
dt

$
1
C

 q ! 0

v !
11LC

.

For an inductor, VL ! IXL, in which XL ! vdL is the inductive
reactance; the current here lags the potential difference by 90°
(f ! $90° ! $p/2 rad).

Series RLC Circuits For a series RLC circuit with an alternat-
ing external emf given by Eq. 31-28 and a resulting alternating
current given by Eq. 31-29,

(current amplitude) (31-60, 31-63)

and (phase constant). (31-65)

Defining the impedance Z of the circuit as

(impedance) (31-61)

allows us to write Eq. 31-60 as I ! !m/Z.

Power In a series RLC circuit, the average power Pavg of the
generator is equal to the production rate of thermal energy in the
resistor:

(31-71, 31-76)

Here rms stands for root-mean-square; the rms quantities are
related to the maximum quantities by 
and The term cos f is called the power factor of the
circuit.

Transformers A transformer (assumed to be ideal) is an iron core
on which are wound a primary coil of Np turns and a secondary coil of
Ns turns. If the primary coil is connected across an alternating-current
generator, the primary and secondary voltages are related by

(transformation of voltage). (31-79)

The currents through the coils are related by

(transformation of currents), (31-80)

and the equivalent resistance of the secondary circuit, as seen by
the generator, is

(31-82)

where R is the resistive load in the secondary circuit. The ratio
Np/Ns is called the transformer’s turns ratio.

Req ! " Np

Ns
#2

R,

Is ! Ip
Np

Ns

Vs ! Vp
Ns

Np

erms ! em /12.
V/12,Irms ! I/12, Vrms !

Pavg ! I 2
rmsR ! !rmsIrms cos f.

Z ! 2R2 $ (XL % XC)2

tan f !
XL % XC

R

!
!m2R2 $ (vdL % 1/vdC)2

I !
!m2R2 $ (XL % XC)2

Problems

1 In an oscillating LC circuit with L ! 79 mH and C ! 4.0 mF, the
current is initially a maximum. How long will it take before the ca-
pacitor is fully charged for (a) the first time and (b) the second time?

2 An ac generator with emf ! ! !m sin vdt, where !m ! 18.0 V
and vd ! 377 rad/s, is connected to a 4.15 mF capacitor. (a) What
is the maximum value of the current? (b) When the current is a
maximum, what is the emf of the generator? (c) When the emf of

the generator is %12.5 V and
increasing in magnitude, what
is the current?

3 In Fig. 31-19, a generator
with an adjustable frequency
of oscillation is connected to re-
sistance R 100 , inductances"! Figure 31-19 Problem 3.

G C 1  C 2  C 3

L 1 R 

L 2
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843PROBLEMS

L1 ! 9.70 mH and L2 ! 2.30 mH, and capacitances C1 ! 8.40 mF,
C2 ! 2.50 mF, and C3 ! 3.50 mF. (a) What is the resonant frequency
of the circuit? (Hint: See Problem 11 in Chapter 30.) What happens
to the resonant frequency if (b) R is increased, (c) L1 is increased,
(d) C3 is removed from the circuit, and (e) L2 is removed?

4 A 80.0 " resistor is connected as in Fig. 31-8 to an ac generator
with 30.0 V. What is the amplitude of the resulting alternating
current if the frequency of the emf is (a) 1.00 kHz and (b) 8.00 kHz?

5 In Fig. 31-7, set R ! 400 ", C ! 70.0 mF, L ! 920 mH, fd !
30.0 Hz, and 72.0 V. What are (a) Z, (b) f, and (c) I?
(d) Draw a phasor diagram.

6 In an oscillating series RLC circuit, find the time required for
the maximum energy present in the capacitor during an oscillation
to fall to 25% of its initial value.Assume q ! Q at t ! 0.

7 An RLC circuit such as that of Fig. 31-7 has R 5.00 ,
C 20.0 mF, L 2.00 H, and 30.0 V. (a) At what angular
frequency vd will the current amplitude have its maximum value,
as in the resonance curves of Fig. 31-16? (b) What is this maximum
value? At what (c) lower angular frequency vd1 and (d) higher an-
gular frequency vd2 will the current amplitude be half this maxi-
mum value? (e) For the resonance curve for this circuit, what is the
fractional half-width (vd1 % vd2)/v?

8 An alternating source with a variable frequency, a capacitor
with capacitance C, and a resistor with resistance R are connected
in series. Figure 31-20 gives the impedance Z of the circuit versus
the driving angular frequency vd; the curve reaches an asymptote
of 500 ", and the horizontal scale is set by vds ! 600 rad/s. The fig-
ure also gives the reactance XC for the capacitor versus vd. What
are (a) R and (b) C?

!m !!!
"!

!m !

!m !

12 An alternating emf source with a variable frequency fd is con-
nected in series with an 80.0 " resistor and a 25.0 mH inductor.The
emf amplitude is 6.00 V. (a) Draw a phasor diagram for phasor VR

(the potential across the resistor) and phasor VL (the potential
across the inductor). (b) At what driving frequency fd do the two
phasors have the same length? At that driving frequency, what are
(c) the phase angle in degrees, (d) the angular speed at which the
phasors rotate, and (e) the current amplitude?

13 Remove the capacitor from the circuit in Fig. 31-7 and set 
R ! 400 ", L ! 230 mH, fd ! 120 Hz, and !m ! 72.0 V. What are
(a) Z, (b) f, and (c) I? (d) Draw a phasor diagram.

14 An alternating source drives a series RLC circuit with an emf
amplitude of 10.0 V, at a phase angle of $30.0°.When the potential
difference across the capacitor reaches its maximum positive value
of 5.00 V, what is the potential difference across the inductor
(sign included)?

15 A coil of inductance 62 mH and unknown resistance and a
0.94 mF capacitor are connected in series with an alternating emf
of frequency 930 Hz. If the phase constant between the applied
voltage and the current is 82°, what is the resistance of the coil?

16 In a series oscillating RLC circuit, R 12.0 ", C 5 31.2 F,
L 9.20 mH, and sin vdt with 45.0 V and 

3000 rad/s. For time t 0.442 ms find (a) the rate Pg at
which energy is being supplied by the generator, (b) the rate PC

at which the energy in the capacitor is changing, (c) the rate PL at
which the energy in the inductor is changing, and (d) the rate 
PR at which energy is being dissipated in the resistor. (e) Is the sum
of PC, PL, and PR greater than, less than, or equal to Pg?

17 An ac generator has emf ! ! !m sin(vdt % p/4), where 
25.0 V and 270 rad/s. The current produced in a con-

nected circuit is i(t) I sin( t 3p/4), where I 620 mA. At
what time after t 0 does (a) the generator emf first reach a
maximum and (b) the current first reach a maximum? (c) The 
circuit contains a single element other than the generator. Is it a
capacitor, an inductor, or a resistor? Justify your answer. (d) What
is the value of the capacitance, inductance, or resistance, as the case
may be?

18 A generator supplies 100 V to a transformer’s primary coil,
which has 100 turns. If the secondary coil has 500 turns, what is the
secondary voltage?

19 What direct current will produce the same amount of thermal
energy, in a particular resistor, as an alternating current that has a
maximum value of 7.82 A?

20 An ac generator with emf amplitude !m ! 180 V and operat-
ing at frequency 400 Hz causes oscillations in a series RLC circuit
having R 220 ", L ! 150 mH, and C ! 24.0 mF. Find (a) the ca-
pacitive reactance XC, (b) the impedance Z, and (c) the current
amplitude I. A second capacitor of the same capacitance is then
connected in series with the other components. Determine
whether the values of (d) XC, (e) Z, and (f) I increase, decrease, or
remain the same.

21 An ac generator provides emf to a resistive load in a remote
factory over a two-cable transmission line. At the factory a 
step-down transformer reduces the voltage from its (rms) trans-
mission value Vt to a much lower value that is safe and conven-
ient for use in the factory. The transmission line resistance is 
0.30 "/cable, and the power of the generator is 300 kW. If 
Vt ! 80 kV, what are (a) the voltage decrease 'V along the
transmission line and (b) the rate Pd at which energy is 

!

!
!%(d!

(d !!m !

!vd !
!m !!m ! !m!

)!

$

Z,
 X

C 
(Ω

) 

400 

0 
  d (rad/s) 

800 

XC 

Z 

ω   d (rad/s) ω 
  dsω 

Figure 31-20 Problem 8.

9 (a) In an RLC circuit, can the amplitude of the voltage across 
an inductor be greater than the amplitude of the generator emf? 
(b) Consider an RLC circuit with emf amplitude !m ! 10 V, resist-
ance R ! 5.0 ", inductance L ! 1.0 H, and capacitance C ! 1.0 mF.
Find the amplitude of the voltage across the inductor at resonance.

10 For Fig. 31-21, show that the aver-
age rate at which energy is dissipated
in resistance R is a maximum when R
is equal to the internal resistance r of
the ac generator. (In the text discus-
sion we tacitly assumed that r ! 0.)

11 An air conditioner connected
to a 125 V rms ac line is equivalent
to a 9.20 resistance and a 4.70 
inductive reactance in series. Calculate (a) the impedance of the air
conditioner and (b) the average rate at which energy is supplied to
the appliance.

""

r 

R 

Figure 31-21 Problem 10.
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23 Figure 31-23 shows an ac gener-
ator connected to a “black box”
through a pair of terminals. The box
contains an RLC circuit, possibly
even a multiloop circuit, whose ele-
ments and connections we do not
know. Measurements outside the box
reveal that

!(t) ! (61.4 V) sin vdt

and i(t) ! (0.930 A) sin(vdt $ 42.0°).

(a) What is the power factor? (b) Does the current lead or lag the
emf? (c) Is the circuit in the box largely inductive or largely
capacitive? (d) Is the circuit in the box in resonance? (e) Must
there be a capacitor in the box? (f) An inductor? (g) A resistor?
(h) At what average rate is energy delivered to the box by the
generator? (i) Why don’t you need to know vd to answer all these
questions?

24 What is the capacitance of an oscillating LC circuit if the 
maximum charge on the capacitor is 2.40 mC and the total energy is
140 mJ?

25 Remove the inductor from the circuit in Fig. 31-7 and set 
R ! 400 ", C ! 15.0 mF, fd ! 30.0 Hz, and !m ! 72.0 V. What are
(a) Z, (b) f, and (c) I? (d) Draw a phasor diagram.

26 Figure 31-24 shows a driven RLC circuit that contains two
identical capacitors and two switches. The emf amplitude is set at
12.0 V, and the driving frequency is set at 60.0 Hz. With both
switches open, the current leads the emf by 25.0°. With switch S1

closed and switch S2 still open, the emf leads the current by 20.0°.
With both switches closed, the current amplitude is 447 mA. What
are (a) R, (b) C, and (c) L?

844 CHAPTER 31 ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

28 To construct an oscillating LC system, you can choose from a
10 mH inductor, a 8.0 mF capacitor, and a 4.0 mF capacitor. What
are the (a) smallest, (b) second smallest, (c) second largest, and 
(d) largest oscillation frequency that can be set up by these ele-
ments in various combinations?

29 In an RLC circuit such as that of Fig.31-7 assume that R ! 12.0 ",
L ! 60.0 mH, fd ! 60.0 Hz, and !m ! 30.0 V. For what values of the
capacitance would the average rate at which energy is dissipated 
in the resistance be (a) a maximum and (b) a minimum? What are 
(c) the maximum dissipation rate and the corresponding (d) phase
angle and (e) power factor? What are (f) the minimum dissipation
rate and the corresponding (g) phase angle and (h) power factor?

30 An alternating emf source with a variable frequency fd is con-
nected in series with a 50.0 resistor and a 28.0 mF capacitor. The
emf amplitude is 12.0 V. (a) Draw a phasor diagram for phasor VR

(the potential across the resistor) and phasor VC (the potential
across the capacitor). (b) At what driving frequency fd do the two
phasors have the same length? At that driving frequency, what are
(c) the phase angle in degrees, (d) the angular speed at which the
phasors rotate, and (e) the current amplitude?

31 In an oscillating series RLC circuit, show that 'U/U, the frac-
tion of the energy lost per cycle of oscillation, is given to a close ap-
proximation by 2pR/vL. The quantity vL/R is often called the Q
of the circuit (for quality). A high-Q circuit has low resistance and
a low fractional energy loss (! 2p/Q) per cycle.

32 In an oscillating LC circuit in which C ! 6.00 mF, the maxi-
mum potential difference across the capacitor during the oscillations
is 1.50 V and the maximum current through the inductor is 50.0 mA.
What are (a) the inductance L and (b) the frequency of the oscilla-
tions? (c) How much time is required for the charge on the capacitor
to rise from zero to its maximum value?

33 A 85.0 mH inductor is connected as in Fig. 31-12 to an ac gen-
erator with 30.0 V. What is the amplitude of the resulting al-
ternating current if the frequency of the emf is (a) 1.00 kHz and (b)
5.00 kHz?

34 An inductor is connected across a capacitor whose
capacitance can be varied by turning a knob. We wish to make the
frequency of oscillation of this LC circuit vary linearly with the an-
gle of rotation of the knob, going from 2 # 105 to 4 # 105 Hz as the
knob turns through 180°. If L ! 2.0 mH, plot the required capaci-
tance C as a function of the angle of rotation of the knob.

35 A transformer has 400 primary turns and 10 secondary turns.
(a) If Vp is 120 V (rms), what is Vs with an open circuit? If the sec-
ondary now has a resistive load of 27 ", what is the current in the
(b) primary and (c) secondary?

36 A typical light dimmer used to
dim the stage lights in a theater con-
sists of a variable inductor L (whose
inductance is adjustable between zero
and Lmax) connected in series with a
lightbulb B, as shown in Fig. 31-25.
The electrical supply is 120 V (rms) at
60.0 Hz; the lightbulb is rated at 120 V, 1200 W. (a) What Lmax is
required if the rate of energy dissipation in the lightbulb is to be 
varied by a factor of 4 from its upper limit of 1200 W? Assume that
the resistance of the lightbulb is independent of its temperature.
(b) Could one use a variable resistor (adjustable between zero and
Rmax) instead of an inductor? (c) If so, what Rmax is required? (d) Why
isn’t this done?

!m !

"

dissipated in the line as thermal energy? If Vt ! 8.0 kV, what are
(c) 'V and (d) Pd? If Vt ! 0.80 kV, what are (e) 'V and (f) Pd?

22 A single loop consists of inductors (L1, L2, . . .), capacitors (C1,
C2, . . .), and resistors (R1, R2, . . .) connected in series as shown, for
example, in Fig. 31-22a. Show that regardless of the sequence of
these circuit elements in the loop, the behavior of this circuit is
identical to that of the simple LC circuit shown in Fig. 31-22b.
(Hint: Consider the loop rule and see Problem 11 in Chapter 30.)

Figure 31-24 Problem 26.

S2 S1 R C 
C L 

(t) 

i(t) 

? 

Figure 31-23 Problem 23.

Figure 31-22 Problem 22.

L C R 

(b) (a) 

L 2C 1  
L 1 C 2

R 2R 1  

To energy 
supply 

L B

Figure 31-25 Problem 36.

27 In an oscillating LC circuit, L ! 5.97 mH and C ! 4.00 mF.
The maximum charge on the capacitor is 3.00 mC. Find (a) the
maximum current and (b) the oscillation period.
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47 The fractional half-width 'vd of a resonance curve, such as
the ones in Fig. 31-16, is the width of the curve at half the maximum
value of I. (a) Show that 'vd/v ! R(3C/L)1/2, where v is the angu-
lar frequency at resonance. (b) What happens to the ratio 'vd/v
with an increase in R?

48 LC oscillators have been used in circuits connected to loud-
speakers to create some of the sounds of electronic music. What
inductance must be used with a 3.4 mF capacitor to produce a fre-
quency of 10 kHz, which is near the middle of the audible range of
frequencies?

49 In Fig. 31-26, R ! 14.0 , C 31.2 mF, and L 54.0 mH, and
the ideal battery has emf ! ! 34.0 V.
The switch is kept at a for a long time
and then thrown to position b. What
are the (a) frequency and (b) current
amplitude of the resulting oscilla-
tions?

50 Figure 31-27 shows an “auto-
transformer.” It consists of a single
coil (with an iron core). Three taps Ti

are provided. Between taps T1 and T2 there
are 50 turns, and between taps T2 and T3

there are 800 turns. Any two taps can be
chosen as the primary terminals, and any
two taps can be chosen as the secondary 
terminals. For choices producing a step-up
transformer, what are the (a) smallest,
(b) second smallest, and (c) largest values of
the ratio Vs/Vp? For a step-down trans-
former, what are the (d) smallest, (e) second
smallest, and (f) largest values of Vs/Vp?

51 In an oscillating LC circuit, L ! 3.00 mH and C ! 3.90 mF. At
t ! 0 the charge on the capacitor is zero and the current is 1.75 A.
(a) What is the maximum charge that will appear on the capacitor?
(b) At what earliest time t * 0 is the rate at which energy is stored
in the capacitor greatest, and (c) what is that greatest rate?

52 A 1.50 mF capacitor is connected as in Fig. 31-10 to an ac gen-
erator with !m ! 24.0 V. What is the amplitude of the resulting
alternating current if the frequency of the emf is (a) 1.00 kHz and
(b) 8.00 kHz?

53 An oscillating LC circuit consists of a 75.0 mH inductor and a
3.60 mF capacitor. If the maximum charge on the capacitor is
5.00 mC, what are (a) the total energy in the circuit, (b) the maxi-
mum current, and (c) the period of the oscillations?

54 A single-loop circuit consists of a 7.20 " resistor, a 12.0 H induc-
tor, and a 5.60 mF capacitor. Initially the capacitor has a charge of
6.20 mC and the current is zero. Calculate the charge on the capacitor
N complete cycles later for (a) N ! 5, (b) N ! 10, and (c) N ! 100.

55 In an oscillating LC circuit with C ! 64.0 mF, the current is
given by i (1.60) sin(4100t 0.680), where t is in seconds, i in
amperes, and the phase constant in radians. (a) How soon after t ! 0
will the current reach its maximum value? What are (b) the induc-
tance L and (c) the total energy?

56 An oscillating LC circuit has a current amplitude of 7.50 mA,
a potential amplitude of 280 mV, and a capacitance of 220 nF.What
are (a) the period of oscillation, (b) the maximum energy stored in
the capacitor, (c) the maximum energy stored in the inductor,
(d) the maximum rate at which the current changes, and (e) the
maximum rate at which the inductor gains energy?

$!

!!"

37 In a certain oscillating LC circuit, the total energy is con-
verted from electrical energy in the capacitor to magnetic energy
in the inductor in 2.50 ms. What are (a) the period of oscillation
and (b) the frequency of oscillation? (c) How long after the mag-
netic energy is a maximum will it be a maximum again? (d) In
one full cycle, how many times will the electrical energy be 
maximum?

38 An ac voltmeter with large impedance is connected in turn
across the inductor, the capacitor, and the resistor in a series circuit
having an alternating emf of 125 V (rms); the meter gives the same
reading in volts in each case.What is this reading?

39 In Fig. 31-7, R ! 25.0 ", C ! 4.70 mF, and L ! 25.0 mH. The
generator provides an emf with rms voltage 75.0 V and frequency
550 Hz. (a) What is the rms current? What is the rms voltage across
(b) R, (c) C, (d) L, (e) C and L together, and (f) R, C, and L to-
gether? At what average rate is energy dissipated by (g) R, (h) C,
and (i) L?

40 A series circuit containing inductance L1 and capacitance
C1 oscillates at angular frequency v. A second series circuit, con-
taining inductance L2 and capacitance C2, oscillates at the same
angular frequency. In terms of v, what is the angular frequency of
oscillation of a series circuit containing all four of these elements?
Neglect resistance. (Hint: Use the formulas for equivalent capaci-
tance and equivalent inductance; see Module 25-3 and Problem 11
in Chapter 30.)

41 A variable capacitor with a range from 10 to 410 pF is used
with a coil to form a variable-frequency LC circuit to tune the in-
put to a radio. (a) What is the ratio of maximum frequency to mini-
mum frequency that can be obtained with such a capacitor? If this
circuit is to obtain frequencies from 0.54 MHz to 1.60 MHz, the ra-
tio computed in (a) is too large. By adding a capacitor in parallel to
the variable capacitor, this range can be adjusted.To obtain the de-
sired frequency range, (b) what capacitance should be added and
(c) what inductance should the coil have?

42 What is the maximum value of an ac voltage whose rms value
is 220 V?

43 In an oscillating LC circuit, L ! 25.0 mH and C ! 2.89 mF. At
time t 0 the current is 9.20 mA, the charge on the capacitor is
3.80 mC, and the capacitor is charging. What are (a) the total en-
ergy in the circuit, (b) the maximum charge on the capacitor, and
(c) the maximum current? (d) If the charge on the capacitor is
given by q ! Q cos(vt $ f), what is the phase angle f?
(e) Suppose the data are the same, except that the capacitor is
discharging at t ! 0.What then is f?

44 An ac generator has emf ! ! !m sin vdt, with !m ! 30.0 V
and vd ! 377 rad/s. It is connected to a 12.7 H inductor. (a) What is
the maximum value of the current? (b) When the current is a maxi-
mum, what is the emf of the generator? (c) When the emf of
the generator is %15.0 V and increasing in magnitude, what is the
current?

45 An electric motor has an effective resistance of 61.0 " and an
inductive reactance of 52.0 " when working under load. The rms
voltage across the alternating source is 420 V. Calculate the rms
current.

46 A 0.25 kg body oscillates in SHM on a spring that, when ex-
tended 2.0 mm from its equilibrium position, has an 8.0 N restoring
force. What are (a) the angular frequency of oscillation, (b) the pe-
riod of oscillation, and (c) the capacitance of an LC circuit with the
same period if L is 5.0 H?

!

Figure 31-26 Problem 49.
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Figure 31-27
Problem 50.
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57 An oscillating LC circuit consisting of a 1.0 nF capacitor and a
9.0 mH coil has a maximum voltage of 3.0 V.What are (a) the max-
imum charge on the capacitor, (b) the maximum current through
the circuit, and (c) the maximum energy stored in the magnetic
field of the coil?

58 The current amplitude I versus driving angular frequency vd

for a driven RLC circuit is given in Fig. 31-28, where the vertical
axis scale is set by Is ! 4.00 A. The inductance is 450 mH, and the
emf amplitude is 6.0 V.What are (a) C and (b) R?

846 CHAPTER 31 ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

61 What resistance R should be connected in series with an in-
ductance L 490 mH and capacitance C 19.0 mF for the maxi-
mum charge on the capacitor to decay to 85.0% of its initial value
in 50.0 cycles? (Assume v& ! v.)

62 In an oscillating LC circuit, when 30.0% of the total energy is
stored in the inductor’s magnetic field, (a) what multiple of the
maximum charge is on the capacitor and (b) what multiple of the
maximum current is in the inductor?

63 Using the loop rule, derive the differential equation for an LC
circuit (Eq. 31-11).

64 The frequency of oscillation of a certain LC circuit is 
220 kHz. At time t ! 0, plate A of the capacitor has maximum
positive charge. At what earliest time t * 0 will (a) plate A again
have maximum positive charge, (b) the other plate of the capaci-
tor have maximum positive charge, and (c) the inductor have
maximum magnetic field?

65 (a) At what frequency would a 12 mH inductor and a 10 mF
capacitor have the same reactance? (b) What would the reactance
be? (c) Show that this frequency would be the natural frequency of
an oscillating circuit with the same L and C.

!!
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Figure 31-28 Problem 58.
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Figure 31-29 Problem 60.

59 The energy in an oscillating LC circuit containing a 2.50 H in-
ductor is 5.70 mJ. The maximum charge on the capacitor is 175 mC.
For a mechanical system with the same period, find the (a) mass,
(b) spring constant, (c) maximum displacement, and (d) maximum
speed.

60 An alternating source with a variable frequency, an inductor
with inductance L, and a resistor with resistance R are connected
in series. Figure 31-29 gives the impedance Z of the circuit versus
the driving angular frequency vd, with the horizontal axis scale set
by vds ! 3200 rad/s. The figure also gives the reactance XL for the
inductor versus vd.What are (a) R and (b) L?
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C H A P T E R  3 2

Maxwell’s Equations; Magnetism of Matter

847

32-1 GAUSS’ LAW FOR MAGNETIC FIELDS

After reading this module, you should be able to . . .

32.01 Identify that the simplest magnetic structure is a
magnetic dipole.

32.02 Calculate the magnetic flux ! through a surface by
integrating the dot product of the magnetic field vector 

● The simplest magnetic structures are magnetic dipoles. Magnetic monopoles do not exist (as far as we know). Gauss’ law for
magnetic fields,

states that the net magnetic flux through any (closed) Gaussian surface is zero. It implies that magnetic monopoles do not exist.

!B " ! B
:

! dA
:

" 0,

Learning Objectives

Key Idea

and the area vector (for patch elements) over the
surface.

32.03 Identify that the net magnetic flux through a Gaussian
surface (which is a closed surface) is zero.

dA
:

B
:

What Is Physics?
This chapter reveals some of the breadth of physics because it ranges from the
basic science of electric and magnetic fields to the applied science and engi-
neering of magnetic materials. First, we conclude our basic discussion of elec-
tric and magnetic fields, finding that most of the physics principles in the last
11 chapters can be summarized in only four equations, known as Maxwell’s
equations.

Second, we examine the science and engineering of magnetic materials. The
careers of many scientists and engineers are focused on understanding why some
materials are magnetic and others are not and on how existing magnetic materi-
als can be improved. These researchers wonder why Earth has a magnetic field
but you do not.They find countless applications for inexpensive magnetic materi-
als in cars, kitchens, offices, and hospitals, and magnetic materials often show up
in unexpected ways. For example, if you have a tattoo (Fig. 32-1) and undergo an
MRI (magnetic resonance imaging) scan, the large magnetic field used in the
scan may noticeably tug on your tattooed skin because some tattoo inks contain
magnetic particles. In another example, some breakfast cereals are advertised as
being “iron fortified” because they contain small bits of iron for you to ingest.
Because these iron bits are magnetic, you can collect them by passing a magnet
over a slurry of water and cereal.

Our first step here is to revisit Gauss’ law, but this time for magnetic fields.

Figure 32-1 Some of the inks used for tattoos contain magnetic particles. O
liv

er
 S

tr
ew

e/
G
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 I
m
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.
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Gauss’ law for magnetic fields is a formal way of saying that magnetic
monopoles do not exist. The law asserts that the net magnetic flux !B through
any closed Gaussian surface is zero:

(Gauss’ law for magnetic fields). (32-1)

Contrast this with Gauss’ law for electric fields,

(Gauss’ law for electric fields).

In both equations, the integral is taken over a
closed Gaussian surface. Gauss’ law for electric
fields says that this integral (the net electric flux
through the surface) is proportional to the net
electric charge qenc enclosed by the surface.
Gauss’ law for magnetic fields says that there
can be no net magnetic flux through the surface
because there can be no net “magnetic charge”
(individual magnetic poles) enclosed by the sur-
face. The simplest magnetic structure that can
exist and thus be enclosed by a Gaussian surface
is a dipole, which consists of both a source and a
sink for the field lines. Thus, there must always
be as much magnetic flux into the surface as out
of it, and the net magnetic flux must always be
zero.

Gauss’ law for magnetic fields holds for
structures more complicated than a magnetic di-
pole, and it holds even if the Gaussian surface does not enclose the entire struc-
ture. Gaussian surface II near the bar magnet of Fig. 32-4 encloses no poles, and
we can easily conclude that the net magnetic flux through it is zero. Gaussian sur-
face I is more difficult. It may seem to enclose only the north pole of the magnet
because it encloses the label N and not the label S. However, a south pole must be
associated with the lower boundary of the surface because magnetic field lines
enter the surface there. (The enclosed section is like one piece of the broken bar
magnet in Fig. 32-3.) Thus, Gaussian surface I encloses a magnetic dipole, and the
net flux through the surface is zero.

!E " ! E
:

! dA
:

"
qenc

´0

!B " ! B
:

! dA
:

" 0

Richard Megna/Fundamental Photographs

Gauss’ Law for Magnetic Fields
Figure 32-2 shows iron powder that has been sprinkled onto a transparent sheet
placed above a bar magnet. The powder grains, trying to align themselves with
the magnet’s magnetic field, have fallen into a pattern that reveals the field. One
end of the magnet is a source of the field (the field lines diverge from it) and the
other end is a sink of the field (the field lines converge toward it). By convention,
we call the source the north pole of the magnet and the sink the south pole, and
we say that the magnet, with its two poles, is an example of a magnetic dipole.

Suppose we break a bar magnet into pieces the way we can break a piece of
chalk (Fig. 32-3). We should, it seems, be able to isolate a single magnetic pole,
called a magnetic monopole. However, we cannot—not even if we break the
magnet down to its individual atoms and then to its electrons and nuclei. Each
fragment has a north pole and a south pole.Thus:

848 CHAPTER 32 MAXWELL’S EQUATIONS; MAGNETISM OF MATTER

Figure 32-2 A bar magnet is a magnetic dipole.
The iron filings suggest the magnetic field
lines. (Colored light fills the background.)

Figure 32-3 If you break a magnet,
each fragment becomes a sepa-
rate magnet, with its own north
and south poles.

S 

S

S 

S 

N 

N 

N 

N 

The simplest magnetic structure that can exist is a magnetic dipole. Magnetic
monopoles do not exist (as far as we know).

Figure 32-4 The field lines for the magnetic
field of a short bar magnet.The red
curves represent cross sections of closed,
three-dimensional Gaussian surfaces.

B
:

Surface I N 

S 

Surface II 

B 
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84932-2 INDUCED MAGNETIC FIELDS

Checkpoint 1
The figure here shows four closed surfaces with flat top and bottom faces and curved
sides.The table gives the areas A of the faces and the magnitudes B of the uniform
and perpendicular magnetic fields through those faces; the units of A and B are arbi-
trary but consistent. Rank the surfaces according to the magnitudes of the magnetic
flux through their curved sides, greatest first.

Surface Atop Btop Abot Bbot

a 2 6, outward 4 3, inward
b 2 1, inward 4 2, inward
c 2 6, inward 2 8, outward
d 2 3, outward 3 2, outward

(a) (b) (c) (d)

32-2 INDUCED MAGNETIC FIELDS

After reading this module, you should be able to . . .

32.04 Identify that a changing electric flux induces a magnetic field.
32.05 Apply Maxwell’s law of induction to relate the magnetic

field induced around a closed loop to the rate of change of
electric flux encircled by the loop.

32.06 Draw the field lines for an induced magnetic field inside

a capacitor with parallel circular plates that are being
charged, indicating the orientations of the vectors for the
electric field and the magnetic field.

32.07 For the general situation in which magnetic fields can
be induced, apply the Ampere–Maxwell (combined) law.

Learning Objectives

● A changing electric flux induces a magnetic field .
Maxwell’s law,

(Maxwell’s law of induction),

relates the magnetic field induced along a closed loop to the
changing electric flux !E through the loop. 

! B
:

! ds: " m0´0 
d!E

dt

B
:

● Ampere’s law, " , gives the magnetic field
generated by a current ienc encircled by a closed loop.
Maxwell’s law and Ampere’s law can be written as the single
equation

(Ampere–Maxwell law).! B
:

! ds: " m0´0 
d!E

dt
# m0ienc

B
:

! ds: " m0ienc

Key Ideas

Induced Magnetic Fields
In Chapter 30 you saw that a changing magnetic flux induces an electric field, and
we ended up with Faraday’s law of induction in the form

(Faraday’s law of induction). (32-2)

Here is the electric field induced along a closed loop by the changing magnetic
flux encircled by that loop. Because symmetry is often so powerful in physics,
we should be tempted to ask whether induction can occur in the opposite sense;
that is, can a changing electric flux induce a magnetic field?

The answer is that it can; furthermore, the equation governing the induction
of a magnetic field is almost symmetric with Eq. 32-2. We often call it Maxwell’s

!B

E
:

! E
:

! ds: " $
d!B

dt
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law of induction after James Clerk Maxwell, and we write it as

(Maxwell’s law of induction). (32-3)

Here is the magnetic field induced along a closed loop by the changing electricB
:

! B
:

! ds: " m0´0
d!E

dt

850 CHAPTER 32 MAXWELL’S EQUATIONS; MAGNETISM OF MATTER

Figure 32-5 (a) A circular parallel-plate
capacitor, shown in side view, is being
charged by a constant current i. (b) A view
from within the capacitor, looking toward
the plate at the right in (a).The electric
field is uniform, is directed into the page
(toward the plate), and grows in magnitude
as the charge on the capacitor increases.
The magnetic field induced by this
changing electric field is shown at four
points on a circle with a radius r less than
the plate radius R.

B
:

E
:

R 

r 

+ – 

+ – 

+ – 

+ – 

+ – 

+ – 

+ – 

+ – 

(b) 

(a) 

1 

1 

i i 

2 

2 

E 

E 

B 

B 

B 

B 

The changing of the
electric field between
the plates creates a
magnetic field.

flux !E in the region encircled by that loop.
Charging a Capacitor. As an example of this sort of induction, we con-

sider the charging of a parallel-plate capacitor with circular plates. (Although
we shall focus on this arrangement, a changing electric flux will always induce
a magnetic field whenever it occurs.) We assume that the charge on our capac-
itor (Fig. 32-5a) is being increased at a steady rate by a constant current i in
the connecting wires. Then the electric field magnitude between the plates
must also be increasing at a steady rate.

Figure 32-5b is a view of the right-hand plate of Fig. 32-5a from between
the plates. The electric field is directed into the page. Let us consider a circu-
lar loop through point 1 in Figs. 32-5a and b, a loop that is concentric with the
capacitor plates and has a radius smaller than that of the plates. Because the
electric field through the loop is changing, the electric flux through the loop
must also be changing. According to Eq. 32-3, this changing electric flux in-
duces a magnetic field around the loop.

Experiment proves that a magnetic field is indeed induced around such
a loop, directed as shown. This magnetic field has the same magnitude at every
point around the loop and thus has circular symmetry about the central axis of the
capacitor plates (the axis extending from one plate center to the other).

If we now consider a larger loop—say, through point 2 outside the plates
in Figs. 32-5a and b—we find that a magnetic field is induced around that loop
as well. Thus, while the electric field is changing, magnetic fields are induced
between the plates, both inside and outside the gap. When the electric field stops
changing, these induced magnetic fields disappear.

Although Eq. 32-3 is similar to Eq. 32-2, the equations differ in two ways.
First, Eq. 32-3 has the two extra symbols m0 and %0, but they appear only because
we employ SI units. Second, Eq. 32-3 lacks the minus sign of Eq. 32-2, mean-
ing that the induced electric field and the induced magnetic field have
opposite directions when they are produced in otherwise similar situations. To
see this opposition, examine Fig. 32-6, in which an increasing magnetic field ,
directed into the page, induces an electric field . The induced field is counter-
clockwise, opposite the induced magnetic field in Fig. 32-5b.

Ampere–Maxwell Law
Now recall that the left side of Eq. 32-3, the integral of the dot product 
around a closed loop, appears in another equation—namely,Ampere’s law:

(Ampere’s law), (32-4)! B
:

! ds: " m0ienc

B
:

! ds:

B
:

E
:

E
:

B
:

B
:

E
:

B
:

Figure 32-6 A uniform magnetic field in a
circular region.The field, directed into the
page, is increasing in magnitude.The electric
field induced by the changing magnetic
field is shown at four points on a circle con-
centric with the circular region. Compare
this situation with that of Fig. 32-5b.

E
:

B
:

R r 

E 

E 

E 

E 

B 

B 

The induced E direction here is opposite the
induced B direction in the preceding figure.
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85132-2 INDUCED MAGNETIC FIELDS

where ienc is the current encircled by the closed loop.Thus, our two equations that
specify the magnetic field produced by means other than a magnetic material
(that is, by a current and by a changing electric field) give the field in exactly the
same form.We can combine the two equations into the single equation

(Ampere–Maxwell law). (32-5)

When there is a current but no change in electric flux (such as with a wire
carrying a constant current), the first term on the right side of Eq. 32-5 is zero,
and so Eq. 32-5 reduces to Eq. 32-4,Ampere’s law.When there is a change in elec-
tric flux but no current (such as inside or outside the gap of a charging capacitor),
the second term on the right side of Eq. 32-5 is zero, and so Eq. 32-5 reduces to
Eq. 32-3, Maxwell’s law of induction.

! B
:

! ds: " m0´0 
d!E

dt
# m0 ienc

B
:

Checkpoint 2
The figure shows graphs of the electric field magnitude
E versus time t for four uniform electric fields, all con-
tained within identical circular regions as in Fig. 32-5b.
Rank the fields according to the magnitudes of the
magnetic fields they induce at the edge of the region,
greatest first.

a 

b 

c 

d 

E 

t 

Due to the circular symmetry of the plates, we can also as-
sume that has the same magnitude at every point around
the loop. Thus, B can be taken outside the integral on the
right side of the above equation.The integral that remains is

, which simply gives the circumference 2pr of the loop.
The left side of Eq. 32-6 is then (B)(2pr).

Right side of Eq. 32-6: We assume that the electric field 
is uniform between the capacitor plates and directed per-

pendicular to the plates. Then the electric flux !E through
the Amperian loop is EA, where A is the area encircled by
the loop within the electric field. Thus, the right side of Eq.
32-6 is m0´0 d(EA)/dt.

Combining results: Substituting our results for the left and
right sides into Eq. 32-6, we get

Because A is a constant,we write d(EA) as A dE; so we have

(32-7)

The area A that is encircled by the Amperian loop within
the electric field is the full area pr2 of the loop because the
loop’s radius r is less than (or equal to) the plate radius R.
Substituting pr2 for A in Eq. 32-7 leads to, for r & R,

(Answer) (32-8)B "
m0´0r

2
dE
dt

.

(B)(2pr) " m0%0 A 
dE
dt

.

(B)(2pr) " m0´0 
d(EA)

dt
.

E
:

" ds

B
:

Sample Problem 32.01 Magnetic field induced by changing electric field

A parallel-plate capacitor with circular plates of radius R is
being charged as in Fig. 32-5a.

(a) Derive an expression for the magnetic field at radius r
for the case r & R.

KEY IDEAS

A magnetic field can be set up by a current and by induction
due to a changing electric flux; both effects are included in
Eq. 32-5. There is no current between the capacitor plates
of Fig. 32-5, but the electric flux there is changing. Thus,
Eq. 32-5 reduces to

(32-6)

We shall separately evaluate the left and right sides of this
equation.

Left side of Eq. 32-6: We choose a circular Amperian loop
with a radius r & R as shown in Fig. 32-5b because we want
to evaluate the magnetic field for r & R—that is, inside the
capacitor.The magnetic field at all points along the loop is
tangent to the loop, as is the path element . Thus, and

are either parallel or antiparallel at each point of the
loop. For simplicity, assume they are parallel (the choice
does not alter our outcome here).Then

! B
:

! ds: " ! B ds cos 0' " ! B ds.

ds:
B
:

ds:
B
:

! B
:

! ds: " m0 ´0 
d!E

dt
.
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852 CHAPTER 32 MAXWELL’S EQUATIONS; MAGNETISM OF MATTER

loop in the electric field is not the full area pr 2 of the loop.
Rather, A is only the plate area pR2.

Substituting pR2 for A in Eq. 32-7 and solving the result
for B give us, for r ( R,

(Answer) (32-9)

This equation tells us that, outside the capacitor, B
decreases with increased radial distance r, from a maximum
value at the plate edges (where r " R). By substituting r "
R into Eqs. 32-8 and 32-9, you can show that these equations
are consistent; that is, they give the same maximum value of
B at the plate radius.

The magnitude of the induced magnetic field calculated in
(b) is so small that it can scarcely be measured with simple ap-
paratus. This is in sharp contrast to the magnitudes of induced
electric fields (Faraday’s law), which can be measured easily.
This experimental difference exists partly because induced
emfs can easily be multiplied by using a coil of many turns. No
technique of comparable simplicity exists for multiplying in-
duced magnetic fields. In any case, the experiment suggested
by this sample problem has been done, and the presence of the
induced magnetic fields has been verified quantitatively.

B "
m0´0R2

2r
dE
dt

.

This equation tells us that, inside the capacitor, B increases
linearly with increased radial distance r, from 0 at the cen-
tral axis to a maximum value at plate radius R.

(b) Evaluate the field magnitude B for r " R/5 " 11.0 mm
and dE/dt " 1.50 ) 1012 V/m *s.

Calculation: From the answer to (a), we have

(Answer)

(c) Derive an expression for the induced magnetic field for
the case r ( R.

Calculation: Our procedure is the same as in (a) except we
now use an Amperian loop with a radius r that is greater
than the plate radius R, to evaluate B outside the capacitor.
Evaluating the left and right sides of Eq. 32-6 again leads to
Eq. 32-7. However, we then need this subtle point: The elec-
tric field exists only between the plates, not outside the
plates. Thus, the area A that is encircled by the Amperian

 " 9.18 ) 10$8 T.
) (11.0 ) 10$3 m)(1.50 ) 1012 V/m * s)

 " 1
2 (4p ) 10$7 T * m/A)(8.85 ) 10$12 C2/N * m2)

  B "
1
2

 m0´0r 
dE
dt

32-3 DISPLACEMENT CURRENT

After reading this module, you should be able to . . .

32.08 Identify that in the Ampere–Maxwell law, the contribution
to the induced magnetic field by the changing electric flux
can be attributed to a fictitious current (“displacement cur-
rent”) to simplify the expression.

32.09 Identify that in a capacitor that is being charged or
discharged, a displacement current is said to be spread uni-
formly over the plate area, from one plate to the other.

32.10 Apply the relationship between the rate of change of an
electric flux and the associated displacement current.

32.11 For a charging or discharging capacitor, relate
the amount of displacement current to the amount of actual

current and identify that the displacement current exists only
when the electric field within the capacitor is changing.

32.12 Mimic the equations for the magnetic field inside and
outside a wire with real current to write (and apply) the
equations for the magnetic field inside and outside a
region of displacement current.

32.13 Apply the Ampere–Maxwell law to calculate the
magnetic field of a real current and a displacement current.

32.14 For a charging or discharging capacitor with parallel
circular plates, draw the magnetic field lines due to the
displacement current.

32.15 List Maxwell’s equations and the purpose of each.

Learning Objectives

● We define the fictitious displacement current due to a
changing electric field as

● The Ampere–Maxwell law then becomes

(Ampere–Maxwell law),! B
:

! ds: " m0id,enc # m0ienc

id " ´0 
d!E

dt
.

where id,enc is the displacement current encircled by the
integration loop. 
● The idea of a displacement current allows us to retain the
notion of continuity of current through a capacitor. However,
displacement current is not a transfer of charge.
● Maxwell’s equations, displayed in Table 32-1, summarize
electromagnetism and form its foundation, including optics.

Key Ideas

Additional examples, video, and practice available at WileyPLUS
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85332-3 DISPLACEMENT CURRENT

Displacement Current
If you compare the two terms on the right side of Eq. 32-5, you will see that the
product ´0(d!E/dt) must have the dimension of a current. In fact, that product has
been treated as being a fictitious current called the displacement current id:

(displacement current). (32-10)

“Displacement” is poorly chosen in that nothing is being displaced, but we are
stuck with the word. Nevertheless, we can now rewrite Eq. 32-5 as

(Ampere–Maxwell law), (32-11)

in which id,enc is the displacement current that is encircled by the integration loop.
Let us again focus on a charging capacitor with circular plates, as in

Fig. 32-7a.The real current i that is charging the plates changes the electric field 
between the plates. The fictitious displacement current id between the plates is
associated with that changing field . Let us relate these two currents.

The charge q on the plates at any time is related to the magnitude E of the
field between the plates at that time and the plate area A by Eq. 25-4:

q " ´0AE. (32-12)

To get the real current i, we differentiate Eq. 32-12 with respect to time, finding

(32-13)

To get the displacement current id, we can use Eq. 32-10. Assuming that the elec-
tric field between the two plates is uniform (we neglect any fringing), we canE

:

dq
dt

" i " ´0 A 
dE
dt

.

E
:

E
:

! B
:

! ds: " m0 id,enc # m0 ienc

id " ´0 
d!E

dt

(b)

(c)

id

–

BB

+ –

i

i i

+

i

(d) –+

(a)

B

BB B

Before charging, there
is no magnetic field.

After charging, there
is no magnetic field.

During charging, magnetic 
field is created by both 
the real and fictional currents. 

During charging, the 
right-hand rule works for both 
the real and fictional currents.

A

Figure 32-7 (a) Before and (d) after the plates
are charged, there is no magnetic field. (b)
During the charging, magnetic field is created
by both the real current and the (fictional)
displacement current. (c) The same right-
hand rule works for both currents to give the
direction of the magnetic field.
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replace the electric flux !E in that equation with EA.Then Eq. 32-10 becomes

(32-14)

Same Value. Comparing Eqs. 32-13 and 32-14, we see that the real current i
charging the capacitor and the fictitious displacement current id between the
plates have the same value:

id " i (displacement current in a capacitor). (32-15)

Thus, we can consider the fictitious displacement current id to be simply a con-
tinuation of the real current i from one plate, across the capacitor gap, to the
other plate. Because the electric field is uniformly spread over the plates,
the same is true of this fictitious displacement current id, as suggested by the
spread of current arrows in Fig. 32-7b. Although no charge actually moves across
the gap between the plates, the idea of the fictitious current id can help us to
quickly find the direction and magnitude of an induced magnetic field, as follows.

Finding the Induced Magnetic Field
In Chapter 29 we found the direction of the magnetic field produced by a real
current i by using the right-hand rule of Fig. 29-5. We can apply the same rule to
find the direction of an induced magnetic field produced by a fictitious displace-
ment current id, as is shown in the center of Fig. 32-7c for a capacitor.

We can also use id to find the magnitude of the magnetic field induced by
a charging capacitor with parallel circular plates of radius R. We simply consider
the space between the plates to be an imaginary circular wire of radius R carrying
the imaginary current id. Then, from Eq. 29-20, the magnitude of the magnetic
field at a point inside the capacitor at radius r from the center is

(inside a circular capacitor). (32-16)

Similarly, from Eq. 29-17, the magnitude of the magnetic field at a point outside
the capacitor at radius r is

(outside a circular capacitor). (32-17)B "
m0 id

2pr

B " # m0 id

2pR2 $r

id " ´0
d!E

dt
" ´0

d(EA)
dt

" ´0A
dE
dt

.

854 CHAPTER 32 MAXWELL’S EQUATIONS; MAGNETISM OF MATTER

Checkpoint 3
The figure is a view of one plate of a parallel-plate
capacitor from within the capacitor.The dashed lines
show four integration paths (path b follows the edge of
the plate). Rank the paths according to the magnitude
of along the paths during the discharging of
the capacitor, greatest first.

" B
:

! ds:

a 

b 

c 

d 

KEY IDEA

A magnetic field can be set up by a current and by induction
due to a changing electric flux (Eq. 32-5). Between the
plates in Fig. 32-5, the current is zero and we can account for

Sample Problem 32.02 Treating a changing electric field as a displacement current

A circular parallel-plate capacitor with plate radius R is 
being charged with a current i.

(a) Between the plates, what is the magnitude of , in
terms of m0 and i, at a radius r R/5 from their center?"

" B
:

! ds:

halliday_c32_847-875v2.0.1.qxd  3/5/14  12:36 PM  Page 854

Uploaded By: anonymousSTUDENTS-HUB.com



85532-3 DISPLACEMENT CURRENT

Maxwell’s Equations
Equation 32-5 is the last of the four fundamental equations of electromagnetism,
called Maxwell’s equations and displayed in Table 32-1. These four equations

the changing electric flux with a fictitious displacement cur-
rent id. Then integral is given by Eq. 32-11, but
because there is no real current i between the capacitor
plates, the equation reduces to

(32-18)

Calculations: Because we want to evaluate at
radius r R/5 (within the capacitor), the integration loop en-
circles only a portion id,enc of the total displacement current id.
Let’s assume that id is uniformly spread over the full plate
area. Then the portion of the displacement current encircled
by the loop is proportional to the area encircled by the loop:

This gives us

Substituting this into Eq. 32-18, we obtain

(32-19)

Now substituting id " i (from Eq. 32-15) and r " R/5 into
Eq. 32-19 leads to

(Answer)! B
:

! ds: " m0i 
(R/5)2

R2 "
m0i
25

.

! B
:

! ds: " m0 id 
pr2

pR2 .

id,enc " id 
pr2

pR2 .

#encircled displacement
current id,enc $

#total displacement
current id

$
"

encircled area pr 2

full plate area pR2 .

"
" B

:
! ds:

! B
:

! ds: " m0id,enc.

" B
:

! ds:
(b) In terms of the maximum induced magnetic field, what is
the magnitude of the magnetic field induced at r " R/5,
inside the capacitor?

KEY IDEA

Because the capacitor has parallel circular plates, we can
treat the space between the plates as an imaginary wire of
radius R carrying the imaginary current id. Then we can use
Eq. 32-16 to find the induced magnetic field magnitude B at
any point inside the capacitor.

Calculations: At r " R/5, Eq. 32-16 yields

(32-20)

From Eq. 32-16, the maximum field magnitude Bmax within
the capacitor occurs at r " R. It is

(32-21)

Dividing Eq. 32-20 by Eq. 32-21 and rearranging the result,
we find that the field magnitude at r " R/5 is

(Answer)

We should be able to obtain this result with a little rea-
soning and less work. Equation 32-16 tells us that inside the
capacitor, B increases linearly with r. Therefore, a point the
distance out to the full radius R of the plates, where Bmax

occurs, should have a field B that is .1
5Bmax

1
5

B " 1
5Bmax.

Bmax " # m0id

2pR2 $R "
m0id

2pR
.

B " # m0id

2pR2 $r "
m0id(R/5)

2pR2 "
m0id

10pR
.

Table 32-1 Maxwell’s Equationsa

Name Equation

Gauss’ law for electricity Relates net electric flux to net enclosed electric charge

Gauss’ law for magnetism Relates net magnetic flux to net enclosed magnetic charge

Faraday’s law Relates induced electric field to changing magnetic flux

Ampere–Maxwell law Relates induced magnetic field to changing electric flux 
and to current

aWritten on the assumption that no dielectric or magnetic materials are present.

! B 
:

! ds: " m0´0 
d!E

dt
# m0ienc

! E
:

! ds: " $
d!B

dt

! B
:

! dA
:

" 0

! E
:

! dA
:

" qenc/´0

Additional examples, video, and practice available at WileyPLUS
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856 CHAPTER 32 MAXWELL’S EQUATIONS; MAGNETISM OF MATTER

32-4 MAGNETS

After reading this module, you should be able to . . .

32.16 Identify lodestones.
32.17 In Earth’s magnetic field, identify that the field 

is approximately that of a dipole and also identify in 

which hemisphere the north geomagnetic pole is 
located.

32.18 Identify field declination and field inclination.

Learning Objectives

● Earth is approximately a magnetic dipole with a dipole
axis somewhat off the rotation axis and with the south pole
in the Northern Hemisphere.

● The local field direction is given by the field declination
(the angle left or right from geographic north) and the field
inclination (the angle up or down from the horizontal).

Key Ideas

explain a diverse range of phenomena, from why a compass needle points north
to why a car starts when you turn the ignition key.They are the basis for the func-
tioning of such electromagnetic devices as electric motors, television transmitters
and receivers, telephones, scanners, radar, and microwave ovens.

Maxwell’s equations are the basis from which many of the equations you
have seen since Chapter 21 can be derived.They are also the basis of many of the
equations you will see in Chapters 33 through 36 concerning optics.

Figure 32-8 Earth’s magnetic field repre-
sented as a dipole field.The dipole axis
MM makes an angle of 11.5° with Earth’s
rotational axis RR.The south pole of the
dipole is in Earth’s Northern Hemisphere.

R 

R 

M 

M 

N 

S 

Geomagnetic 
north pole 

Geographic 
north pole 

B 

For Earth, the south pole
of the dipole is actually
in the north.

Magnets
The first known magnets were lodestones, which are stones that have been mag-
netized (made magnetic) naturally.When the ancient Greeks and ancient Chinese
discovered these rare stones, they were amused by the stones’ ability to attract
metal over a short distance, as if by magic. Only much later did they learn to use
lodestones (and artificially magnetized pieces of iron) in compasses to determine
direction.

Today, magnets and magnetic materials are ubiquitous. Their magnetic prop-
erties can be traced to their atoms and electrons. In fact, the inexpensive magnet
you might use to hold a note on the refrigerator door is a direct result of the
quantum physics taking place in the atomic and subatomic material within the
magnet. Before we explore some of this physics, let’s briefly discuss the largest
magnet we commonly use—namely, Earth itself.

The Magnetism of Earth
Earth is a huge magnet; for points near Earth’s surface, its magnetic field can be 
approximated as the field of a huge bar magnet—a magnetic dipole—that strad-
dles the center of the planet. Figure 32-8 is an idealized symmetric depiction of
the dipole field, without the distortion caused by passing charged particles from
the Sun.

Because Earth’s magnetic field is that of a magnetic dipole, a magnetic dipole
moment is associated with the field. For the idealized field of Fig. 32-8, the mag-
nitude of is 8.0 1022 J/T and the direction of makes an angle of 11.5° with
the rotation axis (RR) of Earth.The dipole axis (MM in Fig. 32-8) lies along and
intersects Earth’s surface at the geomagnetic north pole off the northwest coast of
Greenland and the geomagnetic south pole in Antarctica. The lines of the mag-
netic field generally emerge in the Southern Hemisphere and reenter Earth in
the Northern Hemisphere. Thus, the magnetic pole that is in Earth’s Northern
Hemisphere and known as a “north magnetic pole” is really the south pole of
Earth’s magnetic dipole.

B
:

m:
m:)m:

m:

halliday_c32_847-875v2.0.1.qxd  3/5/14  12:36 PM  Page 856

Uploaded By: anonymousSTUDENTS-HUB.com



The direction of the magnetic field at any location on Earth’s surface is com-
monly specified in terms of two angles. The field declination is the angle (left or
right) between geographic north (which is toward 90° latitude) and the horizon-
tal component of the field. The field inclination is the angle (up or down) be-
tween a horizontal plane and the field’s direction.

Measurement. Magnetometers measure these angles and determine the field
with much precision. However, you can do reasonably well with just a compass
and a dip meter. A compass is simply a needle-shaped magnet that is mounted so
it can rotate freely about a vertical axis. When it is held in a horizontal plane, the
north-pole end of the needle points, generally, toward the geomagnetic north
pole (really a south magnetic pole, remember).The angle between the needle and
geographic north is the field declination. A dip meter is a similar magnet that can
rotate freely about a horizontal axis. When its vertical plane of rotation is aligned
with the direction of the compass, the angle between the meter’s needle and the
horizontal is the field inclination.

At any point on Earth’s surface, the measured magnetic field may differ
appreciably, in both magnitude and direction, from the idealized dipole field of
Fig. 32-8. In fact, the point where the field is actually perpendicular to Earth’s
surface and inward is not located at the geomagnetic north pole off Greenland as
we would expect; instead, this so-called dip north pole is located in the Queen
Elizabeth Islands in northern Canada, far from Greenland.

In addition, the field observed at any location on the surface of Earth varies
with time, by measurable amounts over a period of a few years and by substantial
amounts over, say, 100 years. For example, between 1580 and 1820 the direction
indicated by compass needles in London changed by 35°.

In spite of these local variations, the average dipole field changes only slowly
over such relatively short time periods. Variations over longer periods can be
studied by measuring the weak magnetism of the ocean floor on either side of the
Mid-Atlantic Ridge (Fig. 32-9). This floor has been formed by molten magma
that oozed up through the ridge from Earth’s interior, solidified, and was pulled
away from the ridge (by the drift of tectonic plates) at the rate of a few centime-
ters per year. As the magma solidified, it became weakly magnetized with its
magnetic field in the direction of Earth’s magnetic field at the time of solidifica-
tion. Study of this solidified magma across the ocean floor reveals that Earth’s
field has reversed its polarity (directions of the north pole and south pole) about
every million years. Theories explaining the reversals are still in preliminary
stages. In fact, the mechanism that produces Earth’s magnetic field is only
vaguely understood.

85732-4 MAGNETS

Figure 32-9 A magnetic profile of the seafloor on either side of the Mid-Atlantic Ridge.The
seafloor, extruded through the ridge and spreading out as part of the tectonic drift system,
displays a record of the past magnetic history of Earth’s core.The direction of the mag-
netic field produced by the core reverses about every million years.
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858 CHAPTER 32 MAXWELL’S EQUATIONS; MAGNETISM OF MATTER

● An electron has an intrinsic angular momentum called spin
angular momentum (or spin) , with which an intrinsic spin
magnetic dipole moment is associated:

● For a measurement along a z axis, the component Sz can
have only the values given by

where h (" 6.63 ) 10$34 J*s) is the Planck constant. 
● Similarly,

where mB is the Bohr magneton:

● The energy U associated with the orientation of the spin
magnetic dipole moment in an external magnetic field is

U " $m:s ! B
:

ext " $ms,zBext.

B
:

ext

mB "
eh

4pm
" 9.27 ) 10$24 J /T.

ms,z " +
eh

4pm
" +mB,

Sz " ms 
h

2p
,  for ms " + 1

2,

m:s " $
e
m

S
:

.

m:s

S
:

● An electron in an atom has an additional angular
momentum called its orbital angular momentum , 
with which an orbital magnetic dipole moment is
associated:

● Orbital angular momentum is quantized and can have only
measured values given by

● The associated magnetic dipole moment is given by

● The energy U associated with the orientation of the
orbital magnetic dipole moment in an external magnetic
field is

U " $m:orb ! B
:

ext " $morb,zBext.

B
:

ext

morb,z " $m! 
eh

4pm
" $m!mB.

 for m! " 0, +1, +2, *** , + (limit).

 Lorb,z " m! 
h

2p
,

m:orb " $
e

2m
 L

:
orb.

m:orb

L
:

orb

Key Ideas

32-5 MAGNETISM AND ELECTRONS

After reading this module, you should be able to . . .

32.19 Identify that a spin angular momentum (usually 
simply called spin) and a spin magnetic dipole moment 

are intrinsic properties of electrons (and also protons
and neutrons).

32.20 Apply the relationship between the spin vector and
the spin magnetic dipole moment vector .m:s

S
:

m:s

S
:

32.28 Apply the relationship between the orbital 
angular momentum orb and the orbital magnetic 
dipole moment orb.m:

L
:

Learning Objectives

32.21 Identify that and cannot be observed (measured);
only their components on an axis of measurement (usually
called the z axis) can be observed.

32.22 Identify that the observed components Sz and ms,z are
quantized and explain what that means.

32.23 Apply the relationship between the component Sz and
the spin magnetic quantum number ms, specifying the
allowed values of ms.

32.24 Distinguish spin up from spin down for the spin orien-
tation of an electron.

32.25 Determine the z components ms,z of the spin magnetic
dipole moment, both as a value and in terms of the Bohr
magneton mB.

32.26 If an electron is in an external magnetic field, determine
the orientation energy U of its spin magnetic dipole
moment .

32.27 Identify that an electron in an atom has an orbital
angular momentum orb and an orbital magnetic dipole
moment  orb.m:

L
:

m:s

m:sS
:

32.29 Identity that orb and orb cannot be observed but 
their components Lorb,z and morb,z on a z (measurement)
axis can.

32.30 Apply the relationship between the component 
Lorb,z of the orbital angular momentum and the orbital
magnetic quantum number , specifying the allowed
values of .

32.31 Determine the z components morb,z of the orbital mag-
netic dipole moment, both as a value and in terms of the
Bohr magneton mB.

32.32 If an atom is in an external magnetic field, determine
the orientation energy U of the orbital magnetic dipole
moment orb.

32.33 Calculate the magnitude of the magnetic moment of a
charged particle moving in a circle or a ring of uniform
charge rotating like a merry-go-round at a constant angular
speed around a central axis.

32.34 Explain the classical loop model for an orbiting 
electron and the forces on such a loop in a nonuniform
magnetic field.

32.35 Distinguish diamagnetism, paramagnetism, and
ferromagnetism.

m:

m!

m!

m:L
:
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Magnetism and Electrons
Magnetic materials, from lodestones to tattoos, are magnetic because of the elec-
trons within them.We have already seen one way in which electrons can generate
a magnetic field: Send them through a wire as an electric current, and their motion
produces a magnetic field around the wire.There are two more ways, each involving
a magnetic dipole moment that produces a magnetic field in the surrounding space.
However, their explanation requires quantum physics that is beyond the physics
presented in this book, and so here we shall only outline the results.

Spin Magnetic Dipole Moment
An electron has an intrinsic angular momentum called its spin angular momen-
tum (or just spin) ; associated with this spin is an intrinsic spin magnetic
dipole moment . (By intrinsic, we mean that and are basic characteristics
of an electron, like its mass and electric charge.) Vectors and are related by

(32-22)

in which e is the elementary charge (1.60 ) 10$19 C) and m is the mass of an electron
(9.11 ) 10$31 kg).The minus sign means that and are oppositely directed.

Spin is different from the angular momenta of Chapter 11 in two respects:

1. Spin itself cannot be measured. However, its component along any axis can
be measured.

2. A measured component of is quantized, which is a general term that means
it is restricted to certain values. A measured component of can have only
two values, which differ only in sign.

Let us assume that the component of spin is measured along the z axis of a
coordinate system. Then the measured component Sz can have only the two
values given by

, (32-23)

where ms is called the spin magnetic quantum number and h (" 6.63 ) 10$34 J *s)
is the Planck constant, the ubiquitous constant of quantum physics. The signs
given in Eq. 32-23 have to do with the direction of Sz along the z axis. When Sz is
parallel to the z axis, ms is and the electron is said to be spin up. When Sz is#1

2

Sz " ms 
h

2p
,    for ms " + 1

2

S
:

S
:

S
:

S
:

S
:

S
:

m:s

m:s " $
e
m

 S
:
,

m:sS
:

m:sS
:

m:s

S
:

85932-5 MAGNETISM AND ELECTRONS

antiparallel to the z axis, ms is and the electron is said to be spin down.
The spin magnetic dipole moment of an electron also cannot be measured;

only its component along any axis can be measured, and that component too is
quantized, with two possible values of the same magnitude but different signs.We
can relate the component ms,z measured on the z axis to Sz by rewriting Eq. 32-22
in component form for the z axis as

Substituting for Sz from Eq. 32-23 then gives us

(32-24)

where the plus and minus signs correspond to ms,z being parallel and antiparallel
to the z axis, respectively.The quantity on the right is the Bohr magneton mB:

(Bohr magneton). (32-25)mB "
eh

4pm
" 9.27 ) 10$24 J/T

ms,z " +
eh

4pm
,

ms,z " $
e
m

 Sz.

m:s

$1
2
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Spin magnetic dipole moments of electrons and other elementary particles can
be expressed in terms of mB. For an electron, the magnitude of the measured z
component of is

" 1mB. (32-26)

(The quantum physics of the electron, called quantum electrodynamics, or QED,
reveals that ms,z is actually slightly greater than 1mB, but we shall neglect that fact.)

Energy. When an electron is placed in an external magnetic field , an
energy U can be associated with the orientation of the electron’s spin magnetic
dipole moment just as an energy can be associated with the orientation of the
magnetic dipole moment of a current loop placed in . From Eq. 28-38, the
orientation energy for the electron is

(32-27)

where the z axis is taken to be in the direction of .
If we imagine an electron to be a microscopic sphere (which it is not), we can

represent the spin , the spin magnetic dipole moment , and the associated
magnetic dipole field as in Fig. 32-10.Although we use the word “spin” here, elec-
trons do not spin like tops. How, then, can something have angular momentum
without actually rotating? Again, we would need quantum physics to provide the
answer.

Protons and neutrons also have an intrinsic angular momentum called spin
and an associated intrinsic spin magnetic dipole moment. For a proton those two
vectors have the same direction, and for a neutron they have opposite directions.
We shall not examine the contributions of these dipole moments to the magnetic
fields of atoms because they are about a thousand times smaller than that due to
an electron.

m:sS
:

B
:

ext

U " $m:s ! B
:

ext " $ms,zBext,

B
:

extm:
m:s

B
:

ext

%ms,z%
m:s
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Checkpoint 4
The figure here shows the spin orientations of two particles
in an external magnetic field . (a) If the particles are
electrons, which spin orientation is at lower energy? (b) If,
instead, the particles are protons, which spin orientation is at
lower energy?

B
:

ext

Bext 

Sz 

(1) (2)

Sz 

Figure 32-10 The spin , spin magnetic dipole
moment , and magnetic dipole field of
an electron represented as a microscopic
sphere.

B
:

m:s

S
:

µ s s 

B 

S 

For an electron, the spin
is opposite the magnetic
dipole moment.

Orbital Magnetic Dipole Moment
When it is in an atom, an electron has an additional angular momentum called
its orbital angular momentum . Associated with is an orbital magnetic
dipole moment ; the two are related by

(32-28)

The minus sign means that and have opposite directions.
Orbital angular momentum cannot be measured; only its component

along any axis can be measured, and that component is quantized. The compo-
nent along, say, a z axis can have only the values given by

(32-29)

in which is called the orbital magnetic quantum number and “limit” refers to
some largest allowed integer value for . The signs in Eq. 32-29 have to do with
the direction of Lorb,z along the z axis.

m!

m!

Lorb,z " m! 
h

2p
,  for m! " 0, +1, +2, *** , +(limit),

L
:

orb

L
:

orbm:orb

m:orb " $
e

2m
L
:

orb.

m:orb

L
:

orbL
:

orb
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The orbital magnetic dipole moment of an electron also cannot itself be
measured; only its component along an axis can be measured, and that compo-
nent is quantized. By writing Eq. 32-28 for a component along the same z axis
as above and then substituting for Lorb,z from Eq. 32-29, we can write the z
component morb,z of the orbital magnetic dipole moment as

(32-30)

and, in terms of the Bohr magneton, as

(32-31)

When an atom is placed in an external magnetic field , an energy U can be
associated with the orientation of the orbital magnetic dipole moment of each
electron in the atom. Its value is

(32-32)

where the z axis is taken in the direction of .
Although we have used the words “orbit” and “orbital” here, electrons do not

orbit the nucleus of an atom like planets orbiting the Sun. How can an electron
have an orbital angular momentum without orbiting in the common meaning of
the term? Once again, this can be explained only with quantum physics.

Loop Model for Electron Orbits
We can obtain Eq. 32-28 with the nonquantum derivation that follows, in which
we assume that an electron moves along a circular path with a radius that is much
larger than an atomic radius (hence the name “loop model”). However, the
derivation does not apply to an electron within an atom (for which we need
quantum physics).

We imagine an electron moving at constant speed v in a circular path of
radius r, counterclockwise as shown in Fig. 32-11. The motion of the negative
charge of the electron is equivalent to a conventional current i (of positive
charge) that is clockwise, as also shown in Fig. 32-11. The magnitude of the or-
bital magnetic dipole moment of such a current loop is obtained from Eq. 28-35
with N " 1:

morb " iA, (32-33)

where A is the area enclosed by the loop. The direction of this magnetic dipole
moment is, from the right-hand rule of Fig. 29-21, downward in Fig. 32-11.

To evaluate Eq. 32-33, we need the current i. Current is, generally, the rate
at which charge passes some point in a circuit. Here, the charge of magnitude
e takes a time T " 2pr/v to circle from any point back through that point, so

(32-34)

Substituting this and the area A " pr 2 of the loop into Eq. 32-33 gives us

(32-35)

To find the electron’s orbital angular momentum , we use Eq. 11-18,
( ). Because and are perpendicular, has the magnitude

Lorb " mrv sin 90° " mrv. (32-36)

The vector is directed upward in Fig. 32-11 (see Fig. 11-12). CombiningL
:

orb

L
:

orbv:r:v:r: )!
:

" m
L
:

orb

morb "
e

2pr/v
 pr2 "

evr
2

.

i "
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time

"
e

2pr/v
.

B
:

ext

U " $m:orb ! B
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ext " $morb,zBext,

B
:
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morb,z " $m!mB.
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Figure 32-11 An electron moving at constant
speed v in a circular path of radius r that
encloses an area A.The electron has an
orbital angular momentum and an
associated orbital magnetic dipole moment

.A clockwise current i (of positive
charge) is equivalent to the counterclock-
wise circulation of the negatively charged
electron.
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Eqs. 32-35 and 32-36, generalizing to a vector formulation, and indicating the
opposite directions of the vectors with a minus sign yield

which is Eq. 32-28. Thus, by “classical” (nonquantum) analysis we have ob-
tained the same result, in both magnitude and direction, given by quantum
physics. You might wonder, seeing as this derivation gives the correct result for
an electron within an atom, why the derivation is invalid for that situation. The
answer is that this line of reasoning yields other results that are contradicted by
experiments.

Loop Model in a Nonuniform Field
We continue to consider an electron orbit as a current loop, as we did in
Fig. 32-11. Now, however, we draw the loop in a nonuniform magnetic field as
shown in Fig. 32-12a. (This field could be the diverging field near the north pole
of the magnet in Fig. 32-4.) We make this change to prepare for the next several
modules, in which we shall discuss the forces that act on magnetic materials when
the materials are placed in a nonuniform magnetic field. We shall discuss these
forces by assuming that the electron orbits in the materials are tiny current loops
like that in Fig. 32-12a.

Here we assume that the magnetic field vectors all around the electron’s
circular path have the same magnitude and form the same angle with the verti-
cal, as shown in Figs. 32-12b and d. We also assume that all the electrons in an
atom move either counterclockwise (Fig. 32-12b) or clockwise (Fig. 32-12d).
The associated conventional current i around the current loop and the orbital
magnetic dipole moment produced by i are shown for each direction of
motion.

Figures 32-12c and e show diametrically opposite views of a length element
of the loop that has the same direction as i, as seen from the plane of the orbit.

Also shown are the field and the resulting magnetic force on . Recall
that a current along an element in a magnetic field experiences a mag-
netic force as given by Eq. 28-28:

(32-37)

On the left side of Fig. 32-12c, Eq. 32-37 tells us that the force is directed
upward and rightward. On the right side, the force is just as large and is directed
upward and leftward. Because their angles are the same, the horizontal compo-
nents of these two forces cancel and the vertical components add.The same is true
at any other two symmetric points on the loop. Thus, the net force on the current
loop of Fig. 32-12b must be upward. The same reasoning leads to a downward net
force on the loop in Fig. 32-12d. We shall use these two results shortly when we ex-
amine the behavior of magnetic materials in nonuniform magnetic fields.

Magnetic Materials
Each electron in an atom has an orbital magnetic dipole moment and a spin
magnetic dipole moment that combine vectorially. The resultant of these two
vector quantities combines vectorially with similar resultants for all other elec-
trons in the atom, and the resultant for each atom combines with those for all
the other atoms in a sample of a material. If the combination of all these mag-
netic dipole moments produces a magnetic field, then the material is magnetic.
There are three general types of magnetism: diamagnetism, paramagnetism, and
ferromagnetism.
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Figure 32-12 (a) A loop model for an electron
orbiting in an atom while in a nonuniform
magnetic field . (b) Charge $e moves
counterclockwise; the associated conven-
tional current i is clockwise. (c) The mag-
netic forces on the left and right sides of
the loop, as seen from the plane of the loop.
The net force on the loop is upward. (d)
Charge $e now moves clockwise. (e) The
net force on the loop is now downward.
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1. Diamagnetism is exhibited by all common materials but is so feeble that it is
masked if the material also exhibits magnetism of either of the other two
types. In diamagnetism, weak magnetic dipole moments are produced in the
atoms of the material when the material is placed in an external magnetic field

; the combination of all those induced dipole moments gives the material
as a whole only a feeble net magnetic field.The dipole moments and thus their
net field disappear when is removed. The term diamagnetic material
usually refers to materials that exhibit only diamagnetism.

2. Paramagnetism is exhibited by materials containing transition elements, rare
earth elements, and actinide elements (see Appendix G). Each atom of such a ma-
terial has a permanent resultant magnetic dipole moment, but the moments are
randomly oriented in the material and the material as a whole lacks a net mag-
netic field. However, an external magnetic field can partially align the atomic
magnetic dipole moments to give the material a net magnetic field.The alignment
and thus its field disappear when is removed.The term paramagnetic material
usually refers to materials that exhibit primarily paramagnetism.

3. Ferromagnetism is a property of iron, nickel, and certain other elements (and
of compounds and alloys of these elements). Some of the electrons in these
materials have their resultant magnetic dipole moments aligned, which pro-
duces regions with strong magnetic dipole moments. An external field can
then align the magnetic moments of such regions, producing a strong magnetic
field for a sample of the material; the field partially persists when is
removed. We usually use the terms ferromagnetic material and magnetic mate-
rial to refer to materials that exhibit primarily ferromagnetism.

The next three modules explore these three types of magnetism.
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32-6 DIAMAGNETISM

After reading this module, you should be able to . . .

32.36 For a diamagnetic sample placed in an external
magnetic field, identify that the field produces a magnetic
dipole moment in the sample, and identify the relative
orientations of that moment and the field.

32.37 For a diamagnetic sample in a nonuniform magnetic
field, describe the force on the sample and the resulting
motion.

Learning Objectives

● Diamagnetic materials exhibit magnetism only when placed
in an external magnetic field; there they form magnetic
dipoles directed opposite the external field.

● In a nonuniform field, diamagnetic materials are repelled
from the region of greater magnetic field.

Key Ideas

Diamagnetism
We cannot yet discuss the quantum physical explanation of diamagnetism, but we
can provide a classical explanation with the loop model of Figs. 32-11 and 32-12.
To begin, we assume that in an atom of a diamagnetic material each electron can
orbit only clockwise as in Fig. 32-12d or counterclockwise as in Fig. 32-12b. To
account for the lack of magnetism in the absence of an external magnetic field ,
we assume the atom lacks a net magnetic dipole moment. This implies that before

is applied, the number of electrons orbiting in one direction is the same as that
orbiting in the opposite direction, with the result that the net upward magnetic di-
pole moment of the atom equals the net downward magnetic dipole moment.
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Now let’s turn on the nonuniform field of Fig. 32-12a, in which is
directed upward but is diverging (the magnetic field lines are diverging). We
could do this by increasing the current through an electromagnet or by moving
the north pole of a bar magnet closer to, and below, the orbits. As the magni-
tude of increases from zero to its final maximum, steady-state value, a clock-
wise electric field is induced around each electron’s orbital loop according to
Faraday’s law and Lenz’s law. Let us see how this induced electric field affects the
orbiting electrons in Figs. 32-12b and d.

In Fig. 32-12b, the counterclockwise electron is accelerated by the clockwise
electric field.Thus, as the magnetic field increases to its maximum value, the elec-
tron speed increases to a maximum value.This means that the associated conventional
current i and the downward magnetic dipole moment due to i also increase.

In Fig. 32-12d, the clockwise electron is decelerated by the clockwise electric
field. Thus, here, the electron speed, the associated current i, and the upward
magnetic dipole moment due to i all decrease. By turning on field , we have
given the atom a net magnetic dipole moment that is downward. This would also
be so if the magnetic field were uniform.

Force. The nonuniformity of field also affects the atom. Because the cur-
rent i in Fig. 32-12b increases, the upward magnetic forces in Fig. 32-12c also
increase, as does the net upward force on the current loop. Because current i in
Fig. 32-12d decreases, the downward magnetic forces in Fig. 32-12e also
decrease, as does the net downward force on the current loop.Thus, by turning on
the nonuniform field , we have produced a net force on the atom; moreover,
that force is directed away from the region of greater magnetic field.

We have argued with fictitious electron orbits (current loops), but we have
ended up with exactly what happens to a diamagnetic material: If we apply
the magnetic field of Fig. 32-12, the material develops a downward magnetic
dipole moment and experiences an upward force. When the field is removed,
both the dipole moment and the force disappear. The external field need not be
positioned as shown in Fig. 32-12; similar arguments can be made for other orien-
tations of . In general,B
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Figure 32-13 An overhead view of a frog that
is being levitated in a magnetic field
produced by current in a vertical solenoid
below the frog.

Courtesy A.K. Geim, University of 
Manchester, UK

A diamagnetic material placed in an external magnetic field develops a magnetic
dipole moment directed opposite . If the field is nonuniform, the diamagnetic mate-
rial is repelled from a region of greater magnetic field toward a region of lesser field.
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Checkpoint 5
The figure shows two diamagnetic spheres located
near the south pole of a bar magnet.Are (a) the
magnetic forces on the spheres and (b) the
magnetic dipole moments of the spheres directed toward or away from the bar magnet?
(c) Is the magnetic force on sphere 1 greater than, less than, or equal to that on sphere 2?

S N
1 2

The frog in Fig. 32-13 is diamagnetic (as is any other animal). When the frog
was placed in the diverging magnetic field near the top end of a vertical current-
carrying solenoid, every atom in the frog was repelled upward, away from the
region of stronger magnetic field at that end of the solenoid. The frog moved
upward into weaker and weaker magnetic field until the upward magnetic force
balanced the gravitational force on it, and there it hung in midair. The frog is not
in discomfort because every atom is subject to the same forces and thus there is
no force variation within the frog. The sensation is similar to the “weightless” sit-
uation of floating in water, which frogs like very much. If we went to the expense
of building a much larger solenoid, we could similarly levitate a person in midair
due to the person’s diamagnetism.
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Paramagnetism
In paramagnetic materials, the spin and orbital magnetic dipole moments of the
electrons in each atom do not cancel but add vectorially to give the atom a net
(and permanent) magnetic dipole moment . In the absence of an external
magnetic field, these atomic dipole moments are randomly oriented, and the
net magnetic dipole moment of the material is zero. However, if a sample of the
material is placed in an external magnetic field , the magnetic dipole moments
tend to line up with the field, which gives the sample a net magnetic dipole
moment. This alignment with the external field is the opposite of what we saw
with diamagnetic materials.
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A paramagnetic material placed in an external magnetic field develops a
magnetic dipole moment in the direction of . If the field is nonuniform, the
paramagnetic material is attracted toward a region of greater magnetic field from
a region of lesser field.
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32-7 PARAMAGNETISM

After reading this module, you should be able to . . .

32.38 For a paramagnetic sample placed in an external mag-
netic field, identify the relative orientations of the field and
the sample’s magnetic dipole moment.

32.39 For a paramagnetic sample in a nonuniform magnetic
field, describe the force on the sample and the resulting
motion.

32.40 Apply the relationship between a sample’s magnetiza-
tion M, its measured magnetic moment, and its volume.

32.41 Apply Curie’s law to relate a sample’s magnetization M

to its temperature T, its Curie constant C, and the
magnitude B of the external field.

32.42 Given a magnetization curve for a paramagnetic
sample, relate the extent of the magnetization for a given
magnetic field and temperature.

32.43 For a paramagnetic sample at a given temperature
and in a given magnetic field, compare the energy
associated with the dipole orientations and the thermal
motion.

Learning Objectives

● Paramagnetic materials have atoms with a permanent
magnetic dipole moment but the moments are randomly
oriented, with no net moment, unless the material is in an
external magnetic field , where the dipoles tend to align
with that field.
● The extent of alignment within a volume V is measured as
the magnetization M, given by

M "
measured magnetic moment

V
.

B
:

ext

● Complete alignment (saturation) of all N dipoles in the
volume gives a maximum value Mmax

● At low values of the ratio Bext /T,

(Curie’s law),

where T is the temperature (in kelvins) and C is a material’s
Curie constant.
● In a nonuniform external field, a paramagnetic material is
attracted to the region of greater magnetic field.

M " C 
Bext

T

" Nm/V.

Key Ideas

Richard Megna/Fundamental Photographs

Liquid oxygen is suspended between the
two pole faces of a magnet because the
liquid is paramagnetic and is magnetically
attracted to the magnet.

A paramagnetic sample with N atoms would have a magnetic dipole moment
of magnitude Nm if alignment of its atomic dipoles were complete. However, ran-
dom collisions of atoms due to their thermal agitation transfer energy among the
atoms, disrupting their alignment and thus reducing the sample’s magnetic dipole
moment.

Thermal Agitation. The importance of thermal agitation may be measured
by comparing two energies. One, given by Eq. 19-24, is the mean translational ki-
netic energy of an atom at temperature T, where k is the Boltzmann
constant (1.38 10$23 J/K) and T is in kelvins (not Celsius degrees). The other,)

K (" 3
2 kT)
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derived from Eq. 28-38, is the difference in energy -UB (" 2mBext) between par-
allel alignment and antiparallel alignment of the magnetic dipole moment of an
atom and the external field. (The lower energy state is $mBext and the higher en-
ergy state is +mBext.) As we shall show below, , even for ordinary tem-
peratures and field magnitudes. Thus, energy transfers during collisions among
atoms can significantly disrupt the alignment of the atomic dipole moments,
keeping the magnetic dipole moment of a sample much less than Nm.

Magnetization. We can express the extent to which a given paramagnetic
sample is magnetized by finding the ratio of its magnetic dipole moment to its
volume V. This vector quantity, the magnetic dipole moment per unit volume, is
the magnetization of the sample, and its magnitude is

(32-38)

The unit of is the ampere–square meter per cubic meter, or ampere per meter
(A/m). Complete alignment of the atomic dipole moments, called saturation of
the sample, corresponds to the maximum value Mmax " Nm/V.

In 1895 Pierre Curie discovered experimentally that the magnetization of a
paramagnetic sample is directly proportional to the magnitude of the external
magnetic field and inversely proportional to the temperature T in kelvins:

(32-39)

Equation 32-39 is known as Curie’s law, and C is called the Curie constant. Curie’s
law is reasonable in that increasing Bext tends to align the atomic dipole moments
in a sample and thus to increase M, whereas increasing T tends to disrupt the
alignment via thermal agitation and thus to decrease M. However, the law is actu-
ally an approximation that is valid only when the ratio Bext/T is not too large.

Figure 32-14 shows the ratio M/Mmax as a function of Bext/T for a sample of
the salt potassium chromium sulfate, in which chromium ions are the para-
magnetic substance. The plot is called a magnetization curve. The straight line
for Curie’s law fits the experimental data at the left, for Bext/T below about
0.5 T/K. The curve that fits all the data points is based on quantum physics. The
data on the right side, near saturation, are very difficult to obtain because they
require very strong magnetic fields (about 100 000 times Earth’s field), even at
very low temperatures.

M " C 
Bext

T
.
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M "
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V
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M
:

K . -UB
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T gives greater dipole 
alignment.

Approximately linear

Quantum theory

Figure 32-14 A magnetization curve for potas-
sium chromium sulfate, a paramagnetic salt.
The ratio of magnetization M of the salt to
the maximum possible magnetization Mmax is
plotted versus the ratio of the applied mag-
netic field magnitude Bext to the temperature
T. Curie’s law fits the data at the left; quan-
tum theory fits all the data. Based on mea-
surements by W. E. Henry.

Checkpoint 6
The figure here shows two paramagnetic spheres
located near the south pole of a bar magnet.Are
(a) the magnetic forces on the spheres and (b) the
magnetic dipole moments of the spheres directed toward or away from the bar magnet?
(c) Is the magnetic force on sphere 1 greater than, less than, or equal to that on sphere 2?

S N
1 2
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Ferromagnetism
When we speak of magnetism in everyday conversation, we almost always
have a mental picture of a bar magnet or a disk magnet (probably clinging to a
refrigerator door). That is, we picture a ferromagnetic material having strong,

86732-8 FERROMAGNETISM

From Eq. 28-38 , we can write the difference
between parallel alignment ( 0°) and antiparallel

alignment ( 180 ) as

(Answer)

Here K is about 230 times ; so energy exchanges among
the atoms during their collisions with one another can easily
reorient any magnetic dipole moments that might be aligned
with the external magnetic field. That is, as soon as a mag-
netic dipole moment happens to become aligned with the
external field, in the dipole’s low energy state, chances are
very good that a neighboring atom will hit the atom, transfer-
ring enough energy to put the dipole in a higher energy state.
Thus, the magnetic dipole moment exhibited by the para-
magnetic gas must be due to fleeting partial alignments of
the atomic dipole moments.

-UB

 " 2.8 ) 10$23 J " 0.000 17 eV.

 " 2mBB " 2(9.27 ) 10$24 J/T)(1.5 T)

 -UB " $mB cos 180' $ ($mB cos 0') " 2mB

'u "
u "-UB

(UB " $m: ! B
:

)

Sample Problem 32.03 Orientation energy of a paramagnetic gas in a magnetic field

A paramagnetic gas at room temperature (T 300 K) is
placed in an external uniform magnetic field of magnitude
B " 1.5 T; the atoms of the gas have magnetic dipole mo-
ment m " 1.0mB. Calculate the mean translational kinetic en-
ergy K of an atom of the gas and the energy difference -UB

between parallel alignment and antiparallel alignment of the
atom’s magnetic dipole moment with the external field.

KEY IDEAS

(1) The mean translational kinetic energy K of an atom in
a gas depends on the temperature of the gas. (2) The en-
ergy UB of a magnetic dipole in an external magnetic
field depends on the angle u between the directions of 

and .

Calculations: From Eq. 19-24, we have

(Answer) " 6.2 ) 10$21 J " 0.039 eV.
  K " 3

2 kT " 3
2 (1.38 ) 10$23 J /K)(300 K)

B
:

m:
B
:

m:

"

32-8 FERROMAGNETISM

After reading this module, you should be able to . . .

32.44 Identify that ferromagnetism is due to a quantum
mechanical interaction called exchange coupling.

32.45 Explain why ferromagnetism disappears when the
temperature exceeds the material’s Curie temperature.

32.46 Apply the relationship between the magnetization of a fer-
romagnetic sample and the magnetic moment of its atoms.

32.47 For a ferromagnetic sample at a given temperature and in
a given magnetic field, compare the energy associated with
the dipole orientations and the thermal motion.

32.48 Describe and sketch a Rowland ring.

32.49 Identify magnetic domains.
32.50 For a ferromagnetic sample placed in an external mag-

netic field, identify the relative orientations of the field and
the magnetic dipole moment.

32.51 Identify the motion of a ferromagnetic sample in a
nonuniform field.

32.52 For a ferromagnetic object placed in a uniform mag-
netic field, calculate the torque and orientation energy.

32.53 Explain hysteresis and a hysteresis loop.
32.54 Identify the origin of lodestones.

Learning Objectives

● The magnetic dipole moments in a ferromagnetic material
can be aligned by an external magnetic field and then, after
the external field is removed, remain partially aligned in
regions (domains).

● Alignment is eliminated at temperatures above a material’s
Curie temperature.
● In a nonuniform external field, a ferromagnetic material is
attracted to the region of greater magnetic field.

Key Ideas

Additional examples, video, and practice available at WileyPLUS
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permanent magnetism, and not a diamagnetic or paramagnetic material having
weak, temporary magnetism.

Iron, cobalt, nickel, gadolinium, dysprosium, and alloys containing these
elements exhibit ferromagnetism because of a quantum physical effect called
exchange coupling in which the electron spins of one atom interact with those
of neighboring atoms. The result is alignment of the magnetic dipole moments
of the atoms, in spite of the randomizing tendency of atomic collisions due to
thermal agitation.This persistent alignment is what gives ferromagnetic materials
their permanent magnetism.

Thermal Agitation. If the temperature of a ferromagnetic material is raised
above a certain critical value, called the Curie temperature, the exchange coupling
ceases to be effective. Most such materials then become simply paramagnetic;
that is, the dipoles still tend to align with an external field but much more weakly,
and thermal agitation can now more easily disrupt the alignment. The Curie tem-
perature for iron is 1043 K (" 770°C).

Measurement. The magnetization of a ferromagnetic material such as iron can
be studied with an arrangement called a Rowland ring (Fig. 32-15). The material is
formed into a thin toroidal core of circular cross section.A primary coil P having n
turns per unit length is wrapped around the core and carries current iP. (The coil is
essentially a long solenoid bent into a circle.) If the iron core were not present, the
magnitude of the magnetic field inside the coil would be, from Eq. 29-23,

B0 " m0iPn. (32-40)

However, with the iron core present, the magnetic field inside the coil is greater
than , usually by a large amount.We can write the magnitude of this field as

B " B0 # BM, (32-41)

where BM is the magnitude of the magnetic field contributed by the iron core.
This contribution results from the alignment of the atomic dipole moments
within the iron, due to exchange coupling and to the applied magnetic field B0,
and is proportional to the magnetization M of the iron. That is, the contribution
BM is proportional to the magnetic dipole moment per unit volume of the iron.
To determine BM we use a secondary coil S to measure B, compute B0 with
Eq. 32-40, and subtract as suggested by Eq. 32-41.

Figure 32-16 shows a magnetization curve for a ferromagnetic material in
a Rowland ring:The ratio BM/BM,max, where BM,max is the maximum possible value
of BM, corresponding to saturation, is plotted versus B0. The curve is like
Fig. 32-14, the magnetization curve for a paramagnetic substance: Both curves
show the extent to which an applied magnetic field can align the atomic dipole
moments of a material.

For the ferromagnetic core yielding Fig. 32-16, the alignment of the dipole
moments is about 70% complete for B0 & 1 ) 10$3 T. If B0 were increased to 1 T,
the alignment would be almost complete (but B0 " 1 T, and thus almost complete
saturation, is quite difficult to obtain).

Magnetic Domains
Exchange coupling produces strong alignment of adjacent atomic dipoles in
a ferromagnetic material at a temperature below the Curie temperature. Why,
then, isn’t the material naturally at saturation even when there is no applied
magnetic field B0? Why isn’t every piece of iron a naturally strong magnet?

To understand this, consider a specimen of a ferromagnetic material such as
iron that is in the form of a single crystal; that is, the arrangement of the atoms
that make it up—its crystal lattice—extends with unbroken regularity through-
out the volume of the specimen. Such a crystal will, in its normal state, be made
up of a number of magnetic domains. These are regions of the crystal throughout
which the alignment of the atomic dipoles is essentially perfect. The domains,
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Figure 32-15 A Rowland ring. A primary coil
P has a core made of the ferromagnetic
material to be studied (here iron).The core
is magnetized by a current iP sent through
coil P. (The turns of the coil are represented
by dots.) The extent to which the core is
magnetized determines the total magnetic
field within coil P. Field can be mea-
sured by means of a secondary coil S.
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Figure 32-16 A magnetization curve for a
ferromagnetic core material in the Rowland
ring of Fig. 32-15. On the vertical axis,
1.0 corresponds to complete alignment
(saturation) of the atomic dipoles within 
the material.
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however, are not all aligned. For the crystal as a whole, the domains are so ori-
ented that they largely cancel with one another as far as their external magnetic
effects are concerned.

Figure 32-17 is a magnified photograph of such an assembly of domains in a
single crystal of nickel. It was made by sprinkling a colloidal suspension of finely
powdered iron oxide on the surface of the crystal. The domain boundaries, which
are thin regions in which the alignment of the elementary dipoles changes from a
certain orientation in one of the domains forming the boundary to a different
orientation in the other domain, are the sites of intense, but highly localized and
nonuniform, magnetic fields. The suspended colloidal particles are attracted to
these boundaries and show up as the white lines (not all the domain boundaries
are apparent in Fig. 32-17). Although the atomic dipoles in each domain are
completely aligned as shown by the arrows, the crystal as a whole may have only
a very small resultant magnetic moment.

Actually, a piece of iron as we ordinarily find it is not a single crystal but an
assembly of many tiny crystals, randomly arranged; we call it a polycrystalline
solid. Each tiny crystal, however, has its array of variously oriented domains, just
as in Fig. 32-17. If we magnetize such a specimen by placing it in an external
magnetic field of gradually increasing strength, we produce two effects; together
they produce a magnetization curve of the shape shown in Fig. 32-16. One effect
is a growth in size of the domains that are oriented along the external field at the
expense of those that are not. The second effect is a shift of the orientation of the
dipoles within a domain, as a unit, to become closer to the field direction.

Exchange coupling and domain shifting give us the following result:

86932-8 FERROMAGNETISM

Figure 32-17 A photograph of domain
patterns within a single crystal of nickel;
white lines reveal the boundaries of the
domains. The white arrows superimposed
on the photograph show the orientations
of the magnetic dipoles within the domains
and thus the orientations of the net mag-
netic dipoles of the domains. The crystal
as a whole is unmagnetized if the net mag-
netic field (the vector sum over all the
domains) is zero.

Courtesy Ralph W. DeBlois

Figure 32-18 A magnetization curve (ab) for 
a ferromagnetic specimen and an associated
hysteresis loop (bcdeb).
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BM 
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b 
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d 

A ferromagnetic material placed in an external magnetic field develops a
strong magnetic dipole moment in the direction of . If the field is nonuniform,
the ferromagnetic material is attracted toward a region of greater magnetic field
from a region of lesser field.

B
:

ext

B
:

ext

Hysteresis
Magnetization curves for ferromagnetic materials are not retraced as we increase
and then decrease the external magnetic field B0. Figure 32-18 is a plot of BM

versus B0 during the following operations with a Rowland ring: (1) Starting with
the iron unmagnetized (point a), increase the current in the toroid until
B0 (" m0in) has the value corresponding to point b; (2) reduce the current in the
toroid winding (and thus B0) back to zero (point c); (3) reverse the toroid current
and increase it in magnitude until B0 has the value corresponding to point d;
(4) reduce the current to zero again (point e); (5) reverse the current once more
until point b is reached again.

The lack of retraceability shown in Fig. 32-18 is called hysteresis, and the
curve bcdeb is called a hysteresis loop. Note that at points c and e the iron core is
magnetized, even though there is no current in the toroid windings; this is the
familiar phenomenon of permanent magnetism.

Hysteresis can be understood through the concept of magnetic domains.
Evidently the motions of the domain boundaries and the reorientations of the
domain directions are not totally reversible. When the applied magnetic field B0

is increased and then decreased back to its initial value, the domains do not
return completely to their original configuration but retain some “memory” of
their alignment after the initial increase. This memory of magnetic materials is
essential for the magnetic storage of information.

This memory of the alignment of domains can also occur naturally. When
lightning sends currents along multiple tortuous paths through the ground,
the currents produce intense magnetic fields that can suddenly magnetize any
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Next, we can rewrite Eq. 32-43 in terms of the needle’s mass
m, the molar mass M, and Avogadro’s number NA:

(32-45)

The needle’s mass m is the product of its density and its 
volume.The volume works out to be 1.5 ) 10$8 m3; so

N "
mNA

M
.

Sample Problem 32.04 Magnetic dipole moment of a compass needle

A compass needle made of pure iron (density 7900 kg/m3)
has a length L of 3.0 cm, a width of 1.0 mm, and a thickness
of 0.50 mm. The magnitude of the magnetic dipole moment
of an iron atom is mFe " 2.1 ) 10$23 J/T. If the magnetiza-
tion of the needle is equivalent to the alignment of 10% of
the atoms in the needle, what is the magnitude of the nee-
dle’s magnetic dipole moment ?

KEY IDEAS

(1) Alignment of all N atoms in the needle would give a
magnitude of NmFe for the needle’s magnetic dipole mo-
ment . However, the needle has only 10% alignment (the
random orientation of the rest does not give any net contri-
bution to ).Thus,

m " 0.10NmFe. (32-42)

(2) We can find the number of atoms N in the needle from
the needle’s mass:

. (32-43)

Finding N: Iron’s atomic mass is not listed in Appendix F,
but its molar mass M is.Thus, we write

(32-44)iron’s atomic mass "
iron’s molar mass M

Avogadro’s number NA
.

N "
needle’s mass

iron’s atomic mass

m:

m:

m:

" (Eq. 32-4), gives the magnetic field generated by a
current ienc encircled by a closed loop. Maxwell’s law and Ampere’s
law can be written as the single equation

(Ampere–Maxwell law). (32-5)  

Displacement Current We define the fictitious displacement
current due to a changing electric field as

(32-10)

Equation 32-5 then becomes

(Ampere–Maxwell law), (32-11)

where id,enc is the displacement current encircled by the integration

! B
:

! ds: " m0id,enc # m0ienc

id " ´0 
d!E

dt
.

! B
:

! ds: " m0´0 
d!E

dt
# m0ienc

B
:

! ds: " m0iencGauss’ Law for Magnetic Fields The simplest magnetic
structures are magnetic dipoles. Magnetic monopoles do not exist
(as far as we know). Gauss’ law for magnetic fields,

(32-1)

states that the net magnetic flux through any (closed) Gaussian
surface is zero. It implies that magnetic monopoles do not exist.

Maxwell’s Extension of Ampere’s Law A changing elec-
tric flux induces a magnetic field . Maxwell’s law,

(Maxwell’s law of induction), (32-3)

relates the magnetic field induced along a closed loop to the
changing electric flux !E through the loop. Ampere’s law,

! B
:

! ds: " m0´0 
d!E

dt

B
:

!B " ! B
:

! dA
:

" 0,

Review & Summary

ferromagnetic material in nearby rock. Because of hysteresis, such rock
material retains some of that magnetization after the lightning strike (after the
currents disappear). Pieces of the rock—later exposed, broken, and loosened by
weathering—are then lodestones.

 needle’s mass m " (needle’s density)(needle’s volume)

Substituting into Eq. 32-45 with this value for m, and also
55.847 g/mol (" 0.055 847 kg/mol) for M and 6.02 ) 1023 for
NA, we find

Finding m: Substituting our value of N and the value of mFe

into Eq. 32-42 then yields

(Answer) " 2.682 ) 10$3 J /T & 2.7 ) 10$3 J/T.

 m " (0.10)(1.2774 ) 1021)(2.1 ) 10$23 J /T)

 " 1.2774 ) 1021.

  N "
(1.185 ) 10$4 kg)(6.02 ) 1023)

0.055 847 kg/mol

 " 1.185 ) 10$4 kg.
 " (7900 kg/m3)(1.5 ) 10$8 m3)

Additional examples, video, and practice available at WileyPLUS
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loop. The idea of a displacement current allows us to retain the
notion of continuity of current through a capacitor. However, dis-
placement current is not a transfer of charge.

Maxwell’s Equations Maxwell’s equations, displayed in
Table 32-1, summarize electromagnetism and form its foundation,
including optics.

Earth’s Magnetic Field Earth’s magnetic field can be
approximated as being that of a magnetic dipole whose dipole mo-
ment makes an angle of 11.5° with Earth’s rotation axis, and with the
south pole of the dipole in the Northern Hemisphere. The direction
of the local magnetic field at any point on Earth’s surface is given by
the field declination (the angle left or right from geographic north)
and the field inclination (the angle up or down from the horizontal).

Spin Magnetic Dipole Moment An electron has an intrinsic
angular momentum called spin angular momentum (or spin) , with
which an intrinsic spin magnetic dipole moment is associated:

(32-22)

For a measurement along a z axis, the component Sz can have only
the values given by

(32-23)

where h (" 6.63 ) 10$34 J *s) is the Planck constant. Similarly,

(32-24, 32-26)

where mB is the Bohr magneton:

(32-25)

The energy U associated with the orientation of the spin magnetic
dipole moment in an external magnetic field is

(32-27)

Orbital Magnetic Dipole Moment An electron in an atom
has an additional angular momentum called its orbital angular
momentum , with which an orbital magnetic dipole moment

is associated:

(32-28)m:orb " $
e

2m
 L

:
orb.

m:orb

L
:

orb

U " $m:s ! B
:

ext " $ms,zBext.

B
:

ext

mB "
eh

4pm
" 9.27 ) 10$24 J /T.

ms,z " +
eh

4pm
" +mB,

Sz " ms 
h

2p
,  for ms " + 1

2,

m:s " $
e
m

 S
:

.

m:s

S
:
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Orbital angular momentum is quantized and can have only measured
values given by

(32-29)

The associated magnetic dipole moment is given by

(32-30, 32-31)

The energy U associated with the orientation of the orbital mag-
netic dipole moment in an external magnetic field is

(32-32)

Diamagnetism Diamagnetic materials exhibit magnetism
only when placed in an external magnetic field; there they form
magnetic dipoles directed opposite the external field. In a
nonuniform field, they are repelled from the region of greater
magnetic field.

Paramagnetism Paramagnetic materials have atoms with a
permanent magnetic dipole moment but the moments are ran-
domly oriented unless the material is in an external magnetic field

, where the dipoles tend to align with the external field. The
extent of alignment within a volume V is measured as the magneti-
zation M, given by

(32-38)

Complete alignment (saturation) of all N dipoles in the volume gives
a maximum value Mmax " Nm/V.At low values of the ratio Bext/T,

(Curie’s law), (32-39)

where T is the temperature (kelvins) and C is a material’s Curie
constant.

In a nonuniform external field, a paramagnetic material is 
attracted to the region of greater magnetic field.

Ferromagnetism The magnetic dipole moments in a ferro-
magnetic material can be aligned by an external magnetic field and
then, after the external field is removed, remain partially aligned in
regions (domains). Alignment is eliminated at temperatures above
a material’s Curie temperature. In a nonuniform external field,
a ferromagnetic material is attracted to the region of greater
magnetic field.

M " C 
Bext

T

M "
measured magnetic moment

V
.

B
:

ext

U " $m:orb ! B
:

ext " $morb,zBext.

B
:

ext

morb,z " $m! 
eh

4pm
" $m!mB.

 for m! " 0, +1, +2, *** , + (limit).

 Lorb,z " m! 
h

2p
,

Problems

out of the plane of the page. The flux encircled by a concentric
circle of radius r is given by !E,enc " (0.600 V *m/s)(r/R)t,
where r & R and t is in seconds. What is the magnitude of the
induced magnetic field at radial distances (a) 2.00 cm and 
(b) 5.00 cm?

3 Uniform electric field. In Fig. 32-19, a uniform electric field is di-
rected out of the page within a circular region of radius R " 4.00 cm.
The field magnitude is given by E " (4.50 ) 10$3 V/m *s)t, where t is
in seconds. What is the magnitude of the induced magnetic field
at radial distances (a) 2.00 cm and (b) 5.00 cm? (c) At what
radial distance is the field magnitude maximum?

1 Uniform electric flux. Figure 32-19 shows a
circular region of radius R 4.00 cm in which
a uniform electric flux is directed out of the
plane of the page. The total electric flux
through the region is given by !E (3.00
mV *m/s)t, where t is in seconds. What is the
magnitude of the magnetic field that is induced
at radial distances (a) 2.00 cm and (b) 5.00 cm?
(c) At what radial distance is the field magnitude maximum?

2 Nonuniform electric flux. Figure 32-19 shows a circular re-
gion of radius R 2.00 cm in which an electric flux is directed"

"

"

Figure 32-19
Problems 1 to 8.

R 
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872 CHAPTER 32 MAXWELL’S EQUATIONS; MAGNETISM OF MATTER

4 Nonuniform electric field. In Fig. 32-19, an electric field is directed
out of the page within a circular region of radius R 4.00 cm.
The field magnitude is E " (0.500 V/m *s)(1 $ r/R)t, where t is in
seconds and r is the radial distance (r & R).What is the magnitude
of the induced magnetic field at radial distances (a) 2.00 cm and
(b) 5.00 cm? (c) At what radial distance is the field magnitude
maximum?

5 Uniform displacement-current density. Figure 32-19 shows a cir-
cular region of radius R " 4.00 cm in which a displacement current
is directed out of the page.The displacement current has a uniform
density of magnitude Jd " 6.00 A/m2. What is the magnitude of the
magnetic field due to the displacement current at radial distances
(a) 2.00 cm and (b) 5.00 cm?

6 Uniform displacement current. Figure 32-19 shows a circular re-
gion of radius R " 3.00 cm in which a uniform displacement cur-
rent id " 0.300 A is out of the page. What is the magnitude of the
magnetic field due to the displacement current at radial distances
(a) 2.00 cm and (b) 5.00 cm?

7 Nonuniform displacement-current density. Figure 32-19 shows a
circular region of radius R 4.00 cm in which a displacement 
current is directed out of the page. The magnitude of the density of
this displacement current is Jd " (4.00 A/m2)(1 $ r/R), where r
is the radial distance (r & R). What is the magnitude of the mag-
netic field due to the displacement current at (a) r " 2.00 cm and
(b) r " 5.00 cm? (c) At what radial distance is the field magnitude
maximum?

8 Nonuniform displacement current. Figure 32-19 shows a circu-
lar region of radius R 3.00 cm in which a displacement current id

is directed out of the figure. The magnitude of the 
displacement current is id " (3.00 A)(r/R), where r is the radial dis-
tance (r & R) from the center. What is the magnitude of the mag-
netic field due to id at radial distances (a) 2.00 cm and (b) 6.00 cm?

9 In a certain region the average horizontal component of
Earth’s magnetic field in 1912 was 14 mT, and the average inclina-
tion or “dip” was 70°. What was the corresponding magnitude of
Earth’s magnetic field?

10 A capacitor with parallel circular plates of radius R " 1.20 cm
is discharging via a current of 12.0 A. Consider a loop of radius R/3
that is centered on the central axis between the plates. (a) How
much displacement current is encircled by the loop? The maximum
induced magnetic field has a magnitude of 12.0 mT. At what radius
(b) inside and (c) outside the capacitor gap is the magnitude of the
induced magnetic field 6.00 mT?

11 A sample of the paramagnetic salt to which the magnetization
curve of Fig. 32-14 applies is to be tested to see whether it obeys
Curie’s law. The sample is placed in a uniform 0.60 T magnetic field
that remains constant throughout the experiment. The magnetiza-
tion M is then measured at temperatures ranging from 10 to 300 K.
Will it be found that Curie’s law is valid under these conditions?

12 Assume the average value of the vertical component
of Earth’s magnetic field is 43 mT (downward) for all of a certain
land region of the United States, with an area of 2000 km2. What
then are the (a) magnitude and (b) direction (inward or outward)
of the net magnetic flux through the rest of Earth’s surface (the en-
tire surface excluding Arizona)?

13 A magnet in the form of a cylindrical rod has a length of 
5.00 cm and a diameter of 6.00 mm. It has a uniform magnetization
of 5.30 ) 103 A/m.What is its magnetic dipole moment?

"

"

"
14 The magnitude of the electric field 
between the two circular parallel plates in 
Fig. 32-20 is E " (4.0 ) 105) $ (6.0 ) 104t),
with E in volts per meter and t in seconds.
At t " 0, is upward. The plate area is 
6.0 ) 10$2 m2. For t ( 0, what are the 
(a) magnitude and (b) direction (up or
down) of the displacement current between 
the plates and (c) is the direction of the induced magnetic field
clockwise or counterclockwise in the figure?

15 The magnitude of the magnetic dipole moment of Earth is
8.0 1022 J/T. (a) If the origin of this magnetism were a magnet-
ized iron sphere at the center of Earth, what would be its radius?
(b) What fraction of the volume of Earth would such a sphere oc-
cupy? Assume complete alignment of the dipoles. The density of
Earth’s inner core is 14 g/cm3. The magnetic dipole moment of an
iron atom is 2.1 ) 10$23 J/T. (Note: Earth’s inner core is in fact
thought to be in both liquid and solid forms and partly iron, but a
permanent magnet as the source of Earth’s magnetism has been
ruled out by several considerations. For one, the temperature is cer-
tainly above the Curie point.)

16 What is the energy difference between parallel and
antiparallel alignment of the z component of an electron’s spin
magnetic dipole moment with an external magnetic field of magni-
tude 0.40 T, directed parallel to the z axis?

17 If an electron in an atom has an orbital angular momentum
with , what are the components (a) Lorb,z and (b) morb,z? If
the atom is in an external magnetic field that has magnitude
52 mT and is directed along the z axis, what are (c) the energy
Uorb associated with and (d) the energy Uspin associated with

? If, instead, the electron has , what are (e) Lorb,z,
(f ) morb,z, (g) Uorb, and (h) Uspin?

18 A magnetic rod with length 6.00 cm, radius 3.00 mm, and 
(uniform) magnetization 2.70 ) 103 A/m can turn about its center
like a compass needle. It is placed in a uniform magnetic field of
magnitude 50.0 mT, such that the directions of its dipole moment
and make an angle of 68.0'. (a) What is the magnitude of the
torque on the rod due to ? (b) What is the change in the orienta-
tion energy of the rod if the angle changes to 34.0°?

19 Figure 32-21 shows a loop model (loop L) for a diamagnetic
material. (a) Sketch the magnetic field lines within and about the
material due to the bar magnet. What is the direction of (b) the
loop’s net magnetic dipole moment , (c) the conventional current
i in the loop (clockwise or counterclockwise in the figure), and (d)
the magnetic force on the loop?

m:

B
:

B
:

B
:

m " $3m: s

m: orb

B:
m " 0

)

E
:

Figure 32-20
Problem 14.

E 

Figure 32-21
Problem 19.

S 

Axis L 

N x 

20 Figure 32-22a shows the current i that is produced in a wire of
resistivity 1.62 ) 10$8 /*m. The magnitude of the current versus
time t is shown in Fig. 32-22b. The vertical axis scale is set by 
is " 10.0 A, and the horizontal axis scale is set by ts " 50.0 ms.
Point P is at radial distance 6.00 mm from the wire’s center. Deter-
mine the magnitude of the magnetic field at point P due to the B

:
i

actual current i in the wire at (a) t " 20 ms, (b) t " 40 ms, and (c) t "

halliday_c32_847-875v2.0.1.qxd  3/5/14  12:39 PM  Page 872

Uploaded By: anonymousSTUDENTS-HUB.com



873PROBLEMS

27 A Rowland ring is formed of ferromagnetic material. It is
circular in cross section, with an inner radius of 5.0 cm and an
outer radius of 6.0 cm, and is wound with 600 turns of wire.
(a) What current must be set up in the windings to attain
a toroidal field of magnitude B0 " 0.12 mT? (b) A secondary coil
wound around the toroid has 50 turns and resistance 8.0 /. If, for
this value of B0, we have BM " 800B0, how much charge moves
through the secondary coil when the current in the toroid wind-
ings is turned on?

28 The magnitude of the dipole moment associated with an atom
of iron in an iron bar is 2.1 ) 10$23 J/T. Assume that all the atoms
in the bar, which is 8.0 cm long and has a cross-sectional area of 
1.0 cm2, have their dipole moments aligned. (a) What is the dipole
moment of the bar? (b) What torque must be exerted to hold this
magnet perpendicular to an external field of magnitude 1.5 T?
(The density of iron is 7.9 g/cm3.)

29 The induced magnetic field at radial distance 6.0 mm from the
central axis of a circular parallel-plate capacitor is 1.2 10$7 T.)

60 ms. Next, assume that the elec-
tric field driving the current is con-
fined to the wire. Then determine
the magnitude of the magnetic
field at point P due to the dis-
placement current id in the wire at
(d) t " 20 ms, (e) t " 40 ms, and
(f) t " 60 ms. At point P at t " 20
s, what is the direction (into or out
of the page) of (g) and (h) ?

21 Prove that the displacement
current in a parallel-plate capaci-
tor of capacitance C can be written
as id C(dV/dt), where V is the
potential difference between the
plates.

22 Figure 32-23 gives the magneti-
zation curve for a paramagnetic ma-
terial. The vertical axis scale is set by
a " 0.15, and the horizontal axis
scale is set by b " 0.2 T/K. Let msam

be the measured net magnetic mo-
ment of a sample of the material and
mmax be the maximum possible net
magnetic moment of that sample.
According to Curie’s law, what
would be the ratio msam/mmax were the sample placed in a uniform
magnetic field of magnitude 0.800 T, at a temperature of 3.80 K?

23 In Fig. 32-24, a uniform electric
field collapses. The vertical axis
scale is set by Es " 6.0 ) 105 N/C,
and the horizontal axis scale is set by
ts " 24.0 ms. Calculate the magni-
tude of the displacement current
through a 1.6 m2 area perpendicular
to the field during each of the time
intervals a, b, and c shown on the
graph. (Ignore the behavior at the
ends of the intervals.)

24 Two wires, parallel to a z
axis and a distance 4r apart,
carry equal currents i in oppo-
site directions, as shown in
Fig. 32-25.A circular cylinder of
radius r and length L has its
axis on the z axis, midway be-
tween the wires. (a) Use Gauss’
law for magnetism to derive an
expression for the net outward
magnetic flux through the half of the cylindrical surface above the
x axis. (Hint: Find the flux through the portion of the xz plane that
lies within the cylinder.) (b) Evaluate the flux for current i 2.40 A
and length L 3.40 cm.

25 What is the measured component of the orbital magnetic di-
pole moment of an electron with (a) and (b) ?

26 The circuit in Fig. 32-26 consists of switch S, a 12.0 V ideal
battery, a 20.0 M/ resistor, and an air-filled capacitor. The capaci-
tor has parallel circular plates of radius 6.00 cm, separated by 
3.00 mm. At time t " 0, switch S is closed to begin charging the 
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capacitor. The electric field between the plates is uniform. At 
t " 250 ms, what is the magnitude of the magnetic field within the
capacitor, at radial distance 3.00 cm?

Figure 32-26 Problem 26.

S R 
C 

The plates have radius 4.0 mm. At what rate is the electric
field between the plates changing?

dE
:

/dt

30 An electron is placed in a magnetic field that is directedB
:

along a z axis. The energy difference between parallel and antipar-
allel alignments of the z component of the electron’s spin magnetic

31 An electron with kinetic energy Ke travels in a circular path
that is perpendicular to a uniform magnetic field, which is in the
positive direction of a z axis. The electron’s motion is subject only
to the force due to the field. (a) Show that the magnetic dipole
moment of the electron due to its orbital motion has magnitude 

moment with is 4.00 ) 10$25 J.What is the magnitude of ?B
:

B
:

m " Ke/B and that it is in the direction opposite that of . WhatB
:

are the (b) magnitude and (c) direction of the magnetic dipole
moment of a positive ion with kinetic energy Ki under the same
circumstances? (d) An ionized gas consists of 3.1 ) 10 21 elec-
trons/m3 and the same number density of ions. Take the average
electron kinetic energy to be 6.2 ) 10$20 J and the average ion ki-
netic energy to be 7.6 ) 10$21 J. Calculate the magnetization of
the gas when it is in a magnetic field of 1.2 T.

32 A parallel-plate capacitor with circular plates of radius R is
being charged. Show that the magnitude of the current density of
the displacement current is Jd " ´0(dE/dt) for r & R.

33 A Gaussian surface in the shape of a right circular cylinder
with end caps has a radius of 5.60 cm and a length of 80.0 cm.
Through one end there is an inward magnetic flux of 25.0 mWb. At
the other end there is a uniform magnetic field of 1.60 mT, normal
to the surface and directed outward. What are the (a) magnitude
and (b) direction (inward or outward) of the net magnetic flux
through the curved surface?
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874 CHAPTER 32 MAXWELL’S EQUATIONS; MAGNETISM OF MATTER

current in the region between the plates is uniform and has a mag-
nitude of 15 A/m2. (a) Calculate the magnitude B of the magnetic
field at a distance r " 50 mm from the axis of symmetry of this re-
gion. (b) Calculate dE/dt in this region.

42 Figure 32-28 shows a closed surface. Along
the flat top face, which has a radius of 2.0 cm, a
perpendicular magnetic field of magnitude
0.50 T is directed outward.Along the flat bottom
face, a magnetic flux of 0.70 mWb is directed
outward. What are the (a) magnitude and (b) di-
rection (inward or outward) of the magnetic flux
through the curved part of the surface?

43 At what rate must the potential difference
between the plates of a parallel-plate capacitor
with a 5.0 mF capacitance be changed to produce a displacement
current of 0.75 A?

44 Figure 32-29a is a one-axis graph along which two of the al-
lowed energy values (levels) of an atom are plotted.When the atom
is placed in a magnetic field of 0.800 T, the graph changes to that of
Fig. 32-29b because of the energy associated with . (We neg-
lect .) Level E1 is unchanged, but level E2 splits into a (closely
spaced) triplet of levels. What are the allowed values of associ-
ated with (a) energy level E1 and (b) energy level E2? (c) In joules,
what amount of energy is represented by the spacing between the
triplet levels?

m!

m: s

m:orb ! B
:

B
:

34 A parallel-plate capacitor with circular plates of radius 0.10 m
is being discharged. A circular loop of radius 0.20 m is concentric
with the capacitor and halfway between the plates. The displace-
ment current through the loop is 3.0 A. At what rate is the electric
field between the plates changing?

35 The saturation magnetization Mmax of the ferromagnetic
metal nickel is 4.70 ) 105 A/m. Calculate the magnetic dipole mo-
ment of a single nickel atom. (The density of nickel is 8.90 g/cm3,
and its molar mass is 58.71 g/mol.)

36 Assume that an electron of mass m and charge magnitude e
moves in a circular orbit of radius r about a nucleus. A uniform
magnetic field is then established perpendicular to the plane of
the orbit. Assuming also that the radius of the orbit does not
change and that the change in the speed of the electron due to field

is small, find an expression for the change in the orbital magnetic
dipole moment of the electron due to the field.

37 Consider a solid containing N atoms per unit volume, each
atom having a magnetic dipole moment . Suppose the direction
of can be only parallel or antiparallel to an externally applied
magnetic field (this will be the case if is due to the spin of a
single electron). According to statistical mechanics, the probabil-
ity of an atom being in a state with energy U is proportional to
e$U/kT, where T is the temperature and k is Boltzmann’s con-
stant. Thus, because energy U is , the fraction of atoms
whose dipole moment is parallel to is proportional to emB/kT

and the fraction of atoms whose dipole moment is antiparallel to
is proportional to e$mB/kT. (a) Show that the magnitude of the

magnetization of this solid is M " Nm tanh(mB/kT). Here tanh is
the hyperbolic tangent function: tanh(x) (ex $ e$x)/(ex # e$x).
(b) Show that the result given in (a) reduces to M Nm2B/kT
for . (c) Show that the result of (a) reduces to M Nm
for . (d) Show that both (b) and (c) agree qualitatively
with Fig. 32-14.

38 A capacitor with square plates of edge
length L is being discharged by a current of
0.75 A. Figure 32-27 is a head-on view of one
of the plates from inside the capacitor. A
dashed rectangular path is shown. If L 10 cm,
W 4.0 cm, and H 2.0 cm, what is the
value of " around the dashed path?

39 The exchange coupling mentioned in
Module 32-8 as being responsible for ferro-
magnetism is not the mutual magnetic inter-
action between two elementary magnetic dipoles.To show this, cal-
culate (a) the magnitude of the magnetic field a distance of 10 nm
away, along the dipole axis, from an atom with magnetic dipole 
moment 1.5 ) 10$23 J/T (cobalt), and (b) the minimum energy 
required to turn a second identical dipole end for end in this field.
(c) By comparing the latter with the mean translational kinetic 
energy of 0.040 eV, what can you conclude?

40 You place a magnetic compass on a horizontal surface, allow
the needle to settle, and then give the compass a gentle wiggle to
cause the needle to oscillate about its equilibrium position. The os-
cillation frequency is 0.312 Hz. Earth’s magnetic field at the
location of the compass has a horizontal component of 18.0 mT.
The needle has a magnetic moment of 0.760 mJ/T. What is the
needle’s rotational inertia about its (vertical) axis of rotation?

41 As a parallel-plate capacitor with circular plates 20 cm in di-
ameter is being charged, the current density of the displacement

B
:

! ds:
""

"

mB . kT
"mB 0 kT

"
"

B
:

B
:

$m: ! B
:

m:B
:

m:
m:

B
:

B
:

Figure 32-27
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Figure 32-28
Problem 42.

B 

45 A silver wire has resistivity r " 1.62 ) 10$8 /*m and a cross-
sectional area of 5.00 mm2. The current in the wire is uniform
and changing at the rate of 2000 A/s when the current is 54.0 A.

(a) What is the magnitude of the (uniform) electric field in the wire
when the current in the wire is 100 A? (b) What is the displacement
current in the wire at that time? (c) What is the ratio of the magni-
tude of the magnetic field due to the displacement current to that
due to the current at a distance r from the wire?

46 A 0.25 T magnetic field is applied to a paramagnetic gas whose
atoms have an intrinsic magnetic dipole moment of 1.0 ) 10$23 J/T.
At what temperature will the mean kinetic energy of translation of
the atoms equal the energy required to reverse such a dipole end for
end in this magnetic field?

47 Suppose that a parallel-plate capacitor has circular plates
with radius R " 30 mm and a plate separation of 7.5 mm. Suppose
also that a sinusoidal potential difference with a maximum value
of 150 V and a frequency of 60 Hz is applied across the plates;
that is,

V " (130 V) sin[2p(60 Hz)t].

(a) Find Bmax(R), the maximum value of the induced magnetic field
that occurs at r " R. (b) Plot Bmax(r) for 0 1 r 1 10 cm.
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the value of " around this square
dashed path?

B
:

! ds:

plates, with perpendicular to the plates.
(a) What is the displacement current id through
the region between the plates? (b) What is
dE/dt in this region? (c) What is the displace-
ment current encircled by the square dashed
path of edge length d " 0.50 m? (d) What is

E
:

current of 3.0 A charges the capacitor, produc-
ing a uniform electric field between theE

:
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51 The magnetic flux through each of five faces of a die (singular
of “dice”) is given by !B " +2N Wb, where N (" 1 to 5) is the
number of spots on the face. The flux is positive (outward) for N
even and negative (inward) for N odd.What is the flux through the
sixth face of the die?

52 A parallel-plate capacitor with circular plates of radius
40 mm is being discharged by a current of 6.0 A. At what radius
(a) inside and (b) outside the capacitor gap is the magnitude of
the induced magnetic field equal to 60% of its
maximum value? (c) What is that maximum
value?

53 In Fig. 32-31, a parallel-plate capacitor
has square plates of edge length L 1.0 m. A"

48 Measurements in mines and boreholes indicate that Earth’s
interior temperature increases with depth at the average rate of
30 C°/km. Assuming a surface temperature of 10°C, at what depth
does iron cease to be ferromagnetic? (The Curie temperature of
iron varies very little with pressure.)

49 In Fig. 32-30, a capacitor with
circular plates of radius R " 18.0 cm
is connected to a source of emf 
" " "m sin vt, where "m " 220 V
and v " 130 rad/s. The maximum
value of the displacement current is
id " 3.80 mA. Neglect fringing of the
electric field at the edges of the
plates. (a) What is the maximum
value of the current i in the circuit?
(b) What is the maximum value of d!E/dt, where !E is the electric
flux through the region between the plates? (c) What is the separation
d between the plates? (d) Find the maximum value of the magnitude
of between the plates at a distance r " 11.0 cm from the center.

50 A sample of the paramagnetic salt to which the magnetization
curve of Fig. 32-14 applies is held at room temperature (300 K).
At what applied magnetic field will the degree of magnetic satura-
tion of the sample be (a) 65% and (b) 90%? (c) Are these fields
attainable in the laboratory?

B
:

Figure 32-31
Problem 53.

L 

i 

i 

Top view 

Edge view 

d 

R

d

 m sin   tω =

Figure 32-30 Problem 49.
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A P P E N D I X  A

THE INTERNATIONAL SYSTEM OF UNITS (SI)*

A-1A-1

Table 1 The SI Base Units

Quantity Name Symbol Definition

length meter m “. . . the length of the path traveled by light in vacuum in
1/299,792,458 of a second.” (1983)

mass kilogram kg “. . . this prototype [a certain platinum–iridium cylinder] shall 
henceforth be considered to be the unit of mass.” (1889)

time second s “. . . the duration of 9,192,631,770 periods of the radiation 
corresponding to the transition between the two hyperfine 
levels of the ground state of the cesium-133 atom.” (1967)

electric current ampere A “. . . that constant current which, if maintained in two 
straight parallel conductors of infinite length, of negligible 
circular cross section, and placed 1 meter apart in vacuum,
would produce between these conductors a force equal to 
2 ! 10"7 newton per meter of length.” (1946)

thermodynamic temperature kelvin K “. . . the fraction 1/273.16 of the thermodynamic temperature
of the triple point of water.” (1967)

amount of substance mole mol “. . . the amount of substance of a system which contains as 
many elementary entities as there are atoms in 0.012 kilo-
gram of carbon-12.” (1971)

luminous intensity candela cd “. . . the luminous intensity, in a given direction, of a source 
that emits monochromatic radiation of frequency 540 !
1012 hertz and that has a radiant intensity in that direction 
of 1/683 watt per steradian.” (1979)

*Adapted from “The International System of Units (SI),” National Bureau of Standards Special Publication 330, 1972 edition.The definitions above were
adopted by the General Conference of Weights and Measures, an international body, on the dates shown. In this book we do not use the candela.
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A-2 APPENDIX A THE INTERNATIONAL SYSTEM OF UNITS (SI)

Table 2 Some SI Derived Units

Quantity Name of Unit Symbol

area square meter m2

volume cubic meter m3

frequency hertz Hz s"1

mass density (density) kilogram per cubic meter kg/m3

speed, velocity meter per second m/s

angular velocity radian per second rad/s
acceleration meter per second per second m/s2

angular acceleration radian per second per second rad/s2

force newton N kg #m/s2

pressure pascal Pa N/m2

work, energy, quantity of heat joule J N #m
power watt W J/s
quantity of electric charge coulomb C A #s
potential difference, electromotive force volt V W/A
electric field strength volt per meter (or newton per coulomb) V/m N/C

electric resistance ohm $ V/A
capacitance farad F A #s/V
magnetic flux weber Wb V #s
inductance henry H V #s/A
magnetic flux density tesla T Wb/m2

magnetic field strength ampere per meter A/m
entropy joule per kelvin J/K
specific heat joule per kilogram kelvin J/(kg #K)
thermal conductivity watt per meter kelvin W/(m #K)
radiant intensity watt per steradian W/sr

Table 3 The SI Supplementary Units

Quantity Name of Unit Symbol

plane angle radian rad
solid angle steradian sr
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A P P E N D I X  B

SOME FUNDAMENTAL CONSTANTS OF PHYSICS*

A-3

*The values in this table were selected from the 1998 CODATA recommended values (www.physics.nist.gov).

Best (1998) Value

Constant Symbol Computational Value Valuea Uncertaintyb

Speed of light in a vacuum c 3.00 ! 108 m/s 2.997 924 58 exact
Elementary charge e 1.60 ! 10"19 C 1.602 176 487 0.025
Gravitational constant G 6.67 ! 10"11 m3/s2#kg 6.674 28 100
Universal gas constant R 8.31 J/mol #K 8.314 472 1.7
Avogadro constant NA 6.02 ! 1023 mol"1 6.022 141 79 0.050
Boltzmann constant k 1.38 ! 10"23 J/K 1.380 650 4 1.7
Stefan–Boltzmann constant s 5.67 ! 10"8 W/m2#K4 5.670 400 7.0
Molar volume of ideal gas at STPd Vm 2.27 ! 10"2 m3/mol 2.271 098 1 1.7
Permittivity constant e0 8.85 ! 10"12 F/m 8.854 187 817 62 exact
Permeability constant m0 1.26 ! 10"6 H/m 1.256 637 061 43 exact
Planck constant h 6.63 ! 10"34 J #s 6.626 068 96 0.050

Electron massc me 9.11 ! 10"31 kg 9.109 382 15 0.050
5.49 ! 10"4 u 5.485 799 094 3 4.2 ! 10"4

Proton massc mp 1.67 ! 10"27 kg 1.672 621 637 0.050
1.0073 u 1.007 276 466 77 1.0 ! 10"4

Ratio of proton mass to electron mass mp/me 1840 1836.152 672 47 4.3 ! 10"4

Electron charge-to-mass ratio e/me 1.76 ! 1011 C/kg 1.758 820 150 0.025
Neutron massc mn 1.68 ! 10"27 kg 1.674 927 211 0.050

1.0087 u 1.008 664 915 97 4.3 ! 10"4

Hydrogen atom massc 1.0078 u 1.007 825 031 6 0.0005
Deuterium atom massc 2.0136 u 2.013 553 212 724 3.9 ! 10"5

Helium atom massc 4.0026 u 4.002 603 2 0.067
Muon mass mm 1.88 ! 10"28 kg 1.883 531 30 0.056

Electron magnetic moment me 9.28 ! 10"24 J/T 9.284 763 77 0.025
Proton magnetic moment mp 1.41 ! 10"26 J/T 1.410 606 662 0.026
Bohr magneton mB 9.27 ! 10"24 J/T 9.274 009 15 0.025
Nuclear magneton mN 5.05 ! 10"27 J/T 5.050 783 24 0.025
Bohr radius a 5.29 ! 10"11 m 5.291 772 085 9 6.8 ! 10"4

Rydberg constant R 1.10 ! 107 m"1 1.097 373 156 852 7 6.6 ! 10"6

Electron Compton wavelength lC 2.43 ! 10"12 m 2.426 310 217 5 0.0014

aValues given in this column should be given the same unit and power of 10 as the computational value.
bParts per million.
cMasses given in u are in unified atomic mass units, where 1 u % 1.660 538 782 ! 10"27 kg.
dSTP means standard temperature and pressure: 0&C and 1.0 atm (0.1 MPa).

m4He

m2H

m1H
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A P P E N D I X  C

SOME ASTRONOMICAL DATA

A-4

Some Distances from Earth

To the Moon* 3.82 ! 108 m To the center of our galaxy 2.2 ! 1020 m
To the Sun* 1.50 ! 1011 m To the Andromeda Galaxy 2.1 ! 1022 m
To the nearest star (Proxima Centauri) 4.04 ! 1016 m To the edge of the observable universe !1026 m

*Mean distance.

The Sun, Earth, and the Moon

Property Unit Sun Earth Moon

Mass kg 1.99 ! 1030 5.98 ! 1024 7.36 ! 1022

Mean radius m 6.96 ! 108 6.37 ! 106 1.74 ! 106

Mean density kg/m3 1410 5520 3340
Free-fall acceleration at the surface m/s2 274 9.81 1.67
Escape velocity km/s 618 11.2 2.38
Period of rotationa — 37 d at polesb 26 d at equatorb 23 h 56 min 27.3 d
Radiation powerc W 3.90 ! 1026

aMeasured with respect to the distant stars.
bThe Sun, a ball of gas, does not rotate as a rigid body.
cJust outside Earth’s atmosphere solar energy is received, assuming normal incidence, at the rate of 1340 W/m2.

Some Properties of the Planets

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Plutod

Mean distance from Sun,
106 km

57.9 108 150 228 778 1430 2870 4500 5900

Period of revolution, y 0.241 0.615 1.00 1.88 11.9 29.5 84.0 165 248

Period of rotation,a d 58.7 "243b 0.997 1.03 0.409 0.426 "0.451b 0.658 6.39

Orbital speed, km/s 47.9 35.0 29.8 24.1 13.1 9.64 6.81 5.43 4.74

Inclination of axis to orbit '28& "3& 23.4& 25.0& 3.08& 26.7& 97.9& 29.6& 57.5&

Inclination of orbit to 
Earth’s orbit

7.00& 3.39& 1.85& 1.30& 2.49& 0.77& 1.77& 17.2&

Eccentricity of orbit 0.206 0.0068 0.0167 0.0934 0.0485 0.0556 0.0472 0.0086 0.250

Equatorial diameter, km 4880 12 100 12 800 6790 143 000 120 000 51 800 49 500 2300

Mass (Earth % 1) 0.0558 0.815 1.000 0.107 318 95.1 14.5 17.2 0.002

Density (water % 1) 5.60 5.20 5.52 3.95 1.31 0.704 1.21 1.67 2.03

Surface value of g,c m/s2 3.78 8.60 9.78 3.72 22.9 9.05 7.77 11.0 0.5

Escape velocity,c km/s 4.3 10.3 11.2 5.0 59.5 35.6 21.2 23.6 1.3

Known satellites 0 0 1 2 67 ( ring 62 ( rings 27 ( rings 13 ( rings 4

aMeasured with respect to the distant stars.
bVenus and Uranus rotate opposite their orbital motion.
cGravitational acceleration measured at the planet’s equator.
dPluto is now classified as a dwarf planet.
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A P P E N D I X  D

CONVERSION FACTORS

A-5

Plane Angle

° ) * RADIAN rev

1 degree % 1 60 3600 1.745 ! 10"2 2.778 ! 10"3

1 minute % 1.667 ! 10"2 1 60 2.909 ! 10"4 4.630 ! 10"5

1 second % 2.778 ! 10"4 1.667 ! 10"2 1 4.848 ! 10"6 7.716 ! 10"7

1 RADIAN % 57.30 3438 2.063 ! 105 1 0.1592
1 revolution % 360 2.16 ! 104 1.296 ! 106 6.283 1

Solid Angle

1 sphere % 4p steradians % 12.57 steradians

Length

cm METER km in. ft mi

1 centimeter % 1 10"2 10"5 0.3937 3.281 ! 10"2 6.214 ! 10"6

1 METER % 100 1 10"3 39.37 3.281 6.214 ! 10"4

1 kilometer % 105 1000 1 3.937 ! 104 3281 0.6214
1 inch % 2.540 2.540 ! 10"2 2.540 ! 10"5 1 8.333 ! 10"2 1.578 ! 10"5

1 foot % 30.48 0.3048 3.048 ! 10"4 12 1 1.894 ! 10"4

1 mile % 1.609 ! 105 1609 1.609 6.336 ! 104 5280 1

1 angström % 10"10 m 1 fermi % 10"15 m 1 fathom % 6 ft 1 rod % 16.5 ft
1 nautical mile % 1852 m 1 light-year % 9.461 ! 1012 km 1 Bohr radius % 5.292 ! 10"11 m 1 mil % 10"3 in.

% 1.151 miles % 6076 ft 1 parsec % 3.084 ! 1013 km 1 yard % 3 ft 1 nm % 10"9 m

Area

METER2 cm2 ft2 in.2

1 SQUARE METER % 1 104 10.76 1550
1 square centimeter % 10"4 1 1.076 ! 10"3 0.1550

1 square foot % 9.290 ! 10"2 929.0 1 144
1 square inch % 6.452 ! 10"4 6.452 6.944 ! 10"3 1

1 square mile % 2.788 ! 107 ft2 % 640 acres 1 acre % 43 560 ft2

1 barn % 10"28 m2 1 hectare % 104 m2 % 2.471 acres

Conversion factors may be read directly from these tables. For example, 1 degree % 2.778 !
10"3 revolutions, so 16.7& % 16.7 ! 2.778 ! 10"3 rev. The SI units are fully capitalized. Adapted
in part from G. Shortley and D. Williams, Elements of Physics, 1971, Prentice-Hall, Englewood
Cliffs, NJ.
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A-6 APPENDIX D CONVERSION FACTORS

Volume

METER3 cm3 L ft3 in.3

1 CUBIC METER % 1 106 1000 35.31 6.102 ! 104

1 cubic centimeter % 10"6 1 1.000 ! 10"3 3.531 ! 10"5 6.102 ! 10"2

1 liter % 1.000 ! 10"3 1000 1 3.531 ! 10"2 61.02
1 cubic foot % 2.832 ! 10"2 2.832 ! 104 28.32 1 1728
1 cubic inch % 1.639 ! 10"5 16.39 1.639 ! 10"2 5.787 ! 10"4 1

1 U.S. fluid gallon % 4 U.S. fluid quarts % 8 U.S. pints % 128 U.S. fluid ounces % 231 in.3

1 British imperial gallon % 277.4 in.3 % 1.201 U.S. fluid gallons

Mass

Quantities in the colored areas are not mass units but are often used as such. For example, when we write 1 kg “%”
2.205 lb, this means that a kilogram is a mass that weighs 2.205 pounds at a location where g has the standard value 
of 9.80665 m/s2.

g KILOGRAM slug u oz lb ton

1 gram % 1 0.001 6.852 ! 10"5 6.022 ! 1023 3.527 ! 10"2 2.205 ! 10"3 1.102 ! 10"6

1 KILOGRAM % 1000 1 6.852 ! 10"2 6.022 ! 1026 35.27 2.205 1.102 ! 10"3

1 slug % 1.459 ! 104 14.59 1 8.786 ! 1027 514.8 32.17 1.609 ! 10"2

1 atomic 
mass unit % 1.661 ! 10"24 1.661 ! 10"27 1.138 ! 10"28 1 5.857 ! 10"26 3.662 ! 10"27 1.830 ! 10"30

1 ounce % 28.35 2.835 ! 10"2 1.943 ! 10"3 1.718 ! 1025 1 6.250 ! 10"2 3.125 ! 10"5

1 pound % 453.6 0.4536 3.108 ! 10"2 2.732 ! 1026 16 1 0.0005
1 ton % 9.072 ! 105 907.2 62.16 5.463 ! 1029 3.2 ! 104 2000 1

1 metric ton % 1000 kg

Density

Quantities in the colored areas are weight densities and, as such, are dimensionally different from mass densities.
See the note for the mass table.

KILOGRAM/
slug/ft3 METER3 g/cm3 lb/ft3 lb/in.3

1 slug per foot3 % 1 515.4 0.5154 32.17 1.862 ! 10"2

1 KILOGRAM 
per METER3 % 1.940 ! 10"3 1 0.001 6.243 ! 10"2 3.613 ! 10"5

1 gram per centimeter3 % 1.940 1000 1 62.43 3.613 ! 10"2

1 pound per foot3 % 3.108 ! 10"2 16.02 16.02 ! 10"2 1 5.787 ! 10"4

1 pound per inch3 % 53.71 2.768 ! 104 27.68 1728 1

T i m e

y d h min SECOND

1 year % 1 365.25 8.766 ! 103 5.259 ! 105 3.156 ! 107

1 day % 2.738 ! 10"3 1 24 1440 8.640 ! 104

1 hour % 1.141 ! 10"4 4.167 ! 10"2 1 60 3600
1 minute % 1.901 ! 10"6 6.944 ! 10"4 1.667 ! 10"2 1 60

1 SECOND % 3.169 ! 10"8 1.157 ! 10"5 2.778 ! 10"4 1.667 ! 10"2 1

Time
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A-7APPENDIX D CONVERSION FACTORS

Force

Force units in the colored areas are now little used. To clarify: 1 gram-force (% 1 gf) is the force of gravity that 
would act on an object whose mass is 1 gram at a location where g has the standard value of 9.80665 m/s2.

Speed

ft/s km/h METER/SECOND mi/h cm/s

1 foot per second % 1 1.097 0.3048 0.6818 30.48
1 kilometer per hour % 0.9113 1 0.2778 0.6214 27.78

1 METER per SECOND % 3.281 3.6 1 2.237 100
1 mile per hour % 1.467 1.609 0.4470 1 44.70

1 centimeter per second % 3.281 ! 10"2 3.6 ! 10"2 0.01 2.237 ! 10"2 1

1 knot % 1 nautical mi/h % 1.688 ft/s 1 mi/min % 88.00 ft/s % 60.00 mi/h

Pressure

atm dyne/cm2 inch of water cm Hg PASCAL lb/in.2 lb/ft2

1 atmosphere % 1 1.013 ! 106 406.8 76 1.013 ! 105 14.70 2116
1 dyne per 

centimeter2 % 9.869 ! 10"7 1 4.015 ! 10"4 7.501 ! 10"5 0.1 1.405 ! 10"5 2.089 ! 10"3

1 inch of 
watera at 4°C % 2.458 ! 10"3 2491 1 0.1868 249.1 3.613 ! 10"2 5.202
1 centimeter 
of mercurya

at 0°C % 1.316 ! 10"2 1.333 ! 104 5.353 1 1333 0.1934 27.85
1 PASCAL % 9.869 ! 10"6 10 4.015 ! 10"3 7.501 ! 10"4 1 1.450 ! 10"4 2.089 ! 10"2

1 pound per inch2 % 6.805 ! 10"2 6.895 ! 104 27.68 5.171 6.895 ! 103 1 144
1 pound per foot2 % 4.725 ! 10"4 478.8 0.1922 3.591 ! 10"2 47.88 6.944 ! 10"3 1

aWhere the acceleration of gravity has the standard value of 9.80665 m/s2.
1 bar % 106 dyne/cm2 % 0.1 MPa 1 millibar % 103 dyne/cm2 % 102 Pa 1 torr % 1 mm Hg

dyne NEWTON lb pdl gf kgf

1 dyne % 1 10"5 2.248 ! 10"6 7.233 ! 10"5 1.020 ! 10"3 1.020 ! 10"6

1 NEWTON % 105 1 0.2248 7.233 102.0 0.1020
1 pound % 4.448 ! 105 4.448 1 32.17 453.6 0.4536

1 poundal % 1.383 ! 104 0.1383 3.108 ! 10"2 1 14.10 1.410 ! 102

1 gram-force % 980.7 9.807 ! 10"3 2.205 ! 10"3 7.093 ! 10"2 1 0.001
1 kilogram-force % 9.807 ! 105 9.807 2.205 70.93 1000 1

1 ton % 2000 lb
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A-8 APPENDIX D CONVERSION FACTORS

Energy, Work, Heat
Quantities in the colored areas are not energy units but are included for convenience. They arise from the relativistic
mass–energy equivalence formula E % mc2 and represent the energy released if a kilogram or unified atomic mass
unit (u) is completely converted to energy (bottom two rows) or the mass that would be completely converted to 
one unit of energy (rightmost two columns).

Btu erg ft # lb hp #h JOULE cal kW #h eV MeV kg u

1 British 1.055 3.929 2.930 6.585 6.585 1.174 7.070
thermal unit % 1 ! 1010 777.9

! 10"4 1055 252.0
! 10"4 ! 1021 ! 1015 ! 10"14 ! 1012

9.481 7.376 3.725 2.389 2.778 6.242 6.242 1.113
1 erg % ! 10"11 1 ! 10"8 ! 10"14 10"7 ! 10"8 ! 10"14 ! 1011 ! 105 ! 10"24 670.2

1.285 1.356 5.051 3.766 8.464 8.464 1.509 9.037
1 foot-pound % ! 10"3 ! 107 1 ! 10"7 1.356 0.3238 ! 10"7 ! 1018 ! 1012 ! 10"17 ! 109

1 horsepower- 2.685 1.980 2.685 6.413 1.676 1.676 2.988 1.799
hour % 2545 ! 1013 ! 106 1 ! 106 ! 105 0.7457 ! 1025 ! 1019 ! 10"11 ! 1016

9.481 3.725 2.778 6.242 6.242 1.113 6.702
1 JOULE % ! 10"4 107 0.7376 ! 10"7 1 0.2389 ! 10"7 ! 1018 ! 1012 ! 10"17 ! 109

3.968 4.1868 1.560 1.163 2.613 2.613 4.660 2.806
1 calorie % ! 10"3 ! 107 3.088 ! 10"6 4.1868 1 ! 10"6 ! 1019 ! 1013 ! 10"17 ! 1010

1 kilowatt- 3.600 2.655 3.600 8.600 2.247 2.247 4.007 2.413
hour % 3413 ! 1013 ! 106 1.341 ! 106 ! 105 1 ! 1025 ! 1019 ! 10"11 ! 1016

1.519 1.602 1.182 5.967 1.602 3.827 4.450 1.783 1.074
1 electron-volt % ! 10"22 ! 10"12 ! 10"19 ! 10"26 ! 10"19 ! 10"20 ! 10"26 1 10"6 ! 10"36 ! 10"9

1 million 1.519 1.602 1.182 5.967 1.602 3.827 4.450 1.783 1.074
electron-volts % ! 10"16 ! 10"6 ! 10"13 ! 10"20 ! 10"13 ! 10"14 ! 10"20 10"6 1 ! 10"30 ! 10"3

8.521 8.987 6.629 3.348 8.987 2.146 2.497 5.610 5.610 6.022
1 kilogram % ! 1013 ! 1023 ! 1016 ! 1010 ! 1016 ! 1016 ! 1010 ! 1035 ! 1029

1
! 1026

1 unified 
atomic mass 1.415 1.492 1.101 5.559 1.492 3.564 4.146 9.320 932.0 1.661

unit % ! 10"13 ! 10"3 ! 10"10 ! 10"17 ! 10"10 ! 10"11 ! 10"17 ! 108 ! 10"27
1

Power

Btu/h ft # lb/s hp cal/s kW WATT

1 British thermal unit per hour % 1 0.2161 3.929 ! 10"4 6.998 ! 10"2 2.930 ! 10"4 0.2930
1 foot-pound per second % 4.628 1 1.818 ! 10"3 0.3239 1.356 ! 10"3 1.356

1 horsepower % 2545 550 1 178.1 0.7457 745.7
1 calorie per second % 14.29 3.088 5.615 ! 10"3 1 4.186 ! 10"3 4.186

1 kilowatt % 3413 737.6 1.341 238.9 1 1000
1 WATT % 3.413 0.7376 1.341 ! 10"3 0.2389 0.001 1

Magnetic Field

gauss TESLA milligauss

1 gauss % 1 10"4 1000
1 TESLA % 104 1 107

1 milligauss % 0.001 10"7 1

1 tesla % 1 weber/meter2

Magnetic Flux

maxwell WEBER

1 maxwell % 1 10"8

1 WEBER % 108 1
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A P P E N D I X  E

MATHEMATICAL FORMULAS

A-9

Geometry
Circle of radius r: circumference % 2pr; area % pr2.
Sphere of radius r: area % 4pr2; .
Right circular cylinder of radius r and height h:

area % 2pr2 ( 2prh; volume % pr2h.
Triangle of base a and altitude h: .

Quadratic Formula

If ax2 ( bx ( c % 0, then .

Trigonometric Functions of Angle u

Pythagorean Theorem
In this right triangle,

a2 ( b2 % c2

Triangles
Angles are A, B, C
Opposite sides are a, b, c
Angles A ( B ( C % 180&

c2 % a2 ( b2 " 2ab cos C
Exterior angle D % A ( C

Mathematical Signs and Symbols
% equals

" equals approximately

! is the order of magnitude of

sin A
a

%
sin B

b
%

sin C
c

 sec u %
r
x

csc u %
r
y

 tan u %
y
x

cot u %
x
y

 sin u %
y
r
 cos u %

x
r

x %
"b + 1b2 " 4ac

2a

area % 1
2ah

volume % 4
3pr3

! is not equal to

# is identical to, is defined as

, is greater than (- is much greater than)

' is less than (. is much less than)

/ is greater than or equal to (or, is no less than)

0 is less than or equal to (or, is no more than)

+ plus or minus

1 is proportional to

$ the sum of

xavg the average value of x

Trigonometric Identities
sin(90& " u) % cos u

cos(90& " u) % sin u

sin u/cos u % tan u

sin2 u ( cos2 u % 1

sec2 u " tan2 u % 1

csc2 u " cot2 u % 1

sin 2u % 2 sin u cos u

cos 2u % cos2 u " sin2 u % 2 cos2 u " 1 % 1 " 2 sin2 u

sin(a + b) % sin a cos b + cos a sin b

cos(a + b) % cos a cos b 2 sin a sin b

Binomial Theorem

Exponential Expansion

ex % 1 ( x (
x2

2!
(

x3

3!
( #  #  #

(1 ( x)n % 1 (
nx
1!

(
n(n " 1)x2

2!
( #  #  # (x2 ' 1)

cos a " cos b % "2 sin 12(a ( b) sin 12(a " b)

cos a ( cos b % 2 cos 12(a ( b) cos 12(a " b)

sin a + sin b % 2 sin 12(a + b) cos 12(a 2 b)

tan(a + b) %
tan a + tan b

1 2 tan a tan b

y axis 

x axis θ 

r 
y 

x 0 

c a 

b 

b a 

c 

C 

B 
D 

A 
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Logarithmic Expansion

Trigonometric Expansions 
(u in radians)

Cramer’s Rule
Two simultaneous equations in unknowns x and y,

a1x ( b1y % c1 and a2x ( b2y % c2,

have the solutions

and

.y %
% a1
a2

c1
c2%

% a1
a2

b1
b2

%
%

a1c2 " a2c1

a1b2 " a2b1

x %
% c1
c2

b1
b2

%
% a1
a2

b1
b2

%
%

c1b2 " c2b1

a1b2 " a2b1

tan u % u (
u3

3
(

2u5

15
( #  #  #

cos u % 1 "
u2

2!
(

u4

4!
" #  #  #

sin u  % u "
u3

3!
(

u5

5!
" #  #  #

ln(1 ( x) % x " 1
2x2 ( 1

3x3 " #  #  # (|x| ' 1)
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Products of Vectors
Let , , and be unit vectors in the x, y, and z direc-
tions.Then

# % # % # % 1, # % # % # % 0,

Any vector with components ax, ay, and az along the 
x, y, and z axes can be written as

Let , , and be arbitrary vectors with magnitudes a,
b, and c.Then

.

Let u be the smaller of the two angles between and 
.Then

a: ! (b
:

! c:) % (a:# c:)b
:

" (a:# b
:

)c:
a:#(b

:
! c:) % b

:
#(c: ! a:) % c:#(a: ! b

:
)

|a: ! b
:

| % ab sin u

( (axby " bxay)k̂

% (aybz " byaz)î ( (azbx " bzax)ĵ

 % î  % ay

by

az

bz
% " ĵ  % ax

bx

az

bz
% ( k̂ % ax

bx

ay

by
%

 a: ! b
:

% "b
:

! a: % % î
ax

bx

ĵ
ay

by

k̂
az

bz
%

a:# b
:

% b
:

# a: % axbx ( ayby ( azbz % ab cos 3

b
:

a:
(sa:) ! b

:
% a: ! (sb

:
) % s(a: ! b

:
)  (s % a scalar)

a: ! (b
:

( c:) % (a: ! b
:

) ( (a: ! c:)

c:b
:

a:
a: % ax î ( ay ĵ ( azk̂.

a:
î ! ĵ % k̂, ĵ ! k̂ % î,  k̂ ! î % ĵ

î ! î % ĵ ! ĵ % k̂ ! k̂ % 0,

îk̂k̂ĵĵîk̂k̂ĵĵîî

k̂ĵî
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Derivatives and Integrals
In what follows, the letters u and v stand for any functions of
x, and a and m are constants. To each of the indefinite inte-
grals should be added an arbitrary constant of integration.
The Handbook of Chemistry and Physics (CRC Press Inc.)
gives a more extensive tabulation.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.
d
dx

 cos u % "sin u 
du
dx

d
dx

 sin u % cos u 
du
dx

d
dx

 eu % eu 
du
dx

d
dx

 csc x % "cot x csc x

d
dx

 sec x % tan x sec x

d
dx

 cot x % "csc2 x

d
dx

 tan x % sec2 x

d
dx

 cos x % "sin x

d
dx

 sin x % cos x

d
dx

 ex % ex

d
dx

 (uv) % u 
dv
dx

( v 
du
dx

d
dx

 ln x %
1
x

d
dx

 xm % mxm"1

d
dx

 (u ( v) %
du
dx

(
dv
dx

d
dx

 (au) % a 
du
dx

dx
dx

% 1
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1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21. & x dx
x ( d

% x " d ln(x ( d)

&4

0
 x2n(1 e"ax2 dx %

n!
 2an(1   (a , 0)

& dx
(x2 ( a2)3/2 %

x
a2(x2 ( a2)1/2

& x dx
(x2 ( a2)3/2 % "

1
(x2 ( a2)1/2

& dx2x2 ( a2
% ln(x ( 2x2 ( a2)

&4

0
 x2ne"ax2 dx %

1 #3 #5 #  #  #  (2n " 1)
2n(1an  A p

a

&4

0
 xne"ax dx %

n!
an(1

& x2e"ax dx % "
1
a3  (a2x2 ( 2ax ( 2)e"ax

& xe"ax dx % "
1
a2  (ax ( 1) e"ax

& e"ax dx % "
1
a

 e"ax

& sin2 x dx % 1
2 x " 1

4 sin 2x

& tan x dx % ln |sec x|

& cos x dx % sin x

& sin x dx % "cos x

& ex dx % ex

& u 
dv
dx

 dx % uv " & v 
du
dx

 dx

& dx
x

% ln |x|

& xm dx %
xm(1

m ( 1
  ( m 5 "1)

& (u ( v) dx % & u dx ( & v dx

& au dx % a & u dx

& dx % x
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A P P E N D I X  F

PROPERTIES OF THE ELEMENTS

A-12

All physical properties are for a pressure of 1 atm unless otherwise specified.

Specific
Atomic Molar Boiling Heat,
Number Mass, Density, Melting Point, J/(g #&C) 

Element Symbol Z g/mol g/cm3 at 20&C Point, &C &C at 25&C

Actinium Ac 89 (227) 10.06 1323 (3473) 0.092
Aluminum Al 13 26.9815 2.699 660 2450 0.900
Americium Am 95 (243) 13.67 1541 — —
Antimony Sb 51 121.75 6.691 630.5 1380 0.205
Argon Ar 18 39.948 1.6626 ! 10"3 "189.4 "185.8 0.523
Arsenic As 33 74.9216 5.78 817 (28 atm) 613 0.331
Astatine At 85 (210) — (302) — —
Barium Ba 56 137.34 3.594 729 1640 0.205
Berkelium Bk 97 (247) 14.79 — — —
Beryllium Be 4 9.0122 1.848 1287 2770 1.83
Bismuth Bi 83 208.980 9.747 271.37 1560 0.122
Bohrium Bh 107 262.12 — — — —
Boron B 5 10.811 2.34 2030 — 1.11
Bromine Br 35 79.909 3.12 (liquid) "7.2 58 0.293
Cadmium Cd 48 112.40 8.65 321.03 765 0.226
Calcium Ca 20 40.08 1.55 838 1440 0.624
Californium Cf 98 (251) — — — —
Carbon C 6 12.01115 2.26 3727 4830 0.691
Cerium Ce 58 140.12 6.768 804 3470 0.188
Cesium Cs 55 132.905 1.873 28.40 690 0.243
Chlorine Cl 17 35.453 3.214 ! 10"3 (0&C) "101 "34.7 0.486
Chromium Cr 24 51.996 7.19 1857 2665 0.448
Cobalt Co 27 58.9332 8.85 1495 2900 0.423
Copernicium Cn 112 (285) — — — —
Copper Cu 29 63.54 8.96 1083.40 2595 0.385
Curium Cm 96 (247) 13.3 — — —
Darmstadtium Ds 110 (271) — — — —
Dubnium Db 105 262.114 — — — —
Dysprosium Dy 66 162.50 8.55 1409 2330 0.172
Einsteinium Es 99 (254) — — — —
Erbium Er 68 167.26 9.15 1522 2630 0.167
Europium Eu 63 151.96 5.243 817 1490 0.163
Fermium Fm 100 (237) — — — —
Flerovium* Fl 114 (289) — — — —
Fluorine F 9 18.9984 1.696 ! 10"3 (0&C) "219.6 "188.2 0.753
Francium Fr 87 (223) — (27) — —
Gadolinium Gd 64 157.25 7.90 1312 2730 0.234
Gallium Ga 31 69.72 5.907 29.75 2237 0.377
Germanium Ge 32 72.59 5.323 937.25 2830 0.322
Gold Au 79 196.967 19.32 1064.43 2970 0.131
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Specific
Atomic Molar Boiling Heat,
Number Mass, Density, Melting Point, J/(g #&C) 

Element Symbol Z g/mol g/cm3 at 20&C Point, &C &C at 25&C

Hafnium Hf 72 178.49 13.31 2227 5400 0.144
Hassium Hs 108 (265) — — — —
Helium He 2 4.0026 0.1664 ! 10"3 "269.7 "268.9 5.23
Holmium Ho 67 164.930 8.79 1470 2330 0.165
Hydrogen H 1 1.00797 0.08375 ! 10"3 "259.19 "252.7 14.4
Indium In 49 114.82 7.31 156.634 2000 0.233
Iodine I 53 126.9044 4.93 113.7 183 0.218
Iridium Ir 77 192.2 22.5 2447 (5300) 0.130
Iron Fe 26 55.847 7.874 1536.5 3000 0.447
Krypton Kr 36 83.80 3.488 ! 10"3 "157.37 "152 0.247
Lanthanum La 57 138.91 6.189 920 3470 0.195
Lawrencium Lr 103 (257) — — — —
Lead Pb 82 207.19 11.35 327.45 1725 0.129
Lithium Li 3 6.939 0.534 180.55 1300 3.58
Livermorium* Lv 116 (293) — — — —
Lutetium Lu 71 174.97 9.849 1663 1930 0.155
Magnesium Mg 12 24.312 1.738 650 1107 1.03
Manganese Mn 25 54.9380 7.44 1244 2150 0.481
Meitnerium Mt 109 (266) — — — —
Mendelevium Md 101 (256) — — — —
Mercury Hg 80 200.59 13.55 "38.87 357 0.138
Molybdenum Mo 42 95.94 10.22 2617 5560 0.251
Neodymium Nd 60 144.24 7.007 1016 3180 0.188
Neon Ne 10 20.183 0.8387 ! 10"3 "248.597 "246.0 1.03
Neptunium Np 93 (237) 20.25 637 — 1.26
Nickel Ni 28 58.71 8.902 1453 2730 0.444
Niobium Nb 41 92.906 8.57 2468 4927 0.264
Nitrogen N 7 14.0067 1.1649 ! 10"3 "210 "195.8 1.03
Nobelium No 102 (255) — — — —
Osmium Os 76 190.2 22.59 3027 5500 0.130
Oxygen O 8 15.9994 1.3318 ! 10"3 "218.80 "183.0 0.913
Palladium Pd 46 106.4 12.02 1552 3980 0.243
Phosphorus P 15 30.9738 1.83 44.25 280 0.741
Platinum Pt 78 195.09 21.45 1769 4530 0.134
Plutonium Pu 94 (244) 19.8 640 3235 0.130
Polonium Po 84 (210) 9.32 254 — —
Potassium K 19 39.102 0.862 63.20 760 0.758
Praseodymium Pr 59 140.907 6.773 931 3020 0.197
Promethium Pm 61 (145) 7.22 (1027) — —
Protactinium Pa 91 (231) 15.37 (estimated) (1230) — —
Radium Ra 88 (226) 5.0 700 — —
Radon Rn 86 (222) 9.96 ! 10"3 (0&C) ("71) "61.8 0.092
Rhenium Re 75 186.2 21.02 3180 5900 0.134
Rhodium Rh 45 102.905 12.41 1963 4500 0.243
Roentgenium Rg 111 (280) — — — —
Rubidium Rb 37 85.47 1.532 39.49 688 0.364
Ruthenium Ru 44 101.107 12.37 2250 4900 0.239
Rutherfordium Rf 104 261.11 — — — —
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Specific
Atomic Molar Boiling Heat,
Number Mass, Density, Melting Point, J/(g #&C) 

Element Symbol Z g/mol g/cm3 at 20&C Point, &C &C at 25&C

Samarium Sm 62 150.35 7.52 1072 1630 0.197
Scandium Sc 21 44.956 2.99 1539 2730 0.569
Seaborgium Sg 106 263.118 — — — —
Selenium Se 34 78.96 4.79 221 685 0.318
Silicon Si 14 28.086 2.33 1412 2680 0.712
Silver Ag 47 107.870 10.49 960.8 2210 0.234
Sodium Na 11 22.9898 0.9712 97.85 892 1.23
Strontium Sr 38 87.62 2.54 768 1380 0.737
Sulfur S 16 32.064 2.07 119.0 444.6 0.707
Tantalum Ta 73 180.948 16.6 3014 5425 0.138
Technetium Tc 43 (99) 11.46 2200 — 0.209
Tellurium Te 52 127.60 6.24 449.5 990 0.201
Terbium Tb 65 158.924 8.229 1357 2530 0.180
Thallium Tl 81 204.37 11.85 304 1457 0.130
Thorium Th 90 (232) 11.72 1755 (3850) 0.117
Thulium Tm 69 168.934 9.32 1545 1720 0.159
Tin Sn 50 118.69 7.2984 231.868 2270 0.226
Titanium Ti 22 47.90 4.54 1670 3260 0.523
Tungsten W 74 183.85 19.3 3380 5930 0.134
Unnamed Uut 113 (284) — — — —
Unnamed Uup 115 (288) — — — —
Unnamed Uus 117 — — — — —
Unnamed Uuo 118 (294) — — — —
Uranium U 92 (238) 18.95 1132 3818 0.117
Vanadium V 23 50.942 6.11 1902 3400 0.490
Xenon Xe 54 131.30 5.495 ! 10"3 "111.79 "108 0.159
Ytterbium Yb 70 173.04 6.965 824 1530 0.155
Yttrium Y 39 88.905 4.469 1526 3030 0.297
Zinc Zn 30 65.37 7.133 419.58 906 0.389
Zirconium Zr 40 91.22 6.506 1852 3580 0.276

The values in parentheses in the column of molar masses are the mass numbers of the longest-lived isotopes of those elements that are radioactive.
Melting points and boiling points in parentheses are uncertain.
The data for gases are valid only when these are in their usual molecular state, such as H2, He, O2, Ne, etc.The specific heats of the gases are the
values at constant pressure.
Source: Adapted from J. Emsley, The Elements, 3rd ed., 1998, Clarendon Press, Oxford. See also www.webelements.com for the latest values and
newest elements.
*The names and symbols for elements 114 (Flerovium, Fl) and 116 (Livermorium, Lv) have been suggested but are not official.
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A P P E N D I X  G

PERIODIC TABLE OF THE ELEMENTS

A-15

Evidence for the discovery of elements 113 through 118 has been reported. See www.webelements.com for the latest information and newest
elements.The names and symbols for elements 114 and 116 have been suggested but are not official.

H
1

IA

IIA

Alkali
metals

Li
3

Na
11

K
19

Rb
37

Cs
55

Fr
87

1

2

3

4

5

6

7

Be
4

Mg
12

Ca
20

Sr
38

Ba
56

Ra
88

Sc
21

Y
39

*
57-71

†
89-103

Ti
22

Zr
40

Hf
72

Rf
104

V
23

Nb
41

Ta
73

Db
105

Cr
24

Mo
42

W
74

Sg
106

Mn
25

Tc
43

Re
75

Bh
107

Fe
26

Ru
44

Os
76

Hs
108

Co
27

VIIIB

Transition metals

Rh
45

Ir
77

Mt
109

Ni
28

Pd
46

Pt
78

Cu
29

Ag
47

Au
79

111

Zn
30

Cd
48

Hg
80

112

Ga
31

In
49

Tl
81

113

Ge
32

Sn
50

Pb
82

114

As
33

Sb
51

Bi
83

115

Se
34

Te
52

Po
84

116

Br
35

I
53

At
85

117

Kr
36

Al
13

Si
14

P
15

S
16

Cl
17

Ar
18

B
5

C
6

N
7

O
8

F
9

Ne
10

He
2

IIIB IVB VB VIB VIIB IB IIB

IIIA

Nonmetals

IVA VA VIA VIIA

0

Noble
gases

Xe
54

Rn
86

La
57

Ce
58

Pr
59

Nd
60

Pm
61

Sm
62

Eu
63

Gd
64

Tb
65

Dy
66

Ho
67

Er
68

Tm
69

Yb
70

Lu
71

Ac

Lanthanide series *

Actinide series †
89

Th
90

Pa
91

U
92

Np
93

Pu
94

Am
95

Cm
96

Bk
97

Cf
98

Es
99

Fm
100

Md
101

No
102

Lr
103

118

T
H

E
 H

O
R

IZ
O

N
TA

L
 P

E
R

IO
D

S

Inner transition metals

Metalloids

Metals

Ds
110

Rg Cn Fl Lv
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A N S W E R S

To Checkpoints and Odd-Numbered Problems

Chapter 1
P 1. 53 L 3. 0.45 5. 1.7 ! 105 7. 6.13 ! 105 mi 9. 8.4 ! 102 km
11. 6.3 ! 10"12 s 13. (a) 495 s; (b) 141 s; (c) 198 s; (d) "245 s
15. 1.21 ! 1012 ms 17. important criterion is the consistency of the
daily variation,not its magnitude 19. 5.2 ! 106 m 21. 2.6 ! 103 kg/m3

23. 2.00 cm 25. (a) 1.3 ! 103 kg/m3 27. (a) 2.542 kg; (b) 0.02 g
29. 1.75 ! 103 kg 31. 1.43 kg/min

Chapter 2
CP 1. b and c 2. (check the derivative dx/dt) (a) 1 and 4;
(b) 2 and 3 3. (a) plus; (b) minus; (c) minus; (d) plus 4. 1 and 4
(a # d 2x/dt2 must be constant) 5. (a) plus (upward displacement
on y axis); (b) minus (downward displacement on y axis);
(c) a # "g # "9.8 m/s2

P 1. (a) 0; (b) 0 3. (a) 3.27 km/h; (b) 6.33 km/h 5. (a) 0; (b) "2 m;
(c) 0; (d) 12 m; (e) $12 m; (f) $7 m/s 7. (a) 35 km; (b) 16 km
9. 1.4 m 11. 25.00 m/s 13. (a) 73 km/h; (b) 68 km/h; (c) 70 km/h;
(d) 0 15. 43 m/s 17. (a) 28.5 cm/s; (b) 18.0 cm/s; (c) 40.5 cm/s;
(d) 28.1 cm/s; (e) 30.3 cm/s 19. "20 m/s2 21. (a) 3.10 m/s2; (b) 11.6 s
23. 0.36 25. 0.32 m/s2 27. 1.60 ! 103 m/s2 29. (a) 10.6 m; (b) 41.5 s
31. 1.01 km 33. 2.0 s 35. 9.38 ns 37. (a) 4.0 m/s2; (b) $x
39. 24 s 41. (a) 21 m/s2; (b) 96 m 43. (a) 0.994 m/s2 45. 122.5 m
47. (a) 46 m/s; (b) 6.1 s 49. (a) 5.4 s; (b) 41 m/s 51. 19.6 m/s
53. 4.0 m/s 55. (a) 857 m/s2; (b) up 57. (a) 1.26 ! 103 m/s2; (b) up
59. (a) 89 cm; (b) 22 cm 61. 20.4 m 63. 2.34 m 65. (a) 2.25 m/s;
(b) 3.90 m/s 67. 0.56 m/s 69. 100 m

Chapter 3
CP 1. (a) 7 m ( and are in same direction);(b) 1 m ( and are in
opposite directions) 2. c,d, f (components must be head to tail;
must extend from tail of one component to head of the other)
3. (a) $ ,$ ;(b) $ ," ;(c) $ ,$ (draw vector from tail of to head of )
4. (a) 90°;(b) 0° (vectors are parallel—same direction);(c) 180° (vec-
tors are antiparallel—opposite directions) 5. (a) 0° or 180°; (b) 90°

d
:

2d
:

1

a:
b
:

a:b
:

a:

initially positive, decreases to zero, and then becomes progressively
more negative; (c) ax # 0 throughout; (d) ay # "g throughout
5. (a) "(4 m/s) ; (b) "(8 m/s2)ĵ
P 1. 7.8 m 3. ("2.0 m) $ (8.0 m)ĵ " (13 m) 5. (a) 7.59 km/h;
(b) 22.5 east of due north 7. ("0.90 m/s) $ (1.6 m/s)ĵ " (0.60 m/s)
9. (a) 0.83 cm/s; (b) 0 ; (c) 0.11 m/s; (d) "63 11. (a) (63.0 m) "
(641 m)ĵ; (b) (75.0 m/s) " (864 m/s)ĵ; (c) (54.0 m/s2) " (864 m/s2)ĵ;
(d) "85.0 13. (a) (6 m/s2)tĵ $ (1 m/s) ;(b) (6 m/s2)ĵ 15. (a) (2.3 m/s) ;
(b) (2.7 m) $ (0.91 m) 17. (48 m/s) 19. (a) (72.0 m) $
(90.7 m) ; (b) 49.5 21. 0.681 m 23. (a) 2.87 s; (b) 818 m;
(c) 28.1 m/s 25. 43.1 m/s (155 km/h) 27. (a) 10.0 s; (b) 897 m
29. 80.4 31. no 33. (a) 147 m/s; (b) 696 m;(c) 116 m/s; (d) "149 m/s
35. 4.84 cm 37. (a) 2.25 m; (b) 8.03 m; (c) 3.91 m 39. (a) 32.3 m;
(b) 21.9 m/s; (c) 40.4 ; (d) below 41. 55.5 43. (a) 13 m; (b) 28 m;
(c) 18 m/s; (d) 62 45. (a) ramp; (b) 5.82 m; (c) 31.0 47. (a) yes;
(b) 2.56 m 49. (a) 31 ; (b) 63 51. (a) 2.3 ; (b) 1.1 m; (c) 18
53. (a) 75.0 m; (b) 31.9 m/s; (c) 66.9 ; (d) 25.5 m 55. the second
57. (a) 7.32 m; (b) west; (c) north 59. 1.9 m/s2 61. (a) 1.3 ! 105 m/s;
(b) 7.9 ! 105 m/s2; (c) increase 63. 2.92 m 65. (3.00 m/s2) $
(6.00 m/s2)ĵ 67. 160 m/s2 69. (a) 13 m/s2; (b) eastward; (c) 13 m/s2;
(d) eastward 71. 1.67 73. (a) (80 km/h) " (60 km/h) ; (b) 0 ;
(c) answers do not change 75. 32 m/s 77. 60 79. (a) 38 knots;
(b) 1.5 east of due north; (c) 4.2 h; (d) 1.5 west of due south
81. (a) ("32 km/h) " (46 km/h)ĵ; (b) [(2.5 km) " (32 km/h)t] $
[(4.0 km) " (46 km/h)t] ; (c) 0.084 h; (d) 2 ! 102 m

Chapter 5
CP 1. c, d, and e ( and must be head to  tail, must be
from tail of one of them to head of the other) 2. (a) and (b) 2 N,
leftward (acceleration is zero in each situation) 3. (a) equal; (b)
greater (acceleration is upward, thus net force on body must be up-
ward) 4. (a) equal; (b) greater; (c) less 5. (a) increase; (b) yes;
(c) same; (d) yes
P 1. (a) 1.9 m/s2; (b) 38 3. (a) 5.20 N; (b) 3.00 N; (c) (5.20 N) $
(3.00 N)ĵ 5. (a) (0.86 m/s2) " (0.16 m/s2)ĵ; (b) 0.88 m/s2; (c) "11
7. (a) ("32.0 N) " (20.8 N)ĵ; (b) 38.2 N; (c) "147 9. (a) 14.1 N;
(b) "140 ; (c) "130 11. 30 m/s2 13. 5.2 m/s2 15. (a) 108 N;
(b) 108 N;(c) 108 N 17. (a) 42 N;(b) 72 N;(c) 4.9 m/s2 19. 1.3 ! 105 N
21. (a) 11.7 N; (b) "59.0 23. (a) (285 N) $ (705 N)ĵ; (b) (285 N) "
(155 N)ĵ; (c) 324 N; (d) "29.0 ; (e) 3.70 m/s2; (f) "29.0
25. (a) 0.022 m/s2; (b) 8.3 ! 104 km; (c) 1.9 ! 103 m/s 27. 1.6 mm
29. (a) 548 N; (b) up; (c) 548 N; (d) down 31. (a) 0.834 m; (b) 0.602 s;
(c) 2.77 m/s 33. 1.6 ! 104 N 35. (a) 60.0 ; (b) 40.9 37. (a) 0.65 m/s2;
(b) 0.12 m/s2; (c) 1.9 m 39. (a) 3.2 mN; (b) 2.1 mN 41. (a) 1.3 m/s2;
(b) 4.0 m/s 43. (a) 1.23 N; (b) 2.46 N; (c) 3.69 N; (d) 4.92 N;
(e) 6.15 N; (f) 0.250 N 45. (a) 33.4 kN; (b) 24.6 kN 47. 6.4 ! 103 N
49. (a) 2.18 m/s2; (b) 116 N; (c) 21.0 m/s2 51. (a) 3.6 m/s2; (b) 17 N
53. (a) 21 N;(b) 52 N 55. (a) 1.1 N 57. 0 59. (a) 4.9 m/s2;(b) 2.0 m/s2;
(c) up; (d) 120 N 61. 2Ma/(a $ g) 63. (a) 8.0 m/s; (b) $x
65. (a) 0.653 m/s3; (b) 0.896 m/s3; (c) 6.50 s 67. 81.7 N

Chapter 6
CP 1. (a) zero (because there is no attempt at sliding); (b) 5 N;
(c) no; (d) yes; (e) 8 N 2. ( is directed toward center of circulara:
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%î
î%
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%ĵî

î
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îîĵî
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P 1. 1.73 3. 23 5. (a) 1.8 m; (b) 69 north of due east 7. (a)
parallel; (b) antiparallel; (c) perpendicular 9. (a) (5.0 " 2.0m) "
("4.0 $ 2.0m)ĵ $ (2.0 $ 5.0m) ; (b) (5.0 $ 2.0m) $ ("4.0 " 2.0m)ĵ $
(2.0 " 5.0m) ;(c) ("5.0 " 2.0m) $ (4.0 $ 2.0m)ĵ $ ("2.0 $ 5.0m)
11. (a) ("9.0 m) $ (10 m)ĵ; (b) 13 m;(c) 132 13. (a) 120 ; (b) 1.73 m
15. (a) 1.59 m;(b) 12.1 m;(c) 12.2 m;(d) 82.5 17. (a) 38 m;(b) "37.5 ;
(c) 130 m; (d) 1.2 ;(e) 62 m;(f) 130 19. 5.39 m at 21.8 left of forward
21. (a) "70.0 cm;(b) 80.0 cm;(c) 141 cm;(d) "172 23. ( " ĵ)î(5/22)%
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îk̂
î
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25. 51 west of due north 27. (a) 8 $ 16ĵ; (b) 2 $ 4ĵ 29. (a) 7.5 cm;
(b) 90 ; (c) 8.6 cm; (d) 48 31. (a) 8.39 m; (b) 12.4 m; (c) 11.8 m;
(d) 9.23 m 33. (a) a $ aĵ $ a ; (b) "a $ aĵ $ a ; (c) a " aĵ $ a ;
(d) "a " aĵ $ a ; (e) 54.7 ; (f) 30.5a 35. (a) "12.6 ; (b) "18.1
37. (a) "21; (b) "9; (c) 5 " 11ĵ " 9 39. 70.5 41. 15
43. (a) 3.00 m;(b) 0; (c) 3.46 m; (d) 2.00 m; (e) "5.00 m; (f) 8.66 m;
(g) "6.67; (h) 4.33

Chapter 4
CP 1. (draw tangent to path, tail on path) (a) first; (b) third
2. (take second derivative with respect to time) (1) and (3) ax and
ay are both constant and thus is constant; (2) and (4) ay is con-
stant but ax is not, thus is not 3. yes 4. (a) vx constant; (b) vya:

a:

v:
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AN-2 ANSWERS

path) (a) downward, upward; (b) and upward; (c) same;
(d) greater at lowest point
P 1. 33 N 3. (a) 5.8 m/s2; (b) 17 N; (c) 41 N 5. (a) 6.0 N;
(b) 3.6 N; (c) 3.1 N 7. (a) 1.6 ! 102 N; (b) 1.8 m/s2

9. (a) 11 N; (b) 0.14 m/s2 11. (a) 3.8 ! 102 N; (b) 1.3 m/s2

13. (a) 1.3 ! 102 N; (b) no; (c) 1.1 ! 102 N; (d) 46 N; (e) 17 N
15. 49 N 17. (a) (17 N) ; (b) (20 N) ; (c) (15 N) 19. (a) no;
(b) ("12 N) $ (5.0 N)ĵ 21. (a) 0.81 m/s2; (b) 18 N 23. 0.37
25. 1.1 ! 102 N 27. (a) 2.0 N; (b) 0.091 m/s2 29. 2.5 m/s2

31. 2.6 m/s2 33. 11 s 35. 5.6 ! 102 N 37. (a) 3.2 ! 102 km/h;
(b) 6.5 ! 102 km/h; (c) no 39. 3.3 41. 0.67 43. 24 m
45. (a) light; (b) 778 N; (c) 223 N; (d) 1.11 kN 47. (a) 14 s;
(b) 5.8 ! 102 N; (c) 9.9 ! 10 2 N 49. 1.57 ! 103 N 51. 3.4 km
53. 11° 55. 3.3 ! 103 N 57. 2.02 m/s 59. (a) 8.74 N; (b) 37.9 N;
(c) 6.45 m/s; (d) radially inward

Chapter 7
CP 1. (a) decrease; (b) same; (c) negative, zero 2. (a) positive;
(b) negative; (c) zero 3. zero
P 1. (a) 2.3 ! 107 m/s; (b) 1.5 ! 10"16 J 3. (a) 5 ! 1014 J;
(b) 0.1 megaton TNT; (c) 8 bombs 5. (a) 2.4 m/s; (b) 4.8 m/s
7. 0.96 J 9. 20 J 11. (a) 73.2°; (b) 107° 13. (a) 1.7 ! 102 N;
(b) 3.4 ! 102 m; (c) "5.8 ! 104 J; (d) 3.4 ! 102 N; (e) 1.7 ! 102

m; (f) "5.8 ! 104 J 15. (a) 1.50 J; (b) increases 17. (a) 13 kJ;
(b) "12 kJ; (c) 1.2 kJ; (d) 5.6 m/s 19. 25 J 21. (a) "3Mgd/4;
(b) Mgd; (c) Mgd/4; (d) (gd/2)0.5 23. 4.41 J 25. (a) 25.9 kJ;
(b) 2.45 N 27. (a) 7.2 J; (b) 7.2 J; (c) 0; (d) "25 J 29. (a) 0.90
J; (b) 2.1 J; (c) 0 31. (a) 7.3 m/s; (b) 5.5 m 33. (a) 0.12 m;
(b) 0.36 J; (c) "0.36 J; (d) 0.060 m; (e) 0.090 J 35. (a) 0; (b) 0
37. (a) 42 J; (b) 30 J; (c) 12 J; (d) 6.5 m/s, $x axis; (e) 5.5 m/s, $x
axis; (f) 3.5 m/s, $x axis 39. 2.2 J 41. 36 kJ 43. (a) 0.83 J;
(b) 2.5 J; (c) 4.2 J; (d) 5.0 W 45. 5.4 ! 102 W 47. (a) 1.0 ! 102 J;
(b) 8.4 W 49. 7.4 ! 102 W 51. (a) 32.0 J; (b) 8.00 W;
(c) 78.2°

Chapter 8
CP 1. no (consider round trip on the small loop) 2. 3, 1, 2 (see
Eq. 8-6) 3. (a) all tie; (b) all tie 4. (a) CD, AB, BC (0) (check
slope magnitudes); (b) positive direction of x 5. all tie
P 1. 1/9 3. (a) 167 J; (b) "167 J; (c) 196 J; (d) 29 J; (e) 167 J;
(f) "167 J; (g) 296 J; (h) 129 J 5. (a) 4.31 mJ; (b) "4.31 mJ;
(c) 4.31 mJ; (d) "4.31 mJ; (e) all increase 7. (a) 13.1 J; (b) "13.1 J;
(c) 13.1 J; (d) all increase 9. (a) 17.0 m/s; (b) 26.5 m/s; (c) 33.4 m/s;
(d) 56.7 m; (e) all the same 11. (a) 2.08 m/s; (b) 2.08 m/s;
(c) increase 13. (a) 0.98 J; (b) "0.98 J; (c) 3.1 N/cm
15. (a) 2.6 ! 102 m; (b) same; (c) decrease 17. (a) 2.5 N; (b) 0.31 N;
(c) 30 cm 19. 1.9 m 21. (a) 8.35 m/s; (b) 4.33 m/s; (c) 7.45 m/s;
(d) both decrease 23. (a) 4.85 m/s; (b) 2.42 m/s 25. "3.2 ! 102 J
27. (a) no; (b) 9.3 ! 102 N 29. 0.55 31. (a) 1.6 kN/m; (b) 9.9 m/s;
(c) same 33. (a) 2.40 m/s; (b) 4.19 m/s 35. (a) 39.6 cm; (b) 3.64 cm
37. 1.4 m 39. (a) 2.1 m/s; (b) 10 N; (c) $x direction; (d) 5.7 m;
(e) 30 N; (f) "x direction 41. (a) "3.7 J; (c) 1.3 m;(d) 9.1 m;
(e) 2.2 J; (f) 4.0 m; (g) (4 " x)e"x/4; (h) 4.0 m 43. (a) 67 J; (b) 67 J;
(c) 46 cm 45. (a) 3.6 MJ; (b) 56 MJ; (c) 60 MJ 47. (a) 0.40 kJ;
(b) 25 J; (c) 65 m/s; (d) "0.12 kJ 49. 23 m 51. (a) mg(H " 5.0m);
(b) mg(H " 5.0m); (c) mg(H " 5.0m) 53. 24 W 55. &2.5 m/s
57. (a) 0; (b) 5.0 ! 102 J; (c) 4.1 ! 102 J; (d) 5.5 m/s 59. (a) 19.4 m;
(b) 19.0 m/s 61. 36.2 m 63. (a) 7.4 m/s; (b) 90 cm; (c) 2.8 m;
(d) 15 m 65. 20 cm
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Na: Chapter 9
CP 1. (a) origin; (b) fourth quadrant; (c) on y axis below origin;
(d) origin; (e) third quadrant; (f) origin 2. (a)"(c) at the center of
mass, still at the origin (their forces are internal to the system and
cannot move the center of mass) 3. (Consider slopes and
Eq. 9-23.) (a) 1, 3, and then 2 and 4 tie (zero force); (b) 3 4. (a) 
unchanged; (b) unchanged (see Eq. 9-32); (c) decrease (Eq. 9-35)
5. (a) zero; (b) positive (initial py down y; final py up y); (c) positive
direction of y 6. (No net external force; conserved.) (a) 0;
(b) no; (c) "x 7. (a) 10 kg 'm/s; (b) 14 kg 'm/s; (c) 6 kg 'm/s
8. (a) 4 kg 'm/s; (b) 8 kg 'm/s; (c) 3 J 9. (a) 2 kg 'm/s (conserve
momentum along x); (b) 3 kg 'm/s (conserve momentum along y)
P 1. 0.73 3. (a) "6.5 cm; (b) 8.3 cm; (c) 1.4 cm 5. (a) "0.45 cm;
(b) "2.0 cm 7. (a) 0; (b) 3.13 ! 10" 11 m 9. (a) "1.1 m/s2;
(b) "2.2 m; (c) 2.7 m/s 11. ("4.0 m) $ (4.0 m)ĵ 13. 53 m
15. (a) (2.35 " 1.57ĵ) m/s2; (b) (2.35 " 1.57ĵ) t m/s, with t in seconds;
(d) straight, at downward angle 34° 17. 4.2 m 19. (a) 0;
(b) 481 kg m/s; (c) 150° 21. (a) 0.14 kg m/s; (b) 0; (c) 0 23. 1.0 !
103 to 1.2 ! 103 kg m/s 25. (a) 1.20 ms; (b) 0.500 N's; (c) 417 N
27. (a) 270 N s; (b) rightward; (c) 13.5 kN 29. 6.26 N's
31. (a) 2.39 ! 103 N s; (b) 4.78 ! 105 N; (c) 1.76 ! 103 N s;
(d) 3.52 ! 105 N 33. (a) 5.86 kg m/s; (b) 59.8°; (c) 2.93 kN; (d) 59.8°
35. 9.9 ! 102 N 37. (a) 49.1 N s; (b) 24.5 N 39. 8.0 m/s
41. (a) "(0.15 m/s) ; (b) 0.18 m 43. 55 cm 45. v/ 47. 36 m
49. 3.1 ! 102 m/s 51. (a) 721 m/s; (b) 937 m/s 53. (a) 33%;
(b) 23%; (c) decreases 55. (a) 0.40 m/s; (b) 2.4 m/s; (c) 0.95 m;
(d) 6.0 J 57. (a) 4.4 m/s; (b) 0.80 59. 25 cm 61. (a) 9.8 m/s;
(b) 22 J 63. (a) 3.00 m/s; (b) 6.00 m/s 65. (a) "3v ; (b) 0; (c) "v ;
(d) "v 67. "28 cm 69. (a) 0.21 kg;(b) 7.2 m 71. (a) 4.15 ! 105 m/s;
(b) 4.84 ! 105 m/s 73. 120° 75. (a) 2.6mu; (b) 0.14u; (c) 4.9mu2

77. (a) 46 N; (b) none 79. (a) 2.45 kg/s; (b) 7.45 kg/s; (c) 4.16 km/s

Chapter 10
CP 1. b and c 2. (a) and (d) (a # d 2u/dt2 must be a constant)
3. (a) yes; (b) no; (c) yes; (d) yes 4. all tie 5. 1, 2, 4, 3 (see Eq. 10-36)
6. (see Eq. 10-40) 1 and 3 tie, 4, then 2 and 5 tie (zero) 7. (a)
downward in the figure (tnet # 0); (b) less (consider moment arms)
P 1. (a) 400 rev/min; (b) 6.28 ! 103 m 3. (a) 4.0 rad/s;
(b) 11.9 rad/s 5. 50 rad/s 7. (a) 4.0 m/s; (b) no 9. (a) 5.03 rad/s2;
(b) 8.00 kg m2 11. 10 s 13. (a) 3.4 ! 102 s; (b) "4.5 ! 10"3 rad/s2;
(c) 98 s 15. 8.0 s 17. (a) 44 rad; (b) 5.5 s; (c) 32 s; (d) "2.1 s;
(e) 40 s 19. 0.27 Hz 21. 6.9 ! 10"13 rad/s 23. (a) 20.9 rad/s;
(b) 12.5 m/s; (c) 800 rev/min2; (d) 600 rev 25. (a) 7.3 ! 10"5 rad/s;
(b) 3.5 ! 102 m/s; (c) 7.3 ! 10"5 rad/s; (d) 4.6 ! 102 m/s
27. (a) 73 cm/s2; (b) 0.075; (c) 0.11 29. (a) 3.8 ! 103 rad/s;
(b) 1.9 ! 102 m/s 31. (a) 40 s; (b) 2.0 rad/s2 33. (a) 7.03 s; (b) 4.97 s
35. (a) 0.83 m; (b) 1.0 J 37. 7.5 ! 10"2 kg m2 39. (a) 47 J;
(b) 11 W 41. (a) 0.023 kg m2; (b) 1.1 mJ 43. 4.7 ! 10"4 kg m2

45. "3.85 N m 47. 3.0 m 49. 18.6 rev 51. (a) 6.00 cm/s2;
(b) 4.87 N; (c) 4.54 N; (d) 1.20 rad/s2; (e) 0.0138 kg m2 53. 0.140 N
55. 2.51 ! 10"4 kg m2 57. (a) 4.2 ! 102 rad/s2; (b) 5.0 ! 102 rad/s
59. 29.7 m/s 61. (a) 1.67 N m; (b) 333 J; (c) into thermal energy of
the disks 63. 5.42 m/s 65. (a) 5.32 m/s2; (b) 8.43 m/s2; (c) 41.8°
67. 9.82 rad/s

Chapter 11
CP 1. (a) same; (b) less 2. less (consider the transfer of energy
from rotational kinetic energy to gravitational potential energy)
3. (draw the vectors, use right-hand rule) (a) &z; (b) $y; (c) "x
4. (see Eq. 11-21) (a) 1 and 3 tie; then 2 and 4 tie, then 5 (zero); (b) 2
and 3 5. (see Eqs. 11-23 and 11-16) (a) 3, 1; then 2 and 4 tie (zero);
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(b) 3 6. (a) all tie (same t, same t, thus same ); (b) sphere,disk,
hoop (reverse order of I) 7. (a) decreases; (b) same (tnet # 0, so L is
conserved); (c) increases
P 1. (a) 0; (b) (22 m/s) ; (c) ("22 m/s) ; (d) 0; (e) 1.5 ! 103 m/s2;
(f) 1.5 ! 103 m/s2; (g) (22 m/s) ; (h) (44 m/s) ; (i) 0; (j) 0; (k) 1.5 !
103 m/s2; (l) 1.5 ! 103 m/s2 3. 7.1 m 5. 5h/7 7. (a) 63 rad/s; (b) 4.0 m
9. 4.8 m 11. (a) ("4.0 N) ; (b) 0.60 kg m2 13. 0.50
15. (a) "(0.11 m)v; (b) "2.1 m/s2; (c) "47 rad/s2; (d) 1.2 s; (e) 8.6 m;
(f) 6.1 m/s 17. (a) 13 cm/s2; (b) 4.4 s; (c) 55 cm/s; (d) 18 mJ; (e) 1.4 J;
(f) 27 rev/s 19. (42 N m) " (24 N m)ĵ $ (22 N m)k̂
21. (a) (6.0 N m)ĵ $ (8.0 N m)k̂; (b) ("22 N m)
23. (a) ("1.5 N m) " (4.0 N m)ĵ " (1.0 N m)k̂; (b) ("1.5 N m) "
(4.0 N m)ĵ " (1.0 N m)k̂ 25. (a) (6.00 N m)k̂; (b) 165°
27. (a) 0.5mu2 sin 2u; (b) (0.5 mu3 (cos u)(sin u)2)/g 31. (a) 0;
(b) –22.6 kg m2/s; (c) –7.84 N m; (d) –7.84 N m 33. (a) mgb;
(b) mgbt 35. 24.4 N m 37. (a) 4.6 ! 10"3 kg m2; (b) 1.1 !
10"3 kg m2/s; (c) 3.9 ! 10"3 kg m2/s 39. (a) 1.47 N m; (b) 20.4 rad;
(c) "29.9 J; (d) 19.9 W 41. (a) 1.6 kg m2; (b) 4.0 kg m2/s
43. (a) 1.5 m; (b) 0.93 rad/s; (c) 98 J; (d) 8.4 rad/s; (e) 8.8 ! 102 J;
(f) internal energy of the skaters 45. (a) 3.6 rev/s; (b) 3.0;
(c) forces on the bricks from the man transferred energy from the
man’s internal energy to kinetic energy 47. 0.17 rad/s
49. (a) 750 rev/min; (b) 450 rev/min; (c) clockwise 51. (a) 4.00 !
10"2 kg m2; (b) "3.07 J 53. (a) v/L; (b) 0; (c) 0 55. v/2R
57. (a) 18 rad/s; (b) 0.92 59. (a) 10 m/s; (b) 210 N/m 61. 1.5 rad/s
63. 0.070 rad/s 65. (a) 0.148 rad/s; (b) 0.0123; (c) 181°
67. (a) 0.180 m;(b) clockwise 69. 0.041 rad/s

Chapter 12
CP 1. c, e, f 2. (a) no; (b) at site of , perpendicular to plane of
figure; (c) 45 N 3. d
P 1. (a) 362 N; (b) 1.08 ! 103 N; (c) 71.4° 3. (a) 43 N; (b) 25 N;
(c) 51 N; (d) 29° 5. (a) 40.4°; (b) 66.1 kg; (c) 13.2 kg 7. (a) slides;
(b) 17°; (c) tips; (d) 34° 9. (a) 8.8 ! 102 N; (b) 5.4 ! 102 N 11. 0.218
13. 59% 15. (a) 3.6 m/s2; (b) 2.2 kN; (c) 3.3 kN; (d) 0.83 kN;
(e) 1.2 kN 17. 7.34 N 19. (a) 3.6 kN; (b) up; (c) 4.8 kN; (d) down;
(e) 0.86 kN 21. (a) mgx/(L sin u); (b) mgx/(L tan u); (c) mg(1 " x/L)
23. 0.441 g 25. (a) 0.83; (b) 0.17; (c) 0.21 27. (a) 2.0 ! 106 N/m2;
(b) 4.7 ! 10"6 m 29. (a) 260 N; (b) 0.50; (c) 184 N 31. (a) 2.98 kN;
(b) 3.68 kN 33. (a) 30 mJ; (b) 8.67 mJ; (c) 34.2 mJ; (d) no; (e) yes
35. 0.531 m 37. 64.4 mJ 39. (a) 1.59 m; (b) decreases 41. 3.0 N
43. (a) 595 N; (b) 414 N; (c) 0.696 45. (a) ("836 $ 284ĵ) N;
(b) (836 $ 284ĵ) N; (c) (836 $ 970ĵ) N; (d) ("836 " 284ĵ) N
47. (a) 254 N; (b) 660 N; (c) 386 N 49. 451 N 51. (a) 6.8 ! 102 N;
(b) 5.9 ! 102 N

Chapter 13
CP 1. all tie 2. (a) 1, tie of 2 and 4, then 3; (b) line d
3. (a) increase; (b) negative 4. (a) 2; (b) 1 5. (a) path 1
(decreased E (more negative) gives decreased a); (b) less
(decreased a gives decreased T)
P 1.2.8 ! 10"10 N 3.0.71 y 5.(a) 7.58 ! 106 m;(b) 1.06 ! 107 m; (c) 0
7. (a) 3.19 ! 103 km; (b) lifting 9. (a) "7.60 ! 109 J;
(b) "7.60 ! 109 J; (c) falling 11. (a) "1.88d; (b) "3.90d;
(c) 0.489d 13. (a) 1.39 m/s2; (b) 0.772 m/s2 15. 2.16
17. (a) 5.01 ! 109 m; (b) 7.20 solar radii 19. (a) 90.3 min;
(b) 0.185 mHz; (c) 7.73 km/s 21. (a) 0.43 kg; (b) 1.8 kg 23. 4.2 kg
25. (a) 2.3 ! 109 J; (b) 2.5Rs 27. (9.43 ! 10"15 N) $ (9.43 ! 10"15 N)ĵ
29. 1/2 33. (a) "0.22 m; (b) "0.39 m 35. 9 37. 7.8 ! 106 m
39. (a) (3.02 ! 1043 kg m/s2)/Mh; (b) decrease; (c) 9.82 m/s2;
(d) 7.10 ! 10"15 m/s2; (e) no 41. (a) 6 ! 1016 kg; (b) 4 ! 103 kg/m3
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î

îîî
î

F
:

1

 ' 

 '  ' 

 '  '  ' 

 '  ' 

 '  '  ' 

 '  '  ' 
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43. 1.5 s 45. 1/2 47. (a) 0.486; (b) 0.486; (c) B; (d) 1.2 ! 108 J
49. (a) 2.23d; (b) "56.3° 51. (a) 38 MJ; (b) 54 MJ 53. "1.73d
55. (a) 939 N; (b) 2.4 57. (a) 0.17 kg; (b) 0.67 kg 59. "0.32 N
61. (a) 0.74; (b) 3.8 m/s2; (c) 5.0 km/s 63. 1.49 rev/s
65. 5 ! 1010 stars 67. (a) "7.6 ! 10"11 J;(b) "5.1 ! 10"11 J;
(c) 5.1 ! 10"11 J 69. 9.6 ! 106 m

Chapter 14 
CP 1. all tie 2. (a) all tie (the gravitational force on the penguin
is the same); (b) 0.95r0, r0, 1.1r0 3. 13 cm3/s, outward 4. (a) all
tie; (b) 1, then 2 and 3 tie, 4 (wider means slower); (c) 4, 3, 2, 1
(wider and lower mean more pressure)
P 1. (a) 1.1 ! 102 torr; (b) 4.1 ! 102 torr; (c) 3.0 ! 102 torr
3. (a) 1.10 ! 109 N; (b) 1.10 ! 1010 N m; (c) 10.0 m 5. 17 cm
7. (a) 0.25 m2; (b) 8.7 m3/s 9. 1.2 ! 106 Pa 11. 9.80 N 13. 44 km
15. 4.0 kPa 17. (a) 8.6 ! 102 torr; (b) 1.5 ! 103 torr  19. (a) 0.019 atm;
(b) 0.34 atm 21. "3.5 ! 104 Pa 23. 15 torr 25. 2.0 ! 105 J
27. 1.1 cm 29. (a) 2; (b) 1/2; (c) 4.0 cm 31. 0.675 J 33. 47.8 cm
35. (a) 2.4 m/s; (b) 2.3 m/s 37. 311 m 39. (a) 1.5 ! 10"3 m3/s;
(b) 0.90 m 41. 2.6 cm 43. (a) 63 L/min; (b) 1.5 45. 0.167
47. 5.28 ! 105 N 49. 98 m/s 51. 739.21 torr 53. 63 W
55. (a) 3.9 m/s; (b) 1.1 ! 105 Pa 57. (a) 19.5 m3; (b) 8.28 m/s;
(c) 2.30 ! 105 Pa 59. (b) 2.0 ! 10"2 m3/s 61. (b) 46 kN
63. (a) 6.7 ! 102 kg/m3; (b) 7.2 ! 102 kg/m3 65. 9.0 ! 105 N
67. (a) 2.14 ! 10"2 m3; (b) 1.65 kN 69. 0.489 m 71. (a) 25.9 kN;
(b) 27.1 kN; (c) 3.15 kN; (d) 1.26 kN  

Chapter 15
CP 1. (sketch x versus t) (a) "xm; (b) $xm; (c) 0 2. c (a must have
the form of Eq. 15-8) 3. a (F must have the form of Eq. 15-10)
4. (a) 5 J; (b) 2 J; (c) 5 J 5. all tie (in Eq. 15-29, m is included in I)
6. 1, 2, 3 (the ratio m/b matters; k does not)
P 1. 37.7 Hz 3. 58 Hz 5. (a) 0.350 s; (b) 2.86 Hz; (c) 18.0 rad/s;
(d) 161 N/m; (e) 6.28 m/s; (f) 56.4 N 7. (a) 0.203 kg m2; (b) 48.3 cm;
(c) 1.50 s 9. (a) 0.516 m; (b) 0.646 s 11. (a) Fm/bv; (b) Fm/b
13. (a) 1.2 m/s; (b) 3.6 cm 15. (a) 1.0 mm; (b) 0.63 m/s;
(c) 3.9 ! 102 m/s2 17. (a) 2.2 Hz; (b) 56 cm/s; (c) 0.20 kg; (d) 20.0 cm
19. 52 mJ 21. (a) 1.64 s; (b) equal 23. (a) "2.4 m; (b) "52 m/s;
(c) 2.2 ! 102 m/s2; (d) 21 rad; (e) 1.5 Hz; (f) 0.67 s 25. (a) 0.093A;
(b) same direction 27. (a) 3.5 ms; (b) 3.6 m/s; (c) 0.065 J; (d) 65 N;
(e) 33 N 29. 7.8 cm 31. (a) 0.48 m; (b) 2.0 s 33. 8.0%
35. (a) 2.25 Hz; (b) 80.0 J; (c) 250 J; (d) 81.2 cm 37. 43.0 m/s2

39. (a) 0.726 rad; (b) 0.0535 rad 41. (a) 249 Hz; (b) greater 
43. 0.367 s 45. 0.0718 s 47. (a) 2.26 s; (b) increases; (c) same 
49. (a) 14.3 s; (b) 5.72 51. (a) 0.50 s; (b) 2.0 Hz; (c) 16 cm
53. (a) 5.58 Hz; (b) 0.346 kg; (c) 0.401 m 55. 8.76 s 57. (a) 0.84;
(b) 0.16; (c) 2"0.5xm 59. (a) 32.9 rad/s; (b) 28.5 rad/s; (c) 86.1 rad/s2

61. (a) 25 cm; (b) 2.9 Hz 63. 2.8 cm

Chapter 16
CP 1. a, 2; b, 3; c, 1 (compare with the phase in Eq. 16-2, then see
Eq. 16-5) 2. (a) 2, 3, 1 (see Eq. 16-12); (b) 3, then 1 and 2 tie (find
amplitude of dy/dt) 3. (a) same (independent of f); (b) decrease 
(l # v/f); (c) increase; (d) increase 4. 0.20 and 0.80 tie, then 0.60,
0.45 5. (a) 1; (b) 3; (c) 2 6. (a) 75 Hz; (b) 525 Hz
P 1. (a) 0.12 mm;(b) 141 m"1; (c) 628 s"1; (d) plus 3. (a) 77.5 m/s;
(b) 15.0 m; (c) 5.16 Hz 5. (a) 0.50 cm; (b) 2.4 m"1; (c) 2.4 ! 102 s"1;
(d) minus 7. 2.78 m 9. (a) 6.0 mm; (b) 16 m"1; (c) 1.1 ! 103 s"1;
(d) 2.5 rad; (e) plus 11. 0.91ym 13. (a) 0.540 s; (b) 1.85 Hz;
(c) 2.59 m/s 15. (a) negative; (b) 4.0 cm; (c) 0.35 cm"1; (d) 0.63 s"1;
(e) p rad; (f) minus; (g) 1.8 cm/s; (h) –2.5 cm/s 17. (a) 158 m/s;

 ' 

 ' 
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(b) 60.0 cm; (c) 264 Hz 19. (a) 1.50 Hz; (b) 2.00 m; (c) 3.00 m/s;
(d) 50.0 cm; (e) 150 cm; (f) 250 cm; (g) 0; (h) 100 cm; (i) 200 cm
21. (a) 289 Hz; (b) eight 23. (a) 15 m/s; (b) 0.043 N 25. (a) 142 Hz;
(b) 213 m/s 27. 0.533 m/s 29 (a) 3.0 mm; (b) 16 m"1;
(c) 3.2 ! 102 s"1; (d) minus 31. (a) 10.7 cm;(b) p rad 33. (a) 4.19 m"1;
(b) 26.3 m/s  35. 940 Hz 37. 4.5 cm 39. (a) 6.25 mm; (b) 1.23 rad;
(c) 1.23 rad 41. 2.0 mm 43. 121 m/s 45. (a) 8.29 Hz;
(b) 16.6 Hz; (c) 24.9 Hz   47. 68° 49. 8.33 cm 51. 1.4 ms
55. (a) 5.0 cm; (b) 40 cm; (c) 11 m/s; (d) 0.035 s; (e) 8.9 m/s; (f) 16 m"1;
(g) 1.8 ! 102 s"1; (h) 0.93 rad; (i) plus 57. (a) 64 Hz; (b) 1.1 m;
(c) 4.0 cm; (d) 5.7 m"1; (e) 4.0 ! 102 s"1; (f) p/2 rad; (g) minus
59. (a) 0.40 cm; (b) 1.2 ! 102 cm/s; (c) 3.0 cm; (d) 0

Chapter 17
CP 1. beginning to decrease (example: mentally move the curves
of Fig. 17-6 rightward past the point at x # 42 cm) 2. (a) 1 and 2
tie, then 3 (see Eq. 17-28); (b) 3, then 1 and 2 tie (see Eq. 17-26)
3. second (see Eqs.17-39 and 17-41) 4. a, greater; b, less; c, can’t
tell; d, can’t tell; e, greater; f, less
P 1. (a) 90.3 mm; (b) 0.395 mm 3. 0.1 mW 5. 39.5 nm 7. 0.027 
9. (a) 522 Hz;(b) 560 Hz 11. 41 kHz 13. (a) 0.23 nW;(b) 0.47 nW;
(c) 0.94 nW;(d) 0.61 nW;(e) 0 15. (a) 42°;(b) 11 s 17. (a) 1.0 ! 104;
(b) 100 19. (a) 7.37 ! 10"5 W/m2; (b) 5.53 nW 21. 0.204 W
23. 2.2 ! 103 km 25. (a) 405 m/s; (b) 641 N; (c) 44.0 cm; (d) 37.3 cm
27. (a) 933 Hz; (b) 0.373 m 29. 0 31. (a) 1.595 kHz; (b) 1.630 kHz
33. 2.25 ms 35. 166 Hz 37. (a) 2.0 kHz; (b) 2.0 kHz 39. 63.3 N
41. 50.3 m 43. 904 Hz 45. (a) 0; (b) fully constructive; (c) increase;
(d) 84.6 m; (e) 41.2 m; (f) 26.2 m 47. (a) 2.6 km; (b) 1.6 ! 102

49. (a) 18; (b) 16 51. (a) 85.8 Hz; (b) 3; (c) 5; (d) 172 Hz; (e) 2; (f) 3
53. 0.24 mm 55. (a) 2.6 ! 102 Hz; (b) higher 57. (a) 363 Hz; (b) 3;
(c) 5; (d) 727 Hz; (e) 2; (f) 3 59. (a) 505.3 Hz; (b) 520.0 Hz;
(c) 505.7 Hz; (d) 520.0 Hz 61. (a) 3; (b) 1055 Hz; (c) 1407 Hz
63. 9.66 m 65. (a) 1; (b) 2 67. 0.49 ms 69. (a) 93 m; (b) 41 m;
(c) 101 m  

Chapter 18
CP 1. (a) all tie; (b) 50°X, 50°Y, 50°W 2. (a) 2 and 3 tie, then 1,
then 4; (b) 3, 2, then 1 and 4 tie (from Eqs. 18-9 and 18-10, assume
that change in area is proportional to initial area) 3. A (see 
Eq. 18-14) 4. c and e (maximize area enclosed by a clockwise
cycle) 5. (a) all tie ((Eint depends on i and f, not on path); (b) 4, 3,
2, 1 (compare areas under curves); (c) 4, 3, 2, 1 (see Eq. 18-26)
6. (a) zero (closed cycle); (b) negative (Wnet is negative; see 
Eq. 18-26) 7. b and d tie, then a, c (Pcond identical; see Eq. 18-32)
P 1. 9.82 C° 3. (a) 1.3 ! 104 W/m2; (b) 1.1 ! 102 W/m2 5. 4.9 min
7. (a) 12 cal; (b) "86 cal; (c) 80 cal; (d) 36 cal; (e) 36 cal 9. 305 s 
11. 0.92 cm/h 13. 0.11 m 15. 1.05 MJ 17. (a) 1.8 ! 102 J;
(b) 1.1 ! 102 J; (c) 45 J 19. 3.23 kJ/s 21. 55 g 23. 27.9 kJ 
25. "60 J 27. "1.7°C 29. (a) 602 W; (b) 1.12 kW; (c) 108 kJ
31. 1.6 m 33. 150 K 35. 105 L 37. (a) 0°C; (b) 6.3°C 39. 0
41. 0.53 cm3 43. (a) 40 J/s; (b) 0.12 g/s 45. (a) 80.0°F; (b) "7.27°F
47. 15 J 49. 1.5 min 51. 25 m2 53. (a) 5.3°C; (b) 0; (c) 0°C;
(d) 30 g 55. 325°C 57. "232°X 59. 33.46 cm3 61. 3.128 cm
63. 340 K 65. 1.365

Chapter 19
CP 1. all but c 2. (a) all tie; (b) 3, 2, 1 3. gas A 4. 5 (greatest
change in T), then tie of 1, 2, 3, and 4 5. 1, 2, 3 (Q3 # 0, Q2 goes 
into work W2, but Q1 goes into greater work W1 and increases 
gas temperature)
P 1. 6.4 kJ 3. "35 J 5. (a) 3.35 ! 10"26 kg; (b) 20.2 g/mol
7. (a) 3.67 kJ; (b) 2.62 kJ; (c) 1.05 kJ; (d) 1.57 kJ 9. (a) 0;
(b) $1.51 ! 103 J; (c) $1.51 ! 103 J; (d) $5.59 ! 10"22 J
11. (a) 6.76 ! 10"20 J; (b) 11.5 13. (a) 7.0 km/s; (b) 7.7 km/s

15. 11 kPa 17. (a) 0.67; (b) 1.2; (c) 1.3; (d) 0.40 19. (a) 460 m/s;
(b) 480 m/s; (c) yes 21. 540 K 23. (a) 7.48 kJ; (b) 7.48 kJ; (c) 0;
(d) 0; (e) "3.62 kJ; (f) 3.62 kJ; (g) "6.44 kJ; (h) "3.86 kJ; (i) "2.58 kJ;
(j) 1.04 kJ; (k) 0; (l) 1.04 kJ; (m) 0.0492 m3; (n) 4.01 atm; (o) 0.0747 m3;
(p) 1.00 atm 25. "20 J 27. (a) 0.11 atm;(b) 200 K 29. (a) diatomic;
(b) 565 K; (c) 22.4 mol 31. 196 kPa 33. (a) 0.0466 mol;
(b) 1.80 ! 10"3 m3 35. (a) 2.18 kJ; (b) 1.56 kJ; (c) 623 J; (d) 623 J
37. 1.8 ! 102 m/s 39. 14.2 J/mol K 41. 3.2 ! 105 Pa
43. (a) 6.07 ! 10"21 J; (b) 7.31 ! 10"21 J; (c) 3.65 kJ; (d) 4.40 kJ
45. 1.82 ! 10"13 Pa 47. (a) 1.0 ! 104 K; (b) 1.6 ! 105 K;
(c) 4.4 ! 102 K; (d) 7.0 ! 103 K; (e) no; (f) yes 49. 11.2 kJ
51. (a) 6 ! 109 km 53. (a) 1.63 ! 1010 molecules/cm3; (b) 345 m
55. (a) 1.1 mol; (b) 2.5 ! 103 K; (c) 8.4 ! 102 K; (d) 5.0 kJ; (e) 5.0 kJ
57. (a) 2.75 ! 103 J; (b) to 59. (a) 5.0 km/s; (b) 2.0 ! 10"8 cm;
(c) 1.2 ! 1010 collisions/s 61. 0.145 63. (a) 561 m/s; (b) "185°C;
(c) (1.14 ! 103)°C

Chapter 20
CP 1. a, b, c 2. smaller (Q is smaller) 3. c, b, a 4. a, d, c, b 5. b
P 1. 312 K 3. (a) 3.38 kJ; (b) 22.0 kJ; (c) 15.4%; (d) 75.0%;
(e) greater 5. 48 K 7. (a) 41 kJ;(b) 33 kJ;(c) 26 kJ;(d) 18 kJ
9. 15 W 11. 1.67 13. (a) W # N!/(n1! n2! n3!);
(b) [(N/2)! (N/2)!]/[(N/3)! (N/3)! (N/3)!]; (c) 4.2 ! 1016 15. (a) 0;
(b) 1.91 ! 10"23 J/K; (c) 2.47 ! 10"23 J/K 17. (a) 280 K;(b) 0;
(c) $1.91 J/K 19. "1.83 J/K  21. (a) 0.250; (b) 0.144; (c) 0.574;
(d) 1.39; (e) 1.39; (f) 0; (g) 1.39; (h) 0; (i) "1.06; (j) "1.06; (k) "1.39;
(l) "1.06; (m) 0; (n) 1.06; (o) 0 23. 39.7 J/K 25. (a) 734 J; (b) 277 J;
(c) 457 J; (d) 62.3% 27. 0.59 hp 29. 487 W 31. (a) 1.85 ! 105 J;
(b) 505 J/K 33. (a) "768 J/K; (b) $768 J/K; (c) yes 35. (a) 0.693;
(b) 4.50; (c) 0.693; (d) 0; (e) 4.50; (f) 23.0 J/K; (g) "0.693; (h) 7.50;
(i) "0.693; (j) 3.00; (k) 4.50; (l) 23.0 J/K 37. (a) 3.00; (b) 1.98;
(c) 0.660; (d) 0.495; (e) 0.165; (f) 34.0% 39. (a) 70.1°C; (b) "29.6
J/K; (c) $33.4 J/K; (d) $3.82 J/K 41. (a) "1.16 J/K; (b) $1.16 J/K;
(c) $1.18 J/K; (d) "1.18 J/K; (e) $21.8 mJ/K; (f) 0
43. (a) 2.29 ! 104 J; (b) 7.09 ! 103 J 45. (a) "4.61 kJ; (b) "11.5 J/K;
(c) 0 47. $31 J/K  

Chapter 21
CP 1. C and D attract; B and D attract 2. (a) leftward;
(b) leftward; (c) leftward 3. (a) a, c, b; (b) less than 4. "15e
(net charge of "30e is equally shared) 
P 1. (a) 14Si; (b) 30Zn; (c) 12C 3. (a) 0.26 N; (b) "32° 5. (a) 24 cm;
(b) 0 7. (a) 2.00 cm; (b) 0; (c) "0.563 9. 5.1 ! 1012 11. (a) 3.16;
(b) 4.39 m 13. 1.7 ! 10"8 C 15. (a) 6.39 N;(b) 11.1 N 17.(a) 122 mA;
(b) 1.05 ! 104 C 19. (a) 3.2 ! 10"19 C; (b) 2; (c) 3.7 ! 10"9 N
21. (a) "0.646 mC; (b) 4.65 mC 23. (a) 35 N; (b) 170°; (c) $10 cm;
(d) "0.69 cm 25. (a) "4.02 cm;(b) 4.02 cm 27. (a) 0; (b) 1.9 ! 10"9 N
29. 2.7 ! 107 C 31. (a) 0; (b) 12 cm; (c) 0; (d) 2.0 ! 10"25 N
33. (a) 2.81 N; (b) 0.379 m 35. "9.00 37. (a) 0.500; (b) 1/4; (c) 3/4 

Chapter 22
CP 1. (a) rightward; (b) leftward; (c) leftward; (d) rightward 
(p and e have same charge magnitude, and p is farther)
2. (a) toward positive y; (b) toward positive x; (c) toward negative y
3. (a) leftward; (b) leftward; (c) decrease 4. (a) all tie; (b) 1 and 3
tie, then 2 and 4 tie
P 1. (a) "30 cm; (b) 1.20 m 3. 0.680 m 5. (a) 3.4 ! 10"10 N;
(b) 4.1 ! 10"8 N; (c) moves to stigma 7. 44 mm 9. 0.268
11. (a) 95.1 N/C; (b) "90° 13. (a) "5.19 ! 10"14 C/m;
(b) 2.24 ! 10"3 N/C; (c) "180°; (d) 1.52 ! 10"8 N/C;
(e) 1.52 ! 10"8 N/C 17. 7.3% 19. ("1.53 ! 105 N/C)
21. 7.3 ! 1015 m/s2 23. (a) 0.537 N;(b) "63.4°; (c) 108 m;
(d) "216 m; (e) 161 m/s 25. (a) 2.33 ! 1021 N/C; (b) outward 
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5. 25 F 7. (a) 59 pF; (b) 80 pF; (c) 7.1 nC; (d) 7.1 nC; (e) 10 kV/m;
(f) 2.1 kV/m; (g) 88 V; (h) "0.11 mJ 9. (a) 1.5 mF; (b) 2.0 mF 
11. (a) 6.5;(b) porcelain 13. (a) 0.27 J;(b) 4.5 15. (a) 9.16 ! 10"18 J/m3;
(b) 9.16 ! 10"6 J/m3; (c) 9.16 ! 106 J/m3; (d) 9.16 ! 1018 J/m3;
(e) 9.16 ! 1030 J/m3; (f) ) 17. (a) 6.00 V; (b) 120 pJ; (c) 45.1 pJ;
(d) "75.2 pJ 19. (a) 175 V;(b) 44 mJ 21.0.14 nF/m 23. (a) 45.8 pF;
(b) 5.49 nC 25. 14 mJ 27. (a) 22 kV/m; (b) 8.5 nC; (c) 6.9 nC
29. 56.3 mC 31. 8.87 pF 33. 1.36 ! 10"3 F/m2 35. (a) 4.00 mF;
(b) 40.0 mC; (c) 6.67 V; (d) 30.0 mC; (e) 13.3 V; (f) 26.7 mC;
(g) 6.67 V; (h) 26.7 mC 37. 0.17 m2 39. (a) 100 V; (b) 0.10 mC;
(c) 0.30 mC 41. (a) 2.3 ! 1014; (b) 0.75 ! 1014; (c) 1.5 ! 1014;
(d) 2.3 ! 1014; (e) up; (f) up 43. (a) 33 mJ/m3; (b) increase
45. 0.420 pF 47. (a) 18.0 mC; (b) 32.0 mC; (c) 18.0 mC; (d) 32.0 mC;
(e) 16.8 mC; (f) 33.6 mC; (g) 21.6 mC; (h) 28.8 mC 49. (a) 31.4 pF;
(b) 2.29 nC; (c) 1.96 nC 51. (a) 2.0 pF; (b) 2.0 pF; (c) 1.0 ! 102 V
53. 129 pF 55. (a) 5.6 pC; (b) decrease

Chapter 26
CP 1. 8 A, rightward 2. (a)"(c) rightward 3. a and c tie, then b
4. device 2 5. (a) and (b) tie, then (d), then (c)
P 1. 7.07 mA 3. (a) 11.9 mA; (b) 31.5 nV; (c) 42.1 n* 5. 2.08 M*
9. 1.40 mC 11. 8.2 ! 10"8 *'m 13. 1.2 m 15. (a) 9.33 ! 10"7 m2;
(b) 4.66 m 17. 11.3 W 19. (a) US$2.68; (b) 240 *; (c) 0.500 A 
21. (a) 1.2 kW; (b) US$0.42 23. (a) 7.74 A; (b) 14.9 *; (c) 16.0 MJ
25. (a) 1.3 V; (b) 2.5 V; (c) 2.5 W; (d) 5.1 W 27. (a) 38.3 mA;
(b) 142 A/m2; (c) 1.66 cm/s; (d) 306 V/m 29. 283 s 31. 9.00 A
33. (a) 5.1 mC/m2; (b) 3.2 ! 1013 m"2 35. 3 37. (a) 9.60 *;
(b) 7.81 ! 1019 s"1 39. 19 * 41. 0.66 mm 43. 5.8 min
45. (a) 0.821 A; (b) 0.411 A; (c) Ja 47. 0.11 * 49. 3.8
51. (3.0 ! 103)°C 53. (a) 43 mA/m2; (b) south; (c) 0.11 mA

Chapter 27
CP 1. (a) rightward; (b) all tie; (c) b, then a and c tie;
(d) b, then a and c tie 2. (a) all tie; (b) R1, R2, R3 3. (a) less;
(b) greater; (c) equal 4. (a) V/2, i; (b) V, i/2 5. (a) 1, 2, 4, 3;
(b) 4, tie of 1 and 2, then 3
P 1. (a) 2.03 ! 1011 *; (b) 1.60 mJ; (c) 4.43 nJ/s 3. (a) 0.177 W;
(b) 0.670 W; (c) 0.679 W; (d) "0.211 W; (e) 1.74 W; (f) absorbing;
(g) providing 5. (a) 0.250 *; (b) 144 W; (c) 144 W; (d) r/2; (e) r/2
7. (a) 82.8 mA; (b) 7.29 V; (c) 88.0 *; (d) decrease 9. (a) 411 mA;
(b) 68.5 mA/s; (c) 56.2 mW/s 11. (a) "17 V; (b) "13 V; (c) 38 W 
13. "3.0% 15. 2.21 17. 2.10 * 19. 96.6 V 21. 1.09 ms 23. 16
25. (a) 10.5 V; (b) 3.00 V; (c) 10.5 V; (d) 13.5 V 27. (a) 0.013 *; (b) 1
31. (a) 7.6 kJ; (b) 6.6 kJ; (c) 0.93 kJ 33. (a) 25 V; (b) 21 V; (c) negative
35. 4d 37. (a) 0.67 A; (b) down; (c) 0.33 A; (d) up; (e) absorbs;
(f) 1.3 W; (g) 3.3 V 39. (a) 0.180 mC/s; (b) 0.624 mW; (c) 97.7 nW;
(d) 0.722 mW 41. (a) 0.842 A; (b) 1.16 A; (c) 166 m 43. 2.14 M*
45. 4.00 A 47. (a) 1.1 mA; (b) 0.55 mA; (c) 0.55 mA; (d) 0.82 mA;
(e) 0.82 mA; (f) 0; (g) 4.0 ! 102 V; (h) 6.0 ! 102 V 49. 2.9 ! 103 A
51. (a) 0.857 A; (b) right; (c) 617 J 53. (a) 13 V; (b) 48 W; (c) 4.8 !
102 W; (d) 11 V; (e) 48 W 55. (a) 4.4 km; (b) 85 * 57. (a) 0.54 A
59. (a) 20.0 eV; (b) 16.5 W 61. (a) 0.67 A; (b) 1.8 W; (c) 3.6 W;
(d) 8.0 W;(e) 4.0 W;(f) supplied;(g) absorbed 63.3.0 * 65.(a) 7.50 *;
(b) parallel; (c) 22.5 * 67. 31 kJ 69. (a) 0.10 A; (b) 0.16 A; (c) 14 V  

Chapter 28
CP 1. a, $z; b, "x; c, = 0 2. (a) 2, then tie of 1 and 3 (zero);
(b) 4 3. (a) electron; (b) clockwise 4. "y 5. (a) all tie; (b) 1 and
4 tie, then 2 and 3 tie 
P 1. (a) ("800 mV/m) ; (b) 1.60 V; (c) top face 3. 1.87 ns
5. ("6.93 mN) $ (1.49 mN) 7. 0.615 A 11. (a) 6.91 A m2;
(b) 4.15 A m2 13. (a) 5.7 mT; (b) 27° 15. (a) 1.96 MHz; (b) 0.663 m
17. (a) 0.45 A m2; (b) 0.054 N m 19. ("51 mN m) 21. (a) 1.00 A;ĵ '  '  ' 

 ' 

 ' k̂ĵ
k̂
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27. (a) 1.92 ! 1012 m/s2; (b) 1.96 ! 105 m/s; (c) 1.02 ! 10"7 s
29. (a) 3.0 ! 103 N/C; (b) 4.8 ! 10"16 N; (c) up; (d) 1.6 ! 10"26 N;
(e) 2.9 ! 1010; (f) 2.9 ! 1011 m/s2 31. (a) 639 N/C; (b) 45°
33. (a) "3e; (b) upward 35. (a) 9.30 ! 10"15 C m; (b) 2.79 ! 10"12 J
37. (a) 3.51 ! 1015 m/s2; (b) 0.854 ns 39. (a) 3.6 ! 10"24 kg m/s;
(b) 7.3 ! 10"18 J; (c) 1.5 kN/C 41. 2.56 ! 10"23 J
43. (1/2p)(pE/I)0.5 45. 0.88 N/C 47. (b) 1.51 ! 103 N/C
49. (a) 1.38 ! 10"10 N/C; (b) 180°; (c) 2.77 ! 10"11 N/C
51. (a) nonexistent; (b) radially outward; (c) radially inward
53. (a) "90°; (b) $0.89 mC; (c) "0.71 mC 55. (a) qd/4p+0r3;
(b) "90° 57. (a) 3.60 ! 10"6 N/C; (b) 2.55 ! 10"6 N/C;
(c) 1.44 ! 10"3 N/C; (d) 3.59 ! 10"7 N/C; (e) As the proton nears
the disk, the forces on it from electrons es more nearly cancel.
59. (a) 1.30 ! 107 N/C; (b) "45° 61. 1.57

Chapter 23
CP 1. (a) $EA; (b) "EA; (c) 0; (d) 0 2. (a) 2; (b) 3; (c) 1
3. (a) equal; (b) equal; (c) equal 4. 3 and 4 tie, then 2, 1
P 1.7.7 ! 104 N/C 3.(a) "30  nC;(b) "0.24 mC/m2 5.(a) $4.0 mC;
(b) $6.0 mC 7. (a) 0; (b) 0; (c) ("2.61 ! 10"11 N/C)
9. 5.30 ! 10"11 C/m2 11. (a) 19.5 fC; (b) 0; (c) 6.22 mN/C;
(d) 56.0 mN/C 13. (a) 0; (b) "3.92 N m2/C; (c) 0; (d) 0; (e) 0
15. (a) 527 N m2/C; (b) 4.66 nC; (c) 527 N m2/C; (d) 4.66 nC;
17. 3.01 nN m2/C 19. 6.9 ! 10"8 C/m2 21. 37 nC/m2 23. "0.850 nC
25. (a) 4.68 ! 104 N/C; (b) 3.11 ! 104 N/C 27. (a) 3.1 ! 106 N/C;
(b) inward; (c) 4.5 ! 105 N/C; (d) outward 29. (a) 0; (b) 22.5 mN/C;
(c) 45.0 mN/C; (d) 20.0 mN/C; (e) 0; (f) 0; (g) "2.00 fC; (h) 0
31. 6K+0r3 33. 1.5 mm 35. 12.0 mC 37. (a) 0.15 mC; (b) 51 nC 
39. (a) 6.4 mC; (b) 7.3 ! 105 N m2/C; (c) 7.3 ! 105 N m2/C 41. (a) 0;
(b) 0.0417 43. (a) 7.1 ! 105 N m2/C; (b) 7.1 ! 105 N m2/C
45. (a) "0.068 N m2/C; (b) increase 47. (a) 0; (b) 0.427 mN/C;
(c) 1.00 mN/C; (d) 1.00 mN/C 49. "1.5 51. (a) 7.3 ! 10"7 C/m2;
(b) 8.3 ! 104 N/C 53. (a) 7.8 ! 106 N/C; (b) 20 N/C
55. (a) 3.28 ! 10"2 N/C; (b) outward; (c) 0.131 N/C; (d) inward;
(e) 5.22 ! 10"13 C; (f) 5.22 ! 10"13 C  

Chapter 24
CP 1. (a) negative; (b) positive; (c) increase; (d) higher
2. (a) rightward; (b) 1, 2, 3, 5: positive; 4, negative; (c) 3, then 1, 2,
and 5 tie, then 4 3. all tie 4. a, c (zero), b 5. (a) 2, then 1 and 3
tie; (b) 3; (c) accelerate leftward
P 1. (a) 3.0 kV; (b) 0.48 mC/m2 3. 45.2 mV 5. (a) 46.6 mV; (b) 0;
(c) 0; (d) positive 7. (a) 18 cm; (b) 36 cm 9. (a) "3.88 V;
(b) "3.76 V 11. ("8.0 ! 10"16 N) $ (3.2 ! 10"16 N)
13. 3.9 ! 10"2 kg m/s 15. 1.7 ! 1011 J 17. 78.4 N/C
19. 0.22 km/s 21. (a) $6.0 ! 104 V; (b) "7.8 ! 105 V; (c) "1.7 J;
(d) decrease; (e) same; (f) same 23. (a) 4.9 J; (b) "7.2 m 
25. (a) 1.0 J; (b) 11 J 27. (a) proton; (b) 185 km/s 29. (a) 12; (b) 2
31. 2.11 mV 33. (a) "0.908 pJ; (b) 0.908 pJ; (c) "0.908 pJ 35. 0
37. (a) 74.9 mJ; (b) A 4.99 m/s2, B 2.50 m/s2; (c) A 4.47 m/s,B 2.24 m/s
39. (a) 5.0 km/s;(b) 3.5 ! 10"23 J 41. (a) 2.5 ! 105 C;(b) 6.3 ! 106 J
43. (a) 5.03 ! 10"8 C/m2; (b) lower to higher 45. (a) 3.0 kN/C;
(b) 0.90 kV; (c) 38 cm 47. 6.6 ! 10"9 m 49. (a) "6.3 ! 102 V;
(b) 2.6 kV; (c) "24 kV 51. 4.16 mV 53. (a) 0.54 mm; (b) 0.79 kV;
(c) 1.3 55. (a) "0.268 mV; (b) "0.681 mV; (c) $1.36 mV
57. 5.8 ! 10"8 C 59. "85.3 V 61. (a) 32.4 mV; (b) 32.4 mV
63. (a) 20.0 V/m; (b) 143° 65. (a) 3.22 ! 10"21 J; (b) "15.2 mV
67. 36.3 mV

Chapter 25
CP 1. (a) same; (b) same 2. (a) decreases; (b) increases;
(c) decreases 3. (a) V, q/2; (b) V/ 2; q
P 1. (a) 0; (b) 1.58 mF 3. (a) 513 mC; (b) 51.3 V; (c) 20.1 mJ
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(b) right 23. (a) 90°; (b) 1; (c) 16.5 nN m 25. (a) 350 eV;
(b) 35.0 keV; (c) 0.499% 27. (a) 48.9 ps; (b) 15.6 mm; (c) 0.142 mm
29. (a) 3.35 A; (b) 66.5 mN m 31. (a) "(0.211 mT) ;
(b) toward upper plate 33. (a) 39.5 N; (b) horizontally west
35. (a) "(6.4 ! 10"4 N m) " (4.8 ! 10"4 N m)ĵ $ (1.6 ! 10"3

N m) ; (b) "1.2 mJ 37. 0.40 T 39. (a) 14.8 mT; (b) 2.42 ms
41. 238 km/s 43. ("11.4 V/m) $ (4.50 V/m)ĵ $ (3.60 V/m)
45. 1.2 ! 10"9 kg/C 47. 36 mV 49. (a) "0.166 mJ;
(b) (0.221.0 $ 0.166 ) mN m 51. (a) 42.0 km/s; (b) 9.22 eV;
(c) 7.02 ! 10"23 kg m/s 53. (a) 1.45 ! 107 m/s; (b) 661 mT; (c) 18.5
MHz; (d) 54.1 ns; (e) 600 V 55. 1.6 ! 102 m 57. (a) 0; (b) 0.277 N;
(c) 0.277 N; (d) 0 59. (a) 664 mT; (b) 22.7 mA; (c) 14.7 MJ
61. 1.1 MV/m 63. (a) ("1.1 ! 10"13 N) ; (b) (1.1 ! 10"13 N)
65. (a) 2.60 ! 106 m/s; (b) 0.109 ms; (c) 0.140 MeV; (d) 70.0 kV; (e) 4

Chapter 29
CP 1. b, c, a 2. d, tie of a and c, then b 3. d, a, tie of b and c (zero)
P 1. (a) 17.0 nT; (b) out of figure; (c) decreases 3. (a) 94.9 nT;
(b) increase 5. (24 mT) 7. (41.7 mN/m) $ (41.7 mN/m)
9. (a) 55 mT; (b) into 11. 1.00 mN/m 13. (a) (0.020 A m2) ;
(b) (32 pT) 15. 41.5 pN/m 17. (a) 194 mT; (b) 153 mT
19. (23.5 pT)ĵ 21. (2.13 mN)ĵ 23. (a) 0; (b) 0.510 mT; (c) 1.70 mT;
(d) 0.576 mT 25. (a) "6.3 mT m; (b) 0 27. (a) 2.27 cm; (b) 62.2 mT
29. 0.71 mT 31. 175 nT 33. 89.9 mA 35. (a) 0; (b) 0.20 mT;
(c) 0.79 mT 37. 1.1 A m2 39. (a) 38 mT; (b) 0.52 mN m
41. (a) 3.3 mT; (b) yes 43. (a) 2.1 A m2; (b) 44 cm 45. (a) 3.0 A;
(b) out; (c) 32 mT 47. (a) 0.13 mT; (b) out; (c) 0.10 mT; (d) out 
49. (a) 3.8 mT; (b) into; (c) 8.8 mT; (d) into 51. 74.0 mA
53. ("1.99 ! 10"22 N) 55. (a) 7.2 mT; (b) 5.0 mT 57. (a) 0.215 mT;
(b) out 59. 2.00 rad 61. (a) opposite;(b) 90 A 63. (a) 3.9 A;(b) east  

Chapter 30
CP 1. b, then d and e tie, and then a and c tie (zero) 2. a and b
tie, then c (zero) 3. c and d tie, then a and b tie 4. b, out; c, out; d,
into; e, into 5. d and e 6. (a) 2, 3, 1 (zero); (b) 2, 3, 1
7. a and b tie, then c
P 1.(a) 11.9 mV;(b) 0.660 mA;(c) 7.83 mW;(d) 20.6 mN 3.(a) 1.2 V;
(b) up; (c) 3.0 A; (d) clockwise; (e) 3.6 W; (f) 0.72 N; (g) 3.6 W;
(h) 0.72 N 5. 0.30 mW 7. (a) m0iR2pr2/2x3; (b) 3m0ipR2r2v/2x4;
(c) counterclockwise 9. 0.60 V/m 11. (b) Leq # ,Lj, sum from 
j # 1 to j # N 13. 21 mH 15. (a) 45.5 H;(b) 91.1 mJ 17. (a) 1.19 mH;
(b) 1.61 mWb 19. 2.37 mH/m 21. 0 23. 2.6 *
25. (a) 0.12 J/m3; (b) 5.9 ! 10"16 J/m3 27. (a) 4.13 ns; (b) 4.59 mA
29. (a) 55.5 J/m3; (b) 80.1 mJ 31. (b) 1.46 m2 33. (a) 1.74 J;
(b) 21.9 mJ; (c) 1.72 J 35. (a) i[1 " exp("Rt/L)]; (b) (L/R) ln 3
37. 41.6 ms 39. (a) 31.4 mT; (b) 0; (c) 31.4 mT; (d) yes; (e) 12.6 nV
41. (a) 30 Hz; (b) 1.2 mV 43. (a) 0.34 mV; (b) clockwise
45. 6.00 ! 106 V/m 47. (a) 137 mV/m; (b) 114 mV/m 49. (b) have
the turns of the two solenoids wrapped in opposite directions
51. 71.0 mV 53. (a) 14.5 V; (b) counterclockwise 55. (a) 322 mV;
(b) 0.805 mA; (c) 0.259 mW; (d) 51.8 nN; (e) 0.259 mW
57. (a) decreasing; (b) 1.3 mH 59. 4.61 61. (a) 5.51 mWb;
(b) 1.97 mH 63. 81.0 mH 65. (a) 7.8 mWb/m; (b) 22%; (c) 0
67. 0.32 mA 69. 8.63 kV 71. 0 73. 64.0 mC 75. (a) 4.5 s
77. (a) 16 mV; (b) left

Chapter 31
CP 1. (a) T/2; (b) T; (c) T/2; (d) T/4 2. (a) 5 V; (b) 150 mJ
3. (a) remains the same; (b) remains the same 4. (a) C, B, A; (b) 1,
A; 2, B; 3, S; 4, C; (c) A 5. (a) remains the same; (b) increases;
(c) remains the same; (d) decreases 6. (a) 1, lags; 2, leads; 3, in
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 ' phase; (b) 3 (vd = v when XL = XC) 7. (a) increase (circuit is
mainly capacitive; increase C to decrease XC to be closer to reso-
nance for maximum Pavg); (b) closer 8. (a) greater; (b) step-up 
P 1. (a) 0.88 ms; (b) 2.6 ms 3. (a) 383 Hz; (b) no change;
(c) decreased; (d) increased; (e) increased 5. (a) 412 *; (b) 13.7°;
(c) 175 mA 7. (a) 158 rad/s; (b) 6.00 A; (c) 156 rad/s; (d) 160 rad/s;
(e) 0.027 9. (a) yes; (b) 2.0 kV 11. (a) 10.3 *; (b) 1.35 kW
13. (a) 436 *; (b) 23.4°; (c) 165 mA 15. 25 * 17. (a) 8.73 ms;
(b) 14.5 ms; (c) inductor; (d) 149 mH 19. 5.53 A 21. (a) 2.3 V;
(b) 8.4 W; (c) 23 V; (d) 8.4 ! 102 W; (e) 0.23 kV; (f) 84 kW
23. (a) 0.743; (b) lead; (c) capacitive; (d) no; (e) yes; (f) no; (g) yes;
(h) 21.2 W 25. (a) 534 *; (b) "41.5°; (c) 135 mA 27. (a) 19.4 mA;
(b) 0.971 ms 29. (a) 117 mF; (b) 0; (c) 37.5 W; (d) 0°; (e) 1; (f) 0;
(g) "90°; (h) 0 33. (a) 56.2 mA; (b) 11.2 mA 35. (a) 3.0 V;
(b) 2.7 mA; (c) 0.11 A 37. (a) 10.0 ms; (b) 100 kHz; (c) 5.00 ms;
(d) twice 39. (a) 2.13 A; (b) 53.2 V; (c) 131 V; (d) 184 V; (e) 52.8 V;
(f) 75.0 V; (g) 113 W; (h) 0; (i) 0 41. (a) 6.4; (b) 42 pF; (c) 0.19 mH
43. (a) 3.56 mJ; (b) 4.53 mC; (c) 16.9 mA; (d) "33.1°; (e) $33.1°
45. 5.24 A 47. (b) increases 49. (a) 123 Hz; (b) 817 mA
51. (a) 0.189 mC; (b) 85.0 ms; (c) 42.5 W 53. (a) 3.47 mJ;
(b) 9.62 mA; (c) 3.27 ms 55. (a) 217 ms; (b) 0.930 mH; (c) 1.19 mJ
57. (a) 3.0 nC;(b) 1.0 mA;(c) 4.5 nJ 59. (a) 2.50 kg;(b) 372 N/m;
(c) 1.75 ! 10"4 m;(d) 2.13 mm/s 61.0.166 * 65. (a) 0.46 kHz;(b) 35 *

Chapter 32
CP 1. d, b, c, a (zero) 2. a, c, b, d (zero) 3. tie of b, c, and d,
then a 4. (a) 2; (b) 1 5. (a) away; (b) away; (c) less 6. (a) toward;
(b) toward; (c) less
P 1. (a) 6.65 ! 10"20 T; (b) 1.06 ! 10"19 T; (c) 4.00 cm
3. (a) 5.01 ! 10"22 T; (b) 8.01 ! 10"22 T; (c) 4.00 cm 5. (a) 75.4 nT;
(b) 0.121 mT 7. (a) 33.5 nT; (b) 26.8 nT; (c) 4.00 cm 9. 41 mT
11. yes 13. 7.49 mJ/T 15. (a) 1.8 ! 102 km; (b) 2.3 ! 10"5

17. (a) 0; (b) 0; (c) 0; (d) &4.8 ! 10"25 J; (e) "3.2 ! 10"34 J s;
(f) 2.8 ! 10"23 J/T; (g) "1.4 ! 10"24 J; (h) &4.8 ! 10"25 J 19. (b) $x;
(c) clockwise; (d) $x 23. (a) 0.35 A; (b) 0; (c) 1.4 A
25. (a) "9.3 ! 10"24 J/T; (b) 2.8 ! 10"23 J/T 27. (a) 55 mA;
(b) 47 mC 29. 8.1 ! 1012 V/m s 31. (b) Ki/B; (c) "z; (d) 0.18 kA/m
33. (a) 9.24 mWb; (b) inward 35. 5.15 ! 10"24 A m2 39. (a) 3.0 mT;
(b) 5.6 ! 10"10 eV 41. (a) 0.47 mT; (b) 1.7 ! 1012 V/m s
43. 1.5 ! 105 V/s 45. (a) 0.175 V/m; (b) 2.87 ! 10"16 A;
(c) 5.31 ! 10"18 47. (a) 1.1 pT 49. (a) 3.80 mA; (b) 429 kV m/s;
(c) 6.78 mm; (d) 2.58 pT 51. $6 Wb 53. (a) 3.0 A; (b) 3.4 ! 1011

V/m s; (c) 0.75 A; (d) 0.94 mT m  

Chapter 33
CP 1. (a) (Use Fig. 33-5.) On right side of rectangle, is in 
negative y direction; on left side, $ d is greater and in same 
direction; (b) is downward. On right side, is in negative z
direction; on left side, $ d is greater and in same direction.
2. positive direction of x 3. (a) same; (b) decrease 4. a, d, b, c
(zero) 5. a
P 1. (a) 32° or 58°: (b) 0% 3. (a) 8.5%;(b) 40° counterclockwise
5. (a) 4.4 W/m2; (b) 34 W/m2 7. (a) (1 $ sin2 u)0.5; (b) 20.5; (c) yes;
(d) no; (e) 56° 9. 1.60 11. (a) 2 sheets; (b) 6 sheets 15. (a) 0.19 mm;
(b) toward the Sun 17. 0.60 19. 1.31 m 21. 1.92 23. (a) 56.9°;
(b) 28.6° 25. (a) 56.5°; (b) 42.7° 27. (a) 57 nT; (b) 0.38 W/m2;
(c) 3.5 kW 29. 180° 31. (a) 23.6°; (b) yes 33. 2.74 m
35. (a) 60 MHz; (b) 3.8 ! 108 rad/s; (c) 1.3 m"1; (d) 0.72 mT; (e) z;
(f) 61 W/m2; (g) 0.41 mN; (h) 0.20 mPa 37. 11 MW/m2 39. 37.2°
43. (a) 515 nm; (b) 610 nm; (c) 555 nm; (d) 5.41 ! 1014 Hz;
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(e) 1.85 ! 10"15 s 45. (a) 1.03 kV/m; (b) 3.43 mT; (c) 726 V/m;
(d) 2.42 mT 47. 52.1° 49. (a) 1.51; (b) 17.8°; (c) no 51. 3.8 ! 107 Pa
53. 0.22 m/s 55. 1.9 ! 10"21 H 57. 1.1 ! 10"8 Pa 59. (a) 0.15 V/m;
(b) 0.48 nT; (c) 18 kW 61. 3.75 GHz 63. (a) 1.87 ! 1010 W;
(b) any chance disturbance could move sphere from directly above
source––the two force vectors no longer along the same axis 
65. (a) 13 nT; (b) y; (c) negative direction of y; (d) positive direction
of x 67. (a) 1.6 V/m; (b) 1.1 ! 10"11 Pa 69. 0.22 MJ  

Chapter 34
CP 1. 0.2d, 1.8d, 2.2d 2. (a) real; (b) inverted; (c) same
3. (a) e; (b) virtual, same 4. virtual, same as object, diverging 
P 1. (a) $36 cm; (b) "36 cm; (c) $3.0; (d) V; (e) NI; (f) opposite
3. (a) "20 cm; (b) "4.4 cm; (c) $0.56; (d) V; (e) NI; (f) opposite
5. (a) "16 cm; (b) "4.4 cm; (c) $0.44; (d) V; (e) NI; (f) opposite
7. (a) $24 cm; (b) $36 cm; (c) "2.0; (d) R; (e) I; (f) same
9. (a) $40 cm; (b) $76 cm 11. 4.18 mm 13. (a) concave;
(c) $40 cm;(e) $60 cm;(f) "2.0;(g) R;(h) I; (i) same 15. (a) convex;
(b) minus; (c) "60 cm; (d) $1.2 m; (e) "24 cm; (g) V; (h) NI;
(i) opposite 17. (a) convex; (b) "20 cm; (d) $20 cm; (f) $0.50;
(g) V; (h) NI; (i) opposite 19. (b) "20 cm; (c) minus; (d) $5.0 cm;
(e) minus; (f) $0.80; (g) V; (h) NI; (i) opposite 21. (a) convex;
(c) "60 cm; (d) $30 cm; (f) $0.50; (g) V; (h) NI; (i) opposite
23. (b) plus; (c) $40 cm; (e) "20 cm; (f) $2.0; (g) V; (h) NI;
(i) opposite 25. (a) concave; (b) $8.6 cm; (c) $17 cm; (e) $12 cm;
(f) minus; (g) R; (i) same 27. (a) 2.7; (b) 1.7 29. (a) 14.0 cm;
(b) 3.64 cm; (c) "4.67; (d) 3.13; (e) "14.6 31. (a) 50 mm; (b) 75 mm
33. (a) D; (b) minus; (d) "3.3 cm; (e) $0.67; (f) V; (g) NI
35. (a) C; (b) plus; (d) "13 cm; (e) $1.7; (f) V; (g) NI; (h) same
37. (a) C; (b) $80 cm; (d) "20 cm; (f) V; (g) NI; (h) same
39. (a) C; (b) $3.3 cm; (d) $5.0 cm; (f) R; (g) I; (h) opposite
41. (a) D; (b) "5.3 cm; (d) "4.0 cm; (f) V; (g) NI; (h) same
43. (a) C; (d) "10 cm; (e) $2.0; (f) V; (g) NI; (h) same 45. 1.04
47. (a) 2.00; (b) none 49. 9.0 mm 51. (c) $30 cm; (e) V; (f) same
53. (d) "26 cm; (e) V; (f) same 55. (c) "33 cm; (e) V; (f) same
57. 4.00 m 59. (a) "5.5 cm; (b) $0.12; (c) V; (d) NI; (e) same
61. (a) $24 cm; (b) $6.0; (c) R; (d) NI; (e) opposite 63. (a) $3.1 cm;
(b) "0.31; (c) R; (d) I; (e) opposite 65. (a) "4.6 cm; (b) $0.69;
(c) V;(d) NI;(e) same 67. (a) 2.40 cm;(b) decrease 69. (b) 0.27 cm/s;
(c) 31 m/s; (d) 6.7 cm/s 71. (a) $55 cm; (b) "0.74; (c) R; (d) I;
(e) opposite 73. (a) "18 cm; (b) $0.76; (c) V; (d) NI; (e) same
75. (a) "30 cm; (b) $0.86; (c) V; (d) NI; (e) same 77. (a) "7.5 cm;
(b) $0.75; (c) V; (d) NI; (e) same 79. (a) $84 cm; (b) "1.4; (c) R;
(d) I; (e) opposite 81. (a) $23 cm;(b) "0.50; (c) R;(d) I; (e) opposite
83. (a) "4.8 cm; (b) $0.60; (c) V; (d) NI; (e) same 85. (a) "8.6 cm;
(b) $0.39; (c) V; (d) NI; (e) same 87. (a) "48 cm; (b) $4.0; (c) V;
(d) NI; (e) same 89. 54 cm or 14 cm 91. 11.0 m 93. 7.21 cm  

Chapter 35
CP 1. b (least n), c, a 2. (a) top; (b) bright intermediate illumina-
tion (phase difference is 2.1 wavelengths) 3. (a) 3l, 3; (b) 2.5l, 2.5
4. a and d tie (amplitude of resultant wave is 4E0), then b and c tie
(amplitude of resultant wave is 2E0) 5. (a) 1 and 4; (b) 1 and 4 
P 1. 409 nm 3. 509 nm 5. 273 nm 7. 560 nm 9. 478 nm
11. 161 nm 13. 329 nm 15. 455 nm 17. 528 nm 19. 339 nm
21. 248 nm 23. 608 nm 25. [(m $ 1/2)lR]0.5, for m # 0, 1, 2, …
27. 1.30 m 29. 0.0063° 31. 150 33. (a) 0.700; (b) intermediate
closer to fully destructive 35. 3.30 37. 624 nm 39. 1.85 mm
41. 0.13 mm 43. (a) 5.26 mm; (b) intermediate closer to fully con-
structive 45. 62.5 nm 47. (a) 456 nm; (b) 608 nm 49. 1.66
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51. 23 sin(vt $ 2.6°) 53. (a) 87.5 nm; (b) 175 nm 55. 1.00030
57. 1.11 mm 59. 86.2 nm 61. (a) 0.858 mm; (b) 2.58 mm
63. (a) 79.7 nm; (b) 239 nm
65. (13.7 mV/m) sin[(2.0 ! 1014 rad/s)t] 67. 0.785 rad 69. 420 nm
71. (a) 1.15; (b) 1.15; (c) 0.85; (d) all tie 73. 4.74 mm 75. 450 nm
77. 1.02 ! 108 m/s 79. (a) 7.88 mm; (b) 2.03 mm 81. (a) 14; (b) 16

Chapter 36
CP 1. (a) expand; (b) expand 2. (a) second side maximum;
(b) 2.5 3. (a) red; (b) violet 4. diminish 5. (a) left; (b) less
P 1. (a) 16.0°; (b) 31.0°; (c) 1.57°; (d) 30.5° 3. 1.82 ! 103 5. 6
7. 758 rulings/mm 9. 0.19 nm 11. 4 13. (a) 1.1 ! 104 km;
(b) 11 km 15. (a) 5.43 mm; (b) 1.81 mm 17. (a) 7.1 mm; (b) 28 mm
19. (a) 4.2 mm; (b) 1.1 mm; (c) 9; (d) 7; (e) 6 21. (a) 79.0°; (b) 59.2°;
(c) 47.4° 23. 9 25. (a) 49 pm; (b) 75 pm 27. (a) 3.04 ! 10"5;
(b) between the m # 3 maximum (the third side one) and the 
m # 3 minimum (the fourth minimum), almost on the latter;
(c) between the m # 1 minimum (the first one) and the m # 2 min-
imum (the second one) 29. (a) 11; (b) 0.405 31. 4.9 ! 103 km
33. (a) 840 nm; (b) 4; (c) 6 35. 50 m 37. 3.90 mm 39. (a) 23 cm;
(b) larger 41. (a) 1.5 ! 10"4 rad; (b) 9.4 km 43. (a) 0.025°/nm;
(b) 4.0 ! 104; (c) 0.055°/nm; (d) 8.0 ! 104; (e) 0.11°/nm; (f) 1.2 ! 105

45. 17° 47. (a) 4.2°; (b) 12°; (c) 9 49. (d) 25.5°; (e) 7.24°; (f) 4.22°
51. (a) 1.3 mm; (b) 3.1 ! 10"4 rad 53. (a) 8.8 ! 10"7 rad;
(b) 1.5 ! 108 km; (c) 0.025 mm 55. (a) 0.140°; (b) 0.56°
57. 0.26 nm 59. (a) 0.7071a0; (b) 0.4472a0; (c) 0.3162a0;
(d) 0.2774a0; (e) 0.2425a0 61. (a) 424 nm; (b) 560 nm 63. (a) 70 cm;
(b) 0.49 mm 65. (a) 6.41 m; (b) 3.90 ! 10"9 67. (b) 0; (c) "0.500;
(d) 4.493 rad; (e) 0.930; (f) 7.725 rad; (g) 1.96 69. 24.1 mm
71. (a) 0.11 nm; (b) 0.083 nm 73. (a) 0.36°; (b) 2.4 rad; (c) 0.091

Chapter 37
CP 1. (a) same (speed of light postulate); (b) no (the start and
end of the flight are spatially separated); (c) no (because his 
measurement is not a proper time) 2. (a) Eq. 2; (b) $0.90c;
(c) 25 ns; (d) "7.0 m 3. (a) right; (b) more 4. (a) equal; (b) less
P 1. (a) g[1.00 ms "b(400 m)/(2.998 ! 108 m/s)]; (d) 0.750;
(e) 0 - b- 0.750; (f) 0.750 - b- 1; (g) no 3. (a) 0.334;
(b) negative; (c) big flash; (d) 4.71 ms 5. (a) 2.1 keV; (b) 1.5 MeV
7. (a) 0.137c; (b) 468 nm 9. (a) 588.084; (b) 0.999 999 11. 0.94 ms
13. (a) 1.64 y; (b) 1.93 y; (c) 5.27 y 15. (a) 636 nm; (b) red
17. (a) 0.136 cm; (b) 700 ps; (c) 4.55 ps 19. (a) 0.45; (b) 0.75 
21. (a) g(2pm/|q|B); (b) no; (c) 6.86 mm; (d) 3.12 cm; (e) 16.3 ps;
(f) 652 ps 23. (a) 50.4 ms; (b) small flash 25. (a) 1.40; (b) 0.613 ms
27. 8485 y 29. 0.768 m 31. (a) 0.999 998 49; (b) 40 ly
33. (a) 0.999 999 87 35. 1.41 ! 107 km 37. 35 smu/y 39. (a) 216 m;
(b) 1.2 ms 41. 3.87mc 43. (a) 26.13 y; (b) 52.13 y; (c) 2.610 y
45. (a) 2.08 MeV; (b) "1.21 MeV 47. (a) 132 km; (b) "406 ms
49. (a) 0.894; (b) 2.24; (c) 1.24 51. 0.993 93 53. 89.9 km
55. 28.5 MHz 57. 0.93c 59. 0.364 ps

Chapter 38
CP 1. b, a, d, c 2. (a) lithium, sodium, potassium, cesium;
(b) all tie 3. (a) same; (b)"(d) x rays 4. (a) proton; (b) same;
(c) proton 5. same
P 1. (a) 2.96 ! 1020 photons/s; (b) 4.86 ! 107 m; (c) 5.89 ! 1018

photons/m2 s 3. 7.75 pm 5. (a) 15 keV; (b) 120 keV 7. 4.81 mA
9. (a) 9.02 ! 10"6; (b) 3.0 MeV; (c) 3.0 MeV; (d) 7.33 ! 10"8; (e) 3.0
MeV; (f) 3.0 MeV 13. 2.1 ! 10"24 kg m/s 15. (a) 1.45 ! 1011 m"1;
(b) 7.25 ! 1010 m–1; (c) 0.111; (d) 5.56 ! 104 19. (a) "20%;
(b) "10%; (c) $15% 21. (a) infrared; (b) 1.4 ! 1021 photons/s

 ' 

 ' 
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23. (a) 41.8 keV; (b) 8.2 keV 25. 4.3 meV 27. neutron
29. (a) 2.9 ! 10"10 m; (b) x ray; (c) 2.9 ! 10"8 m; (d) ultraviolet
31. (a) "8.1 ! 10"9%; (b) "4.9 ! 10"4%; (c) "8.9%; (d) "66%
33. 676 km/s 35. (a) 2.43 pm; (b) 4.11 ! 10"6; (c) "8.67 ! 10"6 meV;
(d) 2.43 pm; (e) 9.78 ! 10"2; (f) "4.45 keV 37. 1.1 ! 10"10 W
39. (a) 3.96 ! 106 m/s; (b) 81.7 kV 41. (a) 1.24 mm; (b) 1.22 nm;
(c) 1.24 fm; (d) 1.24 fm 43. 1.0 ! 1045 photons/s
45. (a) 8.57 ! 1018 Hz; (b) 3.55 ! 104 eV; (c) 35.4 keV/c
47. (a) 2.73 pm; (b) 6.05 pm 49. (a) 2.43 pm; (b) 1.32 fm; (c) 0.511
MeV; (d) 939 MeV 51. (a) 1.3 V; (b) 6.8 ! 102 km/s
53. 4.7 ! 1026 photons 55. (a) 382 nm; (b) 1.82 eV 61. 170 nm
63. 44° 65. (a) 9.35  mm; (b) 1.47 ! 10"5 W; (c) 6.93 ! 1014

photons/s; (d) 2.33 ! 10"37 W; (e) 5.87 ! 10"19 photons/s
67. (a) 1.9 ! 10"21 kg m/s; (b) 346 fm 69. 300% 71. (a) 2.1 mm;
(b) infrared 73. (a) 2.00 eV; (b) 0; (c) 2.00 V; (d) 295 nm
75. 2.047 eV 77. (a) 3.1 keV; (b) 14 keV

Chapter 39
CP 1. b, a, c 2. (a) all tie; (b) a, b, c 3. a, b, c, d 4. E1,1 (neither nx

nor ny can be zero) 5. (a) 5; (b) 7
P 1. 3.21 eV 3. (a) 0.020; (b) 20 5. 1.4 ! 10"3 7. 4.0
13. (a) 0.0037; (b) 0.0054 15. (a) 13.6 eV; (b) "27.2 eV
17. (a) 13.6 eV; (b) 3.40 eV 19. (a) (r4/8a5)[exp("r/a)] cos2 u ;
(b) (r 4/16a5)[exp("r/a)] sin2 u 21. 0.65 eV 25. (a) 291 nm"3;
(b) 10.2 nm"1 27. (a) 12.1 eV; (b) 6.45 ! 10"27 kg m/s; (c) 102 nm
29. (a) 72.2 eV; (b) 13.7 nm; (c) 17.2 nm; (d) 68.7 nm; (e) 41.2 nm;
(g) 68.7 nm; (h) 25.8 nm 31. (a) 13; (b) 12 35. 0.68 39. 4.3 ! 103

41. 56 eV 43. (a) 0.050; (b) 0.10; (c) 0.0095 45. 1.41 47. 1.9 GeV
49. (a) 7; (b) 1.00; (c) 2.00; (d) 3.00; (e) 9.00; (f) 8.00; (g) 6.00
51. 109 eV 53. 0.85 nm 55. (a) 8; (b) 0.75; (c) 1.00; (d) 1.25;
(e) 3.75; (f) 3.00; (g) 2.25

Chapter 40
CP 1. 7 2. (a) decrease; (b)"(c) remain the same 3. A, C, B 
P 1. 44 3. (a) 51; (b) 53; (c) 56 5. 80.3 pm 7. 19 mT
9. (a) 69.5 kV; (b) 17.8 pm; (c) 21.3 pm; (d) 18.5 pm
11. (a) 4p; (b) 4; (c) 4p; (d) 5; (e) 4p; (f) 6 13. (a) 35.4 pm;
(b) 56.5 pm; (c) 49.6 pm 17. (a) (2, 0, 0, $1⁄2), (2, 0, 0, "1⁄2);
(b) (2, 1, 1, $ 1⁄2), (2, 1, 1, " 1⁄2), (2, 1, 0, 1⁄2), (2, 1, 0, " 1⁄2),
(2, 1, "1, $ 1⁄2), (2, 1, "1, " 1⁄2) 19. (a) 3.60 mm; (b) 5.24 ! 1017

21. 7.3 ! 1015 s"1 23. (a) 0; (b) 68 J 27. (a) 49.6 pm; (b) 99.2 pm
29. 2 ! 107 31. 5.35 cm 33. 2.0 ! 1016 s"1 35. (a) 54.7º;
(b) 125º 37. (a) 4; (b) 5; (c) 2 39. 9.0 ! 10"7 41. 3.0 eV
43. 72 km/s2 45. 12.4 kV 47. 0.563 49. (a) 3.46; (b) 3.46;
(c) 3; (d) 3; (e) "3; (f) 30.0 ; (g) 54.7 ; (h) 150 51. 24.1
53. 42 55. (a) 3; (b) 3 57. (a) 3.03 ! 105; (b) 1.43 GHz;
(d) 3.31 ! 10"6 59. g 61. (a) 3.65 ! 10-34 J s;
(b) 3.16 ! 10"34 J s

Chapter 41
CP 1. larger 2. a, b, and c
P 1. (a) 1.0;(b) 0.99;(c) 0.50;(d) 0.014;(e) 2.4 ! 10"17; (f) 7.0 ! 102 K
3. 0.22 mg 7. (a) 19.7 kJ; (b) 197 s 9. 57.1 kJ 11. 3
13. (a) 5.86 ! 1028 m"3; (b) 5.49 eV; (c) 1.39 ! 103 km/s;
(d) 0.522 nm 15. 8.49 ! 1028 m"3 17. 6.0 ! 105 19. 13 mm

 ' 

 ' 

%%%%

 ' 

 ' 
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21. (a) 4.79 ! 10"10; (b) 0.0140; (c) 0.824 23. (b) 6.81 ! 1027

m"3 eV"3/2; (c) 1.52 ! 1028 m"3 eV"1 25. (a) 0; (b) 0.0955
29. (a) 1.36 ! 1028 m"3 eV"1; (b) 1.68 ! 1028 m"3 eV"1; (c) 9.01 ! 1027

m"3 eV"1; (d) 9.56 ! 1026 m"3 eV"1; (e) 1.71 ! 1018 m"3 eV"1

31. 4.20 eV 33. (a) 0.0055; (b) 0.018 35. (a) 2.50 ! 103 K;
(b) 5.30 ! 103 K 37. (a) 226 nm; (b) ultraviolet 39. (a) 1.5 ! 10"6;
(b) 1.5 ! 10"6 41. (a) 6.81 eV; (b) 1.77 ! 1028 m"3 eV"1;
(c) 1.59 ! 1028 m"3 eV"1 43. (a) 1.31 ! 1029 m"3; (b) 9.43 eV;
(c) 1.82 ! 103 km/s; (d) 0.40 nm

Chapter 42
CP 1. 90As and 158Nd 2. a little more than 75 Bq (elapsed time is
a little less than three half-lives) 3. 206Pb
P 1. 4.269 MeV 3. (a) 25.4 MeV; (b) 12.8 MeV; (c) 25.0 MeV
5. 2.50 mSv 7. 1.02 mg 9. (a) 1.2 ! 10"17; (b) 0 11. 1.12 ! 1011 y
13. (a) 6.6 MeV; (b) no 15. 0.783 MeV 17. (b) 0.961 MeV
19. (a) 2.0 ! 1020; (b) 2.8 ! 109 s"1 21. (a) 7.5 ! 1016 s"1;
(b) 4.9 ! 1016 s"1 23. (a) 1.06 ! 1019; (b) 0.624 ! 1019; (c) 1.68 ! 1019;
(d) 2.97 ! 109 y 25. (a) 6.3 ! 1018; (b) 2.5 ! 1011; (c) 0.20 J; (d) 2.3
mGy; (e) 30 mSv 27. 1.7 mg 29. 9.0 ! 108 Bq 31. (a) 6.2 fm;
(b) yes 33. (a) 9.303%;(b) 11.71% 35. (a) 3.2 ! 1012 Bq;(b) 86 Ci
37. 1.21 MeV 39. 78.3 eV 41. 1.3 ! 10"13 m 43. (a) 0.250;
(b) 0.125 47. (a) 8.88 ! 1010 s"1; (b) 1.19 ! 1015; (c) 0.111 mg
49. (a) 64.2 h; (b) 0.125; (c) 0.0749 51. (b) 7.92 MeV/nucleon
53. 265 mg 57. 5.3 ! 1022 59. 1 ! 1013 atoms 61. 13 km
63. (a) 0.390 MeV; (b) 4.61 MeV 67. (a) 2.3 ! 1017 kg/m3;
(b) 2.3 ! 1017 kg/m3; (d) 1.0 ! 1025 C/m3; (e) 8.8 ! 1024 C/m3 

69. 1.0087 u 71. 46.6 fm 73. (a) 6; (b) 8

Chapter 43
CP 1. c and d 2. e
P 1. (a) 75 kW; (b) 5.8 ! 103 kg 3. (a) 4.1 eV/atom; (b) 9.0 MJ/kg;
(c) 1.5 ! 103 y 5. 10"12 m 7. 1.7 ! 109 y 9. (b) 1.0; (c) 0.89;
(d) 0.28; (e) 0.019; (f) 8 11. 1.41 MeV 13. 170 keV
15. (a) 1.8 ! 1038 s"1; (b) 8.2 ! 1028 s"1 17. 14.4 kW 21. 1.6 ! 108 y
23. (a) 4.3 ! 109 kg/s; (b) 3.1 ! 10"4 25. (a) 84 kg; (b) 1.7 ! 1025;
(c) 1.3 ! 1025 27. 1.3 ! 103 kg 29. (a) 24.9 MeV;
(b) 8.65 megatons TNT 31. 3.1 ! 1010 s"1 33. 4.8 Mev
35. "23.0 MeV 37. (a) 251 MeV; (b) typical fission energy is 
200 MeV 39. (a) 153Nd; (b) 110 MeV; (c) 60 MeV; (d) 1.6 ! 107 m/s;
(e) 8.7 ! 106 m/s 43. 0.99938 45. 557 W 47. (a) 2.6 ! 1024;
(b) 8.2 ! 1013 J; (c) 2.6 ! 104 y 49. (a) 16 day"1; (b) 4.3 ! 108

Chapter 44 
CP 1. (a) the muon family; (b) a particle; (c) Lm # $1
2. b and e 3. c
P 1. 2.77 ! 108 ly 3. 1.4 ! 1010  ly 5. (a) energy; (b) strangeness;
(c) charge 7. (a) 0; (b) "" 9. (a) yes; (b)"(d) no 11. 668 nm,.
13. 4.73 ! 103 15. (a) u

_
u
_

d
_

; (b) u
_

d
_

d
_

17. sd
_

19. (a) K$; (b) n
_

;
(c) K0 21. 2.7 cm/s 23. (a) 121 m/s; (b) 0.00406; (c) 248 y
25. (a) 0; (b) "1; (c) 0 27. (b) 5.7 H atoms/m3 29. (a) 2.6 K;
(b) 976 nm 31. 2.4 ! 10"43 33. (a) angular momentum, Le;
(b) charge, Lm; (c) energy, Lm 37. (a) 37.7 MeV; (b) 5.35 MeV;
(c) 32.4 MeV 39. 2.4 pm 41. p" m" $ v̄ 43. 769 MeV:
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