10.1: Inference about difference between two population means, 3,182 Known.

-> Assumptions

- 1. Sample 1 Random
- 2. Sample 2 Random
- 3. sample 1 and sample 2 independent.
- 4. a. population 1 Normal.
 - b. Population 2 Normal

OR Both sample are large enough.

large enough samples: $n_1 \ge 30$ use it if pop 1,2 not Normal $n_2 \ge 30$

- \rightarrow point estimator for $M_1 M_2 = \overline{X}_1 \overline{X}_2$
- \rightarrow confidence interval / interval estimate for $M_1-M_2=(\overline{X}_1-\overline{X}_2)\mp E$ margin of error $(E)=Z_{\frac{1}{2}}\int_{n_1}^{2^2}+\frac{3^2}{n_2}$ standard error.
- $\rightarrow (1-\alpha) \text{ CI for } \mathcal{A}_1 \mathcal{A}_2 = (\overline{X}_1 \overline{X}_2) \mp Z_{\frac{\alpha}{2}} \int_{n_1}^{2^2} + \frac{2^2}{n_2}$

-> Hypothesis test about 4,-42:

10 lower tail test 20 upper tail test 3 Two tail test.

Ho: $M_1-M_2 > D_0$ Ho: $M_1-M_2 \leq D_0$ Ho: $M_1-M_2 = D_0$ Ho: $M_1-M_2 < D_0$ Ho: $M_1-M_2 \neq D_0$ Ho: $M_1-M_2 \neq D_0$

Test statistic:
$$Z = \frac{(\bar{x}_i - \bar{x}_i) - D_o}{\int \frac{\lambda_i^2}{n_i} + \frac{\lambda_i^2}{n_2}}$$
By Z-table.

-> Critical value Appro ① Lower tail test	Reject H.	Accept No	
Reject Ho if Z ≤			
2 uffer fail test:	Accept the	Reject Ho	
Reject to if Z >	7 Z«		2. 1 1
3 Two fail test:	Reject 1to Arce Pt 1 1111 11 -Zzz	Ho Reject M.	
Reject to if Z >			
→ P- Value Approch: Reject Ho if			
O lower fail fest:	p-value Z		
Ougger fail test:	Z	9-value	
3 Two fail test: -	p-value y	9-valve	
			,

STUDENTS-HUB.com

Uploaded By: anonymous

16.2: Inferences about My-M2, SI and B2 unknown.

- Assumptions:

- 1. Sample 1 Random sample from Pop. 1.
- 2 sample 2 Random sample flom 909.2
- 3. Sample 1 and sample 2 we independent.
- 4 Pop. 1 and pop. 2 have Normal distribution OR sample 1 and sample 2 are large enough. \star large enough: $n_1 + n_2 > 2a$ st $n_1 \approx n_2$
 - \rightarrow point estimater for $y_1 y_2 = \overline{x}_1 \overline{x}_2$
 - \Rightarrow standard effor = $\int_{n_1}^{2} + \frac{S_2^2}{n_2}$
 - \rightarrow margen of each (E) = $\frac{L_{\alpha}}{2} \cdot \frac{S_1^2}{N_1} + \frac{S_2^2}{N_2}$
 - $\Rightarrow df = \left[\frac{\left(\frac{S_{i}^{2}}{n_{i}} + \frac{S_{i}^{2}}{n_{i}} \right)^{2}}{\left(\frac{1}{n_{i}} \right) \left(\frac{S_{i}^{2}}{n_{i}} \right)^{2} + \left(\frac{1}{n_{i}} \right) \left(\frac{S_{i}^{2}}{n_{i}} \right)^{2}} \right]$ 19.4] = 9
 - → 1-x CI = (x,-x2) ∓ E

-> Hypotheses testing for M.-12:

1 Jower sail test @ upper lail test

3) two fail test.

Ho: M.-M2 > Do Ho: M.-M2 ≤ Do

H; de - 12 + Po

H1: 1-12 < Do H1: 1-12 > D.

110: 11-12 = Do

→ Test statistic:

$$t = \frac{(\overline{\chi}_1 - \overline{\chi}_1) + 0_0}{\sqrt{\frac{S_1^2}{N_1} + \frac{S_2^2}{02}}}$$

STUDENTS-HUB.com

Uploaded By: anonymous

→ aitical value Appload:	
O lower fail test:	
We reject the if $t_{rest} \leq -t x$	
tes	
Q uffer teil test:	
we legist the if test $> t < .$	
· · · · · · · · · · · · · · · · · · ·	
② two tail test:	
We reject the if test \geq to or $\pm_{tot} \leq -\pm \frac{1}{2}$	
2	
→ p-vulue Appload:	w. • .
Reject Ho if P-value < ∝	
O lower tail test:	
-t	
(2) upper tail test:	velve .
£ ,	1 . 3
3) two tail test:	
-t t	
-> If we additionally have $81 = 82$:	
* Test statistic: # df = n+n2-2	+ pooled sample variance:
$ \underbrace{E - (\overline{\chi} - \overline{\chi}_{1}) - D_{0}}_{S, \underbrace{I}_{h_{1}} + \underbrace{I}_{h_{2}}} $	$S^{2} = (n_{1}-1)S_{1}^{2} + (n_{2}-1)S_{2}^{2}$
$S_1 + h_2$	$n_1 + n_2 - 2$

6.3 Inference about the difference between two population means, matheed samples.

Notations:

Ho: Md = Mdro / two dailed Jost

- n: sample size 1# of clement - M, Pop. 1 mean

- M2: POP2 Mean

> Test statistic :

 $t = \overline{d} - Jd_{10}$, df = n-1

-Md = M1- M2 - di = Xi - Xi

- I = Zdi

 $-Sd = \int \underbrace{\Xi(di-d)^2}_{p-1}$

> Reject Ho if P-value ≤ x

P-value = area in both tails

Reject H_0 if $|L| \ge L_{\frac{1}{2}}$, df = n-1.

 \rightarrow (1-x) CI for $\mathcal{M}_d = \overline{d} \mp \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \right\} \right\} \right\}$ margin of each .

standard effor

10.4: Inferences about the difference between two population proportions,

- Assumptions:

- 1. sample 1 and sample 2 Royndom.
- 2. samples I and 2 are independent.
- 3. semples 1 and 2 large enough.

* large enough:

 $pop.: n_1 - \pi_1 > 5, n_1(1 - \pi_1) > 5$

 $n_2 \pi_2 \geq 5$, $n_2 (1 - \pi_2) \geq 5$

* Notations:

T, : Proportion in pop. 1

Tz: Proportion in pop. 2.

P, : ProPortion in sample 1

P2: 96 Partion in Sample 2

n: sample I size.

nz: sample 2 size -

sample: $n_1 l_1 > 5$, $n_1 (1-l_1) > 5$

n2 P2 > 5 , n2 (1-P2) > 5.

> point estimater for TI-T2 = P1-P2.

 \rightarrow (1- \propto) CI for $\overline{T}_1 - \overline{T}_2 = (f_1 - f_2) \mp E$

 $\Rightarrow \text{ margin of effor } (E) = \frac{Z_2}{2} \int \frac{P_1(1-P_1)}{n_1} + \frac{P_2(1-P_2)}{n_2}$

 \Rightarrow standard error of $P_1 - P_2$ $(\partial_{P_1} - P_2) = \int \frac{\Pi_1(1 - \Pi_1)}{\Pi_1} + \frac{\Pi_2(1 - \Pi_2)}{\Pi_2}$

→ Hypotheses test about TI_ TI :

O lower tail test: Quffer toil test:

Ho: TI-T2 >0 Ho: TI-T2 >0

 $H_1: \overline{\Psi}_1 - \overline{\Psi}_2 \leq 0$ $H_1: \overline{\Psi}_1 - \overline{\Psi}_2 \geq 0$

Ho: TI-T2 = 0

3) two tail test:

Hi TI, - TI2 +0.

Remark: under the Ho when Ho is true an equality we get
$$\pi_1 = \pi_2 = \pi_1$$
.

 \Rightarrow standard exter $(\pi_1 = \pi_2 = \pi) = \beta_{1,-9_2} = \sqrt{\pi(1-\pi)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$

pooled estimate of T When
$$T_1 = T_2 = T$$
:
$$\rho = \frac{n_1 l_1 + n_2 l_2}{n_1 + n_2}$$

Test statistic for Hypotheses test about
$$\pi_1 - \pi_2$$
:
$$Z = \frac{(P_1 - P_2)}{P(1-P)(\frac{1}{P_1} + \frac{1}{P_1})}$$

II.I Inferences about population variance:

32: Population variance

> sampling distribution of (n-1) s2 has chi-squared distribution 8:88. st dev With N-1 deglees foodon. 52: sample variance

S: sample st. dev

- Assuming:
 - 1. The sample is Random.
 - 2. The sample come from a Normal population.

$$\rightarrow (1-\alpha) CI \text{ for } \delta^2 = \left(\frac{(n-1) S^2}{\chi_{\frac{1-\alpha}{2}}^2}, \frac{(n-1) S^2}{\chi_{1-\frac{\alpha}{2}}^2}\right), \text{ where off}: n-1, S^2 = \frac{2(xi-x)^2}{n-1}.$$

> Testing Hypothesis:

Ho: 32 > 32

$$y = y^2 + y^2$$

Ho:
$$\beta^2 \leqslant \beta_0^2$$

$$H_1: \quad \beta^2 < \beta^2 \qquad \qquad H_1: \quad \beta^2 > \beta^2$$

$$H_0: 3^2 = 3^2$$

$$41: 3^2 \neq 3_0^2$$

$$\chi^2 = \frac{(n-1)S^2}{\delta_0^2}$$
, $df = n-1$, δ_0^2 ; hypothesis velue.

$$\sim$$
 0 lower dail test $\chi^2 < \chi^2$

2) offer boil test
$$\chi^2 > \chi^2_{\chi}$$

3 Two day lest.

$$\chi^2 \times \chi^2_{\frac{\pi}{2}}$$
 or $\chi^2 < \chi^2$

11.2 Inferences about two population valiances.

-> sampling distribution of S_1^2 when $S_1^2 = S_2^2$ has F distribution with $n_1 - 1$ df for the numerator and $n_2 - 1$ df for the denominator.

Notations:

- 1. sample 1 and sample 2 random
- 2. Sample 1 and sample 2 independent
- 3 sample 1 and sample 2 are from Normal population.
- $4. b_1^2 = b_2^2$

- N1: size of pop. 1
- N2: Size of Pop. 2
- 3; variance of pop. 1
- 32: Variance of pop.2
- M, i size of sample!
- Mz: size of sample 2

S2: Valiance of sample2

- > Testing Hypothesis: S,2: Valiance of sample!
- over tail test:
 - 2) Two fail fest:
 - $H_0: \beta_1^2 \leq \beta_2^2$
 - H_0 : $\beta_1^2 = \beta_2^2$
 - $A_1: \beta_1^2 > \beta_2^2$
- H1: 31 + 32

Test statistic:

$$F = \frac{S_1^2}{S_2^2}$$
 with $df_1 = n_1 - 1$, $df_2 = n_2 - 1$

→ Reject Ho if:

~ ρ-value ≤ ∝

~ 1 upper fail test

F7FX

@ Two tail test.

FZ Fg

-> Note:

forolation I is the population with higher sample variance.

12.1 Godness of fit and Independence:

- Ho: $T_1 = TT_{10}$, $T_2 = TT_{20}$, $T_1 = TT_{10}$, $T_2 = TT_{20}$, $T_3 = TT_{10}$, $T_4 = TT_{10}$, $T_5 = TT_{10}$
- → n : sample size

 fi : observed frequencies

 ei : expeted frequencies.
- → ei = n Tio
- > \$\fi = \frac{\frac{k}{2}}{2} e_{i} = n
- \rightarrow Test statistic: $\chi^2 = \frac{\chi}{2} \frac{(f_i - e_i)^2}{e_i}$
- Reject the if $\chi^2 > \chi^2 < \chi^$
- -> Remark

To use Goodness of fit test for moltinomial populations we assume:

- 1. The sample taken is Random.
- 2. expected frequencies for all calegories; should satisfy the following eiz 5 40.

chi square lable.

12.2: Test of Independence

- Noll and alternative hypotheses:
 - Ho: The Row variable and the column variable are independent.
 - Hi: The Row variable and the column variable are not independent.
- -> we need to take a Rundom sample:
 - fij : observed frequency.
 - eij: expected fleg.
 - 1: # of Row.
 - m: # of columns.
 - eij = (Row i table) (column j table)

 sample size.
- -> Note: $\xi \xi f i = \xi \xi e i = sample size.$
- > Test statistie:
 - $\chi^2 = \frac{2}{3} \frac{2}{i} \frac{(f_{ij} e_{ij})^2}{e_{ij}}$ with df = (n-1)(m-1)
 - Assuming: eij > 5 Yi Yi
- -> Rejection Rule:
- · Reject to if p-value < x
- Reject Ho If $\chi^2 \gg \chi^2$
- -> Note: We use chi-squar lable

12.3: Goodness of fit test: Poisson and Normal distribution.

Poisson distribution

Ho: The population has a Posson dish

H.: The population doesn't have a poisson dist.

Take a Bandon sample of size n

fi observed frequencies thi=n

ei: expected frequencies Zei-n

$$e_{i} = \underbrace{A^{x_{i}} e^{-A}}_{\chi_{i}!} \quad n \qquad A = \underbrace{\xi_{x_{i}} f_{i}}_{\xi_{i}}$$

Test statistic:

$$\chi^2 = \frac{\chi}{4} \frac{(f_i - e_i)^2}{e_i} \quad \text{with} \quad df = K - 2 \qquad \text{(Assuming eight 5 Ye.)}$$

→ Rejection Rule:

• Reject H₆ if $\chi^2 > \chi^2$

Normal distribution

- -> Ho: The population has a normal distribution.
 - Hi: The population doesn't have a Normal distribution.
- → Take a Random sample of size 1
 - fi: observed frequencies.
 - Ci: expected frequencies.
- Notation:
 - · K: # of categories.
- K= <u>f</u>
- ej = 5 ¥c

- > Test statistic:
 - $\chi^2 = \underbrace{\frac{K}{K}}_{(x)} \frac{(f_i e_i)^2}{e_i} \quad \text{with} \quad f_i = K 3$
- -> Rejection Rule:
 - · Reject to if 9-value < a
 - Reject H. if $\chi^2 > \chi^2_{\propto}$

13.2: Analysis of valiance: testing for the equality of K po	opulation means.
> Testing for the equality of K pop, mean sumple mean for Heats	ment si:
$\overline{X}_{j} = \frac{\sum_{i} X_{i,j}}{n_{i}}$	0 0
J	
sample variance for seatment j:	* Abtations:
$S_{j}^{2} = \frac{\sum_{i=1}^{2} (x_{ij} - \bar{x}_{i})^{2}}{n_{i} - 1}$	Xij: value of observation i for treatment j'.
'y-'	nj; number of observation for treatments j.
> OVEC sample Moun :	Xj: sample mean for Healment j.
文= 瓷花 Xi	53; ; sample vallance for trachment j.
η _τ	Sj: sample standard deviction for weathert
$\bar{X} = \frac{\bar{X}_{i}}{\bar{X}_{i}}$ if n are equal.	
within theatments estimate of population variance; . mean square due to effor. $MSE = \frac{SSE}{n_T - K} \text{where} SSE = \frac{3}{2} (n_{j-1}) S_{j}^2$	
-> Test for the equality of K gop. means:	
Ho: M, = M2 = = MK Hy: Not all population means are equal.	
-> Test statistic:	
F = MSTR MSE	
-> Rejection Rule:	
P-value approach: Reject Ho if P-value < ~	
critical value approach; Reject Ho if F 7 Fx.	
JDENTS-HUB.com	Uploaded By: anonymou

ANDVA Jobie	Street And Street	W	all is analysis	want to a feel t
Solle of Valiance		22	MS	F
Treatments	k-1	SITR	MSTR	HSTR
ECOL	NT - K	SSE	MSE	MSE
Total	N _T -1	SST		, i
	mak tilk to		4 1. 121	me is any day.
a wasti taran a tarah a	Salva e X			10x - 4x 14 3 3 3
	ga King sa an ang			1 g
Same of the State				The stands with
S. William J. A. S. State				W British X
September 16 March 18 18 18 18 18 18 18 18 18 18 18 18 18				, 11
			Ty An a 4	V X - X
:				
			on it with it	Aprille Associas a silve
			il sain	at the state feets,
	· · · · · · · · · · · · · · · · · · ·	Ar Ar		Ario Mili
		<u>;</u>		I gate sind a girl of
				d W correction
		Contract &	4 2	128 2 121/6 3 - 10
				11 4 170
				phine of the spirity
		٠,		Array lar A
				3
				and or
				With the

Uploaded By: anonymous

13.3: multiple comparison procedures:

= FLSD Recedure:

$$H_0^{ij}: M_i = M_j$$
 $i \neq j$

Gj∈ {L...,k}.

Test statistic:

Reject Ho if $|\bar{x}_i - \bar{x}_i| > LSD^{cj}$ Where $LSD = E_{\frac{1}{2}} = L_{\frac{1}{n_i}} = L_{\frac{1}{n_i}}$

s.t
$$\alpha_{CW} = \frac{\alpha_{EW}}{\binom{K}{2}}$$
 and $df = n_{T} - K$

- Bonferioni Adjustment:

TEW: experement wise Type I significance l

Kcw: Comparision Wise 1, 1,

$$\alpha_{CW} = \frac{\alpha_{EW}}{\binom{K}{2}}$$

> confedence interval.

$$(1-\alpha)$$
 CI for $M_i - M_j = (\bar{x}_i - \bar{x}_j) \mp LSD^{ij}$ where $LSD^{ij} = E_{\frac{\pi}{2}} \int MSE(\frac{1}{n_i}, \frac{1}{n_j})$

13.6: Randomized Block design.

1, contains Treatments and Blocks.

- ANOVA Jab	ole: Block Ran	ndomized Pesign		
Soutce of Valiance	df	22	MS	F
Treatments	k-1	25TR	MSTR = SSTR	F= MSTR
Blocks	b-l	SSBL	$MSTR = \underbrace{SSTR}_{k-1}$ $MSBL = \underbrace{SSBL}_{(b-1)}$	MSE
Error	(K-1)(b-1)	SSE	(b-1) MSE = <u>SSE</u> (k-1)(b-1)	1 V
			(x-1)(b-1)	* 2

* b = # of Blocks.

* BL = Blocks

* NT = Kb

* SST= SSTR + SSRL + SSE.

-> Hypothesis: Ho: U1 = U2 = --- - UR

Hi: Not all If are equal.

-> Rejection Rule:

ecritical value; reject the if $F \ge Fa$ with $dF_1 = K-1$, $dF_2 = (K-1)(b-1)$.

. 9-value , reject the if 9-value < x.

Notation and des:

- · Xio: sample mean of block i i-1,..., b
- · X.j : sample mean of treatments i . j=1, -- . K

- \$\overline{\chi}\$: over all Mean of all observation.
- $SST = \sum_{i=1}^{k} \sum_{j=1}^{k} (x_{ij} \overline{x})^{2}$
- SSTR = $b \stackrel{\cancel{\xi}}{\underset{j=1}{\xi}} (x_{\cdot j} \overline{x})^2$
- $SSBL = K \stackrel{k}{\stackrel{\sim}{\stackrel{\sim}{\sim}}} (Xi. \bar{X})^2$.
- · SSE = SST SSTR SSBL.

13.7: Factorial experiments

- > Notation
- 9 = # of levels of factor A
- · b = # of levels of factor B.
- · r= # of replications.
- . NT = total number of observations taken in experiment, NT = abr.

- Hypothesis !

Ho means of factors A are equal

Hi means of factors A are not equal.

Ho: means of factor B are equal.

H, : means of factor B are not equal.

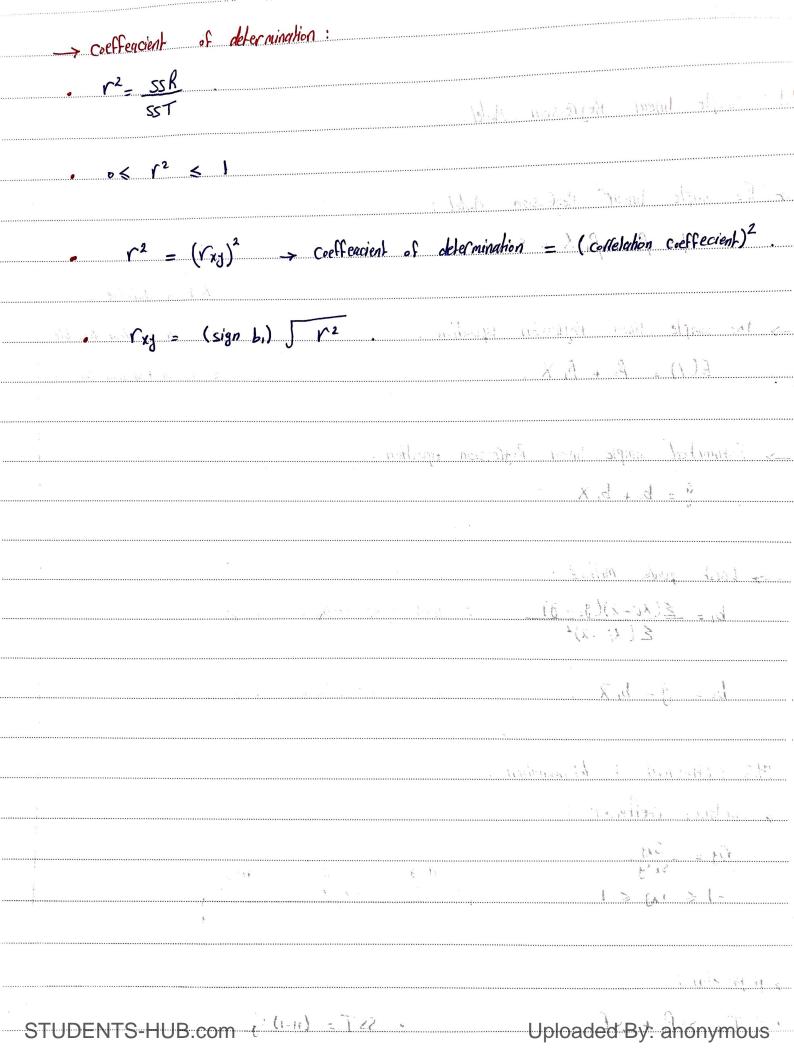
Ho: Factor A and Factor B have no interaction.

H. Factor A and Factor B have an interaction.

Defenetions

.
$$SST = SSA + SSB + SSAB + SSE = \frac{2}{2} \frac{1}{2} \frac{1}{12} \left(\frac{x_{ijk}}{x_{ijk}} - \overline{x} \right)^2$$

. SSA - br
$$\frac{2}{\tilde{x}_{i-1}} (\tilde{x}_{i-1} - \tilde{x})^2$$


$$SSAB = \Gamma \underset{j=1}{\overset{b}{\geq}} \underset{i=1}{\overset{a}{\leq}} (\widehat{x}_{ij} - \widehat{x}_{i} - \widehat{x}_{ij} + \overline{\widehat{x}})^{2}$$

- ANOVA lab	le: Two	Factor	Factorial	experement
-------------	---------	--------	-----------	------------

								1
	Source of Valiance	df	22	MS	F	Fa	p:Nulve	
	Factor A	a-I	A22	MSA = SSA	FA MSA	Fac with a-1, ab(r-1)	,	
	Factor B	b-1	SSB	9-1 MSB = SSB	MSE EB MSR	Fx with b-1, ab(v-1)	3	
	Interaction AB	(g-1)(b-1)	28 A 22	MSAR - 55AB	MSE	Fx with (a-1)(b-1), ab(f-1)	ģ. v	
		ab(r-1)	SSE	MSE = SSE ab(C1)	HSE		_	
		NT-1	SIT	ab(1-1)			_	
•••••	iorac .			_			² og	
							1	

r>2

14.1: simple linear Regression Model. - The simple linear Regression Model: 1 = Bo + B X + E 1 X is a Valiable Y is a Rendom valiable The simple linear Reglession equation E is a Random Valiable $E(y) = \beta_0 + \beta_1 X$ > Estimated simple linear Regression equation. 9 = b0 + b1 X > Least square method: 14.2 $b_1 = \underbrace{Z(x_1 - \overline{x})(\overline{y}_1 - \overline{y})}_{\text{$Z(x_1 - \overline{x})^2$}} : \text{least squale estimate for } P_1$ $b_0 = \overline{g} - b_1 \overline{\chi}$: least squale estimate for β_0 . 14.3 : coeffecient of determination. > collelation Coeffecient: - 1/24 = Sxy -1 < (xy < 1 - proposition: · SST = (n-1) si · SST = SSR + SSE · SSE = SST - SSB . $. SSR = b_1^2 (n-1) S_x^2$

14.5: Testing for signifacance.

-> Model : Y = Bo + B X + E.

... Ho: B1=0 Means Not significance valuable and Model.

Hi BI +0 means the hold and valiable are significance.

 \rightarrow Assuming: $E(\varepsilon) = 0$, $var(\varepsilon) = 3^2$, ε independent, ε Normal

• $t-test = t = \frac{b_1}{S_{b_1}}$ with dt = n-2Two tail test.

Where Sh = MSE Ograficani Sbi = Jan-1757

> Rejection Rule:

Reject 11. if 11≥ t=

 \rightarrow Mean square ETGT (estimate of 5^2)

S'= MSE = SSE

- standard exfor of the estimate.

 $S = \int MSE = \int \frac{SSE}{n-2}$

sampling distribution of by:

. E(b) = B1

 $\frac{\partial b_i}{\left[\Sigma(X_i^{-1})^2\right]} = \frac{3}{\sqrt{(n-1)}S_A^2}$

· Distribution by is Normal

a balan has inch

> Estimated	standared	distribution of	<i>b</i> ,:		
	$= \frac{S}{\int (n-1) S_{x}^{2}}$				
	J(n-1) 5x				<u> </u>
→ (1-&) C.	<u> </u>				G
= b1 7 E	× Sb.				
			, <u>1</u>		· · · · · · · · · · · · · · · · · · ·
(i) F-test	and 1	ANOVA lable	<u> </u>	r 1,4, 2	*-53
		22		F	
, kegression	1	J2Z	MSR	MSR MSE	upper
Eror	N-2	Se E	MSE	<u> </u>	1 1/2/2
Total	n-1	SST			,
		14.2		7. 14. 17. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	No. 2 to 1
	SR = SSR	1			
	SE = SSE n-2				
Rejection	0.1.			<u> </u>	A A A A A A A A A A A A A A A A A A A
-> Kejecion Re	iect Ha i	ſ Γ≽ F∝	with offi=1	and $df_2 = n-2$	
	ject Ho if	p-value &	∝ .	*2** 0	
				1	
				- n	77
				Δ/	
					Liles
				(1
				1	1

14.6: using the estimated regression equation for estimation and predection

$$\rightarrow$$
 point estimation: $\hat{g} = b_0 + b_1 X$.

$$(1-\alpha)CI \quad \text{for} = \int_{\mathbb{R}} + S \quad t \leq \int_{\mathbb{R}} + \frac{(\lambda p - \overline{\chi})^2}{\Sigma(\chi_l - \overline{\chi})^2} \quad \text{where} \quad \int_{\mathbb{R}} = b_0 + b_1 \chi_p \quad \text{and} \quad df = n - 2$$

Chapter 15: Multiple Regression.	
15.1: Multiple Regression Model.	
→ Model (Mulliple linear Regression Model): Y= Po + P1 X1 + F2 X2 + - + F9 XP + E.	
\rightarrow Multiple linear Regression Equation: $E(y) = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$	
\rightarrow Estimated multiple linear Regression: $\hat{j} = b_0 + b_1 X_1 + \cdots + b_p X_p$	
15.2: least squale Method:	
$\frac{2}{2} \left(y_t - \hat{j}_t \right)^2 \qquad \qquad$	
15.3: Nulligle Coeffection? of determination:	
\Rightarrow SST = SSB + SSE.	
~ Multiple coeffections of determinations: R2_SSR_SST	
Adjusted Multiple coeffecient of determinations: adj $R^2 = 1 - (1 - R^2)(\frac{n-1}{n-p-1})$	

15.5: Teshny So Model:	signific	ance	h. (.			4		
		<u>.</u>	* V 13		5° A			
Model:	y = ß.,	B1 X1 + B2	X2 + +	Pp Xp + E.				į
→	Hi: Not	all Bi al	P\$ = 0			<u>*</u>	, , , , , , , , , , , , , , , , , , ,	
						(
Source of Validhin						1. v _e 1. v _e	- 1 A - N - 1	
Reglession.	P	SSR	ASB	MSR		1 -1	<u> </u>	
E-MsC	n-p-1	326	MSE	, 156		b		
Total	n-)	SST	<u>-</u>		, n l v	1 2 11	<u> </u>	
. Msk	l y. if	F > F.	or 9-vel	ve ≼ ∠	3 30 0 2 2		333 .	
	H. : Bj =	0						
	4, ; Pj ≠ .	o						
Teo	statistic:	t = _	bj Sij					
→ Rej	iech H.	ો t ≥	<u>ξα</u> ος	` β-valve ·	≤ ≺	silh df=n-	e-1.	
. 1-	test g	'- times .						
STUDENTS-HUE	3.com				Up	oloaded	By: anon	ymous

		0
$S = \sqrt{S^2} = \sqrt{MSE}$; standard effor of the	Le estimate,	
3 bj . [Vac(bj) : Standard devigation		
Shi = estimated standard deviation of bu		
~ Molticolineacity:		
input versiable X1, X2, X9	· ·	
some times some the is dependent on the other		- 1
	Tys , Inp. Case 13 Mown as Muth	colmenlity
ViF = 1	1	
ViF = 1 1- Rij		
The Ministry of the state of th		
If $ViF(Xi) \ge 10$ then Xi should be elim	1eneted.	
R. Mulliole College of the		
· Ry: Multiple coeffectent of determination for Xi	as a function of the other xj, s	
· Function means multiple regression.		
	3 4	
0.40		
Done	uses in glidi	
	<u></u>	
STUDENTS-HUB com	Unloaded By: anony	vmous