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CHAPTER 14 SIMPLE LINEAR REGRESSION

SIMPLE LINEAR REGRESSION MODEL

Learning objectives

After reading this chapter and doing the exercises, you should be able to:

Understand how regression analysis can be used to
develop an equation that estimates mathematically
how two variables are related.

Understand the differences between the regression
model, the regression equation, and the estimated
regression equation.

Know how to fit an estimated regression equation
to a set of sample data based upon the |east-
squares method.

Determine how good a fit is provided by the
estimated regression equation and compute the
sample correlation coefficient from the regression
analysis output.

Understand the assumptions necessary for
statistical inference and be able to test for a
significant relationship.

7 Learn how to use a residual plot to make a
judgment as to the validity of the regression
assumptions, recognise outliers and identify
influential observations.

8 Use the Durbin-VWatson test to test for

autocorrelation.

9 Know the definition of the following terms:

independent and dependent variable

simple linear regression

regression model

regression equation and estimated regression
equation

scatter diagram

coefficient of determination

standard error of the estimate

confidence interval

prediction interval

statistics in Practice

Foreign direct investment (FDI) in China

n a recent study by Kingston Business School, regression
Imodel\ing was used to investigate patterns of FDI in
China as well as to assess the particular potential of the
autonomous region of Guangxi in SW China as an FDI
attractor. A variety of simple models were developed
based on positive correlations between GDP and FDI

American coffee shop Starbucks in Shanghai, China. Keren Su/China Span/Alamy.

in provinces using data collected from official statistical

sources.
Estimated regression eguations obtained were as
follows:

y=lIm+ 217x 19901993

y=2Im+ 89x 19951998

y=33m + |4.6x 2000-2003
where y = estimated GDP

x = FDI

across all provinces.

In terms of FDI per capita, Guangxi has been ranked
around 27 of 3| overthe last ten years or so. FDI is a key
driver of economic growth in modermn China, But clearly
Guangxi needs to improve its ranking if it is to be able
to compete effectively with the more successful eastem
coastal provinces and great municipalities.

Source: Foster M| (2002) 'On evaluation of FDI's: Principles,
Actualities and Possibilities International Journal of Management
and Decision-Making 3(1) 67-82

residual plot
Know how to develop confidence interval standardized residual plot
estimates of the mean value of Y and an individual outlier
value of Y for a given value of X, influential observation
leverage

Managerial decisions are often based on the relationship between two or more variables.
For example, after considering the relationship between advertising expenditures and
sales, a marketing manager might attempt to predict sales for a given level of advertising
expenditure. In another case, a public utility might use the relationship between the daily
high temperature and the demand for electricity to predict electricity usage on the basis
of next month’s anticipated daily high temperatures. Sometimes a manager will rely on
intuition to judge how two variables are related. However, if data can be obtained, a sta-
tistical procedure called regression analysis can be used to develop an equation showing
how the variables are related.

Inregression terminology, the variable being predicted is called the dependent variable.
The variable or variables being used to predict the value of the dependent variable are
called the independent variables. For example, in analyzing the effect of advertis-
ing expenditures on sales, a marketing manager’s desire to predict sales would suggest
making sales the dependent variable. Advertising expenditure would be the independent
variable used to help predict sales. In statistical notation, ¥ denotes the dependent variable
and X denotes the independent variable.
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In this chapter we consider the simplest type of regression analysis involving one inde?—
pendent variable and one dependent variable in which the relationship be.tween the vari-
ables is approximated by a straight line. It is called simple linear regression. RegreSS{on
analysis involving two or more independent variables is called mbfltiple regression
analysis, multiple regression and cases involving curvilinear relationships are covered in

Chapters 15 and 16.

14.1 Simple linear regression model

Armand’s Pizza Parlours is a chain of Italian-food restaurants located in northern Italy.
Armand’s most successful locations are near college campuses. The managers beliﬁ‘:ve
that quarterly sales for these restaurants (denoted by Y) are related positively t.o the size
of the student population (denoted by X); that is, restaurants near campuses with a l_arge
student population tend to generate more sales than those located near campuses w1th a
small student population. Using regression analysis, we can develop an equation showing
how the dependent variable Y is related to the independent variable X.

Regression model and regression equation

In the Armand’s Pizza Parlours example, the population consists of all the Armand’s
restaurants.

Uploaded By: anonymous




CHAPTER 14 SIMPLE LINEAR REGRESSION

Panel A: Panel B: Panel C:
Positive linear relationship Negative linear relationship No relationship
E(Y) E(Y) EY)
L Intercept
Regression line 8o
Slope 4, Intercept Slope 4,is 0
| is negative By -
Intercept Slope 5 Regression line

f

For every restaurant in the population, there is a value x of X (student population)
and a corresponding value y of Y (quarterly sales). The equation that describes how Y ig
related to x and an error term is called the regression model. The regression model usedq
in simple linear regression follows.

Simple linear regression model

Y=8+Bx+e (14.1)

B, and f, are referred to as the parameters of the model, and € (the Greek letter
epsilon) is a random variable referred to as the error term. The error term £ accounts for
the variability in ¥ that cannot be explained by the linear relationship between X and Y.

The population of all Armand’s restaurants can also be viewed as a collection of sub-
populations, one for each distinct value of X. For example, one subpopulation consists
of all Armand’s restaurants located near college campuses with 8000 students; another
subpopulation consists of all Armand’s restaurants located near college campuses with
9000 students and so on. Each subpopulation has a corresponding distribution of Y val-
ues. Thus, a distribution of ¥ values is associated with restaurants located near campuses
with 8000 students a distribution of Y values is associated with restaurants located near
campuses with 9000 students and so on. Each distribution of ¥ values has its own mean
or expected value. The equation that describes how the expected value of Y — denoted by
E(Y) or equivalently E(YIX = x) — is related to x is called the regression equation. The
regression equation for simple linear regression follows.

Simple linear regression equation

E(N) = B, + Bx (14.2)

The graph of the simple linear regression equation is a straight line; /3, is the y-intercept
of the regression line, f3, is the slope and E(Y) is the mean or expected value of Y for a
given value of X.

Examples of possible regression lines are shown in Figure 14.1. The regression line in
Panel A shows that the mean value of Y is related positively to X, with larger values of

is positive

Regression line
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Sample Data:
s ) AU
X4 Y1
Xa Yo

Regression Model
¥ = Byt Bpxte
Regression Equation
E(y) = Byt 81x
Unknown Parameters
oy By

Estimated Regression
Equation

by and b4
provide estimates of A
y=by +by

4y and
Mo B Sample Statistics

by, by

E(Y) associated with larger values of X. The regression line in Panel B shows the mean
value of Y is related negatively to X, with smaller values of E(Y) associated with larger
values of X. The regression line in Panel C shows the case in which the mean value of
Y is not related to X; that is, the mean value of Y is the same for every value of X.

Estimated regression equation

If the values of the population parameters 3 and 8, were known, we could use equa-
tion (14.2) to compute the mean value of ¥ for a given value of X. In practice, the
parameter values are not known, and must be estimated using sample data. Sample
statistics (denoted b, and b)) are computed as estimates of the population parameters
B, and f3,. Substituting the values of the sample statistics b, and b for f and S, in
the regression equation, we obtain the estimated regression equation. The estimalted
regression equation for simple linear regression follows.

Estimated simple linear regression equation
J=by,+ bx (14.3)

The graph of the estimated simple linear regression equation is called the estimated
regression line; b, is the y intercept and b, is the slope. In the next section, we show how
the least squares method can be used to compute the values of b, and b, in the estimated
regression equation.
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In general, § is the point estimator of E(Y), the mean value of ¥ for a given value of x
Thus, to estimate the mean or expected value of quarterly sales for all restaurants located negy
campuses with 10 000 students, Armand’s would substitute the value of 10 000 for X in equa-
tion (14.3). In some cases, however, Armand’s may be more interested in predicting saleg
for one particular restaurant. For example, suppose Armand’s would like to predict quartery
sales for the restaurant located near Cabot College, a school with 10 000 students.

As it turns out, the best estimate of ¥ for a given value of X is also provided by 3,
Thus, to predict quarterly sales for the restaurant Jocated near Cabot College, Armand’g
would also substitute the value of 10 000 for X in equation (14.3). Because the value of
y provides both a point estimate of E(Y) and an individual value of Y for a given value of
X, we will refer to y simply as the estimated value of y.

Figure 14.2 provides a summary of the estimation process for simple linear regression,

14.2 Least squares method

ARMANDS

god

The least squares method is a procedure for using sample data to find the estimated regres-
sion equation. To illustrate the least squares method, suppose data were collected from a
sample of ten Armand’s Pizza Parlour restaurants located near college campuses. For the ith
observation or restaurant in the sample, ., is the size of the student population (in thousands)
and y, is the quarterly sales (in thousands of euros). The values of x, and y, for the ten restau-
rants in the sample are summarized in Table 14.1. We see that restaurant 1, with x, = 2 and
¥, = 58, is near a campus with 2000 students and has quarterly sales of €58 000. Restau-
rant 2, with x, = 6 and y, = 105, is near a campus with 6000 students and has quarterly sales
of €105 000. The largest sales value is for restaurant 10, which is near a campus with 26 000
students and has quarterly sales of €202 000.

Figure 14.3 is a scatter diagram of the data in Table 14.1. Student population is shown
on the horizontal axis and quarterly sales are shown on the vertical axis. Scatter diagrams
for regression analysis are constructed with the independent variable X on the horizontal
axis and the dependent variable ¥ on the vertical axis. The scatter diagram enables us
to observe the data graphically and to draw preliminary conclusions about the possible
relationship between the variables.

nd's Pizza

T oA e

Quarterly sales (€000s)

Restaurant Student population (000s)

i % Yi
\ 7 58
2 6 105
3 8 88
4 8 I8
5 12 L7
6 16 137
Fi 20 |57
8 20 |69
9 22 149
10 26 202
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What preliminary conclusions can be drawn from Figure 14.3? Quarterly sales appear
to be higher at campuses with larger student populations. In addition, for these data the
relationship between the size of the student population and quarterly sales appears to
be approximated by a straight line; indeed, a positive linear relationship is indicated
between X and Y. We therefore choose the simple linear regression model to represent
the relationship between quarterly sales and student population. Given that choice, our
next task is to use the sample data in Table 14.1 to determine the values of b, and b,
in the estimated simple linear regression equation. For the ith restaurant, the estimated
regression equation provides

y.=b,+bx (14.4)

where
y,= estimated value of quarterly sales (€000s) for the ith restaurant
= the y intercept of the estimated regression line
the slope of the estimated regression line
size of the student population (000s) for the ith restaurant

bD
b =
X, =
Every restaurant in the sample will have an observed value of sales y, and an estimated
value of sales f)f. For the estimated regression line to provide a good fit to the data, we
want the differences between the observed sales values and the estimated sales values
to be small.

The least squares method uses the sample data to provide the values of b, and b, that
minimize the sum of the squares of the deviations between the observed values of the
dependent variable y, and the estimated values of the dependent variable. The criterion
for the least squares method is given by expression (14.5).

Uploaded By: anonymous




CHAPTER 14 SIMPLE LINEAR REGRESSION

Least squares criterion
Min Z(y, — )2 (14.5)

where

y, = observed value of the dependent variable for the fth observation
j = estimated value of the dependent variable for the fth observation

Differential calculus can be used to show that the values of b, and b, that minimize
expression (14.5) can be found by using equations (14.6) and (14.7).

Slope and y-intercept for the estimated regression equation™
2 =R, )

T P(x — X

s T O (14.7)

(14.6)

where

x = value of the independent variable for the ith observation
Y, = value of the dependent variable for the ith observation
X = mean value for the independent variable

¥ = mean value for the dependent variable

n = total number of observations

Some of the calculations necessary to develop the least squares estimated regression
equation for Armand’s Pizza Parlours are shown in Table 14.2. With the sample of ten
restaurants, we have n = 10 observations. Because equations (14.6) and (14.7) require x
and ¥ we begin the calculations by computing X and y. '

2X 140
R . PR P
T T 0

2y
SN 1300 _ a0

n10

Using equations (14.6) and (14.7) and the information in Table 14.2, we can compute
the slope and intercept of the estimated regression equation for Armand’s Pizza Parlours.
The calculation of the slope (b,) proceeds as follows.

R )
L S — 3
.

568

*An alternative formula for b, is
Zxy, — (Zx, 2y

Y E— (S in

This form of equation (14.6) is often recommended when using a calculator to compute b,.
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Restaurant i X, Y, X% Y= (=X, —p) (x, — x)*

i i
| 2 58 —12 —72 864 |44
2 6 105 -8 ~25 200 &4
3 8 88 —6 —42 252 36
4 8 |18 —6 —ii2 72 36
5 |2 17 = =3 26 4
6 6 137 2 7 14 4
i 20 |57 6 27 162 36
8 20 |69 6 39 234 36
9 22 |49 8 19 152 64
[0 26 202 |2 Wil 864 |44
Totals 140 1300 2840 568
2x =y, Z =X — P 2% )k

The calculation of the y intercept (b,) follows.

b,=7— bx
=130 — 5(14)
= 60

Thus, the estimated regression equation is
y =60+ 5x

Figure 14.4 shows the graph of this equation on the scatter diagram.

The slope of the estimated regression equation (b, = 5) is positive, implying that as
student population increases, sales increase. In fact, we can conclude (based on sales
measured in €000s and student population in 000s) that an increase in the student popula-
tion of 1000 is associated with an increase of €5000 in expected sales; that is, quarterly
sales are expected to increase by €5 per student.

If we believe the least squares estimated regression equation adequately describes the
relationship between X and Y, it would seem reasonable to use the estimated regression
equation to predict the value of ¥ for a given value of X. For example, if we wanted to
predict quarterly sales for a restaurant to be located near a campus with 16 000 students,
we would compute

¥ =60+ 5(16) = 140

Therefore, we would predict quarterly sales of €140 000 for this restaurant. In the fol-
lowing sections we will discuss methods for assessing the appropriateness of using the
estimated regression equation for estimation and prediction.
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Methods

I Given are five observations for two variables, X and Y
x 2
7 7
a. Develop a scatter diagram for these data.
b. What does the scatter diagram developed in part (2) indicate about the relationship
between the two variables? .
¢ Try to approximate the relationship between X and Y by drawing a straight line through
the data.
d. Develop the estimated regression equation by computing the values of b and b, using
equations (14.6) and (14.7).
e. Use the estimated regression equation to predict the value of Y when X = 4.

2  Given are five observations for two variables, X and VY.

X A S | 8

i

y, 25 25 20 30 6

a. Develop a scatter diagram for these data,
b. What does the scatter diagram developed in part (a) indicate about the relationship
between the two variables!
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c. Try to approximate the relationship between X and Y by drawing a straight line through
the data.

d. Develop the estimated regression equation by computing the values of b, and b, using
equations (14.6) and (14.7).

e. Use the estimated regression equation to predict the value of Y when X = &,

3 Given are five observations collected in a regression study on two variables,

X, 7
2

4 5 7
¥, 3 6

8
2 e
a. Develop a scatter diagram for these data.
b. Develop the estimated regression equation for these data.
c. Use the estimated regression equation to predict the value of Y when X = 4.

Applications
4 The following data were collected on the height (cm) and weight (kg) of women swimmers,

Height 173 163 I57 165 168
M¥eigat ) 60849 =G B0 L 58

a. Develop a scatter diagram for these data with height as the independent variable.

b. What does the scatter diagram developed in part (a) indicate about the relationship
between the two variables?

c. Try to approximate the relationship between height and weight by drawing a straight line
through the data.

d. Develop the estimated regression equation by computing the values of by and b,

e. Ifaswimmer's height is 160 cm, what would you estimate her weight to be?

5  The Dow Jones Industrial Average (DJIA) and the Standard & Poor's 500 (S&P) indexes
are both used as measures of overall movement in the stock market. The DJIA is based on
the price movements of 30 large companies; the S&P 500 is an index composed of 500
staocks. Some say the S&P 500 is a better measure of stock market performance because it
is broader based. The closing prices for the DJIA and the S&P 500 for ten weeks, beginning
with || February 2009, follow (ukfinance.yahoo.corn, 21 April 2009).

Date DJIA S&P

Il Feb 09 7939.53 833.74
18 Feb 09 755563 78842
25 Feb 09 7270.89 764.90
03 Mar 09 672602 696.33
|0 Mar 09 692649 719.60
|7 Mar 09 7395.70 778.12
24 Mar 09 76602 | 806.12
3| Mar 09 760892 737.87
07 Apr 09 7789.56 81555
14 Apr 09 7920.18 841.50

a. Develop a scatter diagram for these data with DJIA as the independent variable.
b. Develop the least squares estimated regression equation.
c. Suppose the closing price for the DJIA is 8000, Estimate the closing price for the S&P 500.
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6 A sales manager collected the following data on annual sales and years of experience.

Salesperson Years of experience Annual sales (€000s)
I I 80
2 3 97
3 4 92
gt o 102
5 6 103
6 8 L1l
7 10 119
8 10 123
9 Il [

10 13 136

a. Develop a scatter diagram for these data with years of experience as the independent
variable.

b. Develop an estimated regression equation that can be used to predict annual sales given
the years of experience.

c. Use the estimated regression equation to predict annual sales for a salesperson with nine
years of experience.

14.3 Coefficient of determination '

For the Armand’s Pizza Parlours example, we developed the estimated regression
equation y = 60 + S5x to approximate the linear relationship between the size of student
population X and quarterly sales ¥. A question now is: How well does estimated regres-
sion equation fit the data? In this section, we show that coefficient of determination
provides a measure of the goodness of fit for the estimated regression equation.

For the ith observation, the difference between the observed value of the depend-
ent variable, y, and the estimated value of the dependent variable, )Azj, is called the
ith residual. The ith residual represents the error in usingy, to estimate y. Thus, for
the ith observation, the residual is y, — }“zj. The sum of squares of these residuals or errors
is the quantity that is minimized by the least squares method. This quantity, also known
as the sum of squares due to error, is denoted by SSE.

Sum of squares due to error
55E = Fw — Py (14.8)

The value of SSE is a measure of the error in using the least squares regression equation
to estimate the values of the dependent variable in the sample.

In Table 14.3 we show the calculations required to compute the sum of squares due to
error for the Armand’s Pizza Parlours example. For instance, for restaurant 1 the values
of the independent and dependent variables are x, = 2 and y, = 58. Using the estimated
regression equation, we find that the estimated value of quarterly sales for restaurant 1 is
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Caleulation of SSE for Armand's Pizza Parlours

x, = Student Predicted
Restaurant population y, = Quarterly sales Error Squared error

i (000s) sales (€000s) J,=60+5x y—j v, — 9
' Z 58 70 ~12 |44
2 6 105 90 5 225
3 8 88 100 =] 144
: 8 118 100 18 324
5 12 17 120 -3 9
6 16 137 140 -3 9
7 20 |57 160 -3 9
8 20 169 160 9 8l
7 22 149 170 -21 44
10 26 202 190 12 144

SSE = 1530

¥, = 60 + 5(2) = 70. Thus, the error in using ¥, to estimate y, for restaurant 1isy, — ¥
. = 58 — 70 = —12. The squared error, (—12)* = 144, is shown in the last column of
Table 14.3. After computing and squaring the residuals for each restaurant in the sample,
we sum them to obtain SSE = 1530. Thus, SSE = 1530 measures the error in using the
estimated regression equation y, = 60 + 5x to predict sales.

Now suppose we are asked to develop an estimate of quarterly sales without knowledge
of the size of the student population. Without knowledge of any related variables, we
would use the sample mean as an estimate of quarterly sales at any given restaurant.
Table 14.2 shows that for the sales data, 2y, = 1300. Hence, the mean value of quar-
terly sales for the sample of ten Armand’s restaurants is y = Zy/n = 1300/10 = 130.
In Table 14.4 we show the sum of squared deviations obtained by using the sample mean
y = 130 to estimate the value of quarterly sales for each restaurant in the sample. For the
ith restaurant in the sample, the difference y, — ¥ provides a measure of the error involved
in using ¥ to estimate sales. The corresponding sum of squares, called the iofal sum of
squares, is denoted SST.

Total sum of squares
SST = Z(y, — y)? (14.9)

The sum at the bottom of the last column in Table 14.4 is the total sum of squares for
Armand’s Pizza Parlours; it is SST = 15 730.

In Figure 14.5 we show the estimated regression line j\rf = 60 + 5x and the line cor-
responding to ¥y = 130. Note that the points cluster more closely around the estimated
regression line than they do about the line y = 130. For example, for the tenth restaurant
in the sample we see that the error is much larger when y = 130 is used as an estimate
of y,, than when y. = 60 + 5(26) = 190 is used. We can think of SST as a measure of
how well the observations cluster about the y line and SSE as a measure of how well the
observations cluster about the y line.
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Table 14.4
Restaurant x, = Student y, = Quarterly Deviation Squared deviation
i population (000s) sales (€000s) Y, — ¥ (v, — y»
[ 2 58 =77 5184
74 6 105 —325 625
3 8 88 —47 | 764
4 8 118 =2 144
5 12 17 =13 169
6 16 137 7 49
7 20 157 77 728
8 20 169 39 | 521
9 22 149 IS 361
10 26 202 72 5184
SST = 15730

To measure how much the y values on the estimated regression line deviate from 7,
another sum of squares is computed. This sum of squares, called the sum of squares due
to regression, is denoted SSR.

Sum of squares due to regression
SSR =3 — pp? (14.10)

Figure 145
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From the preceding discussion, we should expect that SST, SSR and SSE are related.
Indeed, the relationship among these three sums of squares provides one of the most
important results in statistics.

Relationship among SST, SSR and SSE
SST = SSR + SSE (14.11)

where

SST = total sum of squares
SSR = sum of squares due to regression
SSE = sum of squares due to error

Equation (14.11) shows that the total sum of squares can be partitioned into two com-
ponents, the regression sum of squares and the sum of squares due to error. Hence,
if the values of any two of these sum of squares are known, the third sum of squares can
be computed easily. For instance, in the Armand’s Pizza Parlours example, we already
know that SSE = 1530 and SST = 15 730; therefore, solving for SSR in equation (14.11),
we find that the sum of squares due to regression is

SSR = SST — SSE = 15 730 — 1530 = 14 200

Now let us see how the three sums of squares, SST, SSR and SSE, can be used
to provide a measure of the goodness of fit for the estimated regression equation.
The estimated regression equation would provide a perfect fit if every value of
the dependent variable y, happened to lie on the estimated regression line. In this
case, y, — ﬁi would be zero for each observation, resulting in SSE = 0. Because
SST = SSR + SSE, we see that for a perfect fit SSR must equal SST and the ratio
(SSR/SST) must equal one. Poorer fits will result in larger values for SSE. Solving
for SSE in equation (14.11), we see that SSE = SST — SSR. Hence, the largest value
for SSE (and hence the poorest fit) occurs when SSR = 0 and SSE = SST. The ratio
SSR/SST, which will take values between zero and one, is used to evaluate the good-
ness of fit for the estimated regression equation. This ratio is called the coefficient of
determination and is denoted by 2.

Coefficient of determination

_ SR

— (14.12)

For the Armand’s Pizza Parlours example, the value of the coefficient of determi-
nation is
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When we express the coefficient of determination as a percentage, r* can be interpreteq
as the percentage of the total sum of squares that can be explained by using the estimateq
regression equation. For Armand’s Pizza Parlours, we can conclude that 90.27 per cent
of the total sum of squares can be explained by using the estimated regression equatiop
y = 60 + 5x to predict quarterly sales. In other words, 90.27 per cent of the variability iy
sales can be explained by the linear relationship between the size of the student popula-
tion and sales. We should be pleased to find such a good fit for the estimated regression
equation.

Correlation coefficient

In Chapter 3 we introduced the correlation coefficient as a descriptive measure of the
strength of linear association between two variables, X and Y. Values of the correla-
tion coefficient are always between —1 and +1. A value of +1 indicates that the two
variables X and Y are perfectly related in a positive linear sense. That is, all data points
are on a straight line that has a positive slope. A value of —1 indicates that X and ¥ are
perfectly related in a negative linear sense, with all data points on a straight line that has
a negative slope. Values of the correlation coefficient close to zero indicate that X and ¥
are not linearly related.

In Section 3.5 we presented the equation for computing the sample correlation
coefficient. If a regression analysis has already been performed and the coefficient
of determination r* computed, the sample correlation coefficient can be computed as
follows.

Sample correlation coefficient

ry, = (sign of b ) Y Coefficient of determination

= (sign of b)) V7 (14.13)
where

b, = the slope of the estimated regression equation y = b, + b x

The sign for the sample correlation coefficient is positive if the estimated regression
equation has a positive slope (b, > 0) and negative if the estimated regression equation
has a negative slope (b, < 0).

For the Armand’s Pizza Parlour example, the value of the co efficient of determination
corresponding to the estimated regression equation y = 60 + 5x is 0.9027. Because the
slope of the estimated regression equation is positive, equation (14.13) shows that the
sample correlation coefficient is = v0.9027 = +0.9501.

With a sample correlation coefficient of r,, = +0.9501, we would conclude that a
strong positive linear association exists between X and Y.

In the case of a linear relationship between two variables, both the coefficient of
determination and the sample correlation coefficient provide measures of the strength of
the relationship. The coefficient of determination provides a measure between zero and
one whereas the sample correlation coefficient provides a measure between —1 and +1.
Although the sample correlation coefficient is restricted to a linear relationship between
two variables, the coefficient of determination can be used for nonlinear relationships
and for relationships that have two or more independent variables. Thus, the coefficient
of determination provides a wider range of applicability.
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Methods

7  The data from exercise | follow.

e
307 5 11 4

The estimated regression equation for these data is y = 0.20 + 2.60x.
a. Compute SSE, SST and SSR using equations (14.8), (14.9) and (14.10).

b. Compute the coefficient of determination r-. Comment on the goodness of fit.
c. Compute the sample correlation coefficient.

8 The data from exercise 2 follow.

5% 2 B 5 I 8

i

A 25 25 20 30 6

The estimated regression equation for these data is = 30.33 — 1.88x.

a. Compute SSE, SST and SSR.
b. Compute the coefficient of determination ri. Comment on the gocdness of fit.
¢. Compute the sample correlation coefficient.

9  The data from exercise 3 follow.

The estimated regression equation for these data is = 0.75 + 0.5 |x. What percentage of the
total sum of squares can be accounted for by the estimated regression equation? What is the
value of the sample correlation coefficient?

Applications

10 The estimated regression equation for the data in exercise 5 can be shown to be
¥ = —75586 + 0. |5x. What percentage of the total sum of squares can be accounted
for by the estimated regression equation?
Comment on the goodness of fit. What is the sample correlation coefficient?

Il Animportant application of regression analysis in accounting is in the estimation of cost.
By collecting data on volume and cost and using the least squares method to develop an
estimated regression equation relating volume and cost, an accountant can estimate the
cost associated with a particular manufacturing volume. Consider the following sample of
production volumes and total cost data for a manufacturing operation.

Production volume (units) Total cost (€)
400 4000
450 5000
550 5400
600 5900
700 6400
750 7000
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a. Use these data to develop an estimated regression equation that could be used to
predict the total cost for a given production volume.

b. What is the variable cost per unit produced?

c. Compute the coefficient of determination. What percentage of the variation in total cost
can be explained by production volume?

d. The company's production schedule shows 500 units must be produced next month.
What is the estimated total cost for this operation?

12 PCWarld provided details for ten of the most economical laser printers (PCWorld, April 2009),
The following data show the maximum printing speed in pages per minute (ppm) and the
price (in euros including |5 per cent value added tax) for each printer,

Name Speed (ppm) Price (€)
Brother HL 2035 |8 61.35
HP Laserjet P1005 I5 70.13
Samsung ML-1640 16 739
HP Laserjet P1006 7 8293
Brother HL-2140 22 92.34
Brother DCP7030 22 96.04
HP Laserjet P1009 16 SO,
HP Laserjet P1505 24 [19.10
Samsung 4300 18 121.64
Epson EPL-6200 Mono 20 133.53

a. Develop the estimated regression equation with speed as the independent variable.

b. Compute r* What percentage of the variation in cost can be explained by the printing
speed?

c. What is the sample correlation coefficient between speed and price? Does it reflect a
strong or weak relationship between printing speed and cost?

14.4 Model assumptions

We saw in the previous section that the value of the coefficient of determination (r2) is a
measure of the goodness of fit of the estimated regression equation. However, even with
a large value of 7%, the estimated regression equation should not be used until further
analysis of the appropriateness of the assumed model has been conducted. An important
step in determining whether the assumed model is appropriate involves testing for the
significance of the relationship. The tests of significance in regression analysis are based
on the following assumptions about the error term &.

Assumptions about the error term £in the regression model

=gt Bx +e

I The error term & s a random variable with a mean or expected value of zero; that s,
Ele) =10,
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Implication: 3, and f, are constants, therefore E(f)) = f3, and E(B,) = f,; thus, for a given
value x of X, the expected value of Y'is

ECY) =8, + Bx (14.14)
As we indicated previously, equation (14.14) is referred to as the regression equation.

2 The variance of g denoted by ¢?, is the same for all values of X
Implication: The variance of Y about the regression line equals o and is the same for all values of X,

3 The values of g are independent.
Implication: The value of & for a particular value of X is not related to the value of £ for any
other value of X; thus, the value of Y for a particular value of X is not related to the value of ¥
for any other value of X.

4 The error term £ s a normally distributed random variable.
Implication: Because Y is a linear function of & Y is also a normally distributed random variable.

Figure 14.6 illustrates the model assumptions and their implications; note that in this
graphical interpretation, the value of E(Y) changes according to the specific value of X
considered. However, regardless of the X value, the probability distribution of & and
hence the probability distributions of ¥ are normally distributed, each with the same

PR

___!lL_."i;_ |

Distribution of
Distribution of Yat X =30
Yat X =20

‘ Distribution of
Yat X =10

E(Y) when
X=10

E(Y) when

E(Y) = fy+5x

E(Y) when
X =20

Note: The Y distributions have the
| same shape at each X value.
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variance. The specific value of the error £ at any particular point depends on whether the
actual value of Y is greater than or less than £(Y).

At this point, we must keep in mind that we are also making an assumption or hypoth-
esis about the form of the relationship between X and Y. That is, we assume that a straight
line represented by 3, + f.x is the basis for the relationship between the variables. We
must not lose sight of the fact that some other model, for instance ¥ = f + fx* + emay
turn out to be a better model for the underlying relationship.

14.5 Testing for significance

In a simple linear regression equation, the mean or expected value of ¥ is a linear function
of x: E(Y) = f3, + Bx. If the value of f3, is zero, E(Y) = f, + (0) x = 3, In this case, the
mean value of ¥ does not depend on the value of X and hence we would conclude that X and
Y are not linearly related. Alternatively, if the value of /3, is not equal to zero, we would con-
clude that the two variables are related. Thus, to test for a significant regression relationship,
we must conduct a hypothesis test to determine whether the value of 3, is zero. Two tests are
commonly used. Both require an estimate of ¢, the variance of £ in the regression model.

Estimate of o?

From the regression model and its assumptions we can conclude that ¢®, the variance
of &, also represents the variance of the ¥ values about the regression line. Recall that the
deviations of the ¥ values about the estimated regression line are called residuals. Thus,
SSE, the sum of squared residuals, is a measure of the variability of the actual observa-
tions about the estimated regression line. The mean square error (MSE) provides the
estimate of ¢?; it is SSE divided by its degrees of freedom.

With y, = b, + b x, SSE can be written as

SSE = 3(y, — §)* = Z(y, — b, — bx)?

Every sum of squares is associated with a number called its degrees of freedom.
Statisticians have shown that SSE has n — 2 degrees of freedom because two parameters
(B, and f) must be estimated to compute SSE. Thus, the mean square is computed by
dividing SSE by n — 2. MSE provides an unbiased estimator of ¢*. Because the value of
MSE provides an estimate of ¢?, the notation s? is also used.

-

Mean square error (estimate of o?)

2 = MSE = (14.15)

In Section 14.3 we showed that for the Armand’s Pizza Parlours example, SSE = 1530;
hence,

& = MSE = % = 19125

provides an unbiased estimate of 2.
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To estimate o we take the square root of s*. The resulting value, s, is referred to as the
standard error of the estimate.

Standard error of estimate

S:W:x/nsfi (14.16)

For the Armand’s Pizza Parlours example, s = VMSE = V191.25 = 13.829. In the fol-
lowing discussion, we use the standard error of the estimate in the tests for a significant
relationship between X and ¥.

t test

The simple linear regression model is ¥ = f + B x + & If X and Y are linearly related, we
must have 3, # 0. The purpose of the ¢ test is to see whether we can conclude that 3, # 0.

We will use the sample data to test the following hypotheses about the parameter /3.
H:p =0

0

H:B #0

If H, is rejected, we will conclude that B, # 0 and that a statistically significant
relationship exists between the two variables. However, if H cannot be rejected, we will
have insufficient evidence to conclude that a significant relationship exists. The proper-
ties of the sampling distribution of b, the least squares estimator of /3, provide the basis
for the hypothesis test.

First, let us consider what would happen if we used a different random sample for
the same regression study. For example, suppose that Armand’s Pizza Parlours used the
sales records of a different sample of ten restaurants. A regression analysis of this new
sample might result in an estimated regression equation similar to our previous estimated
regression equation y = 60 + 5x. However, it is doubtful that we would obtain exactly
the same equation (with an intercept of exactly 60 and a slope of exactly 5). Indeed,
b, and b,, the least squares estimators, are sample statistics with their own sampling
distributions. The properties of the sampling distribution of &, follow.

Sampling distribution of b,

Expected value E(b)) = B,
Standard deviation

6 =—— (14.17)

Distribution form
Normal

Note that the expected value of b, is equal to S, so b, is an unbiased estimator of .
As we do not know the value of o, so we estimate o, by s, where s, is derived by
substituting s for ¢ in equation (14.17):
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Estimated standard deviation of b,

5

For Armand’s Pizza Parlours, s = 13.829. Hence, using E(x — X)? = 568 as shown
in Table 14.2, we have

_ 13.829
" 568

= 0.5803

as the estimated standard deviation of b,.
The ¢ test for a significant relationship is based on the fact that the test statistic

bl_ﬁl

s

bl

follows a t distribution with n — 2 degrees of freedom. If the null hypothesis is true, then
B,=0andz=b/s,.
Let us CDl’IdUCt thls test of significance for Armand’s Pizza Parlours at the & = 0.0]
level of significance. The test statistic is
b, 5

= = = RyD
S, 0.5803

The ¢ distribution table shows that with n — 2 = 10 — 2 = 8 degrees of freedom, 1 = 3.355
provides an area of 0.005 in the upper tail. Thus, the area in the upper tail of the 7 distribu-
tion corresponding to the test statistic 7 = 8.62 must be less than 0.0035. Because this test is
a two-tailed test, we double this value to conclude that the p-value associated with r = 8.62
must be less than 2(0.005) = 0.01. MINITAB, PASW or EXCEL show the p-value = 0.000.
Because the p-value is less than o = 0.01, we reject H, and conclude that B, is not equal
to zero. This evidence is sufficient to conclude that a 31gmhcant relationship exists between

student population and quarterly sales. A summary of the ¢ test for significance in simple
linear regression follows.

t test for significance in simple linear regression

s B, =10
H:B +0
. e lbI
Test statistic =i (14.19)
bI
Rejection rule
p-value approach: Reject H, if p-value = o

Critical value approach: Reject Hift=—t_orift=t,
where t_, is based on a t distribution with n — 2 degrees of freedom.
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Confidence interval for

The form of a confidence interval for f3, is as follows:

o i B

o2°b,

The point estimator is b, and the margin of error is 7 5, The confidence coefficient
associated with this interval is 1 — o, and ¢, is the ¢ value providing an area of & /2 in
the upper tail of a ¢ distribution with n — 2 degrees of freedom. For example, suppose
that we wanted to develop a 99 per cent confidence interval estimate of 8, for Armand’s
Pizza Parlours. From Table 2 of Appendix B we find that the ¢ value corresponding
to @ = 0.0l andn — 2 = 10 — 2 = 8 degrees of freedom is . . = 3.355. Thus, the

0.005
99 per cent confidence interval estimate of /3, is
b, =1 .5 =1523355(0.5803) =5 *+ 1.95

or 3.05 to 6.95.
In using the  test for significance, the hypotheses tested were

H:f =0
H:p #0

At the & = 0.01 level of significance, we can use the 99 per cent confidence interval
as an alternative for drawing the hypothesis testing conclusion for the Armand’s data.
Because 0, the hypothesized value of 3, is not included in the confidence interval
(3.05 to 6.95), we can reject H and conclude that a significant statistical relation-
ship exists between the size of the student population and quarterly sales. In general,
a confidence interval can be used to test any two-sided hypothesis about f. If the
hypothesized value of f, is contained in the confidence interval, do not reject H,.
Otherwise, reject HO.

F test

An F test, based on the F probability distribution, can also be used to test for sig-
nificance in regression. With only one independent variable, the F' test will provide the
same conclusion as the ¢ test; that is, if the 7 test indicates 3, # 0 and hence a significant
relationship, the F test will also indicate a significant relationship*. But with more than
one independent variable, only the F test can be used to test for an overall significant
relationship.

The logic behind the use of the F test for determining whether the regression
relationship is statistically significant is based on the development of two independ-
ent estimates of 0% We explained how MSE provides an estimate of ¢ If the null
hypothesis H: B, = 0 is true, the sum of squares due to regression, SSR, divided by
its degrees of freedom provides another independent estimate of . This estimate is
called the mean square due to regression, or simply the mean square regression, and
is denoted MSR. In general,

SSR
Regression degrees of freedom

MSR =

#In fact F = ¢ for a simple regression model.
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For the models we consider in this text, the regression degrees of freedom is a]

equal to the number of independent variables in the model: "

Mean square regression

SSR

MSR =
Number of independent variables (1430}

Because we consider only regression models with one independent variable in this
chapter, we have MSR = SSR/1 = SSR. Hence, for Armand’s Pizza Parlours, MSR =
SSR = 14 200.

If the null hypothesis (H: B, = 0) is true, MSR and MSE are two independent
es.timates of ¢? and the sampling distribution of MSR/MSE follows an F distribution
with numerator degrees of freedom equal to one and denominator degrees of freedom
equal to n — 2. Therefore, when 8 = 0, the value of MSR/MSE should be close to
one. However, if the null hypothesis is false (B, # 0), MSR will overestimate ¢ and
th‘_e value of MSR/MSE will be inflated; thus, large values of MSR/MSE lead to the
rejection of H and the conclusion that the relationship between X and Y is statistically
significant.

Let us conduct the F* test for the Armand’s Pizza Parlours example. The test statistic i

7 MSR _ 14200
MSE = 19125

= 7425

The F distribution table (Table 4 of Appendix B) shows that with one degree of freedom
in the denominator and n — 2 = 10 — 2 = 8 degrees of freedom in the denominator
F' = 11.26 provides an area of 0.01 in the upper tail. Thus, the area in the upper tail 01,“
the F distribution corresponding to the test statistic F = 74.25 must be less than 0.01.
Thus, we conclude that the p-value must be less than 0.01. MINITAB, PASW or EXCEL
show the p-value = 0.000. Because the p-value is less than o = 0.01, we reject H, and
conclude that a significant relationship exists between the size of the student populgm'on

?l’lﬁl quarterly sales. A summary of the F test for significance in simple linear regression
ollows.

F test for significance in simple linear regression o

H:B =0
H: B # 0

Test statistic

= MR
— (14.21)

Rejection rule

p-value approach: Reject H, if p-value = &
Critical value approach: Reject H, if F = F

where F_is based on an F distribution with | degree of freedom in the numerator and n — 2
degrees of freedom in the denominator,
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* General form of the ANOVA e

Source of Degrees of Sum of
variation freedom squares Mean square F

: SSR MSR
Regression | SSR MSR = | MSE
Error i = 2 SSE MSE = Sk

fr=

Total i = il SST

In Chapter 13 we covered analysis of variance (ANOVA) and showed how an
ANOVA table could be used to provide a convenient summary of the computational
aspects of analysis of variance. A similar ANOVA table can be used to summarize the
results of the F test for significance in regression. Table 14.5 is the general form of the
ANOVA table for simple linear regression. Table 14.6 is the ANOVA table with the F
test computations performed for Armand’s Pizza Parlours. Regression, Error and Total
are the labels for the three sources of variation, with SSR, SSE and SST appearing as the
corresponding sum of squares in column 3. The degrees of freedom, 1 for SSR, n — 2 for
SSE and n — 1 for SST, are shown in column 2. Column 4 contains the values of MSR and
MSE and column 5 contains the value of ' = MSR/MSE. Almost all computer printouts
of regression analysis include an ANOVA table summary and the F test for significance.

Some cautions about the interpretation
of significance tests

Rejecting the null hypothesis H: B, = 0 and concluding that the relationship between
X and Y is significant does not enable us to conclude that a canse-and-effect relationship
is present between X and Y. Concluding a cause-and-effect relationship is warranted only
if the analyst can provide some type of theoretical justification that the relationship is
in fact causal. In the Armand’s Pizza Parlours example, we can conclude that there is a
significant relationship between the size of the student population X and quarterly sales
Y; moreover, the estimated regression equation y = 60 + 5x provides the least squares
estimate of the relationship. We cannot, however, conclude that changes in student
population X cause changes in quarterly sales Y just because we identified a statistically
significant relationship. The appropriateness of such a cause-and-effect conclusion is left
to supporting theoretical justification and to good judgment on the part of the analyst.

~ ANOVA table for the /
Source of Degrees Sum of
variation of freedom squares Mean square E
14 200 14 200
Regression | 14 200 ———— 4200 e = Fh
\ 191.25
1530
Error 8 | 530 = 191.25
Total 9 15730
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| Smallest Largest
| Xvalue X value
| S

| Range of X

1| values observed

Armand’s managers felt that increases in the student population were a likely cause of
increased quarterly sales. Thus, the result of the significance test enabled them to con-
clude that a cause-and-effect relationship was present.

In addition, just because we are able to reject H: ﬁ; = () and demonstrate statistical
significance does not enable us to conclude that the relationship between X and Y is linear.
We can state only that X and Y are related and that a linear relationship explains a signifi-
cant portion of the variability in ¥ over the range of values for X observed in the sample.
Figure 14.7 illustrates this situation. The test for significance calls for the rejection of
the null hypothesis H: §, = 0 and leads to the conclusion that X and Y are significantly
related, but the figure shows that the actual relationship between X and Y is not linear.
Although the linear approximation provided by y = b, + b x is good over the range of X
values observed in the sample, it becomes poor for X values outside that range.

Given a significant relationship, we should feel confident in using the estimated
regression equation for predictions corresponding to X values within the range of the
X values observed in the sample. For Armand’s Pizza Parlours, this range corresponds
to values of X between 2 and 26. Unless other reasons indicate that the model is valid
beyond this range, predictions outside the range of the independent variable should be
made with caution. For Armand’s Pizza Parlours, because the regression relationship has
been found significant at the 0.01 level, we should feel confident using it to predict sales
for restaurants where the associated student population is between 2000 and 26 000.

Exercises

Methods

13 The data from exercise | follow.
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a. Compute the mean square error using equation (4. | Sl
b. Compute the standard error of the estimate using equation (14.16).
¢. Compute the estimated standard deviation of b, using equation (14.18). d. Use the t test
to test the following hypotheses (& = 0.05):
Hy B, =0
H:B #0
e. Use the F test to test the hypotheses in part (d) at a 0.05 level of significance, Present the
results in the analysis of variance table format.

14 The data from exercise 2 follow.

; il ks 5 | 8
i B gt e = g I 50 =

Compute the mean square error using equation (14.15).
Compute the standard error of the estimate using equation (14.16).
Compute the estimated standard deviation of b, using equation (14.18).
Use the t test to test the following hypotheses (o = 0.05):
i B =0
H:B #0
e. Use the F test to test the hypotheses in part (d) at 2 0.05 level of significance. Present the
results in the analysis of variance table format.

an oW

15 The data from exercise 3 follow,

%X

a. What is the value of the standard error of the estimate?
b. Test for a significant relationship by using the t test. Use & = 0.05.
c. Use the Ftest to test for a significant relationship. Use o = 0.05. What is your conclusion?

Applications

16 Refer to exercise | |, where data on production volume and cost were used to develop
an estimated regression equation relating production volume and cost for a particular
manufacturing operation, Use o = 0.05 to test whether the production velume is
significantly related to the total cost. Show the ANOVA table. What is your conclusion?

17 Referto exercise |2 where the data were used to determine whether the price of a printer
is related to the speed for plain text printing (PC World, April 2009). Does the evidence
indicate a significant relationship between printing speed and price? Conduct the appropriate
statistical test and state your conclusion. Use ¢ = 0.05.

14.6 Using the estimated regression equation for

estimation and prediction

When using the simple linear regression model we are making an assumption about the
relationship between X and Y. We then use the least squares method to obtain the esti-
mated simple linear regression equation. If a significant relationship exists between X and
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Y, and the coefficient of determination shows that the fit is good, the estimated regression
equation should be useful for estimation and prediction.

Point estimation

In the Armand’s Pizza Parlours example, the estimated regression equation y = 60 + S5x
provides an estimate of the relationship between the size of the student population X apg
quarterly sales ¥. We can use the estimated regression equation to develop a point egj.
mate of either the mean value of ¥ or an individual value of ¥ corresponding to a givep
value of X. For instance, suppose Armand’s managers want a point estimate of the meay
quarterly sales for all restaurants located near college campuses with 10 000 students.
Using the estimated regression equation y = 60 + 5x, we see that for X = 10 (or 10 00q
students), y = 60 + 5(10) = 110. Thus, a point estimate of the mean quarterly sales for
all restaurants located near campuses with 10 000 students is €110 000.

Now suppose Armand’s managers want to predict sales for an individual restaurant
located near Cabot College, a school with 10 000 students. Then, as the point estimate
for an individual value of Y is the same as the point estimate for the mean value of ¥
we would predict quarterly sales of y = 60 + 5(10) = 110 or €110 000 for this one
restaurant.

Interval estimation

Point estimates do not provide any information about the precision associated with
an estimate. For that we must develop interval estimates much like those in Chapters
8, 10 and 11. The first type of interval estimate, a confidence interval, is an interval
estimate of the mean value of Y for a given value of X. The second type of interval
estimate, a prediction interval, is used whenever we want an interval estimate of an
individual value of Y for a given value of X. The point estimate of the mean value
of Y is the same as the point estimate of an individual value of Y. But, the interval
estimates we obtain for the two cases are different. The margin of error is larger for a
prediction interval.

Confidence interval for the mean value of Y

The estimated regression equation provides a point estimate of the mean value of Y for
a given value of X. In developing the confidence interval, we will use the following
notation. -

X, = the particular or given value of the independent variable X
Y, = the dependent variable ¥ corresponding to the given x,

E(Y) = the mean or expected value of the dependent variable Y corresponding
to the given x,

j‘zp = b, + byx, = the point estimate of E(Y)when X = x,

Using this notation to estimate the mean sales for all Armand’s restaurants located near
a campus with 10 000 students, we have x, = 10, and E(Y ) denotes the unknown mean
value of sales for all restaurants where x, = 10. The point estimate of E(Y) is given by
)“zp =60 + 5(10) = 110.

In general, we cannot expect j}P to equal E(Yp) exactly. If we want to make an
inference about how close j}p is to the true mean value E( YP), we will have to estimate

STUDENTS-HUB.com

USING THE ESTIMATED REGRESSION EQUATION FOR ESTIMATION AND PREDICTION

the variance of )“)P. The formula for estimating the variance of )“:P given x . denoted
)

by s; is

1 (xp —x)

+
& Bi— %

The general expression for a confidence interval follows.

T o
§y £ oS F+E(x = (1428

where the confidence coefficient is | — ezand t,, is based on a t distribution with n — 2 degrees

Confidence interval for E(Y,)

of freedom.

Using expression (14.22) to develop a 95 per cent confidence interval of the mean quar-
terly sales for all Armand’s restaurants located near campuses with 10 000 students, we need
the value of 7 for @/2 = 0.025 and n — 2 = 10 — 2 = 8 degrees of freedom. Using Table
2 of Appendix B, we have ¢, .. = 2.306. Thus, with f}p = 110, the 95 per cent confidence
interval estimate is

& 1 (xﬂ — )
Y, *t,8 - 7+ _—_Z(x‘. e

110 + 2.306 X 13 829\] 1, 00~ M
- ' 10 568

=110 = 11.415

In euros, the 95 per cent confidence interval for the mean quarterly sales of all restaurants
near campuses with 10 000 students is €110 000 *+ €11 415. Therefore, the 95 per cent
confidence interval for the mean quarterly sales when the student population is 10 000
is €98 585 to €121 415.

Note that the estimated standard deviation of )Azp is smallest when X, = X so that the
quantity x, — X = 0. In this case, the estimated standard deviation of y becomes

1 (xp =& _ 1
. E + ———Z(xﬁ — f)zi S\[;

This result implies that the best or most precise estimate of the mean value of ¥ occurs
when x, = X. But, the further x, is from x the larger x, — x becomes and thus the wider
confidence intervals will be for the mean value of Y. This pattern is shown graphically

in Figure 14.8.

Prediction interval for an individual value of Y

Suppose that instead of estimating the mean value of sales for all Armand’s restaurants
located near campuses with 10 000 students, we want to estimate the sales for an individual
restaurant located near Cabot College, a school with 10 000 students. As noted previously,
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Figure 14.8
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the point estimate of y , the value of ¥ corresponding to the given x is provided by the
estimated regression equatlon y =b, +b X, For the restaurant at Cabot College, we
have x = 10 and a correspondmg prechcted quarterly sales of y y, =60+ 5(10) = 110, or
€110 000,

Note that this value is the same as the point estimate of the mean sales for all restau-
rants located near campuses with 10 000 students.

To develop a prediction interval, we must first determine the variance associated with
using fap as an estimate of an individual value of ¥ when X = x . This variance is made
up of the sum of the following two components.

I The variance of individual ¥ values about the mean E(Yp), an estimate of whigh is

given by s*.
2 The variance associated with using j}p to estimate £( Y ), an estimate of which is
given by
— T2
52 =5t L —(xp Y
% R Zix—BP

Thus the formula for estimating the variance of an individual value of ¥ _ is

1 (xp =z

1 (xp — X)? 4
B Xz —3F

= P
o X(x, — %P

2

S2+S;:SZ+S2 =g
i

The general expression for a prediction interval follows.
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Prediction interval for y,

(14.23)

where the confidence coefficientis | — ezand t . 15 based on a t distribution with n — 2 d.g,grees
of freedom.

Thus the 95 per cent prediction interval of sales for one specific restaurant located near
a campus with 10 000 students is

- 1 (xp - %)

yp_tms 1 +ﬁ+—2(x.—i)2

(10 — 14)*
568

=110 = 2.306 X 13.829\]1 +% A
=110 = 33.875

In euros, this prediction interval is €110 000 * €33 875 or €76 125 to €143 875. Note
that the prediction interval for an individual restaurant located near a campus with 10 000
students is wider than the confidence interval for the mean sales of all restaurants located
near campuses with 10 000 students. The difference reflects the fact that we are able to
estimate the mean value of ¥ more precisely than we can an individual value of Y.

Both confidence interval estimates and prediction interval estimates are most precise
when the value of the independent variable is x = X. The general shapes of confidence
intervals and the wider prediction intervals are shown together in Figure 14.9.

Figure 14.9
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Methods

18 The data from exercise | follow.

X | 2 3 4 5

y, 3 7 5 I 14

a. Use expression (14.22) to develop a 95 per cent confidence interval for the expected
value of Y when X = 4.

b. Use expression (14.23) to develop a 95 per cent prediction interval for ¥ when X = 4,
19 The data from exercise 2 follow.

X 2 3 5 ! 8
2500 35 1120 30 16

i

o

Estimate the standard deviation caf;“/p when X = 3.

b. Develop a 95 per cent confidence interval for the expected value of Y when X = 3.
c. Estimate the standard deviation of an individual value of Y when X = 3.
d. Develop a 95 per cent prediction interval for Y when X = 3.

20 The data from exercise 3 follow.

2 4 5 7 8
2 3 7 6 4

i

Develop the 95 per cent confidence and prediction intervals when X = 3. Explain why these
two intervals are different.

Applications

21 Referto Exercise | |, where data on the production volume X and total cost Y for a
particular manufacturing operation were used to develop the estimated regression equation
§ = 124667 + 7.6x.

a. The company's production schedule shows that 500 units must be produced next month.
What Is the point estimate of the total cost for next month?

b. Develop a 99 per cent prediction interval for the total cost for next month. .

¢. Ifan accounting cost report at the end of next month shows that the actual production
cost during the month was €6000, should managers be concerned about incurring such
a high total cost for the month? Discuss.

14.7 Computer solution

Performing the regression analysis computations without the help of a computer can be
quite time consuming. In this section we discuss how the computational burden can be
minimized by using a computer software package such as MINITAB.

We entered Armand’s student population and sales data into a MINITAB worksheet.
The independent variable was named Pop and the dependent variable was named Sales
to assist with interpretation of the computer output. Using MINITAB, we obtained the
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Regression Analysis: Sales versus Pop

The regression edquation is
Sales = 60.0 + 5.00 Pop

Predictor Coef SE Coef T P
Constant  60.000 9.226 6.50 0.000
Pop 5.0000 0.5803 8.62 0.000

§ = 13.8293 R-%g = 90.3% R-Sg(ad)) = 89.1%

Analysis of Variance

Source DF 35 5 F P
! Regression 1 14200 14200 74.25 0.000
! Residual Error 5] 1530 191

Total 9 15730

Predicted Values for New Observations
New

Ohs Fit SE Fit 95% CI 95% PI
1 110.00 4,95 (98.58, 121.42) (76.13, 143.87)

" Walues of Predictors for New Observations

' HNew
| Obs Pop
1l 10.0

printout for Armand’s Pizza Parlours shown in Figure 14.10.* The interpretation of this
printout follows.

I MINITAB prints the estimated regression equation as Sales = 60.0 + 5.00Pop.

2 A table is printed that shows the values of the coefficients b, and b, the standard
deviation of each coefficient, the ¢ value obtained by dividing each coefficient
value by its standard deviation, and the p-value associated with the ¢ test. Because
the p-value is zero (to three decimal places), the sample results indicate that the
null hypothesis (H: B, = 0) should be rejected. Alternatively, we could compare
8.62 (located in the f-ratio column) to the appropriate critical value. This proce-
dure for the t test was described in Section 14.5.

3 MINITAB prints the standard error of the estimate, s = 13.83, as well as informa-
tion about the goodness of fit. Note that ‘R-sq = 90.3 per cent’ is the coefficient of
determination expressed as a percentage. The value ‘R-Sq (adj) = 89.1 per cent’ is
discussed in Chapter 15.

*The MINITAB steps necessary to generate the output are given in the software section at the end of the
chapter.
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4 The ANOVA table is printed below the heading Analysis of Variance. MINITAB ugeg
the label Residual Error for the error source of variation. Note that DF is an abbrevia-
tion for degrees of freedom and that MSR is given as 14 200 and MSE as 191.

The ratio of these two values provides the I value of 74.25 and the correspond.
ing p-value of 0.000. Because the p-value is zero (to three decimal places), the
relationship between Sales and Pop is judged statistically significant.

2. Write the estimated regression equation.

b. Use a t test to determine whether monthly maintenance expense is related to usage at
the 0.05 level of significance.

c. Use the estimated regression equation to predict mean monthly maintenarice expense
for any terminal that is used 25 hours per week.

5 The 95 per cent confidence interval estimate of the expected sales and the
95 per cent prediction interval estimate of sales for an individual restaurant located
near a campus with 10 000 students are printed below the ANOVA table. The
confidence interval is (98.58, 121.42) and the prediction interval is (76.12, 143.88)
as we showed in Section 14.6.

24 A regression model relating X, number of salesperscns at a branch office, to Y, annual sales at
the office (in thousands of euros) provided the following computer output from a regression
analysis of the data.

The regression equation is
¥ = 80.0 + 50.00 X

Predictor Coef SE Coef T
Constant 80.0 11.333 7.06
X 50.0 5.482 9.12

Znalysis of Variance

oy SOURCE oF ss 1S

Applications Regression 1 6828.6 6828.6
Residual Error 28 2298.8 82.1
Total 28 9127.4

22 The commercial division of a real estate firm is conducting a regression analysis of the
relationship between X, annual gross rents (in thousands of euros), and Y, selling price
(in thousands of euros) for apartment buildings. Data were collected on several properties
recently sold and the following computer selective output was obtained.

a. Write the estimated regression equation.

b. How many branch offices were involved in the study!

c. Compute the F statistic and test the significance of the relationship at a 0.05 level of
significance,

d. Predict the annual sales at the Marseilles branch office. This branch employs
|2 salespersons.

The regression egquation is
Y =20.0 + 7.21 X

Predictor Coef SE Coef P
Constant 20.000 3.2213 6.21
X 7.210 1.3626 5.29

Analysis of Variance

SOURCE DF 88

R i 1 41587.3 . . . . .
el e 5 14.8 Residual analysis: validating model assumptions
Total 8 51984.1

How many apartment buildings were in the sample?

Write the estimated regression equation.

What is the value of s, 7

Use the F statistic to test the significance of the relationship at a 0.05 level of significance.
Estimate the selling price of an apartment building with gross annual rents of €50 000.

-

As we noted previously, the residual for observation i is the difference between the
observed value of the dependent variable (y,) and the estimated value of the dependent
variable (3,).

P an ge

23 Following is a portion of the computer output for a regression analysis relating Residual for observation i

Y = maintenance expense (euros per menth) to X = usage (hours perweek) of a
particular brand of computer terminal.

e (14.24)
where

v, is the observed value of the dependent variable

The regression eguation is S . ;
¥, is the estimated value of the dependent variable

¥ = 6.1092 + .8951 X

Predictor Coef SE Coef
Constant 6.1092 0.9361
X 0.8951 0.14390

In other words, the ith residual is the error resulting from using the estimated regres-

Auatysis of Variadee sion equation to predict the value of the dependent variable. The residuals for the

SORGE i . .. Armand’s Pizza Parlours example are computed in Table 14.7. The observed values
Regression i . B . . .

Residual Error 8 349.14 43.64 of the dependent variable are in the second column and the estimated values of the
Toeat . 0 E388:90 dependent variable, obtained using the estimated regression equation § = 60 + 5x, are

in the third column. An analysis of the corresponding residuals in the fourth column
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Student Estimated
population Sales sales Residuals
x; Y, y, = 60 — 5x, ¥
2 58 70 —| 2
6 |05 90 I5
8 88 100 =2
8 |18 100 18
12 117 120 =3
16 137 140 =3
20 157 160 =3
20 169 160 9
22 149 170 =2
26 202 190 12

will help determine whether the assumptions made about the regression model are
appropriate.

Recall that for the Armand’s Pizza Parlours example it was assumed the simple linear
regression model took the form:

Y=+ px+e (14.25)

In other words we assumed quarterly sales (¥) to be a linear function of the size of the
student population (X) plus an error term & In Section 14.4 we made the following
assumptions about the error term &.

I E(e) = 0.

2 The variance of &, denoted by &7, is the same for all values of X.

3 The values of £ are independent.

4 The error term ¢ has a normal distribution.

These assumptions provide the theoretical basis for the r test and the F' test used
to determine whether the relationship between X and Y is significant, and for the
confidence and prediction interval estimates presented in Section 14.6¢. If the
assumptions about the error term & appear questionable, the hypothesis tests about
the significance of the regression relationship and the interval estimation results
may not be valid.

The residuals provide the best information about & hence an analysis of the residuals
is an important step in determining whether the assumptions for & are appropriate. Much
of residual analysis is based on an examination of graphical plots. In this section, we
discuss the following residual plots.

I A plot of the residuals against values of the independent variable X.

2 A plot of residuals against the predicted values y of the dependent variable.

3 A standardized residual plot.

4 A normal probability plot.
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Residual plot against X

A residual plot against the independent variable X is a graph in which the values of
the independent variable are represented by the horizontal axis and the corresponding
residual values are represented by the vertical axis. A point is plotted for each residual.
The first coordinate for each point is given by the value of x, and the second coordinate
is given by the corresponding value of the residual y, — j}‘.. For a residual plot against X
with the Armand’s Pizza Parlours data from Table 14.7, the coordinates of the first point
are (2,— 12), corresponding to x, = 2 and y, — ¥, = —12; the coordinates of the second
point are (6, 15), corresponding tox, = 6 and y, — 3’2 = 15 and so on. Figure 14.11 shows
the resulting residual plot.

Before interpreting the results for this residual plot, let us consider some gen-
eral patterns that might be observed in any residual plot. Three examples appear in
Figure 14.12.

If the assumption that the variance of & is the same for all values of X and the
assumed regression model is an adequate representation of the relationship between
the variables, the residual plot should give an overall impression of a horizontal band
of points such as the one in Panel A of Figure 14.12. However, if the variance of ¢ is
not the same for all values of X — for example, if variability about the regression line
is greater for larger values of X — a pattern such as the one in Panel B of Figure 14.12
could be observed. In this case, the assumption of a constant variance of € is violated.
Another possible residual plot is shown in Panel C. In this case, we would conclude
that the assumed regression model is not an adequate representation of the relationship
between the variables. A curvilinear regression model or multiple regression model
should be considered.

Now let us return to the residual plot for Armand’s Pizza Parlours shown in
Figure 14.11. The residuals appear to approximate the horizontal pattern in Panel A
of Figure 14.12. Hence, we conclude that the residual plot does not provide evidence
that the assumptions made for Armand’s regression model should be challenged. At

Figure 14.11
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RESIDUAL ANALYSIS: VALIDATING MODEL ASSUMPTIONS

questioned. A residual plot provides one technique to assess the validity of the assump-
tions for a regression model.

Panel A Residual plot against y

Another residual plot represents the predicted value of the dependent variable ¥ on the
horizontal axis and the residual values on the vertical axis. A point is plotted for each
residual. The first coordinate for each point is given by }“}i and the second coordinate is
given by the corresponding value of the ith residual y, — y,. With the Armand’s data from
Table 14.7, the coordinates of the first point are (70, — 12), corresponding to y, = 70
and y, — j‘fl = —12; the coordinates of the second point are (90, 15), and so on. Figure
14.13 provides the residual plot. Note that the pattern of this residual plot is the same as
the pattern of the residual plot against the independent variable X. It is not a pattern that
would lead us to question the model assumptions. For simple linear regression, both the
residual plot against X and the residual plot against y provide the same pattern. For mul-
tiple regression analysis, the residual plot against y is more widely used because of the
presence of more than one independent variable.

[] L] ° ®
3 ® ° L]
Good patterne H .

Residual

Panel B

Standardized residuals

Many of the residual plots provided by computer software packages use a standardized
version of the residuals. As demonstrated in preceding chapters, a random variable is
standardized by subtracting its mean and dividing the result by its standard deviation.
With the least squares method, the mean of the residuals is zero. Thus, simply dividing
each residual by its standard deviation provides the standardized residual.

It can be shown that the standard deviation of residual i depends on the standard error
of the estimate s and the corresponding value of the independent variable x.

L] L ]
L]
Nonconstant variance
e

Residual

Figure 14.13

Panel C

0 [] ® i L]

- Model form not adequate

+10F

Residual

~10
this point, we are confident in the conclusion that Armand’s simple linear regression ® ]

model is valid.

Experience and good judgment are always factors in the effective interpretation of
residual plots. Seldom does a residual plot conform precisely to one of the patterns in 28 °
Figure 14.12. Yet analysts who frequently conduct regression studies and frequently | ! | \ | |
review residual plots become adept at understanding the differences between patterns 60 80 100 120 140 160 180
that are reasonable and patterns that indicate the assumptions of the model should be
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Note that equation (14.26) shows that the standard deviation of the ith residug]
depends on x, because of the presence of /, in the formula.” Once the standard deviatigy,
of each residual is calculated, we can compute the standardized residual by dividing each
residual by its corresponding standard deviation.

Standard deviation of the ith residual*

P = (14.26)
where
e the standard deviation of residual i
s = the standard error of the estimate

[ s S X7
st 14,
T T S — R a2y
Standardized residual for observation i
Veas pf

(14.28)

Table 14.8 shows the calculation of the standardized residuals for Armand’s Pizza

Parlours. Recall that previous calculations showed s = 13.829. Figure 14.14 is the plot

of the standardized residuals against the independent variable X.

The standardized residual plot can provide insight about the assumption that the
error term £ has a normal distribution. If this assumption is satisfied, the distribution of
the standardized residuals should appear to come from a standard normal probability
distribution.*

Thus, when looking at a standardized residual plot, we should expect to see approx-
imately 95 per cent of the standardized residuals between — 2 and + 2. We see in
Figure 14.14 that for the Armand’s example all standardized residuals are between
— 2 and + 2. Therefore, on the basis of the standardized residuals, this plot gives us
no reason to question the assumption that £ has a normal distribution.

Because of the effort required to compute the estimated values ¥, the residuals, and the
standardized residuals, most statistical packages provide these values as optional regres-
sion output. Hence, residual plots can be easily obtained. For large problems computer
packages are the only practical means for developing the residual plots discussed in this
section.

.

Normal probability plot

Another approach for determining the validity of the assumption that the error term has
a normal distribution is the normal probability plot. To show how a normal probability
plot is developed, we introduce the concept of normal scores.

Th, is referred to as the leverage of observation i. Leverage will be discussed further when we consider
influential observations in Section 14.9.

*This equation actually provides an estimate of the standard deviation of the ith residual, because s is
used instead of o.

*Because s is used instead of ¢ in equation (14.26), the probability distribution of the standardized
residuals is not technically normal. However, in most regression studies, the sample size is large enough
that a normal approximation is very good.
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Prestanirant (x — X Standardized
i % x—% (x-x? w h, S, _; y,—y  residual
| 2 =2 |44 02535 0.3535 [1.1193 5 — 10792
2 6 —8 64 0.1127 02127 12.2709 15 1.2224
3 8 —6 36 0.0634 0.1634 12.6493 =2 —09487
4 8 —6 36 0.0634 0.1634 12.6493 18 [.4230
L 12 —7 4 0.0070 0.1070 13.0682 =3 —072296
6 |6 £ 4 0.0070 0.1070 13.0682 —3 —0.2296
T 20 6 36 0.0634 0.1634 12.6493 — —0.2372
-8 20 6 36 0.0634 0.1634 12.6493 ] 07115
9 22 8 64 0.1127 02127 12.270% =2 —1.7114
0] 26 12 144 0.2535 0.3535 [1.1193 2 1.0792

Total 568

Note: The values of the residuals were computed in Table 14.7.

Suppose ten values are selected randomly from a normal probability distribution with
a mean of zero and a standard deviation of one, and that the sampling process is repeated
over and over with the values in each sample of ten ordered from smallest to largest.
For now, let us consider only the smallest value in each sample. The random variable
representing the smallest value obtained in repeated sampling is called the first order
statistic.

Figure 14.14
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Order Statistic Normal score

=155
—1.00
—0.65
—037
=12
0.12
0.37
0.65
[.00
.55

O OO~y A N —

Statisticians show that for samples of size ten from a standard normal probability
distribution, the expected value of the first-order statistic is — 1.55. This expected value
is called a normal score. For the case with a sample of size n = 10, there are ten order
statistics and ten normal scores (see Table 14.9). In general, a data set consisting of »
observations will have n order statistics and hence n normal scores.

Let us now show how the ten normal scores can be used to determine whether the
standardized residuals for Armand’s Pizza Parlours appear to come from a standard nor-
mal probability distribution. We begin by ordering the ten standardized residuals from
Table 14.8. The ten normal scores and the ordered standardized residuals are shown
together in Table 14.10. If the normality assumption is satisfied, the smallest standard-
ized residual should be close to the smallest normal score, the next smallest standard-
ized residual should be close to the next smallest normal score and so on. If we were to
develop a plot with the normal scores on the horizontal axis and the corresponding stand-
ardized residuals on the vertical axis, the plotted points should cluster closely around a
45-degree line passing through the origin if the standardized residuals are approximately
normally distributed. Such a plot is referred to as a normal probability plot.

Figure 14.15 is the normal probability plot for the Armand’s Pizza Parlours
example. Judgment is used to determine whether the pattern observed deviates from

Ordered normal scores Standardized residuals
—1.55 —1.7114
—1.00 —1.0792
—0.65 —0.9487
—~0:37 —0.2372
= 0] —0.2296

0.12 —0.2296
037 @715
0.65 1.0792
1.00 |.2224
|.55 [.4230

STUDENTS-HUB.com

RESIDUAL ANALYSIS: AUTOCORRELATION

K o
© ;
5 [ ]
E /
7]
g
E or / ®
N o/
S /
e 7
§ /
/ [ ]
8 1+ o
7] >
y
o/
2r /
A | | ! I
-2 -1 0 +1 +2
Normal Scores

the line enough to conclude that the standardized residuals are not from a standard
normal probability distribution. In Figure 14.15, we see that the points are grouped
closely about the line. We therefore conclude that the assumption of the error term
having a normal probability distribution is reasonable. In general, the more closely
the points are clustered about the 45-degree line, the stronger the evidence supporting
the normality assumption. Any substantial curvature in the normal probability plot is
evidence that the residuals have not come from a normal distribution. Normal scores
and the associated normal probability plot can be obtained easily from statistical pack-

ages such as MINITAB.

14.9 Residual analysis: autocorrelation

In the last section we showed how residual plots can be used to detect violations of
assumptions about the error term & in the regression model. In many regression stud-
ies, particularly involving data collected over time, a special type of correlation among
the error terms can cause problems; it is called serial correlation or autocorrelation.
In this section we show how the Durbin-Watson test can be used to detect significant
autocorrelation.

Autocorrelation and the Durbin-Watson test

Often, the data used for regression studies in business and economics are collected over
time. It is not uncommon for the value of Y at time 7, denoted by y, to be related to the
value of Y at previous time periods. In such cases, we say autocorrelation (also called
serial correlation) is present in the data. If the value of ¥ in time period # is related to its
value in time period ¢ — 1, first-order autocorrelation is present. If the value of ¥ in time
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period ¢ is related to the value of ¥ in time period ¢ — 2
,» second-order auto ion
present and so on. Fomelation i
_ When autocorrelation is present, one of the assumptions of the regression mode] ;
violated: the error terms are not independent. In the case of first-order autocorrf:lau'o18

Durbin-Watson test statistic

Zz(el — eH)1
d By o v ol (W ue

th i : . 3 n
! e er;or at u‘me t, denoted &, will be rela_ted to the error at time period ¢ — 1, denote, d ﬂ (14.30)
- Two cabe.s‘of first-order autocorrelation are illustrated in Figure 14.16. Pane] A zez
the case of positive autocorrelation; panel B is the case of negative autocorrelation. W = =i
pOS}t}ve aut‘ocorrleatmn we expect a positive residual in one period to be followed 1
pOSIttl_Ve rem%ual in the next period, a negative residual in one period to be followed bi :
negative residual in the next period and so on. With neeativ i
. e a ; : £ :
a positive residual in one period to be followed by a n egative reusti?ii(;lir?li?]m’ we eXP‘?Ct If successive values of the residuals are close together (positive autocorrelation), the
then a positive residual and so on. When autocorrelation js present se;ilz)uée NEXt period, value of the Durbin-Watson test statistic will be small. If successive values of the residu-
: . p R > €rrors can b . . iy o ;
mage]n-i Rerfgnmfng tests of statistical significance based upon the assumed regressios fl)lslare far apart (negative autocorrelation), the value of the Durbin-Watson statistic will
model. It 1s therefore important to b : ; ¢ large.
action. We will show ho\p;v the Durb;i';}:t;gndgzz;';t?zltggsrgzlitsgs fm (3} take corrective The Durbin-Watson test statistic ranges in value from zero to four, with a value
autocorrelation. © detect first-ordeg of two indicating no autocorrelation is present. Durbin and Watson developed tables
Suppose the values of € are ; : . that can be used to determine when their test statistic indicates the presence of auto-
not independent but are related in the following manner; correlation. Table 8 in Appendix B shows lower and upper bounds (d, and d,) for
hypothesis tests using o = 0.05, & = 0.025, and o = 0.01; n denotes the number of
First order autocorrelation observations.
The null hypothesis to be tested is always that there is no autocorrelation.
5T PGy 18 (14.29)
H:p=0
where p i i : . . - i T
. ,Dl 18 @ parameter with an ab.solute \falue less than one and z,1s a normally and inde- The alternative hypothesis to test for positive autocorrelation is
pendently distributed random variable with a mean of zero and a variance of ¢ From
equation (16. if p= )
0? - (;6 16) we see that 21f p = 0, the error terms are not related, and each has a mean Hip>0
o l'Elll a Varlapcf;a gf 0°. In this case, there is no autocorrelation and the regression
sumptions are satisfied. If p > iti o ; ; . L.
negaﬁ\[;)e autocorrelation. Tn ei)(:her (?f’ t\];ve hase Otsﬁnve autocorrelation; if p < 0, we have The alternative hypothesis to test for negative autocorrelation is
: . ese cases, the regression assumptio
tBEt A Violated. T ptions about the error . 0
Tl(l)e ?urbm—Watson test for autocorrelation uses the residuals to determine whether x
p = 0. To simplify the notation for the Durbin-Watson statisti ; -
. ! . statistic, we denote the ith resid- -si i i i tive hypothesis is
val by e, = ¥, — ¥, The Durbin-Watson test statistic is computed as follows, A two-sided test is also possible. In this case the alternative hyp i
H:p#0

Figure 14.17 shows how the values of d, and d,, in Table 8 are used to test for
: autocorrelation.

Panel A illustrates the test for positive autocorrelation. If d < d,, we conclude that posi-
o® tive autocorrelation is present. If d, = d = d,, we say the test is inconclusive. If d > d,
we conclude that there is no evidence of positive autocorrelation.
. -
Panel B illustrates the test for negative autocorrelation. If d > 4 — d,, we conclude that

0 ..
" ' ' negative autocorrelation is present. If 4 — d, = d = 4 — d,, we say the test is inconclu-
sive. If d < 4 — dU, we conclude that there is no evidence of negative autocorrelation.

o @
. Note: Entries in Table 8 are the critical values for a one-tailed Durbin-Watson test for
autocorrelation. For a two-tailed test, the level of significance is doubled.

L t . .
Time Time k Panel C illustrates the two-sided test. If d < d, or d > 4 — d,, we reject H, and con-

clude that autocorrelation is present. If d, =d =d or4 — d,=d =4 — d,, we say

the test is inconclusive. If d, = d = 4 — d,, we conclude that there is no evidence of

i Panel A. Positive Autocorrelation Panel B. Negative Autocorrelation
. - N - - ) autocorrelation.
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CHAPTER |4 SIMPLE LINEAR REGRESSION

Positive
auto-
correlation ; ) " :
Inconclusive No evidence of positive autocorrelation
Panel A. Test for Positive Autocorrelation
Negative
auto-
No evidence of negative autocorrelation Inconclusive garteldtion
| | 1
d, dy 2 4-dy, 4-d, 4
Panel B. Test for Negative Autocorrelation
Positive Negative
auto- auto-
correlation ) No evidence of .| correlation
Inconclusive autocarrelation Inconclusive
0 ad, dy 2 4-d, 4-d; 4
Panel C. Two-Sided Test for Autocorrelation

If significant autocorrelation is identified, we should investigate whether we omitted
one or more key independent variables that have time-ordered effects on the dependent
variable. If no such variables can be identified, including an independent variable that
measures the time of the observation (for instance, the value of this variable could be
one for the first observation, two for the second observation and so on) will sometimes
eliminate or reduce the autocorrelation. When these attempts to reduce or remove auto-
correlation do not work, transformations on the dependent or independent variables can
prove helpful; a discussion of such transformations can be found in more advanced texts
on regression analysis.

Note that the Durbin-Watson tables list the smallest sample size as 15. The reason is
that the test is generally inconclusive for smaller sample sizes; in fact, many statisticians
believe the sample size should be at least 50 for the test to produce worthwhile results.

Exercises

Methods

25 Given are data for two variables, X and Y.

STUDENTS-HUB.com

x, 6 I 18 18 an
y 6 8 12 2 30

a. Develop an estimated regression equation for these data.

b. Compute the residuals.

. Develop a plot of the residuals against the independent variable X. Do the assumptions
about the error terms seem to be satisfied?

d. Compute the standardized residuals.

e. Develop a plot of the standardized residuals against . What conclusions can you draw
from this plot?

26 The following data were used in a regression study.

Observation X, Y, Observation X, ¥,
I 2 % 6 7 6
2 3 5 i i 9
3 4 4 8 8 5
4 5 6 9 9 Il
5 7 4

a. Develop an estimated regression equation for these data.
b. Construct a plot of the residuals. Do the assumptions about the error term seem to be
satisfied?

Applications

27 Data on advertising expenditures and revenue (in thousands of euros) for the Four Seasons
Restaurant follow.

Advertising expenditures Revenue
| 19
2 32
4 G
6 40
10 57
(4 53
20 54

a. Let X equal advertising expenditures and Y equal revenue. Use the method of least squares
to develop a straight line approximation of the relationship between the two variables.

b. Test whether revenue and advertising expenditures are related at a 0.05 level of significance.

c. Prepare a residual plot of y — § versus §. Use the result from part (a) to obtain the
values of §.

d. What conclusions can you draw from residual analysis? Should this model be used, or
should we look for a better one?

28 Refer to exercise 6, where an estimated regression equation relating years of experience and
annual sales was developed.

a. Compute the residuals and construct a residual plot for this problem.
b. Do the assumptions about the error terms seem reasonable in light of the residual plot?
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CHAPTER 14 SIMPLE LINEAR REGRESSION

14.10 Residual analysis: outliers and influential observations

Figure 14.18

In Secti : :
tionsiﬁco; : lfr.fp\t\;e shoged hthow residual analysis could be used to determine when viola
ons about the regression model occur. In thi i i |
residual analysis can be used to i i i Veubnplhormee ke
identify observations that can b i i
o boing Spt e obs an be classified as outliers or
in determining the estimated re i i
ession equ
steps that should be taken when such observations occur are disggussed o Sornd

Detecting outliers

Figure 14.18 is a scatter dia
‘ gram for a data set that contains an outlier, a d i

(()%l:ei"\::itéon) tlt]hztlt does not fit the trend shown by the remaining data Outﬁ;s :grgsgi
ns that are suspect and warrant careful examinati -

neous data; if so, the data should be co Gt ol b i

ata; if so, rrected. They may signal a violati
assumptions; if so, another model should be consi i e s b
i sidered. Finally, th i

unl';sua_.}lvalues that occurred by chance. In this case, they Shouldybe rzslailr?e? el be

e u(r)ell :sltga’Fe the procegs of detecting outliers, consider the data set in T.able 14.11;
-19 1s a scatter diagram. Except for observation 4 (x,=3,y,=75),a patéerr;

2 4 ?

| Table 14.11

45
55
50
75
40
45
30
35
25
%5

O AR WWw W N = —
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suggesting a negative linear relationship is apparent. Indeed, given the pattern of the rest
of the data, we would expect y, to be much smaller and hence would identify the cor-
responding observation as an outlier. For the case of simple linear regression, one can
often detect outliers by simply examining the scatter diagram.

The standardized residuals can also be used to identify outliers. If an observation
deviates greatly from the pattern of the rest of the data (e.g. the outlier in Figure 14.18),
the corresponding standardized residual will be large in absolute value. Many computer
packages automatically identify observations with standardized residuals that are large in
absolute value. In Figure 14.20 we show the MINITAB output from a regression analysis
of the data in Table 14.11. The next to last line of the output shows that the standardized
residual for observation 4 is 2.67. MINITAB identifies any observation with a standard-
ized residual of less than —2 or greater than +2 as an unusual observation; in such cases,
the observation is printed on a separate line with an R next to the standardized residual,
as shown in Figure 14.20. With normally distributed errors, standardized residuals should
be outside these limits approximately 5 per cent of the time.

In deciding how to handle an outlier, we should first check to see whether it is a valid
observation. Perhaps an error was made in initially recording the data or in entering the
data into the computer file. For example, suppose that in checking the data for the outlier
in Table 14.11, we find an error; the correct value for observation 4 is x, = 3= 30.
Figure 14.21 is the MINITAB output obtained after correction of the value of y,. We see
that using the incorrect data value substantially affected the goodness of fit. With the correct
data, the value of R-sq increased from 49.7 per cent to 83.8 per cent and the value of b,
decreased from 64.958 to 59.237. The slope of the line changed from —7.331 to —6.949.
The identification of the outlier enabled us to correct the data error and improve the regres-

sion results.

Detecting influential observations

Sometimes one or more observations exert a strong influence on the results obtained.
Figure 14.22 shows an example of an influential observation in simple linear regres-
sion. The estimated regression line has a negative slope. However, if the inﬂueﬂFial
observation were dropped from the data set, the slope of the estimated regression line
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Figure 14.20

Regression Analysis: y versus X

The regression equation is
¥ = 65.0 - 7.33 x

Predictor Coef SE Coef T P
Constant 64,953 9.258 7.02 0.000
X -7.331 2.608 -2.81 0.023

§ = 12.6704 R-Sg = 49.7% R-3q(adj) = 43.4%

Analysis of Variance

Source DF 35 us F P
Regression 1 1268.2 1268.2 7.90 0.023
Residual Errox g 1284.3 160.5

Total 9 2552.5

Unusual Dbservations

Obs b v Fit SE Fit Residual 5t Resid
4 3,00 75.00 42.37 4.04 32.03 Z.67R

R denotes an observation with a large standardized residual.

Figure 14.21

Regression Analysis: y versus x

The regression equation is
¥ = 59.2 - 6.95 x

Predictor Coef SE Coef T P
Constant 59,237 3.835 15.45 0.000
x ~-6.949 1.080 =-6.43 0.000

5 = 5.24308 R-5g = 83.8% R-3qiadj) = 81.8%

Analysis of Variance

Source DF 35 s F P
Regression 1 1139.7 1139.7 41.38 0.000
Residual Error g 220.3 27.5

Total 9 1360.0
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Figure 14.22 =

i Influential

~ L4 observation
% ®
[ ]
[ ]

would change from negative to positive and the y-intercept would be smaller. Clearly,
this one observation is much more influential in determining the estimated regression line
than any of the others; dropping one of the other observations from the data set would
have little effect on the estimated regression equation.

Influential observations can be identified from a scatter diagram when only one inde-
pendent variable is present. An influential observation may be an outlier (an observation
with a ¥ value that deviates substantially from the trend), it may correspond to an X value
far away from its mean (e.g. see Figure 14.22), or it may be caused by a combination of
the two (a somewhat off-trend Y value and a somewhat extreme X value).

Because influential observations may have such a dramatic effect on the estimated regres-
sion equation, they must be examined carefully. We should first check to make sure that no
error was made in collecting or recording the data. If an error occurred, it can be corrected and
a new estimated regression equation can be developed. If the observation is valid, we might
consider ourselves fortunate to have it. Such a point, if valid, can contribute to a better under-
standing of the appropriate model and can lead to a better estimated regression equation. The
presence of the influential observation in Figure 14.22, if valid, would suggest trying to obtain
data on intermediate values of X to understand better the relationship between X and Y.

Observations with extreme values for the independent variables are called
high leverage points. The influential observation in Figure 14.22 is a point with high lever-
age. The leverage of an observation is determined by how far the values of the independent
variables are from their mean values. For the single-independent-variable case, the leverage
of the ith observation, denoted /, can be computed by using equation (14.31).

Leverage of observation i

| (xﬁ—)?)z
hi:ﬁ—l—m (14.31)

From the formula, it is clear that the farther x, is from its mean X, the higher the leverage
of observation i.

Many statistical packages automatically identify observations with high leverage as
part of the standard regression output. As an illustration of how the MINITAB statistical
package identifies points with high leverage, let us consider the data set in Table 14.12.
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 Table 14.12

X Y

10 125
10 130
15 (20
20 15
20 120
25 [10
70 100

From Figure 14.23, a scatter diagram for the data set in Table 14.12, it is clear that
observation 7 (X = 70, ¥ = 100) is an observation with an extreme value of X. Hence,
we would expect it to be identified as a point with high leverage. For this observation,
the leverage is computed by using equation (14.31) as follows.

— ¥)2 _ 2

pooly BT 1 00242868,

B Ex-—=xp 7 2621.43

For the case of simple linear regression, MINITAB identifies observations as having

high leverage if h, > 6/n; for the data set in Table 14.12, 6/n = 6/7 = 0.86. Because

h7 = 0.94 > 0.86, MINITAB will identify observation 7 as an observation whose X

value gives it large influence. Figure 14.24 shows the MINITAB output for a regres-

sion analysis of this data set. Observation 7 (X = 70, ¥ = 100) is identified as having

large influence; it is printed on a separate line at the bottom, with an X in the right
margin.

Influential observations that are caused by an interaction of large residuals and high
leverage can be difficult to detect. Diagnostic procedures are available that take both
into account in determining when an observation is influential. One such measure, called

Cook’s D statistic, will be discussed in Chapter 15.

y .
13000 e
e
120.00 e @
°
110.00 — e Observation with
high leverage
100.00 |- \'
| | | ] | |

10.00 25.00 40.00 55.00 70.00 85.00
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Figure 14.24

Regression Analysis: y versus x

The regression equation is
¥ = 127 - 0.425 x

Predictor Coef SE Coef T P
Constant 127. 466 2.961 43.04 0.000
X -0.42507 0.09537 -4.46 0.007

§ = 4.88282 R-3%¢ = 79.9% R-Sq(adi) = 75.9%

Analysis of Variance

Source DF 55 Hs F
Regression 1 473.65 473.65 19.87 0.007
Residual Error 5 119.21 23.84

Total 6 592.86

Unusual Observations

Obs X ¥ Fit BSE Fit Residual 3t Resid
T 70.0 1loo0.00 97.71 4,73 2.29 1. 9% %

X denotes an observation whose X value gives it large leverage.

Exercises

Methods

29 Consider the following data for two variables, X and Y,

X I35 110 130 145 75 160 120

i

¥ |45 100 120 120 130 130 110

a. Compute the standardized residuals for these data. Do there appear to be any outliers in
the data? Explain.

b. Plot the standardized residuals against y. Does this plot reveal any outliers?

¢ Develop a scatter diagram for these data, Does the scatter diagram indicate any
outliers in the data? In general, what implications does this finding have for simple linear
regression?

30 Consider the following data for two variables, X and Y.

X 4 5 BB e
y, 12 14 16 I5 18 20 24 |9

a. Compute the standardized residuals for these data. Do there appear to be any outliers in
the data? Explain.
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In this chapter we showed how regression analysis can be used to determine how
a dependent variable Y is related to an independent variable X. In simple linear regres-
sion, the regression model is ¥ = f + Bx + & The simple linear regression equation
E(Y) = B, + Bx describes how the mean or expected value of Y is related to X. We used
sample data and the least squares method to develop the estimated regression equation
¥ = b, + bx for a given value x of X. In effect, b, and b, are the sample statistics used
to estimate the unknown model parameters 3 and f3,.

The coefficient of determination was presented as a measure of the goodness of fit for
the estimated regression equation; it can be interpreted as the proportion of the variation
in the dependent variable Y that can be explained by the estimated regression equation.
We reviewed correlation as a descriptive measure of the strength of a linear relationship
between two variables.

The assumptions about the regression model and its associated error term £ were discussed,
and 7 and F tests, based on those assumptions, were presented as a means for determining
whether the relationship between two variables is statistically significant. We showed how to
use the estimated regression equation to develop confidence interval estimates of the mean
value of ¥ and prediction interval estimates of individual values of Y.

The chapter concluded with a section on the computer solution of regression problems
and two sections on the use of residual analysis to validate the model assumptions and to
identify outliers and influential observations.

b. Compute the leverage values for these data. Do there appear to be any influential
observations in these data? Explain.

c. Develop a scatter diagram for these data. Does the scatter diagram indicate any influential
observations! Explain,

For additional online summary questions and answers go
to the companion website at www.cengage.co.uk/aswsbe2

ANOVA table Mean square error
Autocorrelation Normal probability plot
Coefficient of determination Outlier
Confidence interval Prediction interval
Correlation coefficient Regression equation
Dependent variable Regression model
Durbin-Watson test Residual analysis
Estimated regression equation Residual plot
High leverage points Scatter diagram

. Independent variable Serial correlation
Influential observation Simple linear regression
ith residual Standard error of the estimate
Least squares method Standardized residual

Key formulae

Simple linear regression model
Y=B+Bx+é& (14.1)

Simple linear regression equation
E(Y) =B, + Bx (14.2)
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KEY FORMULAE

Estimated simple linear regression equation Standard deviation of b,

§=b,+ bx (14.3)

G, —ﬁ (14.17)

Least squares criterion
Estimated standard deviation of b,

Min Z (y, — §)?* (14.5)
&
N 14.18
"~ o (14.18)
Slope and y-intercept for the estimated regression equation
Ix =X — ¥ t test statistic
S (14.6)
2% — X)- b,
b,=7— bX (14.7) i (14.19)
Sum of squares due to error Mean square regression
SSE=Z(y, —p)? (14.8) . SSR
i ¥ SR = -
H Number of independent variables (e
Total sum of squares Fins smiatic
55T = Z(y, — ¥ (14.9)
- 14.21
MSE l).
Sum of squares due to regression
SSR = Z(f — py (14.10) Confidence interval for E(Y))
| (x, = %)*
Relationship among SST, SSR, and SSE Sl e (14.22)
SST = SSR + SSE (14.11)
Prediction interval for Yp
Coefficient of determination T 2
“p
SSR 7 itus\ﬁ+*+ (14.23)
=— 14.12 B IS0 =%t
P (14.12) (=%
Residual for observation i
Sample correlation coefficient ) e (14.24)
rw= (sign of b,) YCoefficient of determination
= (signof b) V' P (14.13)
Standard deviation of the ith residual
Sep =Sl = h, (14.26)
Mean square error (estimate of s?) '
SSE
LB n—2 el Standardized residual for observation i
0
= (14.28)
Standard error of the estimate V=9
SSE
= 16 :
- (B=2) (sia First order autocorrelation
e i (14.29)
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Durbin-Watson test statistic

d

Leverage of observation i

pidemiclogical studies have shown that there is a

relationship between raised blood levels of triglyceride
and coronary heart disease but it is not certain how
important a risk factor triglycerides are. It is believed that
exercise and lower consumption of fatty acids can help to
reduce triglyceride levels.*

In 1998 Knoll Pharmaceuticals received authorization
to market sibutramine for the treatment of obesity in
the US. One of their suite of studies involved 35 obese
patients who followed a treatment regime comprising a
combination of diet, exercise and drug treatment.

Each patient's weight and triglyceride level were
recorded at the start (known as baseline) and at week
eight. The information recorded for each patient was;

e Patient ID.

*  Weight at baseline (kg).

* Weight at week 8 (kg).

* Triglyceride level at baseline (mg/dl).
* Triglyceride level at week 8 (mg/dl).

Doctor checking an overweight patient's blood pressure. Digital readout indicates high
blood pressure and pulse rate. © Eliza Snow.

.
Z(E,— el

_ t=12

e B

|

The results are shown below,

Case problem | Investigating the relationship between weight
loss and triglyceride level reductiont

(14.30)

(14.31)

Patient Weight Weight Triglyceride Triglyceride

ID at at level at level at
baseline week 8  baseline week 8
201 840 824 90 (3]
202 88.8 87.0 IB7 82
203 87.0 81.8 182 |52
204 84.5 804 72 72
205 694 69.0 143 (26
206 1047 1020 96 57
207 900 876 [15 88
208 894 B68 124 123
209 DTN G 188 255
210 [08.1 1009 |67 87
201 980 90.2 143 213
2l 834 750 [43 102
213 1044 029 276 313
214 103.7 957 84 84
215 999 989 (42 I35
216 95.6 88.5 64 |14
217 2608 1283 226 152
218 103.7 955 199 |2a8 =
219 B30 | 30:8 212 156
220 85.0 80.0 268 250
221 83.8 779 [l 107
227 |04.5 98.3 |32 |17
20 76.8 73.2 |65 96
204 90.5 889 57 63
205 06 {037 63 131
226 81.5 789 [ 54
290 96.5 949 300 24|
228 103.0 973 192 124
229 1275 1247 |76 215
230 1032 1020 |46 |38
(continued)

STUDENTS-HUB.com

"CASE PROBLEM 2 US DEPARTMENT OF TRANSPORTATION

Patient Weight Weight Triglyceride Triglyceride

ID at at level at level at
baseline week 8 baseline week 8
231 Sy ER | =] 446 795
232 [07.0 GO 232 63
233 (060 1035 255 204
234 1149 1053 |87 [44
235 103.4 96.0 |54 96

Managerial report

I Are weight loss and triglyceride level reduction
(linearly) correlated?

As part of a study on transportation safety, the US
Department of Transportation collected data on
the number of fatal accidents per 1000 licences and
the percentage of licensed drivers under the age of

2 Is there a linear relationship between weight loss and
triglyceride level reduction?

3 How can a more detailed regression analysis be
undertaken?

TData in this case study reproduced with permission from STARS (www.stars.ac.uk).
*Triglycerides are lipids (fats) which are formed from glycerol and fatty acids. They

can be absorbed into the body from food intake, particularly from fatty food, or
produced in the body itsell when the uptake of energy (food) exceeds the expenditure
(exercise). Triglycerides provide the principal energy store for the body. Compared with
carhohydrates or proteins, triglycerides produce a substantially higher number of calories
per gram.

' Case Problem 2 US Department of Transportation

21 in a sample of 42 cities, Data collected over a
one-year period follow. These data are available on
the CD accompanying the text in the file named
Safety.

Fatal accidents Fatal
Percentage per 1000 Percentage accidents per
under 21 licences under 21 1000 licences

e 2962 |7 4.100

(2 0.708 8 2,190

8 0.885 l6 3.623

|2 |.652 [5 2,623

|l 2091 9 0.835

72 2.627 8 0.820

SAFETY |8 3.830 |4 2.890

8 0.368 8 |.267

I3 [.142 I5 3224

8 0.645 10 1,014

9 [.028 [0 ¥ 0493

|6 2.801 |4 443

Ji |.405 |8 3614

9 [433 [0 1,926

|0 0.039 I |.643

9 0338 16 2,943

|l [.849 |2 (=S

[2 2246 15 2814

|4 2.855 [3 2.634

|4 2352 9 0926

|l 29 |7 3256
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A fatal car accident. © Celso Pupo.

Case Problem 3 Can we detect dyslexia?*

Data were collected on 34 pre-school children and
then in follow-up tests (on the same children) three
years later when they were seven years old.

Scores were obtained from a variety of tests on all the
children at age four when they were at nursery school.
The tests were:

*  Knowledge of vocabulary, measured by the British
Picture Vocabulary Test (BPVT) in three versions — as
raw scores, standardized scores and percentile norms.

*  Ancther vocabulary test — non-word repetition.

*  Motor skills, where the children were scored on the
time in seconds to complete five different peg board
tests.

* Knowledge of prepositions, scored as the number
correct out of ten.

*  Three tests on the use of rhyming, scored as the
number correct out of ten.

Three years later the same children were given
a reading test, from which a reading deficiency was
calculated as Reading Age — Chronological Age (in
months), this being known as Reading Age Deficiency
(RAD). The children were then classified into ‘poor’
or ‘normal’ readers, depending on their RAD scores.
Poor reading ability is taken as an indication of potential
dyslexia.

One purpose of this study is to identify which of the
tests at age four might be used as predictors of poor reading
ability, which in tum is a possible indication of dyslexia.

*Data in this case study reproduced with permission from STARS (www.stars.ac.uk)

Managerial report

I Develop numerical and graphical summaries of the
data.

2 Use regression analysis to investigate the relationship
between the number of fatal accidents and the
percentage of drivers under the age of 21. Discuss
your findings.

3 What conclusion and recommendations can you
derive from your analysis?

Data
The data set Dyslexia contains |8 variables:

*  Child Code an identification number for each
child (1-34)
¢ Sex m for male, f for female

The BPVT scores:

¢ BPVT raw
* BPVT std

* BPVT %norm  cumulative percentage scores

the raw score

the standardized score

*  Non-wd repn score for non-word repetition
Scores in motor skills:

* Pegboard setl to  the time taken to complete

Pegboard setb each test

* Mean child's average over the .
pegboard tests

*  Preps Score knowledge of prepositions
(6-10)

Scores in rhyming tests (2—-10):
e Rhyme setl
¢  Rhyme set2

*  Rhyme set3
* RAD

¢ Poor/Normal  RAD scores, categorized as
| = normal, 2 = poor
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DYSLEXIA

Details for ten records from the dataset are shown
below.

Child BPVT BPVT BPVT % Non-wd Pegboard Pegboard Peghoard Pegboard Pegboard
code Sex raw std norm repn set| set2 set3 set4 set5
I m 29 88 22 |5 2021 2878 28,04 20.00 2437
2 m 21 7T 6 |l 26.34 26.20 20.35 2825 20.87
3 m 50 107 68 7 21,13 19.88 17.63 1625 19.76
4 m 23 80 9 5 | 6.46 1647 16.63 I4.16 [7.25
5 f 35 9 28 I3 |7.88 15.13 [7.81 1841 [5:99
6 m 36 97 43 l6 2041 18.64 17.03 16.69 |4.47
7 i 47 109 72 25 213 18,06 28.00 2/.88 18.03
8 m 32 92 30 12 14.57 1422 1347 1229 18.38
9 f 38 [0] 52 14 2207 27,69 219 2272 20.62
[0 f 44 |05 63 15 16.40 14.48 13.83 1759 34.68
Child Preps Rhyme Rhyme Rhyme Poor/
code Mean score set| set2 set3 RAD normal
| 243 6 5 5 5 —550
i 244 g 3 2 4 —7.33 B
3 189 10 9 8 & 49.33 N
4 162 7 4 6 4 —11.00 P
5 [7.0 0] |0 6 6 —9 &7 N
6 [ 7s 10 6 5 5 —833 P
7 21.5 8 9 0} [0 26.33 N
8 4.6 10 8 6 3 9.00 N
g 249 9 10 10 Fi 2.67 N
[0 [54 9] 7 8 4 9.67 N

A young boy with dyslexia reads a book. © karen squires.
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Managerial report

I Isthere a (linear) relationship between scores in tests
at ages four and seven?

2 Can we predict RAD from scores at age four?

CASE PROBLEM 3 CAN WE DETECT DYSLEXIA?
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Software Section
for Chapter |4

Regression analysis using MINITAB

ARMAND'S

7

o)

In Section 14.7 we discussed the computer solution of regression problems by showing
MINITAB’s output for the Armand’s Pizza Parlours problem. In this section, we describe
the steps required to generate the MINITAB computer solution. First, the data must be
entered in a MINITAB worksheet. Student population data are entered in column C1 and
quarterly sales data are entered in column C2. The variable names Pop and Sales are entered
as the column headings on the worksheet. In subsequent steps, we refer to the data by using
the variable names Pop and Sales or the column indicators C1 and C2. The steps involved in
using MINITAB to produce the regression results shown in Figure 14.10 follow.

Step | Stat > Regression > Regression [Main menu bar]

Step 2 Enter Sales in the Response box
Enter Pop in the Predictors box
Click the Options button
Enter 10 in the Prediction intervals for new observations box
Click OK
(The MINITAB regression panel provides additional capabilities that can be obtained
by selecting the desired opticns. For instance, to obtain a residual plot that shows the
predicted value of the dependent variable on the horizontal axis and the standardized
residual values on the vertical axis, click the Graphs button. Select Standardized
under Residuals for Plots. Select Residuals versus fits under Residual Plots). Click
OK. When the Regression panel reappears: Click OK.

[Regression panel]

Regression analysis using EXCEL

In this section we will illustrate how EXCEL’s Regression tool can be used to perform
the regression analysis computations for the Armand’s Pizza Parlours problem. Refer to
Figure 14.25 as we describe the steps involved. The labels Restaurant, Population and
Sales are entered into cells A1:CI of the worksheet. To identify each of the ten obser-
vations, we entered the numbers 1 through 10 into cells A2:All. The sample data are
entered into cells B2:C11. The steps involved in using the Regression tool for regression
analysis follow.
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Figure 14.25 EXCEL solution to the Armand's Pizza Parlours problem
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22 |ANOVA
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29 [Intercept &0 922650 6.5033 0.0002 387247 ©1.2753  29.0431 90.9589
30 |Papulation 5 0.5803 86167 0.0000 3.6613 5.3381 3.0530 £.9470
31

ARMAND'S

Step | Data > Data Analysis > Regression [Main menu bar]
Step 2 Enter CI1:Cl | in the Input Y Range box
Enter BI:BI| in the Input X Range box
Select Labels
Select Confidence Level. Enter 99 in the Confidence Level box
Select Output Range
Enter Al3 in the Output Range box (to identify the upper left comer of the
section of the worksheet where the output will appear)
Click OK

[Regression panel]

The first section of the output, titled Regression Statistics, contains summary statistics
such as the coefficient of determination (R Square). The second section of the output,
titled ANOVA, contains the analysis of variance table. The last section of the output,
which is not titled, contains the estimated regression coefficients and related informa-
tion. We will begin our discussion of the interpretation of the regression output with the
information contained in cells A28:130.

Interpretation of estimated regression equation output

The y intercept of the estimated regression line, b, = 60, is shown in cell B29, and
the slope of the estimated regression line, b, = 5, is shown in cell B30. The label
Intercept in cell A29 and the label Population in cell A30 are used to identify these
two values. In Section 14.5 we showed that the estimated standard deviation of b, is
s, = 0.5803.
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M’ER 14 SIMPLE LINEAR REGRESSION

Note that the value in cell C30 is the standard error, or standard deviation, s, of bl,
Recall that the ¢ test for a significant relationship required the computation of the 7 sta-
tistic, t = b /s, . For the Armand’s data, the value of ¢ that we computed was ¢ = 5/0.5803 =
8.62. The label in cell D28, t Star, reminds us that cell D30 contains the value of the ;
test statistic.

The value in cell E30 is the p-value associated with the ¢ test for significance,
EXCEL has displayed the p-value in cell E30 using scientific notation. To obtain the
decimal value, we move the decimal point five places to the left, obtaining a value
of 0.0000255. Because the p-value = 0.0000255 < ¢ = 0.01, we can reject H, and
conclude that we have a significant relationship between student population and quar-
terly sales.

Cells F28:130 refer to confidence interval estimates of the y intercept and slope of
the estimated regression equation. EXCEL always provides the lower and upper limits
for a 95 per cent confidence interval. Recall that in step 4 we selected Confidence Level
and entered 99 in the Confidence Level box. As a result, EXCEL’s Regression tool also
provides the lower and upper limits for a 99 per cent confidence interval. The value in
cell H30 is the lower limit for the 99 per cent confidence interval estimate of f and
the value in cell I30 is the upper limit. Thus, after rounding, the 99 per cent confidence
interval estimate of /3, is 3.05 to 6.95. The values in cells F30 and G30 provide the lower
and upper limits for the 95 per cent confidence interval. Thus, the 95 per cent confidence
interval is 3.66 to 6.34.

Interpretation of ANOVA output

The information in cells A22:F26 is a summary of the analysis of variance computations.
The three sources of variation are labelled Regression, Residual and Total. The label dfin
cell B23 stands for degrees of freedom, the label S5 in cell C23 stands for sum of squares,
and the label M in cell D23 stands for mean square.

In Section 14.5 we stated that the mean square error, obtained by dividing the error
or residual sum of squares by its degrees of freedom, provides an estimate of ¢®. The
value 52 in cell D25, 191.25, is the mean square error for the Armand’s regression output.
In Section 14.5 we showed that an F test could also be used to test for significance in
regression.

The value in cell F24, 0.0000, is the p-value associated with the F test for signifi-
cance. Because the p-value = 0.0000 < o = 0.01, we can reject H, and conclude that
we have a significant relationship between student population and quarterly sales. The
label EXCEL uses to identify the p-value for the F test for significance, shown in cell
F23, is Significance F.

Interpretation of regression statistics output

The coefficient of determination, 0.9027, appears in cell B17; the corresponding label, R
Square, is shown in cell A17. The square root of the coefficient of determination provides
the sample correlation coefficient (though EXCEL always shows the positive square root
of R?) of 0.9501 shown in cell B16. Note that EXCEL uses the label Multiple R (cell
A16) to identify this value. In cell A19, the label Standard Error is used to identify the
value of the standard error of the estimate shown in cell B19. Thus, the standard error of
the estimate is 13.8293. We caution the reader to keep in mind that in the EXCEL output,
the label Standard Error appears in two different places. In the Regression Statistics sec-
tion of the output, the label Standard Error refers to the estimate of o. In the Estimated
Regression Equation section of the output, the label Standard Error refers to s, , the
standard deviation of the sampling distribution of b,.
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Regression analysis using PASW

ARMAND'S

off

First, the data must be entered in a PASW worksheet. In ‘Data View’” mode, restaurants are
entered in rows 1 to 10 of the leftmost column. This is automatically labelled by the system
V1. Similarly population and sales details are entered in the two immediately adjacent col-
umns to the right and are labelled V2 and V3 respectively. The latter variable names can then
be changed to Restaurants, Pop and Sales in “Variable View” mode. The following command
sequence describes how PASW generates the regression results shown in Figure 14.26.
Step | Analyze > Regression > Linear [Main menu bar]
Step 2 Enter Sales in the Dependent box
Enter Pop in the Independent(s) box
(In an analogous way to MINITAB, by clicking on the Plots button, a variety of

residual plots can also be obtained.)
Click OK

[Linear panel]

Figure 14.26 PASWV solution to the Armand's Pizza Parlours problem

Model Sun¥vary

Adjusted R Std. Errar of the
td odel R R Sguare Square Estimate

1 9507 403 .891 13.52932)

a. Predictors: (Congtant}, Population

ANOVA®
M odel Sum of Sguares of M ean Square F Sig.
1 Regression 14200.000 1 14200.000 74,248 oo
Residual 1530.000 8 191.250
Total 15730.000 9

a. Predictors: (Condant), Population

h. Dependent Variable: Sales

Coefficients’

Standardized
Unstandardized Coefficients Coefficients
Madel B Std. Error Beta ; Sig.
1 (Constant) 60.000 9.226 6.503 000
Population 5.000 580 .950 8.617 .0oo

a. Dependent Yariable: Sales
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