

Equality of Functions

Theorem 7.1.1 A Test for Function Equality

If $F: X \to Y$ and $G: X \to Y$ are functions, then $F = G$ if, and only if, $F(x) = G(x)$ for all $x \in X$.

Example:

Let $J_3 = \{0, 1, 2\}$, and define functions f and g from J_3 to J_3 as follows: For all x in J_3

f(*x*) = (x^2 + *x* + 1) *mod* 3 and *g*(*x*) = (x + 2)² *mod* 3.

 $\text{Does } f = g?$

Equality of Functions

11 , the contract of the con

Theorem 7.1.1 A Test for Function Equality

If $F: X \to Y$ and $G: X \to Y$ are functions, then $F = G$ if, and only if, $F(x) = G(x)$ for all $x \in X$.

Example:

Let $J_3 = \{0, 1, 2\}$, and define functions f and g from J_3 to J_3 as follows: For all x in J_3

 $f(x) = (x^2 + x + 1) \text{ mod } 3$ and $g(x) = (x + 2)^2 \text{ mod } 3$.

$\textbf{Does } f = g?$

¹² , Equal functions in reality?

Equality of Functions Theorem 7.1.1 A Test for Function Equality If $F: X \to Y$ and $G: X \to Y$ are functions, then $F = G$ if, and only if, $F(x) = G(x)$ for all $x \in X$. **Example:** Let $F: \mathbf{R} \to \mathbf{R}$ and $G: \mathbf{R} \to \mathbf{R}$ be functions. Define new functions $F + G: \mathbf{R} \to \mathbf{R}$ and $G + F: \mathbf{R} \to \mathbf{R}$ as follows: For all $x \in \mathbf{R}$, $(F + G)(x) = F(x) + G(x)$ and $(G + F)(x) = G(x) + F(x)$. **Does** $F + G = G + F$?

Equality of Functions

13 , the contract of the con

Theorem 7.1.1 A Test for Function Equality If $F: X \to Y$ and $G: X \to Y$ are functions, then $F = G$ if, and only if, $F(x) = G(x)$ for all $x \in X$.

Example:

Let $F: \mathbf{R} \to \mathbf{R}$ and $G: \mathbf{R} \to \mathbf{R}$ be functions. Define new functions $F + G: \mathbf{R} \to \mathbf{R}$ and $G + F: \mathbf{R} \to \mathbf{R}$ as follows: For all $x \in \mathbf{R}$,

 $(F + G)(x) = F(x) + G(x)$ and $(G + F)(x) = G(x) + F(x)$.

Does $F + G = G + F$?

 $(F+G)(x) = F(x) + G(x)$ by definition of $F + G$ $= G(x) + F(x)$ by the commutative law for addition of real numbers $=(G + F)(x)$ by definition of $G + F$ Hence $F + G = G + F$.

¹⁴ ,

Examples of Functions

Function Defined on a Power Set

Draw an arrow diagram for *F as follows:*

Define a function f: $\wp({\{a, b, c\}}) \rightarrow Z^{nonneg}$

as follows: for each $x \in \wp({a, b, c})$ **→ Znonneg**

18 , the contract of the con

 $F(x)$ = the number of elements in X.

Examples of Functions

Cartesian product

Define functions $M: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $R: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ as follows: For all ordered pairs (a, b) of integers,

 $M(a, b) = ab$ and $R(a, b) = (-a, b)$.

M is the multiplication function that sends each pair of real numbers to the product of the two. *R* is the reflection function that sends each point in the plane that corresponds to a pair of real numbers to the mirror image of the point across the vertical axis.

²⁰ ,

Find the following:

b. $M\left(\frac{1}{2}, \frac{1}{2}\right)$ c. $M(\sqrt{2}, \sqrt{2})$
e. $R(-2, 5)$ f. $R(3, -4)$ a. $M(-1, -1)$ d. $R(2, 5)$

Examples of Functions a. *(*− 1*)(*− 1*)* = 1 b. *(*1*/* 2*)(*1*/* 2*)* = 1*/* 4 c. **Logarithmic functions** d. *(*− 2*,* 5*)* e. *(*− *(*− 2*),* 5*)* = *(*2*,* 5*)* f. *(*− 3*,* − 4*)* ■ • **Definition Logarithms and Logarithmic Functions** Let *b* be a positive real number with $b \neq 1$. For each positive real number *x*, the **logarithm** with base *b* of *x*, written $\log_b x$, is the exponent to which *b* must be raised to obtain *x*. Symbolically, $\log_b x = y \Leftrightarrow b^y = x$.

√ √

The **logarithmic** function with base *b* is the function from \mathbb{R}^+ to \mathbb{R} that takes each positive real number *x* to $\log_b x$.

• $\log_3 9 = 2$ because $3^2 = 9$.

Solution

Note It is not obvious, but it is true, that for any positive real number *x* there is a unique real number *y* such that *b^y* = *x.* Most calculus

discussion of this result.

- $\log_2(1/2) = -1$ because $2^{-1} = \frac{1}{2}$.
	- $\log_{10}(1) = 0$ because $10^0 = 1$.
	- $\log_2(2^m) = m$ because the exponent to which 2 must be raised to obtain 2^m is m. 2^m . 2^m
	- raised to obtain *m*. • $2^{\log_2 m} = m$ because $\log_2 m$ is the exponent to which 2 must be e. $\frac{2}{\pi}$

Examples of Functions

Boolean Functions

Consider the three-place Boolean function defined from the set of all 3-tuples of 0's and 1's to {0, 1} as follows: For each triple (x_1, x_2, x_3) of 0's and 1's,

 $f(x_1, x_2, x_3) = (x_1 + x_2 + x_3) \text{ mod } 2.$

Describe f using an input/output table.

²⁵ ,

Examples of Functions

Boolean Functions

Consider the three-place Boolean function defined from the set of all 3-tuples of 0's and 1's to $\{0, 1\}$ as follows: For each triple (x_1, x_2, x_3) of 0's and 1's,

 $f(x_1, x_2, x_3) = (x_1 + x_2 + x_3) \text{ mod } 2.$

Describe f using an input/output table.

 $f(1, 1, 1) = (1 + 1 + 1) \mod 2 = 3 \mod 2 = 1$ $f(1, 1, 0) = (1 + 1 + 0) \mod 2 = 2 \mod 2 = 0$ and so on to calculate the other values

Well-defined Functions

Checking Whether a Function or not

³⁰ ,

Y= BortherOf(x) Y= Parent Of(x) Y= SonOf(x) Y= FatherOf(x) $Y=$ Wife Of(x)

. . .

⁹ , **Proving/Disproving Functions are One-to-One Example 1** Define $f : \mathbf{R} \to \mathbf{R}$ by the rule $f(x) = 4x-1$ for all $x \in \mathbb{R}$ Is *f* one-to-one? Prove or give a counterexample. **Proving/Disproving Functions are One-to-One Example 1** Define $f: \mathbf{R} \to \mathbf{R}$ by the rule $f(x) = 4x-1$ for all $x \in \mathbb{R}$ Is *f* one-to-one? Prove or give a counterexample.

Suppose x_1 and x_2 are real numbers such that $f(x_1) = f(x_2)$. *[We must show that* $x_1 = x_2$ *]* By definition of *f*, $4x_1 - 1 = 4x_2 - 1$. Adding 1 to both sides gives $4x_1 = 4x_2$, and dividing both sides by 4 gives $x_1 = x_2$, which is what was to be shown.

10 , the contract of the con

 $\overline{}$

Proving/Disproving Functions are Onto Example 2

Define $h : \mathbf{Z} \rightarrow \mathbf{Z}$ by the rules $h(n) = 4n - 1$ for all $n \in \mathbb{Z}$.

Is *h* onto? Prove or give a counterexample.

²³ ,

²⁹ , **String-Reversing Function** Let *T* be the set of all finite strings of *x*'s and *y*'s. Define $g: T \rightarrow T$ by the rule: For all strings $s \in T$, $g(s)$ = the string obtained by writing the characters of *s* in reverse order. E.g., $g("Ali") = "ilA"$ Is *g* a one-to-one correspondence from *T* to itself? 1. We have to show that if g is **one-to-one** & **onto** (a) one-to-one: suppose that for some strings *s*1 and *s*2 in *T* , $g(s1) = g(s2)$. *[We must show that s*1 = *s*2*.]* Now to say that $g(s1)$ $= g(s2)$ is the same as saying that the string obtained by writing the characters of *s*1 in reverse order equals the string obtained by writing the characters of *s*2 in reverse order. But if *s*1 and *s*2 are equal when written in reverse order, then they must be equal to start with. In other words, *s*1 = *s*2 *[as was to be shown].*

Exponential and Logarithmic Functions

$$
Log_b x = y \iff b^y = x
$$

³⁹ ,

