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Boolean Algebra

¢ Introduced by George Boole in 1854
*» Two-valued Boolean algebra is also called switching algebra
“ A set of two values: B = {0, 1}
¢ Three basic operations: AND, OR, and NOT
*» The AND operator is denoted by a dot (-)
< x-yorxyisread: x AND y
* The OR operator is denoted by a plus (+)
< x+yisread:. x OR y
% The NOT operator is denoted by (') or an overbar ( ).

< x' or x is the complement of x
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AND, OR, and NOT Operators

% The following tables define x - y, x + y, and x’
“* x -y Is the AND operator
* x + yis the OR operator

% x' i1s the NOT operator

Xy Xy Xy X+y X X
© 0 (%] Q@ 0 %) (%] 1
0 1 (%] 0 1 1 1 %)
10 (%] 10 1
11 1 11 1
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Postulates of Boolean Algebra

1. Closure: the result of any Boolean operation is in B = {0, 1}

2. ldentity element with respectto+i1s0: x+0=04+x = x
|ldentity element with respectto - iIsl:x-1=1-x=x

3. Commutative with respectto+.: x +y =y + x
Commutative with respectto - x-y = y-x

4. - is distributiveover+: x-(y+2z2)=(x-y)+ (x - 2)
+ Is distributive over -: x4+ (y-2)=(x+y) - (x + 2)

5. For every x in B, there exists x’ in B (called complement of x)
suchthat: x +x'=1andx-x' =0
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Boolean Functions

¢ Boolean functions are described by expressions that consist of:
<> Boolean variables, such as: x, y, etc.
< Boolean constants: 0 and 1
<> Boolean operators: AND (), OR (+), NOT (")
< Parentheses, which can be nested
“ Example: f=x(y+w'z)
<> The dot operator is implicit and need not be written
¢ Operator precedence: to avoid ambiguity in expressions
< Expressions within parentheses should be evaluated first
<> The NOT (") operator should be evaluated second
<> The AND (-) operator should be evaluated third

< The OR (+) operator should be evaluated last
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*» A truth table can represent a Boolean function

Truth Table

¢ List all possible combinations of O's and 1's assigned to variables

» If n variables then 2" rows

“ Example: Truth table for f = xy’' + x'z

R P P O ©®© ©®© ©®© X

1

Bonlear AN aha b d B CcOm

R ©®© ©® R R O 0 X

1

P © P © P O kP O N

®© ©®© B P © 0O R PR X

X
<

® ®©O rPr P O ®O OO O

X X Z
1 %)
1 1
1 %)
1 1
0 %)
0 %)
0 %)
0 %)
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f=xy'+x'z
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DeMorgan's Theorem

* I __ !/ ! . g

Xty =xy Can be verified

Sxy) =x + 9 Using a Truth Table

X y Xl yl X+y ((X+y)l\fxly|\ X y ((x y)l\fxl_l_ yl\

0 0 1 1 5] 1 1 5] 1 1

0 1 1 0 1 0 5] 5] 1 1

1 0 0 1 1 0 5] 0 1 1

1 1 0 0 1 \ 0 A %] ) 1 < 0 A 0 )
Identical Identical

* Generalized DeMorgan's Theorem:
g +x,++x,) =x1 x5 0 X

0:0 (xl .xz . ....xn)’ —_ x]’- +xé _|_ ..._|_ x"’l
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Complementing Boolean Functions

“ What is the complement of f = x'yz' + xy'z' ?
*» Use DeMorgan's Theorem:

<> Complement each variable and constant

< Interchange AND and OR operators
% S0, what is the complement of f = x'yz' + xy'z" ?
Answer: f'=(x+y +2)(x"+y+2)
% Example 2: Complement g = (a' + bc)d' + e
% Answer: g' = (a(b' 4+ c") + d)é’
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Algebraic Manipulation of Expressions

¢ The objective is to acquire skills in manipulating Boolean
expressions, to transform them into simpler form.

“ Example 1: prove x + xy = x (absorption theorem)

“ Proof: x+xy=x-14+xy x-1=x
=x-(1+y) Distributive - over +
=x-1=x 1+y)=1

% Example 2: prove x + x'y = x + y (simplification theorem)

% Proof: x +x'y = (x + x)(x +y) Distributive + over -
=1-(x+y) (x+x)=1
=x+Yy
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Consensus Theorem

% Prove that: xy + x'z + yz = xy + x'z (consensus theorem)

“ Proof: xy + x'z+ yz

=xy+xz+1-yz yz=1-yz

=xy+xz+ (x+x)yz 1=(x+x"

=xy+x'z+xyz+xyz Distributive - over +
—

=xy+xyz+x'z+xyz Associative commutative +

=xy-1l+xyz+x'z-1+x'zy xy=xy-1, x'yz=x"zy

=xy(1+2z)+x'z(1+y) Distributive - over +
=xy-1+xz-1 1+z=1, 1+y=1
=xy+x'z xy-1l=xy, xz-1=xz

Bﬁé‘éﬁ%@ﬁ%ﬁﬁ@%ﬁ&com ENCS2340 — Digital Systems U ploaded By: é %Q@ﬁ’aﬂﬁ@@&ql



Summary of Boolean Algebra

|dentity
Complement
Null
ldempotence
Involution
Commutative
Associative
Distributive
Absorption
Simplification
DeMorgan
BoTlea T AgorR hd 2 it g COM

Property
x+0=x
x+x =1
x+1=1
X+x=X
(x") =x

X+y =y+x
(x+y)+z =x+(y+2)
x(y+2z) =xy+xz
X+xy = Xx
xX+x'y =x+y
(x+y) = x'y
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Dual Property

x-1=x
x-x' =0
x-0=0
X X=X
Xy =yXx

xy)z =x(y2)

x+yz =(x+y)(x+2z)

x(x+y) = x
x(x'+y) = xy
xy) =x"+y
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Duality Principle

*» The dual of a Boolean expression can be obtained by:
< Interchanging AND (-) and OR (+) operators
< Interchanging O's and 1's

% Example: the dual of x(y + z') is x + yz’
<> The complement operator does not change

** The properties of Boolean algebra appear in dual pairs

< If a property is proven to be true then its dual is also true

Property Dual Property
|dentity x+0=x x-1=x
Complement x+x =1 x-x =0
Distributive x(y+z) =xy+xz x+yz =(x+y)(x+2z)
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Expression Simplification

¢ Using Boolean algebra to simplify expressions
“* Expression should contain the smallest number of literals
*» A literal Is a variable that may or may not be complemented

< Example: Simplify the following Boolean function to a minimum
number of literals.
F(ALC)= A+O)+A+0)A+C)

% Solution: (A+C)Y+(A+C)A" +C) (6 literals)
=A+C)+A +C) by simplification (4 literals)
=A'C'"+A"+C’ by DeMorgan (4 literals)
=A"+C' by absorption (2 literals)
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Expression Simplification

< Example: Simplify A'B'+ B'C + AB'C' + AB to a minimum
number of literals

% Solution: A'B"+ B'C + AB'C' + AB (9 literals)
=B'(A"+ C+ AC") + AB by distributive (7 literals)
=B'(A"+C+ A) + AB by simplification (6 literals)
=B'(C+ 1)+ AB by complement (4 literals)
= B' + AB by null and identity (3 literals)
=B+ A by simplification (2 literals)
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Expression Simplification
<+ Example: Simplify ab + a'cd + a’bd + a’cd’ + abcd to a
minimum number of literals
% Solution: ab + a’'cd + a’'bd + a’cd’ + abcd (15 literals)
=ab + abcd + a’cd + a'cd’ + a’bd by commutative (15 literals)
=ab(1+cd)+a'c(d+d)+a'bd bydistributive (11 literals)
=ab +a'c+ a'bd by complement, null, and identity (7 literals)

—
= ba+ ba'd +a'c by commutative (7 literals)
=b(a+a'd)+dc by distributive (6 literals)
=b(a+d)+ac by simplification (5 literals)
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Expression Simplification

“ Example: Simplify (A'+B+C")(A+C")(B+C')(B'+C) to a minimum
number of literals

% Solution: A"+B'"+CH(A+CH(B+C)(B' + C) (9 literals)

=A'B'C' + AC' + BC' + B'C by dual (9 literals)
=C'(A’'B"+A+B)+B'C by distributive (7 literals)
=C'(A+B'"+B)+B'C by simplification (6 literals)
=CA+1)+BC by complement (4 literals)
=C +B'C by null and identity (3 literals)
=C + B by simplification (2 literals)

Then, we take the dual again, this leads to
— CIBI
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Dual and Complementing Boolean Functions

*» The complement of a function can be achieved by taking its

dual and complementing each literal

% Example: what is the complement of f =x'yz' + xy'z" ?
The dual ' +y+2)(x+y +2)
Complement each literal (x+y +2)(x'+y+2z)=f

% Example: what is the complement of g = (a' + bc)d' + e ?

The dual ((a’. (b+0c))+ d’) .e

Complement each literal ((a. (b'+ )+ d) e’

b'+c')+d)
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Importance of Boolean Algebra

*» Our objective Is to learn how to design digital circuits
¢ These circuits use signals with two possible values
*» Logic O is a low voltage signal (around 0O volts)

¢ Logic 1 is a high voltage signal (e.g. 5 or 3.3 volts)

“* The physical value of a signal is the actual voltage it carries,
while its logic value is either O (low) or 1 (high)

*+ Having only two logic values (0 and 1) simplifies the
Implementation of the digital circuit
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Next . ..

“+ Boolean Algebra

“+ Boolean Functions and Truth Tables

*+ DeMorgan's Theorem

¢ Algebraic manipulation and expression simplification
¢ Logic gates and logic diagrams

“ Minterms and Maxterms

% Sum-Of-Products and Product-Of-Sums

*» Additional Gates and Symbols
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Logic Gates and Symbols

X — X )
X - x + x—[>o—x
y—} Y yj>_ g

AND gate OR gate NOT gate (inverter)
X I/
T T T
AND: Switches in series OR: Switches in parallel NOT: Switch is normally
logic O is open switch logic O is open switch closed when xis 0

*» In the earliest computers, relays were used as mechanical
switches controlled by electricity (coils)

*» Today, tiny transistors are used as electronic switches that
Implement the logic gates (CMOS technology)
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Truth Table and Logic Diagram

% Given the following logic function: f = x(y' + 2)

*» Draw the corresponding truth table and logic diagram

Truth Table Logic Diagram
Xy z '+z f=x(y'+z X ,
y y (y'+2) > f=x(y' +2)

0 0 0 1 %)

001 1 0 32'

010 (%] %)

911 1 0 Truth Table and Logic Diagram

10 0 1 1 describe the.sam.e function f. |
Truth table is unique, but logic

101 1 1 : . :
expression and logic diagram

11e 0 0 are not. This gives flexibility in

111 1 1 implementing logic functions.
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Combinational Circuit

s A combinational circuit is a block of logic gates having:
n iNpuUts: x,, x,, ..., X,
m outputs: f, f,, ..., .,
s Each output is a function of the input variables
s Each output is determined from present combination of inputs

s Combination circuit performs operation specified by logic gates

fﬁ %\
| — Combinational [
ninputs § -~ moutputs
; Circuit ;
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Example of a Simple Combinational Circuit

o) O/
>

X

Y — 1
| L

+* The above circuit has:

g

| U

< Three inputs: x, y, and z
< Two outputs: f and g

** What are the logic expressions of f and g ?
% Answer: f=xy+2z

g=xy+tyz
Bﬁé‘éﬁ%@ﬁ%ﬁﬁ@%ﬁ&com ENCS2340 — Digital Systems Uploaded By: é %%?&@M—m&q4



From Truth Tables to Gate Implementation

*» Given the truth table of a Boolean function f, how do we

Implement the truth table using logic gates?

Truth Table
XYy z f
@ 0 0 0 _ . |
What is the logic expression of f?
01 0
@10 1
011 1 What is the gate implementation of f?
100 0
Lw ) To answer these questions, we need
110 0 _ _
e 1 to define Minterms and Maxterms
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Minterms and Maxterms

“* Minterms are AND terms with every variable present in either
true or complement form

“ Maxterms are OR terms with every variable present in either
true or complement form

Minterms and Maxterms for 2 variables x and y

X Yy index Minterm Maxterm
0 0 0 my=xy' My=x+y
0 1 1 m;=x'y M,=x+y
1 0 2 m, = xy' M,=x"+y
1 1 3 ms = Xy M;=x"+y'

** For n variables, there are 2" Minterms and Maxterms
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Minterms and Maxterms for 3 Variables

X Yy z index Minterm Maxterm

0 0 0 0 my,=x'y'z My=x+y+z
0 0 1 1 m,=x'y'z Mi=x+y+7
0 1 0 2 m, =x'yz M,=x+y +z
0 1 1 3 m; =x'yz My=x+y +72
1 0 0 4 m, =xy'z My,=x"+y+z
1 0 1 5 ms=xy'z Mc=x"+y+7
1 1 0 6 mg = xyz' M=x"+y +z
1 1 1 7 m, = xyz M,=x"+y" +7

Maxterm M, is the complement of Minterm m,

M,=m/ and m;, = M/

l
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Purpose of the Index

** Minterms and Maxterms are designated with an index

*» The index for the Minterm or Maxterm, expressed as a
binary number, is used to determine whether the variable
IS shown In the true or complemented form
*» For Minterms:
< ‘1’ means the variable is Not Complemented

< ‘0’ means the variable is Complemented
*» For Maxterms:

< ‘0’ means the variable is Not Complemented

< ‘1’ means the variable is Complemented
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Sum-Of-Minterms (SOM) Canonical Form

Truth Table

Xy z f Minterm - -
00 0 0 Sum of Minterm entries
00 1 0 that evaluate to ‘1
@ 1 @ 1 mZ = x’yzl .

, Focus on the ‘1’ entries
@ 1 1 1 m3 = xyZ
100 )

f=m2 +m3 +m5+m7
1 @ 1 1 m5 = xy’Z
110 )
f=) 2357

1 1 1 1 m7 = xyZ

f=x'yz' +x'yz+xy'z+ xyz
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Example - Sum-Of-Minterms

** Express the Boolean function F(A4,B,C) = A+ B'C as a sum of
minterms.

< The first term A is missing two variables; therefore,
A=AB +B') =AB + AB’
=AB(C+C')+ AB'(C+C") = ABC + ABC' + AB'C + AB'(C’

<> The second term B'C is missing one variables; therefore,
B'C=(A+A)B'C =AB'C+ A'B'C

<> Combining all terms (and remove duplicate terms), we have
F=A+B'C =ABC+ABC'+ AB'C+ AB'C' + A'B'C
=m, +mg+ms+m,+m,

F(4,B,C) = 2(1, 4,5,6,7)
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Example - Sum-Of-Minterms

** Express the Boolean function F(A4,B,C) = A+ B'C as a sum of
minterms.

<> An alternative procedure is to obtain the truth table of the function
directly from the algebraic expression and then read the minterms
from the truth table.

ABC F Minterm
O 00 %)
9 01 1 m; = A'B'C
160 %)
011 %)

F(A,B,C) = 2(1,4, 5,6,7) 100 1 m, = AB'C’

4

101 1 m5=AB'C
110 1 me = ABC'
111 1 m; = ABC
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Example - Sum-Of-Minterms

% Express f(a,b,c,d) = >.(2,3,6,10,11) in the sum-of-minterms form
< f(a,b,c,d) =m, + mg+mg +mqy +mq,
<> f(a,b,c,d) =a'b’'cd +a'b’'cd + a’bcd" + ab’cd’ + ab’cd

“ Express g(a,b,c,d) = ,(0,1,12,15) in the sum-of-minterms form
< g(a,b,c,d) =my+my + my, + myc

> g(a,b,c,d)=a'b'c'd +a'b'c’d + abc'd + abcd
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Product-Of-Maxterms (POM) Canonical Form

Truth Table
Xyz f Maxterm .
600 0 My=x+y+z Product of Maxterm entries
01 © M=x+y+z that evaluate to O
010 1 .
Focus on the ‘O’ entries

911 1

4 =X y Tz fZMO'Ml'MzL M6
101 1
110 () M = '-|- '_|_

oTE Ty f=]_[(0,1,4,6)
111 1

f=E+y+2)x+y+20& +y+2)(x +y' +2)
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Example - Product-Of-Maxterms

“* Express the Boolean function f(x,y,z) = xy + x'z as a product
of maxterms.

<> Convert the function into OR terms by using the distributive law,
f=xy+x'z=xy+x)xy+z2)=&"+x)(x"+y)(x+2)(y + 2)
= @' +y)x+2)(y +2)

<> Each term is missing one variables; therefore,
f=(x'"+y)x+2)(y+2)=W"+y+zz2)x+yy' + 2)(xx" + y + 2)
=x'+y+2)(x'+y+z2N)x+y+2)(x+y +2)(x+y+2)(x' +y+ 2)

< Removing duplicate terms, we have
f=(x'"+y+2)(x"+y+2N(x+y+2)(x+y' +2)
:M4.M5.MO.M2

f(x,y,z) =T11(0,2,4,5)
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Example - Product-Of-Maxterms

“* Express the Boolean function f(x,y,z) = xy + x'z as a product
of maxterms.

<> An alternative procedure is to obtain the truth table of the function
directly from the algebraic expression and then read the maxterms

from the truth table
Maxterm

My=A+B+C

M,=A+B +C

F(x,y,z) = H(o, 2 4.5)

M,=A"+B+C
Mc=A+B'+C

P P P P O O ©®© &© X
R R ®© ©®© R R O O X
R ®© P © P © kP O® N

R ©®© © KPR © P ©® =h

=
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Examples - Product-Of-Maxterms

% Express f(a,b,c,d) =[](1,3,11) in the product-of-maxterms form
< f(a,b,c,d) = My - M3 - M4
< f(a,b,c,d)y=(a+b+c+d)a+b+c'"+d)(a +b+c" +d)

s Express g(a,b,c,d) =[](0,5,13) in the product-of-maxterms form
< g(a,b,c,d) =My Mg - My5

<+ g@abc,d)=(@+b+c+d)(a+b' +c+d)(@ +b'+c+d)
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Conversions between Canonical Forms

*+ The same Boolean function f can be expressed in two ways:
< Sum-of-Minterms f=myg+m, +mg+ms+m,; =)(0,23,5,7)
< Product-of-Maxterms f =M;-M, - M; =1[1(1,4,6)

Truth Table
xy z f Minterms Maxterms
00 1 my=xy7z
901 0o Mi=x+y+Z To convert from one canonical
- !/ !/
@l W L |Gy =0 form to another, interchange
11 1 m,=x'yz .
> 4 the symbols Y, and IT and list
100 0 M,=x'+y+z o
, those numbers missing from
1061 1 mg=xyz
110 o M,=x+y +z the original form.
111 1 m,=xyz
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Function Complement

Truth Table Given a Boolean function f

xyz f £  f(xyz)= Z(o, 2,3,5,7) = 1_[(1, 4,6)
0 90 0 1 (%]
01 0 1 Then, the complement f’ of function f
°ore 1% iy )= H(o, 2,3,5,7) = 2(1, 4,6)
011 1 (%]
100 (%] 1

The complement of a function expressed by a
Lo 8 ° Sum of Minterms is the Product of Maxterms
1o ° ! with the same indices. Interchange the symbols
11 1 ° 2. and I1, but keep the same list of indices.
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Example

*» Write the complement of the following function using sum of
minterms

f(z,y,x) =3(0,2,3,4,6)

< Since the system has 3 input variables (z, y, x), the number of
minterms and maxterms = 23 =8

f(z,y,x) =>(0,2,3,4,6)
f(z,y,x) =1](00,2,3,4,6) = >(1,5,7)

=zy'x+zy'x+zyx
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Example

% Giventhat f(x,y,z,w) =5(0,1,2,4,5,7), derive the product of
maxterms expression of f and the two canonical form
expressions of f~

< Since the system has 4 input variables (x,y,z,w), the number of
minterms and maxterms = 24 =16

f(x,y,z,w) =>(0,1,2,4,5,7)
f(x,y,z,w) =T1(3,6,8,9,10,11,12, 13,14, 15)

f'(x,y,z,w) =3¥(3,6,8,9,10,11,12,13,14, 15)
f,(x' y’ Z' W) — H(O, 1) 2; 4'; 5; 7)
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Summary of Minterms and Maxterms

» There are 2" Minterms and Maxterms for Boolean functions with
n variables, indexed fromQ0to2"—-1

“* Minterms correspond to the 1-entries of the function
“* Maxterms correspond to the 0-entries of the function

“+ Any Boolean function can be expressed as a Sum-of-Minterms
and as a Product-of-Maxterms

*+ For a Boolean function, given the list of Minterm indices one can
determine the list of Maxterms indices (and vice versa)

“ The complement of a Sum-of-Minterms is a Product-of-Maxterms
with the same indices (and vice versa)
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Operations on Functions

“ The AND operation on two functions corresponds to the
Intersection of the two sets of minterms of the functions

“* The OR operation on two functions corresponds to the union
of the two sets of minterms of the functions

“ Example: Let F(A,B,C) = Zm(1,3,6,7) and
G(A,B,C) =2m(0,1,2,4,6,7)

¢ F.G=3m(1,6,7)
¢ F+G=2m(0,1,23,4,6,7)
$F.G=77

* I’ = ¥m(0,2,4,5)

* F'.G = 2m(0, 2, 4)
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Equal Functions

“ Two functions are equal if and only if they have the same sum
of minterms and the same product of maxterms.

<+ Example: Are the function F; = a’b’ 4+ ac + bc’ and the function
F, =a'c’ + ab + b'cequal?

< F,=Xm(0,1,2,5,6,7) =T](3,4)
< F,=Xm(0,1,2,5,6,7) =T](3,4)
< Thus, they are equal.

< Example: Are the function F,(x,y,z) = £m(1,2,4,5, 6,7) and the
function F,(a,b) = [](0, 3) equal?

¢ F, =2m(1,2,4,5,67) =[]0,3)
4 F, =[1(0,3) = =m(1, 2)

< Thus, they are not equal.
Bo§1;£$JA%J§J§|J§BEU~%§e§0m ENCS2340 — Digital Systems Uploaded By: é%@%ﬁ*aﬁﬁ@m&%



Sum-of-Products and Products-of-Sums

* Canonical forms contain a larger number of literals

<> Because the Minterms (and Maxterms) must contain, by definition, all
the variables either complemented or not

“+ Another way to express Boolean functions is in standard form
“ Two standard forms: Sum-of-Products and Product-of -Sums

s Sum of Products (SOP)
<> Boolean expression is the ORing (sum) of AND terms (products)
< Examples: f, = xy + xz fo=y+xy'z

¢ Products of Sums (POS)
<> Boolean expression is the ANDing (product) of OR terms (sums)

<> Examples: f; = (x +2)(x' +y") fo=x(x"+y +2)
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Two-Level Gate Implementation

fi=xy +xz

miDs
y —

1 -

Bonlear AN aha b d B CcOm

AND-OR

implementations

OR-AND
implementations
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] <
z — 3-input AND gate

f2=y+xy'z

f

fo=x(x'+y" +2)

X

!/

!

X
y
Z

3 -
3-input OR gate
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Two-Level vs. Three-Level Implementation

“* h = ab + cd + ce (6 literals) is a sum-of-products
* h may also be written as: h = ab + c(d + e) (5 literals)

“* However, h = ab + c(d + e) Is a non-standard form

< h =ab + c(d + e) Iis not a sum-of-products nor a product-of-sums

2-level implementation 3-level implementation
h=ab +cd + ce h=ab+c(d+e)

q —

b — a
b— _J

¢ —

d — h ‘ _)D’ h
d

c — ) € D‘_

e — 3-input OR gate
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Next . ..

“+ Boolean Algebra

“+ Boolean Functions and Truth Tables

*+ DeMorgan's Theorem

¢ Algebraic manipulation and expression simplification
¢ Logic gates and logic diagrams

* Minterms and Maxterms

* Sum-Of-Products and Product-Of-Sums

*» Additional Gates and Symbols
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Additional Logic Gates and Symbols

* Why?
<> Low-cost implementation

< Useful in implementing Boolean functions

X — X
Xy x+y
- ) O

AND gate OR gate

X = / X /
_>_ (x-y) D— x+y)

Yy — y

NAND gate NOR gate
) D=y [T —cen
y y

XOR gate XNOR gate
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x—[>o—x’

NOT gate (inverter)

X > X
Buffer
C
X & f

3-state gate
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NAND Gate

*» The NAND gate has the following symbol and truth table
“* NAND represents NOT AND

s The small bubble circle represents the invert function

x—} X y NAND
. I: I+ !/
y— (x-y)' =x"+y 00
01
NAND gate x:D_x,+y,
y 10

Another symbol for NAND 1 1

O R

* NAND gate is implemented efficiently in CMOS technology

< In terms of chip area and speed
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NOR Gate

* The NOR gate has the following symbol and truth table
** NOR represents NOT OR

s The small bubble circle represents the invert function

x , o X Yy NOR
yD_(”y)‘x'y 00 1

NOR gate x_o:>_x,. , 01 O
y —a g 10 O
0

Another symbol for NOR 11

* NOR gate is implemented efficiently in CMOS technology

< In terms of chip area and speed
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Non-Associative NAND / NOR Operations

*» Unlike AND, NAND operation is NOT associative
(x NAND y) NAND z # x NAND (y NAND z)
(x NAND y) NAND z = ((xy) 2) = ((x' + y)z) =xy + 2
x NAND (y NAND z) = (x(y2)") = (x(y'+ 2)) =x" + yz
* Unlike OR, NOR operation is NOT associative

(x NOR y) NOR z # x NOR (y NOR 2)
(x NOR y) NOR z = ((x +vy)' + Z), = ((x’y’) + Z), =(x+y)z

xNOR(yNORZ2)=(x+(y+2)) = (x + (y’z’))’ =x'(y + 2)
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Multiple-Input NAND / NOR Gates

NAND/NOR gates can have multiple inputs, similar to AND/OR gates

x_:>o— (x-y)'
Y —

2-input NAND gate

¥ j)o—(x +y)’
y

2-input NOR gate

x—
y — (x-y-2z)
Z—

3-input NAND gate

X
y x+y+2z2)
Z

3-input NOR gate

W —1
;:}(W-x-y-z)’
. —

4-input NAND gate

9(W+X+}1+Z)’

4-input NOR gate

N<XR S

Note: a 3-input NAND is a single gate, NOT a combination of two 2-input gates.
The same can be said about other multiple-input NAND/NOR gates.
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Exclusive OR / Exclusive NOR

*» Exclusive OR (XOR) is an important Boolean operation used

extensively in logic circuits

¢ Exclusive NOR (XNOR) is the complement of XOR

X y XOR X Yy XNOR
00 0 OO0 1
01 1 01 0 XNOR is also known
10 1 10 O as equivalence
11 0 11 1
X X /
@ @
y XDy y (xDy)
XOR gate XNOR gate
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XOR / XNOR Functions

% The XOR functionis: x @y =xy + x'y
“ The XNOR functionis: (x ® y) = xy + x'y’
“ XOR and XNOR gates are complex

< Can be implemented as a true gate, or by

< Interconnecting other gate types

“ XOR and XNOR gates do not exist for more than two inputs

< For 3 inputs, use two XOR gates
< The cost of a 3-input XOR gate is greater than the cost of two XOR gates

*» Uses for XOR and XNOR gates include:

< Adders, subtractors, multipliers, counters, incrementers, decrementers

< Parity generators and checkers
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XOR and XNOR Properties

PxD0=x x@®1=x'
Px®x=0 xPx' =1
CxPy=yPx

Cx Py =x0@y

YOy =x"By=x@Y

XOR and XNOR are associative operations

PUXBY)DPz=xB(yD2z)=xDyDz

2 (x®y) ®2) =(xO (Y ®2)) =x®y Dz
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Positive and Negative Logic

¢ Choosing the high-level H to
represent logic 1 defines a positive
logic system

* Choosing the low-level L to represent
logic 1 defines a negative logic
system

¢ It is up to the user to decide on a
positive or negative logic polarity
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Logic Signal
value value
] : H
0 ' L

(a) Positive logic

Logic Signal
value value
0 H
1 L

(b) Negative logic
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Positive and Negative Logic

*» The conversion from
positive logic to negative L L |L Digital
1 : 1 H L L gate
logic and vice versa is HoLL }
essentially an operation (o) Truth table (b) Gate block diagram

that changes 1’s to 0’s and with H and L
O’s to 1’s in both the inputs

and the output of a gate D ; )
0 1 0 .
L1 |1 y )

¢ Since this operation 1 - |
(c) Truth table for (d) Positive logic AND gate
produces the dual of a positive logic
function, the change of all
terminals from one polarity

y

. . 1 1 1
to the other results in taking Lo .
the dual of the function 0 0 |0 ﬂ
(e) Truth table for (f) Negative logic OR gate

negative logic
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