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Relations
Introduction to Relations

In this lecture:

—>E| Part 1: What is a Relation

JPart 2: Inverse of a Relation;
I Part 3: Directed Graphs;

I Part 4: n-ary Relations,

I Part 5: Relational Databases
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What is a Relation?
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What is a Relation?

xRy & (x,y)€eR

xRy & ((x,y)¢R
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Example

The Less-than Relation for Real Numbers

Define a relation L from R to R as follows: For all real numbers x and y,
xLy&eox<y.
a. Is 57 L 53? b. Is(—=17) L (—14)? c. Is 143 L 1437 d. Is(—=35)L1?

a. No, 57 > 53 b. Yes, —-17 < —14 c. No, 143 = 143 d. Yes, =35 <1
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Example

Person Enrolledin Course
B
e Ali — \ 7 o Al
e Sana  DMath
* Lina * Algo
DB
Domain Co-domain
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Example

FriendOf
Person

FriendOf' = {(Ali, Sana), (Sana,Ali)}

[nverse Relation
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Example

Z LessThan Z
/_\

a
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Example

Define a relation E from Z to Z as follows: For all (m,n) € Z x
Z, mEn < m-niseven.

a.Is4EQ?Is2E6?Is3 E(-3)?Is5E2?

b. List five integers that are related by E to 1.

c. Prove that if nis any odd integer, then n E 1.

a.Yes,4 E O because 4-0=4 and 4 is even. Yes, 2 E 6 because 2-6=-4
and -4 is even. Yes, 3 E (-3) because 3—(-3)=6 and 6 is even. No, 5
E 2 because 5-2=3 and 3 is not even.

b. 1 becausel-1=0is even, 3 because 3-1=2 is even, 5 because
5-1=4 is even, -1 because -1-1=-2 is even, -3 because -3-1=-4 is
even.

c. Suppose n is any odd integer. Then n = 2k + 1 for some integer k.
By definition of £, n E 1 if, and only if, n = 1 is even. By substitution,
n-1=(2k+1)-1=2k,and since k is an integer, 2k is even. Hence
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Example

Define a relation E from Z to Z. as follows:

Forall m,n) € ZxZ, mEn < m—n 1s even.

STUDENTS-HUB.com ) Uploaded By: anonymo@é



Example: a relation on a Power Set

Let X ={a,b, c}. Then P(X) = {9, {a}, {b}, {c}, {a, b}, {a,
c},{b,c},{a,b,c}}. Define a relation S from P(X) to Z as
follows: For all sets A and B in P(X) (i.e., for all subsets A and
B of X),

A S B < A has at least as many elements as B.

\/ a. Is {a,b} S {b,C}? Yes, both sets have two elements.

\/ b. Is {a} S @? Yes, {a} has one element and 2 has zero elements, and 1 > 0.

X C. IS {b,C} S {a,b ,C}? No, {b, c} has two elements and {g, b, c} has three elements and 2 < 3.

/ d. Is{c} S {a}? Yes, both sets have one element.
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Example

LetA={1,2,3} and B={1, 3,5}, define relations
S and T from A to B as follows: For all (x,y) € A x B,
(X,y) €ES < X<y Sisa“LessThan” relation.

'={2,1),(12,5)}.

T
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Relations and Functions

e Definition
A fu'nctibn F from a set A to a set B is a relation from A to B that satisfies the
- following two properties:

1. For every elementéc in A, there is an element y in B such that (x, y) € F.
2. For all elements x in A and y and z in B,
| if (x,y) € Fand (x,2) € F,then y = z.
If F 1s a function from A to B, we write
y=Fx) & (x,y)eF.
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Example

LetA={2,4,6}and B={1,3,5}.
Is relation R a function from A to B?

R={(2,5),4,1),4,3),(6,5)}. X
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Example

LetA={2,4,6}and B={1,3,5}.
Is relation R a function from A to B?

For all (x,y) € AX B, (x,y) € Sy=x+1. X
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Relations
Introduction to Relations

In this lecture:
JPart 1: What is a Relation

—>E| Part 2: Inverse of a Relation

I Part 3: Directed Graphs
I Part 4: n-ary Relations
I Part 5: Relational Databases
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Inverse Relation

Let R be a relation from A to B. Define the inverse relation R!
from B to A as follows:
R'={(yx) € BxA| (x,y) € R}.

Forall x€A and yEB, (y,x)ER! < (x,y)ER.
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Example

LetA={2,34} and B={2,6,8} and let R be the “divides” relation
from A to B: For all (x,y) € Ax B,
xRy xly x divides y.

a. State explicitly which ordered pairs are in R and R—1, and draw arrow
diagrams for R

and R_1 R - {(272) ?(2 96) 7(238) 9(3 96) 9(438)}
R™={(22),6.2),(8.2),(6,3),(84)}

b. Describe R—1 in words.
For all (y,x) € Bx A,y R x & yis a multiple of x.
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Example

Enrolledin
Person Course
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Example

FriendOf!
Person
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Inverse of Relations in Language

What would be the inverse of the following relations in English

SonOf "1 = 7 Parent of

WifeOf "1 = 2 Husband of

WorksAt “1 =2 Emplos
EnrolledOf -1 = ? Enroli
PresidentOf ~! = 2 Leadership of / Led by

BrotherOf 1 = ? Brother of
Symmetric Relation <
SisterOf "1 = 2 Sisterof
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Relations
Introduction to Relations

In this lecture:
JPart 1: What is a Relation

JPart 2: Inverse of a Relation

—>E| Part 3: Directed Graphs

I Part 4: n-ary Relations
_JPart 5: Relational Databases
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Directed Graph of a Relation

When a relation R 1s defined on a set A, the arrow diagram of the
relation can be modified so that it becomes a directed graph.

For all points x and y in A,

there 1s an arrow fromxtoy < xRy <& (x,y) € R.

e Definition

-1 A relation on a set A is a relation from A to A.

It 1s important to distinguish clearly
between a relation and the set on
which it is defined.

-
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Example

LetA={3,4,5,6,7,8} and define a relation R on A as
follows: Forall x,y € A, xRy © 2| (x—y).

() IA
XX
SO
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Relations

Introduction to Relations

In this lecture:
I Part 1: What is a Relation
I Part 2: Inverse of a Relation
I Part 3: Directed Graphs

—>E| Part 4: n-ary Relations

I Part 5: Relational Databases
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N-ary Relations

EnrolledIn(Ali, Dmath)

EnrolledIn(Sami, DB) Binary (2-ary)

Enrollment(Sami, DB, 99) Ternary (3-ary)

Enrollment(Sami, DB, 99,2014)  Quaternary (4-ary)

Enrollment(Sami, DB, 99, 2014,F) 5-ary

R(al, 212, 213, coeeey an) n-ary
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N-ary Relations

Given sets A, Ay, ..., A,, an n-ary relation R on A; x A, x --- X A, 1s a subset
of Ay x Ay, x --- x A,. The special cases of 2-ary, 3-ary, and 4-ary relations are
called binary, ternary, and quaternary relations, respectively.
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Relations
Introduction to Relations

In this lecture:
I Part 1: What is a Relation

JPart 2: Inverse of a Relation

I Part 3: Directed Graphs
I Part 4: n-ary Relations

_>E| part 5: Relational Databases
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Relational Databases

Let Al be a set of positive integers, A2 a set of alphabetic character

strings, A3 a set of numeric character strings, and A4 a set of alphabetic

character strings. Define a quaternary relation R on A1 x A2 x A3 x A4 as

follows:

(al,a2,a3,ad) € R & apatient with patient ID number al,

named a2, was admitted on date a3, with primary diagnosis a4.

Patient(ID, Name, Date, Diagnosis)

(011985, John Schmidt, 020710, asthma)
(574329, Tak Kurosawa, 114910, pneumonia)
(466581, Mary Lazars, 103910, appendicitis)
(008352, Joan Kaplan, 112409, gastritis)
(011985, John Schmidt, 021710, pneumonia)
(244388, Sarah Wu, 010310, broken leg)

(778400, Jamal Baskers, 122709, appendicitis)
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Relational Databases
Ron Al x A2 x A3 x A4 as follows:

(al,a2,a3,ad4) € R < apatient with patient ID number al,
named a2, was admitted on date a3, with primary diagnosis a4.

ID Name 'Date | Diagnosis

Relation .
(011985, John Schmidt,| 020710, asthma)
(574329] Tak Kurosawa) 114910, pneumonia)
(46658i, Mary Lazars, ::103910,::appendicitis)
(008352} Joan Kaplan, |112409,| gastritis)
Each row 1s (011985:,: John Schmidt,22021710, ::pneumonia)
called tuple (244388{ Sarah Wu, 010310, |broken leg)

(778400} Jamal Baskers} 122709, appendicitis)
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Relational Databases
Ron Al x A2 x A3 x A4 as follows:

(al,a2,a3,a4) € R < apatient with patient ID number al,
named a2, was admitted on date a3, with primary diagnosis a4.

ID | Name | Date | Diagnosis

Relation » _
@
(5 » Notice that Tables in this way are
(4 called Relations. 1
(0 > Information stored in this way is
Each row 1s (0 called a “Relational Database”
called tuple (2 i

(7784OOI Jamal Baskers,' 122709,'ap endicitis)
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Relations
Properties of Relations

In this lecture:

—>E| Part 1: Properties: Reflexivity, Symmetry, Transitivity

I Part 2: Proving Properties of Relations
I Part 3: Transitive Closure
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Reflexivity, Symmetry, and

Transitivity

Let R be a relation on a set A.
1. R is reflexive if, and only if, forall x € A, x R x.
2. R is symmetric if, and only if, forall x, y € A, if x R y then y R x.

3. R is transitive if, and only if, forallx,y,z€ A,if x Ryand y R zthenx R z.

Because of the equivalence of the expressions x R y and (x, y) € R for all x and )
n A, the reflexive, symmetric, and transitive properties can also be written as follows:

1. R is reflexive

<

2. R is symmetric <

3. R is transitive

STUDENTS-HUB.com

<

forallxin A, (x, x) € R.
forall x and yin A, if (x, y) € R then (y, x) € R.

forallx, yandzin A,if (x,y) € Rand(y,z) € R
then (x, z) € R.
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| /?\ Reflexivity Lo

O R 1s reflexive & forallxin A, (x,x) € R.

R is Reflexive: Each element is related to itself.
)\.H;iw.h.af&_’oﬁ\ @,«I—FJS} ‘bu,.ou‘\.sx,.'u&%
) PR
R 1s not reflexive: there 1s an element x in A such
that x R x [that is, such that (x ,x)&R ] .

Examples:
Likes? MemberOf? BrotherOf?
LocatedIn? PartOf? SonOf?
Kills? SubSetOf? FatherOf?
FreindOf? SameAS? RelativeOf?
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%

Symmetry Jalad

R is symmetric < forall x and y in A, if (x, y) € R then (y, x) € R.

& % R is Symmetric: If any one element is related to any

) e other element, then the second is related to the first.
R is not Symmetric: there are elements x and y in A
such that x R y but y R-x [that is, such that (x ,y ) €
R but (yx)&R].

Examples:

Likes? MemberOf? BrotherOf?
LocatedIn? PartOf? SonOf?
Kills? SubSetOf? FatherOf?
FreindOf? SameAS? RelativeOf?
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|

R 1s transitive

Transitivity (gasi i *?”

& forallx, yandzin A,if (x,y) € Rand (y,z) € R
then (x, z) € R.

R is Transitive: If any one element is related to a
second and that second element is related to a third,
then the first element is related to the third.

R is not transitive: there are elements x,y and z in A
such that xRy and yRz but x Bz [that is, such that
(x,y)ERand (yz) ER but (x ,2) R ] .

Examples:

STUDENTS-HUB.com )

Likes? MemberOf? BrotherOf?
LocatedIn? PartOf? SonOf?
Kills? SubSetOf? FatherOf?
FreindOf? SameAS? RelativeOf?
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Example

LetA={2,34,6,79} and define a relation R on A as:
Forallx,y € A, xRy < 31 (x—y).

Is R Reflexive? Symmetric? Transitive?
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Exercise

Let A={0, 1,2, 3} and define relation R on A as:
R =1{(0,0), (0, 1),(0,3),(1,0),(1, 1),(2,2),(3,0),(3,3)}

Is R Reflexive? 1  Symmetric? ¥  Transitive?

e

o
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Exercise

Let A={0, 1,2, 3} and define relation R on A as:
R =1{(0,0),(0,2),(,3),(2,3)}

Is R Reflexive? Symmetric? Transitive? V]
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Exercise

Let A={0, 1,2, 3} and define relation R on A as:
R={(0,1),2,3)}

Is R Reflexive? Symmetric? Transitive? V]

RE S ' 39

T is transitive by default because it is not not transitive!
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Properties of Relations

In this lecture:

I Part 1: Properties: Reflexivity, Symmetry, Transitivity

—>EI Part 2: Proving Properties of Relations

I Part 3: Transitive Closure
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Proving Properties on Relations on Infinite Sets

Until Now we discussed relation on Finite Sets

Next, we discussed relation on infinite Sets

To prove a relation is reflexive, symmetric, or transitive, first
write down what is to be proved, in First Order Logic.

For instance, for symmetry
Vx,y € A, if xR ythenyR x.

Then use direct methods of proving
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Properties of Equality

Define a relation R on R (the set of all real numbers) as follows:
For all real numbers xandy. xRy & x=y.

Is R Reflexive? Symmetric? Transitive?

R is reflexive: R is reflexive if, and only if, the following statement is
true: For all x€R, x R x. And since x R x just means that x = x, this 1s
the same as saying For all x€R, x=x. Which is true; every real
number is equal to it
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Properties of Equality

Define a relation R on R (the set of all real numbers) as follows:
For all real numbers xandy. xRy & x=y.

Is R Reflexive? Symmetric? Transitive?

R is symmetric: R 1s symmetric if, and only if, the following
statement 1s true:
Forall x,y€R,if x R y then y R x.

By definition of R, x R y means that x =y and y R x means that y = x.
Hence R 1s symmetric if, and only if,
For all x,y€R, if x=y then y=x.

This statement is true; if one number 1s equal to a second, then the
second 1s equal to the first.
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Properties of Equality

Define a relation R on R (the set of all real numbers) as follows:
For all real numbers xandy. xRy & x=y.

Is R Reflexive? Symmetric? Transitive?

R is transitive: R is transitive if, and only if, the following statement
is true: For all x,yz€R,if x Ryand y R zthen x R 7.

By definition of R, x R y means that x =y, y R z means that y = z, and
x R z means that x = z. Hence R is transitive iff the following
statement is true: For all x,y,z€ER, if x=y and y=z7 then x=z.

This statement 1s true: If one real number equals a second and the
second equals a third, then the first equals the third.
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Properties of Less Than

Define a relation R on R (the set of all real numbers) as follows:
For all x,y € R, XRy & x<y.

Is R Reflexive? Symmetric? Transitive?

R is not reflexive: R is reflexive if, and only if, Vx € R, x R x. By definition of
R, this means that Vx € R, x < x. But this is false: dx € R such that x £ x. As a
counterexample, let x = 0 and note that 0 £ 0. Hence R is not reflexive.

R is not symmetric: R 1s symmetric if, and only if, Vx, y €e R, if x R y then y R x.
By definition of R, this means that Vx, y € R, if x < y then y < x. But this 1s false:
dx, y € Rsuch that x < y and y £ x. As a counterexample, let x =0 and y = 1 and
note that 0 < 1 but 1 £ 0. Hence R is not symmetric.

R is transitive: R is transitive if, and only if, for all x, y,z € R,if x R yand y R £
then x R z. By definition of R, this means that forall x, y,z €e R,ifx < yand y < z,
then x < z. But this statement is true by the transitive law of order for real numbers
(Appendix A, T18). Hence R 1s transitive.
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Properties of Congruence Modulo 3

Define a relation 7 on Z (the set of all integers) as follows: For
all integers m and n, mTn € 3l(m-n).

Is R Reflexive? Symmetric? Transitive?

For all mEZ, 3l1(m-m).

Suppose m 1s a particular but arbitrarily chosen integer. [We must show
thatm T m.]

Now, m—m = 0.

But 3 10 since 0 = 3-0.

Hence 3l(m—m).

Thus, by definition of T, mT m

[as was to be shown].
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Properties of Congruence Modulo 3

Define a relation 7 on Z (the set of all integers) as follows: For

all integers m and n, mTn < 3l(m—n).

Is R Reflexive? Symmetric? Transitive?

For all m, n€ Z, if 3l(m—n) then 3l(n—m).

Suppose m and n are particular but arbitrarily chosen integers that satisfy
the condition m T n.

[We must show thatn T m.]

By definition of 7', since m T'n then 3 | (m — n). By definition of “divides,’
this means that m — n = 3k, for some integer k.

Multiplying both sides by —1 gives n — m = 3(-k). Since —k is an integer,
this equation shows that 3 | (n — m). Hence, by definition of T, n T'm

[as was to be shown].

9
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Properties of Congruence Modulo 3

Define a relation 7 on Z (the set of all integers) as follows: For

all integers m and n, mTn < 3l(m—n).

Is R Reflexive? Symmetric? Transitive?

For all m, n€ Z, if 3|(m—n) and 3l(n—p) then 3l(m—p).

Suppose m, n, and p are particular but arbitrarily chosen integers that
satisfy the condition m Tnand n T p. [We must show that m T p.] By
definition of T, since m T n and n T p, then 3/(m—n) and 3/(n—p). By
definition of “divides,” this means that m — n = 3r and n — p = 3s, for
some integers r and s. Adding the two equations gives (m—n)+(n—p)=3r
+3s, and simplifying gives that m — p = 3(r + s). Since r + s 1s an
integer, this equation shows that 3I(m — p). Hence, by definition of 7, m
T p [as was to be shown].
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In this lecture:

I Part 1: Properties: Reflexivity, Symmetry, Transitivity

I Part 2: Proving Properties of Relations

—>EI Part 3: Transitive Closure
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The Transitive Closure of a Relation

The smallest transitive relation that contains the relation.

Let A be a set and R a relation on A. The transitive closure of R is the relation R’
on A that satisfies the following three properties:

1. R is transitive.
2. R C R,

3. If S is any other transitive relation that contains R, then R’ C S.

Original Transitive
Closure
A—™B A—™g
l N4 l
NE (// \N
C‘ D C ; D
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Exercise

Let A=4{0,1,2,3} and consider the relation R defined on A as:

R={0,1),(1,2),2,3)}.
Find the transitive closure of R.

R'= {(0, 1), (0,2),(0,3),(1,2),(1,3),(2,3)}.

Oe >0 | 0 > |
3 e« !2 3!( !2
R R'
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Equivalence Relations

In this lecture:

—>E| Part 1: Partitioned Sets

I Part 2: Equivalence Classes

I Part 3: Equivalence Relation
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Partitioned Sets

Sets can be partitioned into disjoint sets

A partition of a set A 1s a finite or infinite collection of nonempty,

mutually disjoint subsets whose union is A.
w Total (ta\: )

Disjoint (gu)

Sl gl A;nA; = ¢, whenever i
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Partitioned Sets

Sets can be partitioned into disjoint sets

{

Total (ta\z )

‘ A;UAU...U Ag=A
b Disjoint (E““)

Sl gl A;nA; = ¢, whenever i
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Relations Induced by a Partition

A relation induced by a partition, is
a relation between two element in the same
partition.

w Total (t“’)
A6 Al UA2U...U A6=A

o Disjoint (qu)

Sl gl A;nA; = ¢, whenever i
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Relations Induced by a Partition

e Definition

Given a partition of a set A, the relation induced by the partition, R, is defined on
A as follows: Forall x, y € A,

x Ry < thereis asubset A; of the partition
such that both x and y are in A;.

D Total (t‘L? )

A;jUAU...U Ag=A

Disjoint (eu)

Sl gl A;nA; = g, whenever i
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Example

LetA={0,1,2, 3,4} and consider the following partition of A:
{0,3,4},{1},{2}.

Find the relation R induced by this partition.

Since {0, 3, 4} 1s a subset of the partition,

0O R 3 because both 0 and 3 are in {0, 3, 4},
3 R0 because both 3 and O are in {0, 3, 4},
O R4 because both 0 and 4 are in {0, 3, 4},
4 R0 because both 4 and O are in {0, 3, 4},
3 R4 because both 3 and 4 are in {0, 3,4}, and
4 R3 because both 4 and 3 are in {0, 3, 4}.

Also, O RO because both 0 and O are in {0, 3, 4}
3 R3 because both 3 and 3 are in {0, 3,4}, and

4 R4 because both 4 and 4 are in {0, 3, 4}.
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Example

Let A={0,1,2, 3,4} and consider the following partition of A:
{0,3,4},{1},{2}.

Find the relation R induced by this partition.

Since {1} 1s a subset of the partition,

I R1 becauseboth1 and 1 are in {1},

and since {2} is a subset of the partition,

2 R 2 because both 2 and 2 are in {2}.

Hence
R ={(0,0),0,3),00,4),(1,1),(2,2),(3,0),
(3,3),(34),4,0),(4,3),4.4)}.
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Relations Induced by a Partition

Theorem 8.3.1

Let A be a set with a partition and let R be the relation induced by the partition.
Then R is reflexive, symmetric, and transitive.
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Relations
Equivalence Relations

In this lecture:

I Part 1: Partitioned Sets

ﬂu part 2: Equivalence Classes

I Part 3: Equivalence Relation
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Equivalence Relation
PG e

Definition

Let A be a set and R a relation on A. R is an equivalence relation
if, and only if, R 1s reflexive, symmetric, and transitive.

=>» The relation induced by a partition is an
equivalence relation
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Example
Let X be the set of all nonempty subsets of {1, 2, 3}. Then
X={{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
Define a relation R on X as follows: For all A and B in X,
A R B © the least element of A equals the least element of B.

Prove that R is an equivalence relation on X.

R is reflexive: Suppose A is a nonempty subset of {1, 2, 3}. [We must
show that A R A.] It 1s true to say that the least element of A equals
the least element of A. Thus, by definition of R, AR A.

R is symmetric: Suppose A and B are nonempty subsets of {1, 2,3}
and A R B. [We must show that B R A.] Since A R B, the least
element of A equals the least element of B. But this implies that the

least element of B equals the least element of A, and so, by definition
of R, BRA.
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Example
Let X be the set of all nonempty subsets of {1, 2, 3}. Then
X={{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
Define a relation R on X as follows: For all A and B in X,
A R B © the least element of A equals the least element of B.

Prove that R is an equivalence relation on X.

R is transitive: Suppose A, B, and C are nonempty subsets of {1, 2,
3}, AR B,and B R C. [We must show that AR C.] Since A R B, the
least element of A equals the least element of B and since B R C, the
least element of B equals the least element of C. Thus the least

element of A equals the least element of C, and so, by definition of R,
ARC.
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Example
Let S be the set of all digital circuits with a fixed number 7 of inputs.
Define a relation E on S as follows: For all circuits C1 and C2 in S,

C, E C, < (1 has the same input/output table as C2.

E is reflexive: Suppose C is a digital logic circuit in S. [ We must show
that C E C.] Certainly C has the same input/output table as itself. Thus,
by definition of E, CE C

E is symmetric: Suppose Cand C.are digital logic circuits in S such that
C.E C.. By definition of E, since C\E (., then Cihas the same input/
output table as C.. It follows that C:has the same input/output table as C..
Hence, by definition of E, C.E C

E is transitive: Suppose Ci, ., and Csare digital logic circuits in S such
that C:E C.andC:E Cs. By definition of E, since C: E C: and C: E C;, then
Cihas the same input/output table as C.and C:has the same input/output
table as Cs. It follows that C:has the same input/output table as C.
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Example

Let L be the set of all allowable identifiers in a certain
computer language, and define a relation R on L as follows:
For all strings s and 7 1in L,

s R t © the first eight characters of s equal the first eight
characters of t.

R is reflexive: Let s € L. Clearly s has the same first eight characters as itself. Thus, by
definition of R, s R s.

R is symmetric: Let s and t be in L and suppose that s R . By definition of R, since s R ¢, the
first eight characters of s equal the first eight characters of 7. But then the first eight characters
of t equal the first eight characters of s. And so, by definition of R, t R s

R is transitive: Let s, t, and u be in L and suppose that s R ¢ and ¢ R u. By definition of R, since
s R t and ¢ R u, the first eight characters of s equal the first eight characters of ¢, and the first
eight characters of ¢ equal the first eight characters of u. Hence the first eight characters of s

equal the first el%ht characters of u. Thus, by definition of R, s R u
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In this lecture:

JPart 1: Partitioned Sets

I Part 2: Equivalence Classes

ﬂu Part 3: Equivalence Relation
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Equivalence Class

Suppose A is a set and R 1s an equivalence relation on A. For each element a in A,
the equivalence class of a, denoted [a] and called the class of a for short, is the set
of all elements x in A such that x 1s related to a by R.

In symbols:

[al] ={x € A|x R a}

forallx e A, xelal] & xRa.
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Example

Let A={0,1,2,3,4} and define a relation R on A as :
R=4{(0,0),(0,4),(1,1),(1,3),(2,2),(3,1),(3,3),(4,0),(4,4)}.

Find the distinct equivalence classes of R.
0]={x € A|x RO} ={0, 4}
[Il={xeA|xR1)}={l,3)

® ()
3 2]={x € A|x R2) = {2)
OZ 3]={xecA|x R3)={1,3)
4 : [4] = {x € A|x R4) = {0, 4)

(0] =[4] and [1] = [3]. Thus the distinct equivalence classes of the
relation are {0,4}, {1, 3}, and {2}.
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Equivalence Class

Lemma 8.3.2

Suppose A is a set, R 1s an equivalence relation on A, and a and b are elements of A.
If a R b, then [a] = [b].

Lemma 8.3.3
If A is a set, R is an equivalence relation on A, and a and b are elements of A, then

either [a]N[b]=0 or [a]=]b].

e Definition

Suppose R is an equivalence relation on a set A and S 1s an equivalence class of R.
A representative of the class S is any element a such that [a] = S.
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Congruence Modulo 3

Let R be the relation of congruence modulo 3 on the set Z of all
integers. That 1s, for all integers m and n,

mRn < 3l(m-n) € m =n (mod 3).
Describe the distinct equivalence classes of R.

For each integer a,

lal]={x € Z|x R a}
={x €Z[3|(x —a)}

= {x € Z|x — a = 3k, for some integer k}.

Therefore

la] = {x € Z | x = 3k + a, for some integer k}.
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Congruence Modulo 3

Let R be the relation of congruence modulo 3 on the set Z of all
integers. That 1s, for all integers m and n,

mRn < 3l(m—n) @ m=n(mod3).

In particular:

0] = {x € Z|x = 3k + 0O, for some integer k}
= {x € Z | x = 3k, for some integer k}
={..—9,—-6,-3,0,3,6,9,...},

[1] ={x € Z|x = 3k + 1, for some integer k}
={...—8,-5,-2,1,4,7,10, ...},

2] = {x € Z|x = 3k + 2, for some integer k}
={...—7,—4,—-1,2,5,8, 11, ...}.
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Congruence Modulo 3

Let R be the relation of congruence modulo 3 on the set Z of all
integers. That 1s, for all integers m and n,

mRn < 3l(m—n) @ m=n(mod3).
Now since 3 R 0, then by Lemma 8.3.2,
(3] = [O].

More generally, by the same reasoning,
[0] =[3]=[-3] =[6] =[—-6] =...,and soon.

Similarly,
[1]=[4] =[-2] =[7] =[-5]=...,and so on.
And
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Congruence Modulo 3

Let R be the relation of congruence modulo 3 on the set Z of all
integers. That 1s, for all integers m and n,

mRn < 3l(m—n) @ m=n(mod3).

Notice that every integer is in class [0], [1], or [2]. Hence the distinct
equivalence classes are
{x € Z | x = 3k, for some integer k},

{x € Z|x = 3k + 1, for some integer k},

{x € Z|x = 3k + 2, for some integer k}.
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Congruence Modulo 3

Determine which of the following congruences are true and which
are false.

a.12=7(mod5) b. 6=-8(mod4) c. 3=3(mod7)

a. True. 12 —-7=5=5-1.Hence 5| (12— 7),and so 12 = 7 (mod 5).

b. False. 6 — (—8) = 14, and 4 | 14 because 14 # 4 - k for any integer k. Consequently,
6% —8 (mod 4).

c. True.3—3=0=7-0.Hence7|(3—3),and so 3 = 3 (mod 7). N

STUDENTS-HUB.com ) Uploaded By: anonymo&§



Exercise

Let A be the set of all ordered pairs of integers for which the
second element of the pair 1s nonzero. Symbolically,
A =7Zx(Z—-{0}).

Define a relation R on A as follows: For all (a, b), (c,d) € A,
(a,b)R(c.d) < ad=bc.

Describe the distinct equivalence classes of R

For example, the class (1,2):

[(1’ 2)] — {(19 2), (_1? _2)7 (2? 4)’ (_2, _4>a (3’ 6)’ (_3’ _6)? .. }

, 1 —1 2 -2 3 —3
since — = — = — = — = — = —— and so forth.
2 -2 4 —4 6 —6
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