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8.1	Introduc(on	to	Rela(ons	

In	this	lecture:	

q Part	1:	What	is	a	Rela(on	
q Part	2:	Inverse	of	a	Rela6on;		
q Part	3:	Directed	Graphs;		
q Part	4:	n-ary	Rela6ons,		
q Part	5:	Rela6onal	Databases		
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What	is	a	Rela(on?	

572 Chapter 10 Relations

On the other hand, if the notation x K y represents the sentence "x is not related to y,"
then

0X0 since 0 li 0,
1X1 since 1 ca 1,
2X 1 since 2 -A 1, and
2X2 since 2 >4 2.

Recall that the Cartesian product of A and B, A x B, consists of all ordered pairs
whose first element is in A and whose second element is in B:

A x B = t(x, y) x E A andy E B}.
In this case,

A x B {(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}.

The elements of some ordered pairs in A x B are related, whereas the elements of other
ordered pairs are not. Consider the set of all ordered pairs in A x B whose elements are
related:

{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}.

Observe that knowing which ordered pairs lie in this set is equivalent to knowing which
elements are related to which. The relation itself can therefore be thought of as the
totality of ordered pairs whose elements are related by the given condition. The formal
mathematical definition of relation, based on this idea, was introduced by the American
mathematician and logician C. S. Peirce in the nineteenth century.

L. L;.

Let And Bbesets.A (bn ry)relo R fro A to B is a subset Of A x B. Given
an ordered pair(x Gym) ina A x Bx is related to by Rt,; written x R y, if, and onl

The notation for relations may be written symbolically as follows:

xRy X (x,y) R

The notation x(f y means that x is not related to y by R.

xXy X (x,y) R

The term binary is used in the definition above to refer to the fact that the relation is
a subset of the Cartesian product of two sets. Because we mostly discuss binary relations
in this text, when we use the term relation by itself, we will mean binary relation. A more
general type of relation, called an n-ary relation, is defined later in this section.

Example 10.1.1 A Binary Relation as a Subset
Let A = 11, 21 and B = { 1, 2, 31 and define a binary relation R from A to B as follows:

Given any (x, y) E A x B, (x, y) E R E x-y is even.

a. State explicitly which ordered pairs are in A x B and which are in R.

b. Is I R 3? Is 2 R 3? Is 2 R 2?
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Example	
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Example	

•  Ali	
•  Sana	
•  Lina	

•  AI	
•  DMath		
•  Algo	
•  DB	

EnrolledIn	Person	 Course	

Domain	 Co-domain	
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Example	

•  Ali	
•  Sana	
•  Lina	

FriendOf	
Person	

•  Ali	
•  Sana	
•  Lina	

Person	

FriendOfI = {(Ali, Sana), (Sana,Ali)}
Inverse Relation
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Example	

LessThan	

•  1	
•  2	
•  3	
.	
.	

Z	

•  1	
•  2	
•  3	
•  4	
.	
.	

Z	
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Example	
Define	a	rela6on	E	from	Z	to	Z	as	follows:	For	all	(m,n)	�	Z	×	
Z,	mEn	�	m−niseven.		
a.	Is	4	E	0?	Is	2	E	6?	Is	3	E	(−3)?	Is	5	E	2?	
b.	List	five	integers	that	are	related	by	E	to	1.		
c.	Prove	that	if	n	is	any	odd	integer,	then	n	E	1.		

a.	Yes,4	E	0	because	4−0=4	and	4	is	even.	Yes,	2	E	6	because	2−6=−4	
and	−4	is	even.	Yes,	3	E	(−3)	because	3−(−3)=6	and	6	is	even.	No,	5		
E	2	because	5−2=3	and	3	is	not	even.		
b.	1	because1−1=0	is	even,	3	because	3−1=2	is	even,	5	because	
5−1=4	is	even,	−1	because	−1−1=−2	is	even,	−3	because	−3−1=−4	is	
even.		
c.	Suppose	n	is	any	odd	integer.	Then	n	=	2k	+	1	for	some	integer	k.	
By	defini6on	of	E	,	n	E	1	if,	and	only	if,	n	−	1	is	even.	By	subs6tu6on,		
n	−	1	=	(2k	+	1)	−	1	=	2k,	and	since	k	is	an	integer,	2k	is	even.	Hence	
n	E	1	[as	was	to	be	shown].		
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Example	

E	

•  1	
•  2	
•  3	
.	
.	

Z	

•  1	
•  2	
•  3	
•  4	
.	
.	

Z	

Define a relation E from Z to Z as follows: 

       For all (m, n) � Z × Z,   m E n � m−n  is even.
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Example:	a	rela(on	on	a	Power	Set	

A S B � A has at least as many elements as B.

a.  Is {a,b} S {b,c}? Yes,	both	sets	have	two	elements.

b.  Is {a} S �? Yes,	{a}	has	one	element	and	�	has	zero	elements,	and	1	≥	0.

c.  Is {b,c} S {a,b,c}? No,	{b,	c}	has	two	elements	and	{a,	b,	c}	has	three	elements	and	2	<	3.

d.  Is {c} S {a}? Yes,	both	sets	have	one	element.		

✓	

✗	

✓	

✓	

Let X = {a, b, c}. Then P(X) = {�, {a}, {b}, {c}, {a, b}, {a, 
c}, {b, c}, {a, b, c}}. Define a relation S from P(X) to Z as 
follows: For all sets A and B in P(X) (i.e., for all subsets A and 
B of X),
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Let A = {1, 2, 3} and B = {1, 3, 5}, define relations 
S and T from A to B as follows: For all (x, y) � A × B,
               (x, y) � S ⇔	   x < y    S is a “LessThan” relation. 
                            T = {(2, 1), (2, 5)}.

10.1 Relations on Sets 575

Example 10.1.5 Arrow Diagrams of Relations
Let A = {1, 2, 3) and B = {1, 3, 5} and define relations S and T from A to B as follows:
For all (x, y) E A x B,

(x, y) E S X* x < y S is a "less than" relation.
T = {(2, 1), (2, 5)1.

Draw arrow diagrams for S and T.

'J"ULtlullQrvl o - .

These example relations illustrate that it is possible to have several arrows coming out
of the same element of A pointing in different directions. Also, it is quite possible to have
an element of A that does not have an arrow coming out of it. U

Relations and Functions
With the introduction of Georg Cantor's set theory in the late nineteenth century, it began
to seem possible to put mathematics on a firm logical foundation by developing all the
different branches of mathematics from logic and set theory alone. In 1914, a crucial
breakthrough in using sets to specify mathematical structures was made by Norbert Wiener
(1894-1964), a young American who had recently received his Ph.D. from Harvard.
What Wiener showed was that an ordered pair can be defined as a certain type of set.
Unfortunately, his definition was somewhat awkward. At about the same time, the German
mathematician Felix Hausdorff (1868-1942) offered another definition, but it turned out
to have a slight flaw. Finally, in 1921, the Polish mathematician Kazimierez Kuratowski
(1896-1980) published the version of the definition that has since become standard. It
specifies that

(a, b) = {{a), {a, bhi.

Note that this definition implies the fundamental property of ordered pairs:

(a,b)=(c,d) X. a=candb=d.

The importance of this definition is that it makes it possible to define binary relations using
nothing other than set theory, because Cartesian products are defined as sets of ordered
pairs and binary relations are defined as subsets of Cartesian products. The concept of
function is then defined as the following special kind of a binary relation.

I. ! a

A function F from a set A to a set B is a relation from A to B that satisfies the
following two properties:

1. For every element x in A, there is an element y in B such that (x, y) E F.

2. For all elements x in A and y and z in B,

if (x, y) E F and (x, z) X F, then y = z.

If F is a function from A to B, we write
y = F(x) <* (x, y) E F.
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Example	
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Rela(ons	and	Func(ons	

10.1 Relations on Sets 575

Example 10.1.5 Arrow Diagrams of Relations
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Example	

R = {(2, 5), (4, 1), (4, 3), (6, 5)}.

576 Chapter 10 Relations

Note that y = F(x) if, and only if, y is the second element of an ordered pair in F
whose first element is x. Note also that properties (1) and (2) can be stated less formally
as follows: A binary relation F from A to B is a function if, and only if:

1. Every element of A is the first element of an ordered pair of F.

2. No two distinct ordered pairs in F have the same first element.

Example 10.1.6 Functions and Relations on Finite Sets
Let A = {2, 4, 6} and B = {1, 3, 51. Which of the relations R and S defined below are
functions from A to B?

a. R = {(2, 5), (4, 1), (4, 3), (6, 5)1.

b. For all (x, y) E A x B, (x, y) E S y = x +1.

Solution

a. R is not a function because it does not satisfy property (2). The ordered pairs (4, 1)
and (4, 3) have the same first element but different second elements. You can see this
graphically if you draw the arrow diagram for R.

A

b. S is not a function because it does not satisfy property (1). It is not true that every
element of A is the first element of an ordered pair in S. For example, 6 E A but there
is no y in B such that y = 6 + 1 = 7. You can also see this graphically by drawing the
arrow diagram for S.

A -

U

Example 10.1.7 Functions and Relations on Sets of Real Numbers
a. In Example 10.1.3 the circle relation C was defined as follows:

For all (x, y) E R x R, (x, y) E C X2 + y 2 = 1.

Is C a function?

b. Define a relation from R to R as follows:

Forall(x,y)ERxR, (x,y)EL X y=x-1.

Is L a function?

P

✗	

Let A = {2 , 4, 6} and B = {1, 3 , 5}. 
Is relation R a function from A to B?
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Example	

For all (x,y) � A × B, (x,y) � S y=x+1.
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8.1	Introduc(on	to	Rela(ons	

In	this	lecture:	
q Part	1:	What	is	a	Rela6on	

q Part	2:	Inverse	of	a	Rela(on	
q Part	3:	Directed	Graphs	
q Part	4:	n-ary	Rela6ons	
q Part	5:	Rela6onal	Databases		

Keywords:	Rela6ons,	Mathema6cal	Rela6ons,	domain,	range,	co-domain,	inverse	rela6ons,	equality	of	
rela6ons,		direct	graph,	n-ary	rela6ons,	rela6onal	databases			

Rela(ons	

	Mustafa	Jarrar:	Lecture	Notes	in	Discrete	Mathema6cs.	
Birzeit University, Palestine, 2015	
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Inverse	Rela(on	

Let R be a relation from A to B. Define the inverse relation R-1 

from B to A as follows: 	
R-1 = {(y,x)  � B × A  |  (x,y) � R}. 	

Defini(on		

For all  x�A   and  y�B,        (y,x)�R-1               
 � (x,y)�R. 	
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Let A = {2,3,4} and B = {2,6,8} and let R be the “divides” relation 
from A to B: For all (x, y) � A × B,
                                             x R y � x | y        x divides y.

a. State explicitly which ordered pairs are in R and R−1, and draw arrow 
diagrams for R 
and R−1�
�
�
�
�
�
�

b. Describe R−1 in words. 
For all (y, x) � B × A, y R−1 x � y is a multiple of x. 
	

R    = {(2,2),(2,6),(2,8),(3,6),(4,8)} 
R−1 = {(2,2),(6,2),(8,2),(6,3),(8,4)}

Example	

444 Chapter 8 Relations

The Inverse of a Relation
If R is a relation from A to B, then a relation R−1 from B to A can be defined by
interchanging the elements of all the ordered pairs of R.

• Definition

Let R be a relation from A to B. Define the inverse relation R−1 from B to A as
follows:

R−1 = {(y, x) ∈ B × A | (x, y) ∈ R}.

This definition can be written operationally as follows:

For all x ∈ A and y ∈ B, (y, x) ∈ R−1 ⇔ (x, y) ∈ R.

Example 8.1.4 The Inverse of a Finite Relation

Let A = {2, 3, 4} and B = {2, 6, 8} and let R be the “divides” relation from A to B: For
all (x, y) ∈ A × B,

x R y ⇔ x | y x divides y.

a. State explicitly which ordered pairs are in R and R−1, and draw arrow diagrams for R
and R−1.

b. Describe R−1 in words.

Solution

a. R = {(2, 2), (2, 6), (2, 8), (3, 6), (4, 8)}
R−1 = {(2, 2), (6, 2), (8, 2), (6, 3), (8, 4)}

BR

2

6

8

A

2

3

4

To draw the arrow diagram for R−1, you can copy the arrow diagram for R but reverse
the directions of the arrows.

BR–1

2

6

8

A

2

3

4
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Example	

•  Ali	
•  Sana	
•  Lina	

•  AI	
•  DMath		
•  DS	
•  DB	

EnrolledIn-1	
Person	 Course	
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Example	

•  Ali	
•  Sana	
•  Lina	

FriendOf-1	
Person	

•  Ali	
•  Sana	
•  Lina	

Person	
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Inverse	of	Rela(ons	in	Language	

What would be the inverse of the following relations in English

SonOf -1 = ?

WifeOf -1 = ?

WorksAt -1 = ?

EnrolledOf -1 = ?

PresidentOf -1 = ?

BrotherOf -1 = ?

SisterOf -1 = ?

…. 

Parent of

Husband of

Employs

Enrolls

Leadership of / Led by

Brother of

Sister of
Symmetric Relation

7

&
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8.1	Introduc(on	to	Rela(ons	

In	this	lecture:	
q Part	1:	What	is	a	Rela6on	
q Part	2:	Inverse	of	a	Rela6on	

q Part	3:	Directed	Graphs	
q Part	4:	n-ary	Rela6ons	
q Part	5:	Rela6onal	Databases		

Keywords:	Rela6ons,	Mathema6cal	Rela6ons,	domain,	range,	co-domain,	inverse	rela6ons,	equality	of	
rela6ons,		direct	graph,	n-ary	rela6ons,	rela6onal	databases			

Rela(ons	
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Directed	Graph	of	a	Rela(on	

446 Chapter 8 Relations

Directed Graph of a Relation
In the remaining sections of this chapter, we discuss important properties of relations that
are defined from a set to itself.

Note It is important to
distinguish clearly
between a relation and the
set on which it is defined.

• Definition

A relation on a set A is a relation from A to A.

When a relation R is defined on a set A, the arrow diagram of the relation can be modified
so that it becomes a directed graph. Instead of representing A as two separate sets of
points, represent A only once, and draw an arrow from each point of A to each related
point. As with an ordinary arrow diagram,

For all points x and y in A,

there is an arrow from x to y ⇔ x R y ⇔ (x, y) ∈ R.

If a point is related to itself, a loop is drawn that extends out from the point and goes
back to it.

Example 8.1.6 Directed Graph of a Relation

Let A = {3, 4, 5, 6, 7, 8} and define a relation R on A as follows: For all x, y ∈ A,

x R y ⇔ 2 | (x − y).

Draw the directed graph of R.

Solution Note that 3 R 3 because 3− 3 = 0 and 2 | 0 since 0 = 2 · 0. Thus there is a loop
from 3 to itself. Similarly, there is a loop from 4 to itself, from 5 to itself, and so forth,
since the difference of each integer with itself is 0, and 2 | 0.

Note also that 3 R 5 because 3− 5 = −2 = 2 · (−1). And 5 R 3 because 5− 3 =
2 = 2 · 1. Hence there is an arrow from 3 to 5 and also an arrow from 5 to 3. The other
arrows in the directed graph, as shown below, are obtained by similar reasoning.

5

4

6

7

8
3

■

N-ary Relations and Relational Databases
N -ary relations form the mathematical foundation for relational database theory. A binary
relation is a subset of a Cartesian product of two sets, similarly, an n-ary relation is a
subset of a Cartesian product of n sets.
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Let A = {3, 4, 5, 6, 7, 8} and define a relation R on A as 
follows: For all x, y � A, x R y � 2 | (x−y). 

Example	
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N-ary	Rela(ons	

EnrolledIn(Ali, Dmath)
EnrolledIn(Sami, DB)

Enrollment(Sami, DB, 99)

Enrollment(Sami, DB, 99, 2014)
 
Enrollment(Sami, DB, 99, 2014,F)

R(a1, a2, a3, ….., an)

Binary (2-ary)

Ternary  (3-ary)

Quaternary (4-ary)

n-ary

5-ary
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N-ary	Rela(ons	 8.1 Relations on Sets 447

• Definition

Given sets A1, A2, . . . , An , an n-ary relation R on A1 × A2 × · · ·× An is a subset
of A1 × A2 × · · ·× An . The special cases of 2-ary, 3-ary, and 4-ary relations are
called binary, ternary, and quaternary relations, respectively.

Example 8.1.7 A Simple Database

The following is a radically simplified version of a database that might be used in a
hospital. Let A1 be a set of positive integers, A2 a set of alphabetic character strings, A3

a set of numeric character strings, and A4 a set of alphabetic character strings. Define a
quaternary relation R on A1 × A2 × A3 × A4 as follows:

(a1, a2, a3, a4) ∈ R ⇔ a patient with patient ID number a1, named a2, was
admitted on date a3, with primary diagnosis a4.

At a particular hospital, this relation might contain the following 4-tuples:

(011985, John Schmidt, 020710, asthma)

(574329, Tak Kurosawa, 0114910, pneumonia)

(466581, Mary Lazars, 0103910, appendicitis)

(008352, Joan Kaplan, 112409, gastritis)

(011985, John Schmidt, 021710, pneumonia)

(244388, Sarah Wu, 010310, broken leg)

(778400, Jamal Baskers, 122709, appendicitis)

In discussions of relational databases, the tuples are normally thought of as being
written in tables. Each row of the table corresponds to one tuple, and the header for each
column gives the descriptive attribute for the elements in the column.

Operations within a database allow the data to be manipulated in many different ways.
For example, in the database language SQL, if the above database is denoted S, the result
of the query

SELECT Patient−ID#, Name FROM S WHERE

Admission−Date = 010310

would be a list of the ID numbers and names of all patients admitted on 01-03-10:

466581 Mary Lazars,

244388 Sarah Wu.

This is obtained by taking the intersection of the set A1 × A2 × {010310}× A4 with the
database and then projecting onto the first two coordinates. (See exercise 25 of
Section 7.1.) Similarly, SELECT can be used to obtain a list of all admission dates of
a given patient. For John Schmidt this list is

02-07-10 and

02-17-10

Individual entries in a database can be added, deleted, or updated, and most databases
can sort data entries in various ways. In addition, entire databases can be merged, and the
entries common to two databases can be moved to a new database. ■
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8.1	Introduc(on	to	Rela(ons	

In	this	lecture:	
q Part	1:	What	is	a	Rela6on	
q Part	2:	Inverse	of	a	Rela6on	
q Part	3:	Directed	Graphs	
q Part	4:	n-ary	Rela6ons	
q Part	5:	Rela(onal	Databases		

Keywords:	Rela6ons,	Mathema6cal	Rela6ons,	domain,	range,	co-domain,	inverse	rela6ons,	equality	of	
rela6ons,		direct	graph,	n-ary	rela6ons,	rela6onal	databases			

Rela(ons	
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Rela(onal	Databases	
Let A1 be a set of positive integers, A2 a set of alphabetic character �
strings, A3 a set of numeric character strings, and A4 a set of alphabetic 
character strings. Define a quaternary relation R on A1 × A2 × A3 × A4 as 
follows: 
(a1, a2, a3, a4) � R � a patient with patient ID number a1,
 named a2, was admitted on date a3, with primary diagnosis a4. 

(011985,	John	Schmidt,		020710,	asthma)		
(574329,	Tak	Kurosawa,	114910,	pneumonia)	
	(466581,	Mary	Lazars,			103910,	appendici6s)		
(008352,	Joan	Kaplan,				112409,		gastri6s)		
(011985,	John	Schmidt,	021710,		pneumonia)		
(244388,	Sarah	Wu,								010310,	broken	leg)		
(778400,	Jamal	Baskers,	122709,	appendici6s)	

Patient(ID, Name, Date, Diagnosis)	
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Rela(onal	Databases	
R on A1 × A2 × A3 × A4 as follows:
(a1, a2, a3, a4) � R � a patient with patient ID number a1, 

named a2, was admitted on date a3, with primary diagnosis a4.

ID Name Date Diagnosis 

Each row is 
called tuple

Patient 	
Relation

(011985,	John	Schmidt,		020710,	asthma)		
(574329,	Tak	Kurosawa,	114910,	pneumonia)	
	(466581,	Mary	Lazars,			103910,	appendici6s)		
(008352,	Joan	Kaplan,				112409,		gastri6s)		
(011985,	John	Schmidt,	021710,		pneumonia)		
(244388,	Sarah	Wu,								010310,	broken	leg)		
(778400,	Jamal	Baskers,	122709,	appendici6s)	

Uploaded By: anonymousSTUDENTS-HUB.com



40	,	

Rela(onal	Databases	
R on A1 × A2 × A3 × A4 as follows:
(a1, a2, a3, a4) � R � a patient with patient ID number a1, 

named a2, was admitted on date a3, with primary diagnosis a4.

ID Name Date Diagnosis 

Each row is 
called tuple

Patient 	
Relation

(011985,	John	Schmidt,		020710,	asthma)		
(574329,	Tak	Kurosawa,	114910,	pneumonia)	
	(466581,	Mary	Lazars,			103910,	appendici6s)		
(008352,	Joan	Kaplan,				112409,		gastri6s)		
(011985,	John	Schmidt,	021710,		pneumonia)		
(244388,	Sarah	Wu,								010310,	broken	leg)		
(778400,	Jamal	Baskers,	122709,	appendici6s)	

Ø Notice that Tables in this way are 
called Relations.

Ø Information stored in this way is 
called a “Relational Database” 
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8.1.	Introduc-on	to	Rela-ons	

8.2	Proper-es	of	Rela-ons		
8.3	Equivalence	Rela-ons	
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8.2	Proper-es	of	Rela-ons	

In	this	lecture:	

q Part	1:	Proper-es:	Reflexivity,	Symmetry,	Transi-vity		

q Part	2:	Proving	Proper6es	of	Rela6ons	

q Part	3:	Transi6ve	Closure		

Keywords:	Rela6ons,	Mathema6cal	Rela6ons,	domain,	Reflexivity,	Symmetry,	Transi6vity	,	Transi6ve	Closure		
		

Rela-ons	
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450 Chapter 8 Relations

Then 2 R 2 because 2− 2 = 0, and 3 | 0. Similarly, 3 R 3, 4 R 4, 6 R 6, 7 R 7, and
9 R 9. Also 6 R 3 because 6− 3 = 3, and 3 | 3. And 3 R 6 because 3− 6 = −(6− 3) =
−3, and 3 | (−3). Similarly, 3 R 9, 9 R 3, 6 R 9, 9 R 6, 4 R 7, and 7 R 4. Thus the directed
graph for R has the appearance shown below.

3
4

7

2

6
9

Note For reference:
x R y ⇔ 3 | (x − y).

This graph has three important properties:

1. Each point of the graph has an arrow looping around from it back to itself.

2. In each case where there is an arrow going from one point to a second, there is an
arrow going from the second point back to the first.

3. In each case where there is an arrow going from one point to a second and from the
second point to a third, there is an arrow going from the first point to the third. That
is, there are no “incomplete directed triangles” in the graph.

Properties (1), (2), and (3) correspond to properties of general relations called reflex-
ivity, symmetry, and transitivity.

• Definition

Let R be a relation on a set A.

1. R is reflexive if, and only if, for all x ∈ A, x R x .

2. R is symmetric if, and only if, for all x, y ∈ A, if x R y then y R x .

3. R is transitive if, and only if, for all x, y, z ∈ A, if x R y and y R z then x R z.

Because of the equivalence of the expressions x R y and (x, y) ∈ R for all x and y
in A, the reflexive, symmetric, and transitive properties can also be written as follows:

!
Caution! The definition
of symmetric does not say
that x is related to y by R;
only that if it happens that
x is related to y, then y
must be related to x .

1. R is reflexive ⇔ for all x in A, (x, x) ∈ R.

2. R is symmetric ⇔ for all x and y in A, if (x, y) ∈ R then (y, x) ∈ R.

3. R is transitive ⇔ for all x, y and z in A, if (x, y) ∈ R and (y, z) ∈ R
then (x, z) ∈ R.

!
Caution! The “first,”
“second,” and “third”
elements in the informal
versions need not all be
distinct. This is a
disadvantage of
informality: It may mask
nuances that a formal
definition makes clear.

In informal terms, properties (1)–(3) say the following:

1. Reflexive: Each element is related to itself.

2. Symmetric: If any one element is related to any other element, then the second ele-
ment is related to the first.

3. Transitive: If any one element is related to a second and that second element is
related to a third, then the first element is related to the third.
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R is Reflexive: Each element is related to itself.

R is not reflexive: there is an element x in A such 
that x R x [that is, such that ( x , x ) ∉	R ] .
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Kills?
FreindOf?

MemberOf?
PartOf?
SubSetOf?
SameAS? 

BrotherOf?
SonOf?
FatherOf?
RelativeOf? 

Examples:
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450 Chapter 8 Relations

Then 2 R 2 because 2− 2 = 0, and 3 | 0. Similarly, 3 R 3, 4 R 4, 6 R 6, 7 R 7, and
9 R 9. Also 6 R 3 because 6− 3 = 3, and 3 | 3. And 3 R 6 because 3− 6 = −(6− 3) =
−3, and 3 | (−3). Similarly, 3 R 9, 9 R 3, 6 R 9, 9 R 6, 4 R 7, and 7 R 4. Thus the directed
graph for R has the appearance shown below.
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Note For reference:
x R y ⇔ 3 | (x − y).

This graph has three important properties:

1. Each point of the graph has an arrow looping around from it back to itself.

2. In each case where there is an arrow going from one point to a second, there is an
arrow going from the second point back to the first.

3. In each case where there is an arrow going from one point to a second and from the
second point to a third, there is an arrow going from the first point to the third. That
is, there are no “incomplete directed triangles” in the graph.

Properties (1), (2), and (3) correspond to properties of general relations called reflex-
ivity, symmetry, and transitivity.

• Definition

Let R be a relation on a set A.

1. R is reflexive if, and only if, for all x ∈ A, x R x .

2. R is symmetric if, and only if, for all x, y ∈ A, if x R y then y R x .

3. R is transitive if, and only if, for all x, y, z ∈ A, if x R y and y R z then x R z.

Because of the equivalence of the expressions x R y and (x, y) ∈ R for all x and y
in A, the reflexive, symmetric, and transitive properties can also be written as follows:

!
Caution! The definition
of symmetric does not say
that x is related to y by R;
only that if it happens that
x is related to y, then y
must be related to x .

1. R is reflexive ⇔ for all x in A, (x, x) ∈ R.

2. R is symmetric ⇔ for all x and y in A, if (x, y) ∈ R then (y, x) ∈ R.

3. R is transitive ⇔ for all x, y and z in A, if (x, y) ∈ R and (y, z) ∈ R
then (x, z) ∈ R.

!
Caution! The “first,”
“second,” and “third”
elements in the informal
versions need not all be
distinct. This is a
disadvantage of
informality: It may mask
nuances that a formal
definition makes clear.

In informal terms, properties (1)–(3) say the following:

1. Reflexive: Each element is related to itself.

2. Symmetric: If any one element is related to any other element, then the second ele-
ment is related to the first.

3. Transitive: If any one element is related to a second and that second element is
related to a third, then the first element is related to the third.
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R is Symmetric: If any one element is related to any 
other element, then the second is related to the first.

R is not Symmetric: there are elements x and y in A 
such that x R y but y R x [that is, such that ( x , y ) ∈	 
R but (y,x ) ∉ R].

Likes?
LocatedIn?
Kills?
FreindOf?

MemberOf?
PartOf?
SubSetOf?
SameAS? 

BrotherOf?
SonOf?
FatherOf?
RelativeOf? 

Examples:
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450 Chapter 8 Relations

Then 2 R 2 because 2− 2 = 0, and 3 | 0. Similarly, 3 R 3, 4 R 4, 6 R 6, 7 R 7, and
9 R 9. Also 6 R 3 because 6− 3 = 3, and 3 | 3. And 3 R 6 because 3− 6 = −(6− 3) =
−3, and 3 | (−3). Similarly, 3 R 9, 9 R 3, 6 R 9, 9 R 6, 4 R 7, and 7 R 4. Thus the directed
graph for R has the appearance shown below.
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7

2

6
9

Note For reference:
x R y ⇔ 3 | (x − y).

This graph has three important properties:

1. Each point of the graph has an arrow looping around from it back to itself.

2. In each case where there is an arrow going from one point to a second, there is an
arrow going from the second point back to the first.

3. In each case where there is an arrow going from one point to a second and from the
second point to a third, there is an arrow going from the first point to the third. That
is, there are no “incomplete directed triangles” in the graph.

Properties (1), (2), and (3) correspond to properties of general relations called reflex-
ivity, symmetry, and transitivity.

• Definition

Let R be a relation on a set A.

1. R is reflexive if, and only if, for all x ∈ A, x R x .

2. R is symmetric if, and only if, for all x, y ∈ A, if x R y then y R x .

3. R is transitive if, and only if, for all x, y, z ∈ A, if x R y and y R z then x R z.

Because of the equivalence of the expressions x R y and (x, y) ∈ R for all x and y
in A, the reflexive, symmetric, and transitive properties can also be written as follows:

!
Caution! The definition
of symmetric does not say
that x is related to y by R;
only that if it happens that
x is related to y, then y
must be related to x .

1. R is reflexive ⇔ for all x in A, (x, x) ∈ R.

2. R is symmetric ⇔ for all x and y in A, if (x, y) ∈ R then (y, x) ∈ R.

3. R is transitive ⇔ for all x, y and z in A, if (x, y) ∈ R and (y, z) ∈ R
then (x, z) ∈ R.

!
Caution! The “first,”
“second,” and “third”
elements in the informal
versions need not all be
distinct. This is a
disadvantage of
informality: It may mask
nuances that a formal
definition makes clear.

In informal terms, properties (1)–(3) say the following:

1. Reflexive: Each element is related to itself.

2. Symmetric: If any one element is related to any other element, then the second ele-
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3. Transitive: If any one element is related to a second and that second element is
related to a third, then the first element is related to the third.
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R is Transitive: If any one element is related to a 
second and that second element is related to a third, 
then the first element is related to the third.
R is not transitive: there are elements x,y and z in A 
such that xRy and yRz but x R z [that is, such that
  (x,y)	∈ R and (y,z)	∈ R but (x , z) ∉ R ] .
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MemberOf?
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Examples:
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Example	

Let A = {2,3,4,6,7,9} and define a relation R on A as:             
               For all x, y � A, x R y � 3 | (x−y).

450 Chapter 8 Relations

Then 2 R 2 because 2− 2 = 0, and 3 | 0. Similarly, 3 R 3, 4 R 4, 6 R 6, 7 R 7, and
9 R 9. Also 6 R 3 because 6− 3 = 3, and 3 | 3. And 3 R 6 because 3− 6 = −(6− 3) =
−3, and 3 | (−3). Similarly, 3 R 9, 9 R 3, 6 R 9, 9 R 6, 4 R 7, and 7 R 4. Thus the directed
graph for R has the appearance shown below.

3
4

7

2

6
9

Note For reference:
x R y ⇔ 3 | (x − y).

This graph has three important properties:

1. Each point of the graph has an arrow looping around from it back to itself.

2. In each case where there is an arrow going from one point to a second, there is an
arrow going from the second point back to the first.

3. In each case where there is an arrow going from one point to a second and from the
second point to a third, there is an arrow going from the first point to the third. That
is, there are no “incomplete directed triangles” in the graph.

Properties (1), (2), and (3) correspond to properties of general relations called reflex-
ivity, symmetry, and transitivity.

• Definition

Let R be a relation on a set A.

1. R is reflexive if, and only if, for all x ∈ A, x R x .

2. R is symmetric if, and only if, for all x, y ∈ A, if x R y then y R x .

3. R is transitive if, and only if, for all x, y, z ∈ A, if x R y and y R z then x R z.

Because of the equivalence of the expressions x R y and (x, y) ∈ R for all x and y
in A, the reflexive, symmetric, and transitive properties can also be written as follows:

!
Caution! The definition
of symmetric does not say
that x is related to y by R;
only that if it happens that
x is related to y, then y
must be related to x .

1. R is reflexive ⇔ for all x in A, (x, x) ∈ R.

2. R is symmetric ⇔ for all x and y in A, if (x, y) ∈ R then (y, x) ∈ R.

3. R is transitive ⇔ for all x, y and z in A, if (x, y) ∈ R and (y, z) ∈ R
then (x, z) ∈ R.

!
Caution! The “first,”
“second,” and “third”
elements in the informal
versions need not all be
distinct. This is a
disadvantage of
informality: It may mask
nuances that a formal
definition makes clear.

In informal terms, properties (1)–(3) say the following:

1. Reflexive: Each element is related to itself.

2. Symmetric: If any one element is related to any other element, then the second ele-
ment is related to the first.

3. Transitive: If any one element is related to a second and that second element is
related to a third, then the first element is related to the third.
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Let A = {0, 1, 2, 3} and define relation R on A as:
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)} 

Exercise 	

Is R Reflexive?          Symmetric?         Transitive? 

8.2 Reflexivity, Symmetry, and Transitivity 451

Note that the definitions of reflexivity, symmetry, and transitivity are universal state-
ments. This means that to prove a relation has one of the properties, you use either the
method of exhaustion or the method of generalizing from the generic particular.

Now consider what it means for a relation not to have one of the properties defined
previously. Recall that the negation of a universal statement is existential. Hence if R is a
relation on a set A, then

1. R is not reflexive ⇔ there is an element x in A such that x R x [that is, such that
(x, x) /∈ R].

2. R is not symmetric ⇔ there are elements x and y in A such that x R y but y R x
[that is, such that (x, y) ∈ R but (y, x) /∈ R].

3. R is not transitive ⇔ there are elements x, y and z in A such that x R y and y R z
but x R z [that is, such that (x, y) ∈ R and (y, z) ∈ R but
(x, z) /∈ R].

It follows that you can show that a relation does not have one of the properties by finding
a counterexample.

Example 8.2.1 Properties of Relations on Finite Sets

Let A = {0, 1, 2, 3} and define relations R, S, and T on A as follows:

R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)},
S = {(0, 0), (0, 2), (0, 3), (2, 3)},
T = {(0, 1), (2, 3)}.

a. Is R reflexive? symmetric? transitive?

b. Is S reflexive? symmetric? transitive?

c. Is T reflexive? symmetric? transitive?

Solution

a. The directed graph of R has the appearance shown below.

0

3

1

2

R is reflexive: There is a loop at each point of the directed graph. This means that
each element of A is related to itself, so R is reflexive.

R is symmetric: In each case where there is an arrow going from one point of the
graph to a second, there is an arrow going from the second point back to the first. This
means that whenever one element of A is related by R to a second, then the second is
related to the first. Hence R is symmetric.

R is not transitive: There is an arrow going from 1 to 0 and an arrow going from 0 to
3, but there is no arrow going from 1 to 3. This means that there are elements of A—0,
1, and 3—such that 1 R 0 and 0 R 3 but 1 R 3. Hence R is not transitive.
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Let A = {0, 1, 2, 3} and define relation R on A as:
R = {(0, 0), (0, 2), (0, 3), (2, 3)}

Exercise 	

Is R Reflexive?          Symmetric?         Transitive? 
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452 Chapter 8 Relations

b. The directed graph of S has the appearance shown below.

0

3 2

1

S is not reflexive: There is no loop at 1, for example. Thus (1, 1) /∈ S, and so S is not
reflexive.

S is not symmetric: There is an arrow from 0 to 2 but not from 2 to 0. Hence (0, 2) ∈ S
but (2, 0) /∈ S, and so S is not symmetric.

S is transitive: There are three cases for which there is an arrow going from one point
of the graph to a second and from the second point to a third: Namely, there are arrows
going from 0 to 2 and from 2 to 3; there are arrows going from 0 to 0 and from 0 to 2;
and there are arrows going from 0 to 0 and from 0 to 3. In each case there is an arrow
going from the first point to the third. (Note again that the “first,” “second,” and “third”
points need not be distinct.) This means that whenever (x, y) ∈ S and (y, z) ∈ S, then
(x, z) ∈ S, for all x, y, z ∈ {0, 1, 2, 3}, and so S is transitive.

c. The directed graph of T has the appearance shown below.

0 1

3 2

T is not reflexive: There is no loop at 0, for example. Thus (0, 0) /∈ T , so T is not
reflexive.

T is not symmetric: There is an arrow from 0 to 1 but not from 1 to 0. Thus (0, 1) ∈ T
but (1, 0) /∈ T , and so T is not symmetric.

Note T is transitive by
default because it is not
not transitive!

T is transitive: The transitivity condition is vacuously true for T . To see this, observe
that the transitivity condition says that

For all x, y, z ∈ A, if (x, y) ∈ T and (y, z) ∈ T then (x, z) ∈ T .

The only way for this to be false would be for there to exist elements of A that make
the hypothesis true and the conclusion false. That is, there would have to be elements
x, y, and z in A such that

(x, y) ∈ T and (y, z) ∈ T and (x, z) /∈ T .

In other words, there would have to be two ordered pairs in T that have the potential to
“link up” by having the second element of one pair be the first element of the other pair.
But the only elements in T are (0, 1) and (2, 3), and these do not have the potential to
link up. Hence the hypothesis is never true. It follows that it is impossible for T not to
be transitive, and thus T is transitive. ■
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Let A = {0, 1, 2, 3} and define relation R on A as:
R ={(0,1),(2,3)}

Exercise 	

Is R Reflexive?          Symmetric?         Transitive? ý	 þ	ý	

452 Chapter 8 Relations

b. The directed graph of S has the appearance shown below.

0

3 2

1

S is not reflexive: There is no loop at 1, for example. Thus (1, 1) /∈ S, and so S is not
reflexive.

S is not symmetric: There is an arrow from 0 to 2 but not from 2 to 0. Hence (0, 2) ∈ S
but (2, 0) /∈ S, and so S is not symmetric.

S is transitive: There are three cases for which there is an arrow going from one point
of the graph to a second and from the second point to a third: Namely, there are arrows
going from 0 to 2 and from 2 to 3; there are arrows going from 0 to 0 and from 0 to 2;
and there are arrows going from 0 to 0 and from 0 to 3. In each case there is an arrow
going from the first point to the third. (Note again that the “first,” “second,” and “third”
points need not be distinct.) This means that whenever (x, y) ∈ S and (y, z) ∈ S, then
(x, z) ∈ S, for all x, y, z ∈ {0, 1, 2, 3}, and so S is transitive.

c. The directed graph of T has the appearance shown below.

0 1

3 2

T is not reflexive: There is no loop at 0, for example. Thus (0, 0) /∈ T , so T is not
reflexive.

T is not symmetric: There is an arrow from 0 to 1 but not from 1 to 0. Thus (0, 1) ∈ T
but (1, 0) /∈ T , and so T is not symmetric.

Note T is transitive by
default because it is not
not transitive!

T is transitive: The transitivity condition is vacuously true for T . To see this, observe
that the transitivity condition says that

For all x, y, z ∈ A, if (x, y) ∈ T and (y, z) ∈ T then (x, z) ∈ T .

The only way for this to be false would be for there to exist elements of A that make
the hypothesis true and the conclusion false. That is, there would have to be elements
x, y, and z in A such that

(x, y) ∈ T and (y, z) ∈ T and (x, z) /∈ T .

In other words, there would have to be two ordered pairs in T that have the potential to
“link up” by having the second element of one pair be the first element of the other pair.
But the only elements in T are (0, 1) and (2, 3), and these do not have the potential to
link up. Hence the hypothesis is never true. It follows that it is impossible for T not to
be transitive, and thus T is transitive. ■
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8.2	Proper-es	of	Rela-ons	
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For instance, for symmetry 
           �x, y � A, if x R y then y R x.

Proving Properties on Relations on Infinite Sets

To prove a relation is reflexive, symmetric, or transitive, first 
write down what is to be proved, in First Order Logic.

Then use direct methods of proving

Until Now we discussed relation on Finite Sets

Next, we discussed relation on infinite Sets

Uploaded By: anonymousSTUDENTS-HUB.com



17	,	

Properties of Equality
Define a relation R on R (the set of all real numbers) as follows: 
For all real numbers x and y. x R y  �  x = y.

Is R Reflexive?          Symmetric?         Transitive?

R is reflexive: R is reflexive if, and only if, the following statement is 
true: For all x�R, x R x. And since x R x just means that x = x, this is 
the same as saying For all x�R, x=x. Which is true; every real 
number is equal to it 

 

Uploaded By: anonymousSTUDENTS-HUB.com



18	,	

Properties of Equality
Define a relation R on R (the set of all real numbers) as follows: 
For all real numbers x and y. x R y  �  x = y.

Is R Reflexive?          Symmetric?         Transitive?

R is symmetric: R is symmetric if, and only if, the following 
statement is true: 
Forall x,y�R, if x R y then y R x. �

By definition of R, x R y means that x = y and y R x means that y = x. 
Hence R is symmetric if, and only if, 
For all x,y�R, if x=y then y=x.�
�
This statement is true; if one number is equal to a second, then the 
second is equal to the first. �
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Properties of Equality
Define a relation R on R (the set of all real numbers) as follows: 
For all real numbers x and y. x R y  �  x = y.

Is R Reflexive?          Symmetric?         Transitive?

R is transitive: R is transitive if, and only if, the following statement 
is true: For all x,y,z�R, if x R y and y R z then x R z.�
�
By definition of R, x R y means that x = y, y R z means that y = z, and 
x R z means that x = z. Hence R is transitive iff the following 
statement is true: For all x,y,z�R, if x=y and y=z then x=z. 
�
This statement is true: If one real number equals a second and the 
second equals a third, then the first equals the third. 
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Define a relation R on R (the set of all real numbers) as follows: 
For all x, y � R, x R y  �  x < y.

Properties of Less Than
	

Is R Reflexive?          Symmetric?         Transitive? 
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m T n  �  3|(m−n).
Define a relation T on Z (the set of all integers) as follows: For 
all integers m and n,

Properties of Congruence Modulo 3 

Is R Reflexive?          Symmetric?         Transitive? 

Suppose m is a particular but arbitrarily chosen integer. [We must show 
that m T m.] 
Now, m−m = 0. 
But 3 | 0 since 0 = 3·0. 
Hence 3|(m−m). 
Thus, by definition of T, mT m
[as was to be shown].

For all m�Z, 3|(m−m).

Uploaded By: anonymousSTUDENTS-HUB.com



22	,	

m T n  �  3|(m−n).

Define a relation T on Z (the set of all integers) as follows: For 
all integers m and n,

Is R Reflexive?          Symmetric?         Transitive? 

Suppose m and n are particular but arbitrarily chosen integers that satisfy 
the condition m T n.

 [We must show that n T m.] 
By definition of T , since m T n then 3 | (m − n). By definition of “divides,” 
this means that m − n = 3k, for some integer k. 
Multiplying both sides by −1 gives n − m = 3(−k). Since −k is an integer, 
this equation shows that 3 | (n − m). Hence, by definition of T , n T m
 [as was to be shown]. 

For all m, n� Z, if 3|(m−n) then 3|(n−m).

Properties of Congruence Modulo 3 

Uploaded By: anonymousSTUDENTS-HUB.com



23	,	

m T n  �  3|(m−n).

Define a relation T on Z (the set of all integers) as follows: For 
all integers m and n,

Is R Reflexive?          Symmetric?         Transitive? 

Suppose m, n, and p are particular but arbitrarily chosen integers that 
satisfy the condition m T n and n T p. [We must show that m T p.] By 
definition of T, since m T n and n T p, then 3|(m−n) and 3|(n−p). By 
definition of “divides,” this means that m − n = 3r and n − p = 3s, for 
some integers r and s. Adding the two equations gives (m−n)+(n−p)=3r
+3s, and simplifying gives that m − p = 3(r + s). Since r + s is an 
integer, this equation shows that 3|(m − p). Hence, by definition of T, m 
T p [as was to be shown]. 

For all m, n�Z, if 3|(m−n) and 3|(n−p) then 3|(m−p).

Properties of Congruence Modulo 3 
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8.2	Proper-es	of	Rela-ons	
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The Transitive Closure of a Relation

The smallest transitive relation that contains the relation.

8.2 Reflexivity, Symmetry, and Transitivity 457

closure of the relation. In a sense made precise by the formal definition, the transitive
closure of a relation is the smallest transitive relation that contains the relation.

• Definition

Let A be a set and R a relation on A. The transitive closure of R is the relation Rt

on A that satisfies the following three properties:

1. Rt is transitive.

2. R ⊆ Rt .

3. If S is any other transitive relation that contains R, then Rt ⊆ S.

Example 8.2.5 Transitive Closure of a Relation

Let A = {0, 1, 2, 3} and consider the relation R defined on A as follows:

R = {(0, 1), (1, 2), (2, 3)}.
Find the transitive closure of R.

Solution Every ordered pair in R is in Rt , so

{(0, 1), (1, 2), (2, 3)} ⊆ Rt .

Thus the directed graph of R contains the arrows shown below.

0 1

3 2

Since there are arrows going from 0 to 1 and from 1 to 2, Rt must have an arrow going
from 0 to 2. Hence (0, 2) ∈ Rt . Then (0, 2) ∈ Rt and (2, 3) ∈ Rt , so since Rt is transitive,
(0, 3) ∈ Rt . Also, since (1, 2) ∈ Rt and (2, 3) ∈ Rt , then (1, 3) ∈ Rt . Thus Rt contains
at least the following ordered pairs:

{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}.
But this relation is transitive; hence it equals Rt . Note that the directed graph of Rt is as
shown below.

0 1

3 2 ■

Test Yourself
1. For a relation R on a set A to be reflexive means that _____.

2. For a relation R on a set A to be symmetric means that
_____.

3. For a relation R on a set A to be transitive means that _____.

4. To show that a relation R on an infinite set A is reflexive,
you suppose that _____ and you show that _____.

5. To show that a relation R on an infinite set A is symmetric,
you suppose that _____ and you show that _____.

6. To show that a relation R on an infinite set A is transitive,
you suppose that _____ and you show that _____.

7. To show that a relation R on a set A is not reflexive, you
_____.
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Let A = {0, 1, 2, 3} and consider the relation R defined on A as:
         R = {(0, 1), (1, 2), (2, 3)}.
Find the transitive closure of R.

8.2 Reflexivity, Symmetry, and Transitivity 457

closure of the relation. In a sense made precise by the formal definition, the transitive
closure of a relation is the smallest transitive relation that contains the relation.

• Definition

Let A be a set and R a relation on A. The transitive closure of R is the relation Rt

on A that satisfies the following three properties:

1. Rt is transitive.

2. R ⊆ Rt .

3. If S is any other transitive relation that contains R, then Rt ⊆ S.

Example 8.2.5 Transitive Closure of a Relation

Let A = {0, 1, 2, 3} and consider the relation R defined on A as follows:

R = {(0, 1), (1, 2), (2, 3)}.
Find the transitive closure of R.

Solution Every ordered pair in R is in Rt , so

{(0, 1), (1, 2), (2, 3)} ⊆ Rt .

Thus the directed graph of R contains the arrows shown below.

0 1

3 2

Since there are arrows going from 0 to 1 and from 1 to 2, Rt must have an arrow going
from 0 to 2. Hence (0, 2) ∈ Rt . Then (0, 2) ∈ Rt and (2, 3) ∈ Rt , so since Rt is transitive,
(0, 3) ∈ Rt . Also, since (1, 2) ∈ Rt and (2, 3) ∈ Rt , then (1, 3) ∈ Rt . Thus Rt contains
at least the following ordered pairs:

{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}.
But this relation is transitive; hence it equals Rt . Note that the directed graph of Rt is as
shown below.

0 1

3 2 ■

Test Yourself
1. For a relation R on a set A to be reflexive means that _____.

2. For a relation R on a set A to be symmetric means that
_____.

3. For a relation R on a set A to be transitive means that _____.

4. To show that a relation R on an infinite set A is reflexive,
you suppose that _____ and you show that _____.

5. To show that a relation R on an infinite set A is symmetric,
you suppose that _____ and you show that _____.

6. To show that a relation R on an infinite set A is transitive,
you suppose that _____ and you show that _____.

7. To show that a relation R on a set A is not reflexive, you
_____.
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closure of the relation. In a sense made precise by the formal definition, the transitive
closure of a relation is the smallest transitive relation that contains the relation.

• Definition

Let A be a set and R a relation on A. The transitive closure of R is the relation Rt

on A that satisfies the following three properties:

1. Rt is transitive.

2. R ⊆ Rt .

3. If S is any other transitive relation that contains R, then Rt ⊆ S.

Example 8.2.5 Transitive Closure of a Relation

Let A = {0, 1, 2, 3} and consider the relation R defined on A as follows:

R = {(0, 1), (1, 2), (2, 3)}.
Find the transitive closure of R.

Solution Every ordered pair in R is in Rt , so

{(0, 1), (1, 2), (2, 3)} ⊆ Rt .

Thus the directed graph of R contains the arrows shown below.

0 1

3 2

Since there are arrows going from 0 to 1 and from 1 to 2, Rt must have an arrow going
from 0 to 2. Hence (0, 2) ∈ Rt . Then (0, 2) ∈ Rt and (2, 3) ∈ Rt , so since Rt is transitive,
(0, 3) ∈ Rt . Also, since (1, 2) ∈ Rt and (2, 3) ∈ Rt , then (1, 3) ∈ Rt . Thus Rt contains
at least the following ordered pairs:

{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}.
But this relation is transitive; hence it equals Rt . Note that the directed graph of Rt is as
shown below.

0 1

3 2 ■

Test Yourself
1. For a relation R on a set A to be reflexive means that _____.

2. For a relation R on a set A to be symmetric means that
_____.

3. For a relation R on a set A to be transitive means that _____.

4. To show that a relation R on an infinite set A is reflexive,
you suppose that _____ and you show that _____.

5. To show that a relation R on an infinite set A is symmetric,
you suppose that _____ and you show that _____.

6. To show that a relation R on an infinite set A is transitive,
you suppose that _____ and you show that _____.

7. To show that a relation R on a set A is not reflexive, you
_____.
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Sets can be partitioned into disjoint sets
�
A partition of a set A is a finite or infinite collection of nonempty, 
mutually disjoint subsets whose union is A. 

Partitioned Sets	

Ai ⋂ Aj = !, whenever i≠j 	

Ai ⋃A2 ⋃...	⋃  A6 = A 	

460 Chapter 8 Relations

“Oh, that’s the name of the song, is it?” Alice said, trying to feel interested.
“No, you don’t understand,” the Knight said, looking a little vexed. “That’s what

the name is called. The name really is ‘The Aged Aged Man.’ ”
“Then I ought to have said ‘That’s what the song is called’?” Alice corrected

herself.
“No, you oughtn’t: that’s quite another thing! The song is called ‘Ways and

Means’: but that’s only what it’s called, you know!”
“Well, what is the song, then?” said Alice, who was by this time completely

bewildered.
“I was coming to that,” the Knight said. “The song really is ‘A-sitting on a Gate’:

and the tune’s my own invention.”
So saying, he stopped his horse and let the reins fall on its neck: then, slowly beating
time with one hand, and with a faint smile lighting up his gentle foolish face, as if he
enjoyed the music of his song, he began.
— Lewis Carroll, Through the Looking Glass, 1872

You know from your early study of fractions that each fraction has many equivalent
forms. For example,

1
2
,

2
4
,

3
6
,
−1
−2

,
−3
−6

,
15
30

, . . . , and so on

are all different ways to represent the same number. They may look different; they may
be called different names; but they are all equal. The idea of grouping together things that
“look different but are really the same” is the central idea of equivalence relations.

The Relation Induced by a Partition
A partition of a set A is a finite or infinite collection of nonempty, mutually disjoint
subsets whose union is A. The diagram of Figure 8.3.1 illustrates a partition of a set A by
subsets A1, A2, . . . , A6.

A2

A4 A5

A6

A3

A1
Ai Aj = ∅, whenever i ≠ j
Ai A2  A6 = A 

Figure 8.3.1 A Partition of a Set

• Definition

Given a partition of a set A, the relation induced by the partition, R, is defined on
A as follows: For all x, y ∈ A,

x R y ⇔ there is a subset Ai of the partition
such that both x and y are in Ai .

Example 8.3.1 Relation Induced by a Partition

Let A = {0, 1, 2, 3, 4} and consider the following partition of A:

{0, 3, 4}, {1}, {2}.
Find the relation R induced by this partition.
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Sets can be partitioned into disjoint sets

Partitioned Sets	

Ai ⋂ Aj = !, whenever i≠j 	

Ai ⋃A2 ⋃...	⋃  A6 = A 	

460 Chapter 8 Relations

“Oh, that’s the name of the song, is it?” Alice said, trying to feel interested.
“No, you don’t understand,” the Knight said, looking a little vexed. “That’s what

the name is called. The name really is ‘The Aged Aged Man.’ ”
“Then I ought to have said ‘That’s what the song is called’?” Alice corrected

herself.
“No, you oughtn’t: that’s quite another thing! The song is called ‘Ways and

Means’: but that’s only what it’s called, you know!”
“Well, what is the song, then?” said Alice, who was by this time completely

bewildered.
“I was coming to that,” the Knight said. “The song really is ‘A-sitting on a Gate’:

and the tune’s my own invention.”
So saying, he stopped his horse and let the reins fall on its neck: then, slowly beating
time with one hand, and with a faint smile lighting up his gentle foolish face, as if he
enjoyed the music of his song, he began.
— Lewis Carroll, Through the Looking Glass, 1872

You know from your early study of fractions that each fraction has many equivalent
forms. For example,

1
2
,

2
4
,

3
6
,
−1
−2

,
−3
−6

,
15
30

, . . . , and so on

are all different ways to represent the same number. They may look different; they may
be called different names; but they are all equal. The idea of grouping together things that
“look different but are really the same” is the central idea of equivalence relations.

The Relation Induced by a Partition
A partition of a set A is a finite or infinite collection of nonempty, mutually disjoint
subsets whose union is A. The diagram of Figure 8.3.1 illustrates a partition of a set A by
subsets A1, A2, . . . , A6.

A2

A4 A5

A6

A3

A1
Ai Aj = ∅, whenever i ≠ j
Ai A2  A6 = A 

Figure 8.3.1 A Partition of a Set

• Definition

Given a partition of a set A, the relation induced by the partition, R, is defined on
A as follows: For all x, y ∈ A,

x R y ⇔ there is a subset Ai of the partition
such that both x and y are in Ai .

Example 8.3.1 Relation Induced by a Partition

Let A = {0, 1, 2, 3, 4} and consider the following partition of A:

{0, 3, 4}, {1}, {2}.
Find the relation R induced by this partition.
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460 Chapter 8 Relations

“Oh, that’s the name of the song, is it?” Alice said, trying to feel interested.
“No, you don’t understand,” the Knight said, looking a little vexed. “That’s what

the name is called. The name really is ‘The Aged Aged Man.’ ”
“Then I ought to have said ‘That’s what the song is called’?” Alice corrected

herself.
“No, you oughtn’t: that’s quite another thing! The song is called ‘Ways and

Means’: but that’s only what it’s called, you know!”
“Well, what is the song, then?” said Alice, who was by this time completely

bewildered.
“I was coming to that,” the Knight said. “The song really is ‘A-sitting on a Gate’:

and the tune’s my own invention.”
So saying, he stopped his horse and let the reins fall on its neck: then, slowly beating
time with one hand, and with a faint smile lighting up his gentle foolish face, as if he
enjoyed the music of his song, he began.
— Lewis Carroll, Through the Looking Glass, 1872

You know from your early study of fractions that each fraction has many equivalent
forms. For example,

1
2
,

2
4
,

3
6
,
−1
−2

,
−3
−6

,
15
30

, . . . , and so on

are all different ways to represent the same number. They may look different; they may
be called different names; but they are all equal. The idea of grouping together things that
“look different but are really the same” is the central idea of equivalence relations.

The Relation Induced by a Partition
A partition of a set A is a finite or infinite collection of nonempty, mutually disjoint
subsets whose union is A. The diagram of Figure 8.3.1 illustrates a partition of a set A by
subsets A1, A2, . . . , A6.

A2

A4 A5

A6

A3

A1
Ai Aj = ∅, whenever i ≠ j
Ai A2  A6 = A 

Figure 8.3.1 A Partition of a Set

• Definition

Given a partition of a set A, the relation induced by the partition, R, is defined on
A as follows: For all x, y ∈ A,

x R y ⇔ there is a subset Ai of the partition
such that both x and y are in Ai .

Example 8.3.1 Relation Induced by a Partition

Let A = {0, 1, 2, 3, 4} and consider the following partition of A:

{0, 3, 4}, {1}, {2}.
Find the relation R induced by this partition.
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Ai ⋂ Aj = !, whenever i≠j 	

Ai ⋃A2 ⋃...	⋃  A6 = A 	

A relation induced by a partition, is 
a relation between two element in the same 
partition. 
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Sets Can be Partitioned into disjoint sets

460 Chapter 8 Relations

“Oh, that’s the name of the song, is it?” Alice said, trying to feel interested.
“No, you don’t understand,” the Knight said, looking a little vexed. “That’s what

the name is called. The name really is ‘The Aged Aged Man.’ ”
“Then I ought to have said ‘That’s what the song is called’?” Alice corrected

herself.
“No, you oughtn’t: that’s quite another thing! The song is called ‘Ways and

Means’: but that’s only what it’s called, you know!”
“Well, what is the song, then?” said Alice, who was by this time completely

bewildered.
“I was coming to that,” the Knight said. “The song really is ‘A-sitting on a Gate’:

and the tune’s my own invention.”
So saying, he stopped his horse and let the reins fall on its neck: then, slowly beating
time with one hand, and with a faint smile lighting up his gentle foolish face, as if he
enjoyed the music of his song, he began.
— Lewis Carroll, Through the Looking Glass, 1872

You know from your early study of fractions that each fraction has many equivalent
forms. For example,

1
2
,

2
4
,

3
6
,
−1
−2

,
−3
−6

,
15
30

, . . . , and so on

are all different ways to represent the same number. They may look different; they may
be called different names; but they are all equal. The idea of grouping together things that
“look different but are really the same” is the central idea of equivalence relations.

The Relation Induced by a Partition
A partition of a set A is a finite or infinite collection of nonempty, mutually disjoint
subsets whose union is A. The diagram of Figure 8.3.1 illustrates a partition of a set A by
subsets A1, A2, . . . , A6.

A2

A4 A5

A6

A3

A1
Ai Aj = ∅, whenever i ≠ j
Ai A2  A6 = A 

Figure 8.3.1 A Partition of a Set

• Definition

Given a partition of a set A, the relation induced by the partition, R, is defined on
A as follows: For all x, y ∈ A,

x R y ⇔ there is a subset Ai of the partition
such that both x and y are in Ai .

Example 8.3.1 Relation Induced by a Partition

Let A = {0, 1, 2, 3, 4} and consider the following partition of A:

{0, 3, 4}, {1}, {2}.
Find the relation R induced by this partition.
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the name is called. The name really is ‘The Aged Aged Man.’ ”
“Then I ought to have said ‘That’s what the song is called’?” Alice corrected

herself.
“No, you oughtn’t: that’s quite another thing! The song is called ‘Ways and

Means’: but that’s only what it’s called, you know!”
“Well, what is the song, then?” said Alice, who was by this time completely

bewildered.
“I was coming to that,” the Knight said. “The song really is ‘A-sitting on a Gate’:

and the tune’s my own invention.”
So saying, he stopped his horse and let the reins fall on its neck: then, slowly beating
time with one hand, and with a faint smile lighting up his gentle foolish face, as if he
enjoyed the music of his song, he began.
— Lewis Carroll, Through the Looking Glass, 1872

You know from your early study of fractions that each fraction has many equivalent
forms. For example,
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, . . . , and so on

are all different ways to represent the same number. They may look different; they may
be called different names; but they are all equal. The idea of grouping together things that
“look different but are really the same” is the central idea of equivalence relations.

The Relation Induced by a Partition
A partition of a set A is a finite or infinite collection of nonempty, mutually disjoint
subsets whose union is A. The diagram of Figure 8.3.1 illustrates a partition of a set A by
subsets A1, A2, . . . , A6.

A2

A4 A5

A6

A3

A1
Ai Aj = ∅, whenever i ≠ j
Ai A2  A6 = A 

Figure 8.3.1 A Partition of a Set

• Definition

Given a partition of a set A, the relation induced by the partition, R, is defined on
A as follows: For all x, y ∈ A,

x R y ⇔ there is a subset Ai of the partition
such that both x and y are in Ai .

Example 8.3.1 Relation Induced by a Partition

Let A = {0, 1, 2, 3, 4} and consider the following partition of A:

{0, 3, 4}, {1}, {2}.
Find the relation R induced by this partition.
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Example	

8.3 Equivalence Relations 461

Solution Since {0, 3, 4} is a subset of the partition,

0 R 3 because both 0 and 3 are in {0, 3, 4},
3 R 0 because both 3 and 0 are in {0, 3, 4},
0 R 4 because both 0 and 4 are in {0, 3, 4},
4 R 0 because both 4 and 0 are in {0, 3, 4},
3 R 4 because both 3 and 4 are in {0, 3, 4}, and

4 R 3 because both 4 and 3 are in {0, 3, 4}.

Also, 0 R 0 because both 0 and 0 are in {0, 3, 4}
3 R 3 because both 3 and 3 are in {0, 3, 4}, and

4 R 4 because both 4 and 4 are in {0, 3, 4}.
Since {1} is a subset of the partition,

1 R 1 because both 1 and 1 are in {1},
and since {2} is a subset of the partition,

2 R 2 because both 2 and 2 are in {2}.

Note These statements
may seem strange, but,
after all, they are not
false!

Hence

R = {(0, 0), (0, 3), (0, 4), (1, 1), (2, 2), (3, 0), (3, 3), (3, 4), (4, 0), (4, 3), (4, 4)}. ■

The fact is that a relation induced by a partition of a set satisfies all three properties
studied in Section 8.2: reflexivity, symmetry, and transitivity.

Theorem 8.3.1

Let A be a set with a partition and let R be the relation induced by the partition.
Then R is reflexive, symmetric, and transitive.

Proof:

Suppose A is a set with a partition. In order to simplify notation, we assume that the
partition consists of only a finite number of sets. The proof for an infinite partition
is identical except for notation. Denote the partition subsets by

A1, A2, . . . , An .

Then Ai ∩ A j = ∅ whenever i ̸= j, and A1 ∪ A2 ∪ · · · ∪ An = A. The relation R
induced by the partition is defined as follows: For all x, y ∈ A,

x R y ⇔ there is a set Ai of the partition
such that x ∈ Ai and y ∈ Ai .

[Idea for the proof of reflexivity: For R to be reflexive means that each element of A
is related by R to itself. But by definition of R, for an element x to be related to itself
means that x is in the same subset of the partition as itself. Well, if x is in some subset of
the partition, then it is certainly in the same subset as itself. But x is in some subset of the

continued on page 462
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Let A = {0, 1, 2, 3, 4} and consider the following partition of A:
                                    {0, 3, 4}, {1}, {2}.
          Find the relation R induced by this partition.
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Let A = {0, 1, 2, 3, 4} and consider the following partition of A:
                                    {0, 3, 4}, {1}, {2}.
          Find the relation R induced by this partition.
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1 R 1 because both 1 and 1 are in {1},
and since {2} is a subset of the partition,

2 R 2 because both 2 and 2 are in {2}.

Note These statements
may seem strange, but,
after all, they are not
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Hence

R = {(0, 0), (0, 3), (0, 4), (1, 1), (2, 2), (3, 0), (3, 3), (3, 4), (4, 0), (4, 3), (4, 4)}. ■

The fact is that a relation induced by a partition of a set satisfies all three properties
studied in Section 8.2: reflexivity, symmetry, and transitivity.

Theorem 8.3.1

Let A be a set with a partition and let R be the relation induced by the partition.
Then R is reflexive, symmetric, and transitive.

Proof:

Suppose A is a set with a partition. In order to simplify notation, we assume that the
partition consists of only a finite number of sets. The proof for an infinite partition
is identical except for notation. Denote the partition subsets by

A1, A2, . . . , An .

Then Ai ∩ A j = ∅ whenever i ̸= j, and A1 ∪ A2 ∪ · · · ∪ An = A. The relation R
induced by the partition is defined as follows: For all x, y ∈ A,

x R y ⇔ there is a set Ai of the partition
such that x ∈ Ai and y ∈ Ai .

[Idea for the proof of reflexivity: For R to be reflexive means that each element of A
is related by R to itself. But by definition of R, for an element x to be related to itself
means that x is in the same subset of the partition as itself. Well, if x is in some subset of
the partition, then it is certainly in the same subset as itself. But x is in some subset of the
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Hence
R = {(0,0),(0,3),(0,4),(1,1),(2,2),(3,0),  
         (3,3),(3,4),(4,0),(4,3),(4,4)}.
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Suppose A is a set with a partition. In order to simplify notation, we assume that the
partition consists of only a finite number of sets. The proof for an infinite partition
is identical except for notation. Denote the partition subsets by
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Then Ai ∩ A j = ∅ whenever i ̸= j, and A1 ∪ A2 ∪ · · · ∪ An = A. The relation R
induced by the partition is defined as follows: For all x, y ∈ A,

x R y ⇔ there is a set Ai of the partition
such that x ∈ Ai and y ∈ Ai .

[Idea for the proof of reflexivity: For R to be reflexive means that each element of A
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Solution Since {0, 3, 4} is a subset of the partition,
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0 R 4 because both 0 and 4 are in {0, 3, 4},
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2 R 2 because both 2 and 2 are in {2}.
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after all, they are not
false!

Hence

R = {(0, 0), (0, 3), (0, 4), (1, 1), (2, 2), (3, 0), (3, 3), (3, 4), (4, 0), (4, 3), (4, 4)}. ■

The fact is that a relation induced by a partition of a set satisfies all three properties
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Let A be a set with a partition and let R be the relation induced by the partition.
Then R is reflexive, symmetric, and transitive.

Proof:

Suppose A is a set with a partition. In order to simplify notation, we assume that the
partition consists of only a finite number of sets. The proof for an infinite partition
is identical except for notation. Denote the partition subsets by

A1, A2, . . . , An .

Then Ai ∩ A j = ∅ whenever i ̸= j, and A1 ∪ A2 ∪ · · · ∪ An = A. The relation R
induced by the partition is defined as follows: For all x, y ∈ A,

x R y ⇔ there is a set Ai of the partition
such that x ∈ Ai and y ∈ Ai .

[Idea for the proof of reflexivity: For R to be reflexive means that each element of A
is related by R to itself. But by definition of R, for an element x to be related to itself
means that x is in the same subset of the partition as itself. Well, if x is in some subset of
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Equivalence Relation
	

è The relation induced by a partition is an 
equivalence relation

Let A be a set and R a relation on A. R is an equivalence relation 
if, and only if, R is reflexive, symmetric, and transitive. 	

Definition	
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Let X be the set of all nonempty subsets of {1, 2, 3}. Then
X = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

Define a relation R on X as follows: For all A and B in X,
A R B � the least element of A equals the least element of B.

Prove that R is an equivalence relation on X.

Example	

R is reflexive: Suppose A is a nonempty subset of {1, 2, 3}. [We must 
show that A R A.] It is true to say that the least element of A equals 
the least element of A. Thus, by definition of R, A R A. 

R is symmetric: Suppose A and B are nonempty subsets of {1, 2, 3} 
and A R B. [We must show that B R A.] Since A R B, the least 
element of A equals the least element of B. But this implies that the 
least element of B equals the least element of A, and so, by definition 
of R, B R A. 
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Let X be the set of all nonempty subsets of {1, 2, 3}. Then
X = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

Define a relation R on X as follows: For all A and B in X,
A R B � the least element of A equals the least element of B.

Prove that R is an equivalence relation on X.

Example	

R is transitive: Suppose A, B, and C are nonempty subsets of {1, 2, 
3}, A R B, and B R C. [We must show that A R C.] Since A R B, the 
least element of A equals the least element of B and since B R C, the 
least element of B equals the least element of C. Thus the least 
element of A equals the least element of C, and so, by definition of R, 
A R C. 
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Let S be the set of all digital circuits with a fixed number n of inputs. 
Define a relation E on S as follows: For all circuits C1 and C2 in S,

Example	

C1 E C2 ⇔ C1 has the same input/output table as C2. 

E is reflexive: Suppose C is a digital logic circuit in S. [We must show 
that C E C.] Certainly C has the same input/output table as itself. Thus, 
by definition of E, C E C	
E is symmetric: Suppose C1 and C2 are digital logic circuits in S such that 
C1 E C2. By definition of E, since C1 E C2, then C1 has the same input/
output table as C2. It follows that C2 has the same input/output table as C1. 
Hence, by definition of E, C2 E C1 	
E is transitive: Suppose C1, C2, and C3 are digital logic circuits in S such 
that C1 E C2 andC2 E C3. By definition of E, since C1  E C2  and C2  E C3, then 
C1 has the same input/output table as C2 and C2 has the same input/output 
table as C3. It follows that C1 has the same input/output table as C3.  
Hence, by definition of E, C1 E C3 	 Uploaded By: anonymousSTUDENTS-HUB.com
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Let L be the set of all allowable identifiers in a certain 
computer language, and define a relation R on L as follows: 
For all strings s and t in L, 

Example	

s R t � the first eight characters of s equal the first eight 
characters of t.

R is reflexive: Let s � L. Clearly s has the same first eight characters as itself. Thus, by 
definition of R, s R s.	

R is symmetric: Let s and t be in L and suppose that s R t.  By definition of R, since s R t, the 
first eight characters of s equal the first eight characters of t. But then the first eight characters 
of t equal the first eight characters of s. And so, by definition of R, t R s	

R is transitive: Let s, t, and u be in L and suppose that s R t and t R u. By definition of R, since 
s R t and t R u, the first eight characters of s equal the first eight characters of t, and the first 
eight characters of t equal the first eight characters of u. Hence the first eight characters of s 
equal the first eight characters of u. Thus, by definition of R, s R u
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Equivalence Class	

8.3 Equivalence Relations 465

R is transitive: Let s, t, and u be in L and suppose that s R t and t R u. [We must show
that s R u.] By definition of R, since s R t and t R u, the first eight characters of s
equal the first eight characters of t , and the first eight characters of t equal the first eight
characters of u. Hence the first eight characters of s equal the first eight characters of u.
Thus, by definition of R, s R u [as was to be shown].

Since R is reflexive, symmetric, and transitive, R is an equivalence relation on L . ■

Equivalence Classes of an Equivalence Relation
Suppose there is an equivalence relation on a certain set. If a is any particular element of
the set, then one can ask, “What is the subset of all elements that are related to a?” This
subset is called the equivalence class of a.

Note Be careful to
distinguish among the
following: a relation on a
set, the (underlying) set
itself, and the equivalence
class for an element of the
(underlying) set.

• Definition

Suppose A is a set and R is an equivalence relation on A. For each element a in A,
the equivalence class of a, denoted [a] and called the class of a for short, is the set
of all elements x in A such that x is related to a by R.

In symbols:

[a] = {x ∈ A | x R a}

When several equivalence relations on a set are under discussion, the notation [a]R is
often used to denote the equivalence class of a under R.

The procedural version of this definition is

for all x ∈ A, x ∈ [a] ⇔ x R a.

Example 8.3.5 Equivalence Classes of a Relation Given as a set of Ordered Pairs

Let A = {0, 1, 2, 3, 4} and define a relation R on A as follows:

R = {(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)}.
The directed graph for R is as shown below. As can be seen by inspection, R is an equiv-
alence relation on A. Find the distinct equivalence classes of R.

0

4
1

3

2
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R is transitive: Let s, t, and u be in L and suppose that s R t and t R u. [We must show
that s R u.] By definition of R, since s R t and t R u, the first eight characters of s
equal the first eight characters of t , and the first eight characters of t equal the first eight
characters of u. Hence the first eight characters of s equal the first eight characters of u.
Thus, by definition of R, s R u [as was to be shown].

Since R is reflexive, symmetric, and transitive, R is an equivalence relation on L . ■

Equivalence Classes of an Equivalence Relation
Suppose there is an equivalence relation on a certain set. If a is any particular element of
the set, then one can ask, “What is the subset of all elements that are related to a?” This
subset is called the equivalence class of a.

Note Be careful to
distinguish among the
following: a relation on a
set, the (underlying) set
itself, and the equivalence
class for an element of the
(underlying) set.

• Definition

Suppose A is a set and R is an equivalence relation on A. For each element a in A,
the equivalence class of a, denoted [a] and called the class of a for short, is the set
of all elements x in A such that x is related to a by R.

In symbols:

[a] = {x ∈ A | x R a}

When several equivalence relations on a set are under discussion, the notation [a]R is
often used to denote the equivalence class of a under R.

The procedural version of this definition is

for all x ∈ A, x ∈ [a] ⇔ x R a.

Example 8.3.5 Equivalence Classes of a Relation Given as a set of Ordered Pairs

Let A = {0, 1, 2, 3, 4} and define a relation R on A as follows:

R = {(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)}.
The directed graph for R is as shown below. As can be seen by inspection, R is an equiv-
alence relation on A. Find the distinct equivalence classes of R.

0

4
1

3

2
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Let A = {0,1,2,3,4} and define a relation R on A as :
R = {(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)}.

Example	

Find the distinct equivalence classes of R.

8.3 Equivalence Relations 465

R is transitive: Let s, t, and u be in L and suppose that s R t and t R u. [We must show
that s R u.] By definition of R, since s R t and t R u, the first eight characters of s
equal the first eight characters of t , and the first eight characters of t equal the first eight
characters of u. Hence the first eight characters of s equal the first eight characters of u.
Thus, by definition of R, s R u [as was to be shown].

Since R is reflexive, symmetric, and transitive, R is an equivalence relation on L . ■

Equivalence Classes of an Equivalence Relation
Suppose there is an equivalence relation on a certain set. If a is any particular element of
the set, then one can ask, “What is the subset of all elements that are related to a?” This
subset is called the equivalence class of a.

Note Be careful to
distinguish among the
following: a relation on a
set, the (underlying) set
itself, and the equivalence
class for an element of the
(underlying) set.

• Definition

Suppose A is a set and R is an equivalence relation on A. For each element a in A,
the equivalence class of a, denoted [a] and called the class of a for short, is the set
of all elements x in A such that x is related to a by R.

In symbols:

[a] = {x ∈ A | x R a}

When several equivalence relations on a set are under discussion, the notation [a]R is
often used to denote the equivalence class of a under R.

The procedural version of this definition is

for all x ∈ A, x ∈ [a] ⇔ x R a.

Example 8.3.5 Equivalence Classes of a Relation Given as a set of Ordered Pairs

Let A = {0, 1, 2, 3, 4} and define a relation R on A as follows:

R = {(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)}.
The directed graph for R is as shown below. As can be seen by inspection, R is an equiv-
alence relation on A. Find the distinct equivalence classes of R.

0

4
1

3

2
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Solution First find the equivalence class of every element of A.

[0] = {x ∈ A | x R 0} = {0, 4}
[1] = {x ∈ A | x R 1} = {1, 3}
[2] = {x ∈ A | x R 2} = {2}
[3] = {x ∈ A | x R 3} = {1, 3}
[4] = {x ∈ A | x R 4} = {0, 4}

Note that [0] = [4] and [1] = [3]. Thus the distinct equivalence classes of the relation are

{0, 4}, {1, 3}, and {2}. ■

When a problem asks you to find the distinct equivalence classes of an equivalence
relation, you will generally solve the problem in two steps. In the first step you either
explicitly construct (as in Example 8.3.5) or imagine constructing (as in infinite cases)
the equivalence class for every element of the domain A of the relation. Usually several
of the classes will contain exactly the same elements, so in the second step you must
take a careful look at the classes to determine which are the same. You then indicate the
distinct equivalence classes by describing them without duplication.

Example 8.3.6 Equivalence Classes of a Relation on a Set of Subsets

In Example 8.3.2 it was shown that the relation R was an equivalence relation, where for
nonempty subsets A and B of {1, 2, 3} to be related by R means that they have the same
least element. Describe the distinct equivalence classes of R.

Solution The equivalence class of {1} is the set of all the nonempty subsets of {1, 2, 3}
whose least element is 1. Thus

[{1}] = {{1}, {1, 2}, {1, 3}, {1, 2, 3}}.
The equivalence class of {2} is the set of all the nonempty subsets of {1, 2, 3} whose
least element is 2. Thus

[{2}] = {{2}, {2, 3}}.
The equivalence class of {3} is the set of all the nonempty subsets of {1, 2, 3} whose
least element is 3. There is only one such set, namely {3} itself. Thus

[{3}] = {{3}}.
Since all the nonempty subsets of {1, 2, 3} are in one of the equivalence classes, this is a
complete listing. Moreover, these classes are all distinct. ■

Example 8.3.7 Equivalence Classes of Identifiers

In Example 8.3.4 it was shown that the relation R of having the same first eight characters
is an equivalence relation on the set L of allowable identifiers in a computer language.
Describe the distinct equivalence classes of R.

Solution By definition of R, two strings in L are related by R if, and only if, they have the
same first eight characters. Given any string s in L ,

[s] = {t ∈ L | t R s}
= {t ∈ L | the first eight characters of t equal the first eight characters of s}.
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8.3 Equivalence Relations 467

Thus the distinct equivalence classes of R are sets of strings such that (1) each class
consists entirely of strings all of which have the same first eight characters, and (2)
any two distinct classes contain strings that differ somewhere in their first eight
characters.

■

Example 8.3.8 Equivalence Classes of the Identity Relation

Let A be any set and define a relation R on A as follows: For all x and y in A,

x R y ⇔ x = y.

Then R is an equivalence relation. [To prove this, just generalize the argument used in
Example 8.2.2.] Describe the distinct equivalence classes of R.

Solution Given any a in A, the class of a is

[a] = {x ∈ A | x R a}.
But by definition of R, a R x if, and only if, a = x . So

[a] = {x ∈ A | x = a}
= {a} since the only element of A that equals a is a.

Hence, given any a in A,

[a] = {a},
and if x ̸= a, then {x} ̸= {a}. Consequently, all the classes of all the elements of A
are distinct, and the distinct equivalence classes of R are all the single-element subsets
of A. ■

In each of Examples 8.3.5, 8.3.6, 8.3.7 and 8.3.8, the set of distinct equivalence
classes of the relation consists of mutually disjoint subsets whose union is the entire
domain A of the relation. This means that the set of equivalence classes of the relation
forms a partition of the domain A. In fact, it is always the case that the equivalence classes
of an equivalence relation partition the domain of the relation into a union of mutually
disjoint subsets. We establish the truth of this statement in stages, first proving two lem-
mas and then proving the main theorem.

The first lemma says that if two elements of A are related by an equivalence rela-
tion R, then their equivalence classes are the same.

Lemma 8.3.2

Suppose A is a set, R is an equivalence relation on A, and a and b are elements of A.
If a R b, then [a] = [b].

This lemma says that if a certain condition is satisfied, then [a] = [b]. Now [a] and
[b] are sets, and two sets are equal if, and only if, each is a subset of the other. Hence the
proof of the lemma consists of two parts: first, a proof that [a] ⊆ [b] and second, a proof
that [b] ⊆ [a]. To show each subset relation, it is necessary to show that every element in
the left-hand set is an element of the right-hand set.
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Proof of Lemma 8.3.2:

Let A be a set, let R be an equivalence relation on A, and suppose

a and b are elements of A such that a R b.

[We must show that [a] = [b].]
Proof that [a] ⊆ [b]: Let x ∈ [a]. [We must show that x ∈ [b].] Since

x ∈ [a]

then x R a

by definition of class. But a R b

by hypothesis. Thus, by transitivity of R,

x R b.

Hence x ∈ [b]
by definition of class. [This is what was to be shown.]

Proof that [b] ⊆ [a]: Let x ∈ [b]. [We must show that x ∈ [a].] Since

x ∈ [b]

then x R b

by definition of class. Now a R b

by hypothesis. Thus, since R is symmetric,

b R a

also. Then, since R is transitive and x R b and b R a,

x R a.

Hence, x ∈ [a]
by definition of class. [This is what was to be shown.]

Since [a] ⊆ [b] and [b] ⊆ [a], it follows that [a] = [b] by definition of set
equality.

The second lemma says that any two equivalence classes of an equivalence relation
are either mutually disjoint or identical.

Lemma 8.3.3

If A is a set, R is an equivalence relation on A, and a and b are elements of A, then

either [a] ∩ [b] = ∅ or [a] = [b].

The statement of Lemma 8.3.3 has the form

if p then (q or r),
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Now since 3 R 0, then by Lemma 8.3.2,

[3] = [0].
More generally, by the same reasoning,

[0] = [3] = [−3] = [6] = [−6] = . . . , and so on.

Similarly,

[1] = [4] = [−2] = [7] = [−5] = . . . , and so on.

And

[2] = [5] = ⌈−1⌉ = [8] = [−4] = . . . , and so on.

Notice that every integer is in class [0], [1], or [2]. Hence the distinct equivalence
classes are

{x ∈ Z | x = 3k, for some integer k},
{x ∈ Z | x = 3k + 1, for some integer k}, and

{x ∈ Z | x = 3k + 2, for some integer k}.
In words, the three classes of congruence modulo 3 are (1) the set of all integers that are
divisible by 3, (2) the set of all integers that leave a remainder of 1 when divided by 3,
and (3) the set of all integers that leave a remainder of 2 when divided by 3. ■

Example 8.3.10 illustrates a very important property of equivalence classes, namely
that an equivalence class may have many different names. In Example 8.3.10, for instance,
the class of 0, [0], may also be called the class of 3, [3], or the class of−6, [−6]. But what
the class is is the set

{x ∈ Z | x = 3k, for some integers k}.
(The quote at the beginning of this section refers in a humorous way to the philosophically
interesting distinction between what things are called and what they are.)

• Definition

Suppose R is an equivalence relation on a set A and S is an equivalence class of R.
A representative of the class S is any element a such that [a] = S.

In exercises 36–41 at the end of this section, you are asked to show in effect, that
if a is any element of an equivalence class S, then S = [a]. Hence any element of an
equivalence class is a representative of that class.
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Carl Friedrich Gauss
(1777–1855)

The following notation is used frequently when referring to congruence relations. It
was introduced by Carl Friedrich Gauss in the first chapter of his book Disquisitiones
Arithmeticae. This work, which was published when Gauss was only 24, laid the founda-
tion for modern number theory.
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Congruence Modulo 3 	
Let R be the relation of congruence modulo 3 on the set Z of all 
integers. That is, for all integers m and n,

m R n � 3|(m−n)  �  m � n (mod 3).

Describe the distinct equivalence classes of R.

8.3 Equivalence Relations 471

There are exactly as many such tables as there are binary strings of length 4. The rea-
son is that distinct input/output tables can be formed by changing the pattern of the four
0’s and 1’s in the output column, and there are as many ways to do that as there are strings
of four 0’s and 1’s. But the number of binary strings of length 4 is 24 = 16. Hence there
are 16 distinct input/output tables.

This implies that there are exactly 16 equivalence classes of circuits, one for each
distinct input/output table. However, there are infinitely many circuits that give rise to
each table. For instance, two circuits for the previous input/output table are shown below.

■

AND

NOT

NOTP

Q

R OR NOT
P

Q
R

Congruence Modulo n
Example 8.2.4 showed that the relation of congruence modulo 3 is reflexive, symmetric,
and transitive. Therefore, it is an equivalence relation.

Example 8.3.10 Equivalence Classes of Congruence Modulo 3

Let R be the relation of congruence modulo 3 on the set Z of all integers. That is, for all
integers m and n,

m R n ⇔ 3 | (m − n) ⇔ m ≡ n (mod 3).

Describe the distinct equivalence classes of R.

Solution For each integer a,

[a] = {x ∈ Z | x R a}
= {x ∈ Z | 3 | (x − a)}
= {x ∈ Z | x − a = 3k, for some integer k}.

Therefore,

[a] = {x ∈ Z | x = 3k + a, for some integer k}.

In particular, [0] = {x ∈ Z | x = 3k + 0, for some integer k}
= {x ∈ Z | x = 3k, for some integer k}
= {. . .− 9,−6,−3, 0, 3, 6, 9, . . .},

[1] = {x ∈ Z | x = 3k + 1, for some integer k}
= {. . .− 8,−5,−2, 1, 4, 7, 10, . . .},

[2] = {x ∈ Z | x = 3k + 2, for some integer k}
= {. . .− 7,−4,−1, 2, 5, 8, 11, . . .}.
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There are exactly as many such tables as there are binary strings of length 4. The rea-
son is that distinct input/output tables can be formed by changing the pattern of the four
0’s and 1’s in the output column, and there are as many ways to do that as there are strings
of four 0’s and 1’s. But the number of binary strings of length 4 is 24 = 16. Hence there
are 16 distinct input/output tables.

This implies that there are exactly 16 equivalence classes of circuits, one for each
distinct input/output table. However, there are infinitely many circuits that give rise to
each table. For instance, two circuits for the previous input/output table are shown below.

■

AND

NOT

NOTP

Q

R OR NOT
P

Q
R

Congruence Modulo n
Example 8.2.4 showed that the relation of congruence modulo 3 is reflexive, symmetric,
and transitive. Therefore, it is an equivalence relation.

Example 8.3.10 Equivalence Classes of Congruence Modulo 3

Let R be the relation of congruence modulo 3 on the set Z of all integers. That is, for all
integers m and n,

m R n ⇔ 3 | (m − n) ⇔ m ≡ n (mod 3).

Describe the distinct equivalence classes of R.

Solution For each integer a,

[a] = {x ∈ Z | x R a}
= {x ∈ Z | 3 | (x − a)}
= {x ∈ Z | x − a = 3k, for some integer k}.

Therefore,

[a] = {x ∈ Z | x = 3k + a, for some integer k}.

In particular, [0] = {x ∈ Z | x = 3k + 0, for some integer k}
= {x ∈ Z | x = 3k, for some integer k}
= {. . .− 9,−6,−3, 0, 3, 6, 9, . . .},

[1] = {x ∈ Z | x = 3k + 1, for some integer k}
= {. . .− 8,−5,−2, 1, 4, 7, 10, . . .},

[2] = {x ∈ Z | x = 3k + 2, for some integer k}
= {. . .− 7,−4,−1, 2, 5, 8, 11, . . .}.
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Let R be the relation of congruence modulo 3 on the set Z of all 
integers. That is, for all integers m and n,

mRn � 3|(m−n) � m�n(mod3).

In particular:

8.3 Equivalence Relations 471

There are exactly as many such tables as there are binary strings of length 4. The rea-
son is that distinct input/output tables can be formed by changing the pattern of the four
0’s and 1’s in the output column, and there are as many ways to do that as there are strings
of four 0’s and 1’s. But the number of binary strings of length 4 is 24 = 16. Hence there
are 16 distinct input/output tables.

This implies that there are exactly 16 equivalence classes of circuits, one for each
distinct input/output table. However, there are infinitely many circuits that give rise to
each table. For instance, two circuits for the previous input/output table are shown below.

■

AND

NOT

NOTP

Q

R OR NOT
P

Q
R

Congruence Modulo n
Example 8.2.4 showed that the relation of congruence modulo 3 is reflexive, symmetric,
and transitive. Therefore, it is an equivalence relation.

Example 8.3.10 Equivalence Classes of Congruence Modulo 3

Let R be the relation of congruence modulo 3 on the set Z of all integers. That is, for all
integers m and n,

m R n ⇔ 3 | (m − n) ⇔ m ≡ n (mod 3).

Describe the distinct equivalence classes of R.

Solution For each integer a,

[a] = {x ∈ Z | x R a}
= {x ∈ Z | 3 | (x − a)}
= {x ∈ Z | x − a = 3k, for some integer k}.

Therefore,

[a] = {x ∈ Z | x = 3k + a, for some integer k}.

In particular, [0] = {x ∈ Z | x = 3k + 0, for some integer k}
= {x ∈ Z | x = 3k, for some integer k}
= {. . .− 9,−6,−3, 0, 3, 6, 9, . . .},

[1] = {x ∈ Z | x = 3k + 1, for some integer k}
= {. . .− 8,−5,−2, 1, 4, 7, 10, . . .},

[2] = {x ∈ Z | x = 3k + 2, for some integer k}
= {. . .− 7,−4,−1, 2, 5, 8, 11, . . .}.
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Let R be the relation of congruence modulo 3 on the set Z of all 
integers. That is, for all integers m and n,

mRn � 3|(m−n) � m�n(mod3).

Congruence Modulo 3 	
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Let R be the relation of congruence modulo 3 on the set Z of all 
integers. That is, for all integers m and n,

mRn � 3|(m−n) � m�n(mod3).

Notice that every integer is in class [0], [1], or [2]. Hence the distinct �
equivalence classes are

472 Chapter 8 Relations

Now since 3 R 0, then by Lemma 8.3.2,

[3] = [0].
More generally, by the same reasoning,

[0] = [3] = [−3] = [6] = [−6] = . . . , and so on.

Similarly,

[1] = [4] = [−2] = [7] = [−5] = . . . , and so on.

And

[2] = [5] = ⌈−1⌉ = [8] = [−4] = . . . , and so on.

Notice that every integer is in class [0], [1], or [2]. Hence the distinct equivalence
classes are

{x ∈ Z | x = 3k, for some integer k},
{x ∈ Z | x = 3k + 1, for some integer k}, and

{x ∈ Z | x = 3k + 2, for some integer k}.
In words, the three classes of congruence modulo 3 are (1) the set of all integers that are
divisible by 3, (2) the set of all integers that leave a remainder of 1 when divided by 3,
and (3) the set of all integers that leave a remainder of 2 when divided by 3. ■

Example 8.3.10 illustrates a very important property of equivalence classes, namely
that an equivalence class may have many different names. In Example 8.3.10, for instance,
the class of 0, [0], may also be called the class of 3, [3], or the class of−6, [−6]. But what
the class is is the set

{x ∈ Z | x = 3k, for some integers k}.

(The quote at the beginning of this section refers in a humorous way to the philosophically
interesting distinction between what things are called and what they are.)

• Definition

Suppose R is an equivalence relation on a set A and S is an equivalence class of R.
A representative of the class S is any element a such that [a] = S.

In exercises 36–41 at the end of this section, you are asked to show in effect, that
if a is any element of an equivalence class S, then S = [a]. Hence any element of an
equivalence class is a representative of that class.
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Carl Friedrich Gauss
(1777–1855)

The following notation is used frequently when referring to congruence relations. It
was introduced by Carl Friedrich Gauss in the first chapter of his book Disquisitiones
Arithmeticae. This work, which was published when Gauss was only 24, laid the founda-
tion for modern number theory.
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Determine which of the following congruences are true and which 
are false. 
a. 12�7(mod5) b. 6�−8(mod4) c. 3�3(mod7) 

Congruence Modulo 3 	
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Exercise 	
Let A be the set of all ordered pairs of integers for which the 
second element of the pair is nonzero. Symbolically,

A = Z×(Z−{0}).

Define a relation R on A as follows: For all (a, b), (c, d) � A,
(a,b)R(c,d) � ad=bc.

Describe the distinct equivalence classes of R

474 Chapter 8 Relations

Define a relation R on A as follows: For all (a, b), (c, d) ∈ A,

(a, b) R (c, d) ⇔ ad = bc.

The fact is that R is an equivalence relation.

a. Prove that R is transitive. (Proofs that R is reflexive and symmetric are left to exercise
42 at the end of the section.)

b. Describe the distinct equivalence classes of R.

Solution

a. [We must show that for all (a, b), (c, d), (e, f ) ∈ A, if (a, b) R (c, d) and (c, d)R (e, f ),
then (a, b) R (e, f ).] Suppose (a, b), (c, d), and (e, f ) are particular but arbitrarily
chosen elements of A such that (a, b) R (c, d) and (c, d) R (e, f ).
[We must show that (a, b) R (e, f ).] By definition of R,

(1) ad = bc and (2) c f = de.

Since the second elements of all ordered pairs in A are nonzero, b ̸= 0, d ̸= 0, and
f ̸= 0. Multiply both sides of equation (1) by f and both sides of equation (2) by b to
obtain

(1′) ad f = bc f and (2′) bc f = bde.

Thus

ad f = bde

and, since d ̸= 0, it follows from the cancellation law for multiplication (T7 in
Appendix A) that

a f = be.

It follows, by definition of R, that (a, b) R (e, f ) [as was to be shown].

b. There is one equivalence class for each distinct rational number. Each equivalence
class consists of all ordered pairs (a, b) that, if written as fractions a/b, would equal
each other. The reason for this is that the condition for two rational numbers to be
equal is the same as the condition for two ordered pairs to be related. For instance, the
class of (1, 2) is

[(1, 2)] = {(1, 2), (−1,−2), (2, 4), (−2,−4), (3, 6), (−3,−6), . . .}

since
1
2

= −1
−2

= 2
4

= −2
−4

= 3
6

= −3
−6

and so forth. ■

It is possible to expand the result of Example 8.3.12 to define operations of addition
and multiplication on the equivalence classes of R that satisfy all the same properties
as the addition and multiplication of rational numbers. (See exercise 43.) It follows that
the rational numbers can be defined as equivalence classes of ordered pairs of integers.
Similarly (see exercise 44), it can be shown that all integers, negative and zero included,
can be defined as equivalence classes of ordered pairs of positive integers. But in the
late nineteenth century, F. L. G. Frege and Giuseppe Peano showed that the positive
integers can be defined entirely in terms of sets. And just a little earlier, Richard Dedekind
(1848–1916) showed that all real numbers can be defined as sets of rational numbers. All
together, these results show that the real numbers can be defined using logic and set theory
alone.
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For example, the class (1,2):
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