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WEB SiTE FOR ComMPUTER QORGANIZATION AND
ARCHITECTURE, EIGHTH EDITION

The Web site at WilliamStallings.com/COA/COAS8e.html provides support for instructors
and students using the book. It includes the following elements.
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%
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Course Support Materials

¢ A set of PowerPoint slides for use as lecture aids.

¢ Copies of figures from the book in PDF format.

¢ Copies of tables from the book in PDF format.

¢ Computer Science Student Resource Site: contains a number of links and docu-
ments that students may find useful in their ongoing computer science education.
The site includes a review of basic, relevant mathematics; advice on research,
writing, and doing homework problems; links to computer science research
resources, such as report repositories and bibliographies; and other useful links.

¢ An errata sheet for the book, updated at most monthly.

Supplemental Documents

¢ A set of supplemental homework problems with solutions. Students can en-
hance their understanding of the material by working out the solutions to
these problems and then checking their answers.

e Three online chapters: number systems, digital logic, and IA-64 architecture

¢ Nine online appendices that expand on the treatment in the book. Topics
include recursion, and various topics related to memory.

¢ All of the Intel x86 and ARM architecture material from the book reproduced
in two PDF documents for easy reference.

¢ Other useful documents

COA Courses

The Web site includes links to Web sites for courses taught using the book. These
sites can provide useful ideas about scheduling and topic ordering, as well as a num-
ber of useful handouts and other materials.

Useful Web Sites

The Web site includes links to relevant Web sites. The links cover a broad spectrum
of topics and will enable students to explore timely issues in greater depth.

Internet Mailing List

An Internet mailing list is maintained so that instructors using this book can ex-
change information, suggestions, and questions with each other and the author. Sub-
scription information is provided at the book’s Web site.

Simulation Tools for COA Projects

The Web site includes a number of interactive simulation tools, which are keyed to the
topics of the book. The Web site also includes links to the SimpleScalar and SMPCache
web sites. These are two software packages that serve as frameworks for project imple-
mentation. Each site includes downloadable software and background information.
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PREFACE

OBJECTIVES

This book is about the structure and function of computers. Its purpose is to present, as
clearly and completely as possible, the nature and characteristics of modern-day computer
systems.

This task is challenging for several reasons. First, there is a tremendous variety of prod-
ucts that can rightly claim the name of computer, from single-chip microprocessors costing a
few dollars to supercomputers costing tens of millions of dollars. Variety is exhibited not
only in cost, but also in size, performance, and application. Second, the rapid pace of change
that has always characterized computer technology continues with no letup. These changes
cover all aspects of computer technology, from the underlying integrated circuit technology
used to construct computer components, to the increasing use of parallel organization con-
cepts in combining those components.

In spite of the variety and pace of change in the computer field, certain fundamental
concepts apply consistently throughout. The application of these concepts depends on the
current state of the technology and the price/performance objectives of the designer. The in-
tent of this book is to provide a thorough discussion of the fundamentals of computer orga-
nization and architecture and to relate these to contemporary design issues.

The subtitle suggests the theme and the approach taken in this book. It has always
been important to design computer systems to achieve high performance, but never has this
requirement been stronger or more difficult to satisfy than today. All of the basic perfor-
mance characteristics of computer systems, including processor speed, memory speed, mem-
ory capacity, and interconnection data rates, are increasing rapidly. Moreover, they are
increasing at different rates. This makes it difficult to design a balanced system that maxi-
mizes the performance and utilization of all elements. Thus, computer design increasingly
becomes a game of changing the structure or function in one area to compensate for a per-
formance mismatch in another area. We will see this game played out in numerous design
decisions throughout the book.

A computer system, like any system, consists of an interrelated set of components. The
system is best characterized in terms of structure —the way in which components are intercon-
nected, and function—the operation of the individual components. Furthermore, a computer’s
organization is hierarchical. Each major component can be further described by decomposing it
into its major subcomponents and describing their structure and function. For clarity and ease
of understanding, this hierarchical organization is described in this book from the top down:

e Computer system: Major components are processor, memory, [/O.

¢ Processor: Major components are control unit, registers, ALU, and instruction
execution unit.

¢ Control Unit: Provides control signals for the operation and coordination of all
processor components. Traditionally, a microprogramming implementation has been
used, in which major components are control memory, microinstruction sequencing
logic, and registers. More recently, microprogramming has been less prominent but
remains an important implementation technique.

xiil
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Xiv PREFACE

The objective is to present the material in a fashion that keeps new material in a clear
context. This should minimize the chance that the reader will get lost and should provide
better motivation than a bottom-up approach.

Throughout the discussion, aspects of the system are viewed from the points of view of
both architecture (those attributes of a system visible to a machine language programmer) and
organization (the operational units and their interconnections that realize the architecture).

EXAMPLE SYSTEMS

This text is intended to acquaint the reader with the design principles and implementation is-
sues of contemporary operating systems. Accordingly, a purely conceptual or theoretical
treatment would be inadequate. To illustrate the concepts and to tie them to real-world design
choices that must be made, two processor families have been chosen as running examples:

¢ Intel x86 architecture: The x86 architecture is the most widely used for non-embedded
computer systems. The x86 is essentially a complex instruction set computer (CISC) with
some RISC features. Recent members of the x86 family make use of superscalar and mul-
ticore design principles. The evolution of features in the x86 architecture provides a unique
case study of the evolution of most of the design principles in computer architecture.

e ARM: The ARM embedded architecture is arguably the most widely used embedded
processor, used in cell phones, iPods, remote sensor equipment, and many other de-
vices. The ARM is essentially a reduced instruction set computer (RISC). Recent
members of the ARM family make use of superscalar and multicore design principles.

Many, but by no means all, of the examples are drawn from these two computer families: the
Intel x86, and the ARM embedded processor family. Numerous other systems, both contempo-
rary and historical, provide examples of important computer architecture design features.

PLAN OF THE TEXT

The book is organized into five parts (see Chapter 0 for an overview)

e Overview

e The computer system

e The central processing unit

¢ The control unit

¢ Parallel organization, including multicore

The book includes a number of pedagogic features, including the use of interactive sim-

ulations and numerous figures and tables to clarify the discussion. Each chapter includes a
list of key words, review questions, homework problems, suggestions for further reading, and
recommended Web sites. The book also includes an extensive glossary, a list of frequently
used acronyms, and a bibliography.

INTENDED AUDIENCE

The book is intended for both an academic and a professional audience. As a textbook, it is in-
tended as a one- or two-semester undergraduate course for computer science, computer engi-
neering, and electrical engineering majors. It covers all the topics in CS 220 Computer
Architecture, which is one of the core subject areas in the IEEE/ACM Computer Curricula 2001.
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PREFACE XV

For the professional interested in this field, the book serves as a basic reference volume
and is suitable for self-study.

INSTRUCTIONAL SUPPORT MATERIALS

To support instructors, the following materials are provided:

¢ Solutions manual: Solutions to end-of-chapter Review Questions and Problems
¢ Projects manual: Suggested project assignments for all of the project categories
listed below
¢ PowerPoint slides: A set of slides covering all chapters, suitable for use in lecturing
¢ PDF files: Reproductions of all figures and tables from the book
¢ Test bank: Includes true/false, multiple choice, and fill-in-the-blanks questions
and answers
All of these support materials are available at the Instructor Resource Center (IRC)
for this textbook. To gain access to the IRC, please contact your local Prentice Hall sales rep-
resentative via prenhall.com/replocator or call Prentice Hall Faculty Services at 1-800-526-
0485. You can also locate the IRC through http://www.pearsonhighered.com/stallings.

INTERNET SERVICES FOR INSTRUCTORS AND STUDENTS

There is a Web site for this book that provides support for students and instructors. The site
includes links to other relevant sites and a set of useful documents. See the section, “Web
Site for Computer Organization and Architecture,” preceding this Preface, for more infor-
mation. The Web page is at williamstallings.com/COA/COAS8e.html.

New to this edition is a set of homework problems with solutions publicly available at
this Web site. Students can enhance their understanding of the material by working out the
solutions to these problems and then checking their answers.

An Internet mailing list has been set up so that instructors using this book can ex-
change information, suggestions, and questions with each other and with the author. As soon
as typos or other errors are discovered, an errata list for this book will be available at
WilliamStallings.com. Finally, I maintain the Computer Science Student Resource Site at
WilliamStallings.com/StudentSupport.html.

PROJECTS AND OTHER STUDENT EXERCISES

For many instructors, an important component of a computer organization and architecture
course is a project or set of projects by which the student gets hands-on experience to rein-
force concepts from the text. This book provides an unparalleled degree of support for in-
cluding a projects component in the course. The instructor’s support materials available
through Prentice Hall not only includes guidance on how to assign and structure the projects
but also includes a set of user’s manuals for various project types plus specific assignments,
all written especially for this book. Instructors can assign work in the following areas:

¢ Interactive simulation assignments: Described subsequently.

¢ Research projects: A series of research assignments that instruct the student to re-
search a particular topic on the Internet and write a report.
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Xvi PREFACE

¢ Simulation projects: The IRC provides support for the use of the two simulation pack-
ages: SimpleScalar can be used to explore computer organization and architecture
design issues. SMPCache provides a powerful educational tool for examining cache
design issues for symmetric multiprocessors.

¢ Assembly language projects: A simplified assembly language, CodeBlue, is used and
assignments based on the popular Core Wars concept are provided.

* Reading/report assignments: A list of papers in the literature, one or more for each
chapter, that can be assigned for the student to read and then write a short report.

e Writing assignments: A list of writing assignments to facilitate learning the material.

e Test bank: Includes T/F, multiple choice, and fill-in-the-blanks questions and answers.

This diverse set of projects and other student exercises enables the instructor to use the
book as one component in a rich and varied learning experience and to tailor a course plan to
meet the specific needs of the instructor and students. See Appendix A in this book for details.

INTERACTIVE SIMULATIONS

New to this edition is the incorporation of interactive simulations. These simulations provide a
powerful tool for understanding the complex design features of a modern computer system. A
total of 20 interactive simulations are used to illustrate key functions and algorithms in com-
puter organization and architecture design. At the relevant point in the book, an icon indicates
that a relevant interactive simulation is available online for student use. Because the animations
enable the user to set initial conditions, they can serve as the basis for student assignments. The
instructor’s supplement includes a set of assignments, one for each of the animations. Each
assignment includes a several specific problems that can be assigned to students.

WHAT’S NEW IN THE EIGHTH EDITION

In the four years since the seventh edition of this book was published, the field has seen
continued innovations and improvements. In this new edition, I try to capture these
changes while maintaining a broad and comprehensive coverage of the entire field. To
begin this process of revision, the seventh edition of this book was extensively reviewed by
a number of professors who teach the subject and by professionals working in the field.
The result is that, in many places, the narrative has been clarified and tightened, and illus-
trations have been improved. Also, a number of new “field-tested” homework problems
have been added.

Beyond these refinements to improve pedagogy and user friendliness, there have been
substantive changes throughout the book. Roughly the same chapter organization has been
retained, but much of the material has been revised and new material has been added. The
most noteworthy changes are as follows:

¢ Interactive simulation: Simulation provides a powerful tool for understanding the
complex mechanisms of a modern processor. The eighth edition incorporates 20 sepa-
rate interactive, Web-based simulation tools covering such areas as cache memory,
main memory, I/O, branch prediction, instruction pipelining, and vector processing. At
appropriate places in the book, the simulators are highlighted so that the student can
invoke the simulation at the proper point in studying the book.
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PREFACE XVii

¢ Embedded processors: The eighth edition now includes coverage of embedded proces-
sors and the unique design issues they present. The ARM architecture is used as a
case study.

¢ Multicore processors: The eighth edition now includes coverage of what has become
the most prevalent new development in computer architecture: the use of multiple
processors on a single chip. Chapter 18 is devoted to this topic.

¢ Cache memory: Chapter 4, which is devoted to cache memory, has been extensively
revised, updated, and expanded to provide broader technical coverage and im-
proved pedagogy through the use of numerous figures, as well as interactive simula-
tion tools.

¢ Performance assessment: Chapter 2 includes a significantly expanded discussion of
performance assessment, including a new discussion of benchmarks and an analysis of
Amdahl’s law.

¢ Assembly language: A new appendix has been added that covers assembly language
and assemblers.

¢ Programmable logic devices: The discussion of PLDs in Chapter 20 on digital logic has
been expanded to include an introduction to field-programmable gate arrays
(FPGA:s).

e DDR SDRAM: DDR has become the dominant main memory technology in desktops
and servers, particularly DDR2 and DDR3. DDR technology is covered in Chapter 5,
with additional details in Appendix K.

¢ Linear tape open (LTO): LTO has become the best selling “super tape” format and is
widely used with small and large computer systems, especially for backup, LTO is cov-
ered in Chapter 6, with additional details in Appendix J.

With each new edition it is a struggle to maintain a reasonable page count while adding
new material. In part this objective is realized by eliminating obsolete material and tighten-
ing the narrative. For this edition, chapters and appendices that are of less general interest
have been moved online, as individual PDF files. This has allowed an expansion of material
without the corresponding increase in size and price.

ACKNOWLEDGEMENTS

This new edition has benefited from review by a number of people, who gave generously of
their time and expertise. The following people reviewed all or a large part of the manuscript:
Azad Azadmanesh (University of Nebraska—Omaha); Henry Casanova (University of Hawaii);
Marge Coahran (Grinnell College); Andree Jacobsen (University of New Mexico); Kurtis
Kredo (University of California— Davis); Jiang Li (Austin Peay State University); Rachid
Manseur (SUNY, Oswego); John Masiyowski (George Mason University); Fuad Muztaba
(Winston-Salem State University); Bill Sverdlik (Eastern Michigan University); and Xiaobo
Zhou (University of Colorado Colorado Springs).

Thanks also to the people who provided detailed technical reviews of a single chapter:
Tim Mensch, Balbir Singh, Michael Spratte (Hewlett-Packard), Frangois-Xavier Peretmere,
John Levine, Jeff Kenton, Glen Herrmannsfeldt, Robert Thorpe, Grzegorz Mazur (Institute
of Computer Science, Warsaw University of Technology), lan Ameline, Terje Mathisen, Ed-
ward Brekelbaum (Varilog Research Inc), Paul DeMone, and Mikael Tillenius. I would also
like to thank Jon Marsh of ARM Limited for the review of the material on ARM.
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Professor Cindy Norris of Appalachian State University, Professor Bin Mu of the Uni-
versity of New Brunswick, and Professor Kenrick Mock of the University of Alaska kindly
supplied homework problems.

Aswin Sreedhar of the University of Massachusetts developed the interactive simula-
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2 CHAPTER 0 / READER’S GUIDE

This book, with its accompanying Web site, covers a lot of material. In this chapter, we
give the reader an overview.

0.1 OUTLINE OF THE BOOK

The book is organized into five parts:

Part One: Provides an overview of computer organization and architecture
and looks at how computer design has evolved.

Part Two: Examines the major components of a computer and their intercon-
nections, both with each other and the outside world. This part also includes a
detailed discussion of internal and external memory and of input—output
(I/O). Finally, the relationship between a computer’s architecture and the op-
erating system running on that architecture is examined.

Part Three: Examines the internal architecture and organization of the proces-
sor. This part begins with an extended discussion of computer arithmetic. Then
it looks at the instruction set architecture. The remainder of the part deals with
the structure and function of the processor, including a discussion of reduced
instruction set computer (RISC) and superscalar approaches.

Part Four: Discusses the internal structure of the processor’s control unit and
the use of microprogramming.

Part Five: Deals with parallel organization, including symmetric multiprocess-
ing, clusters, and multicore architecture.

A number of online chapters and appendices at this book’s Web site cover
additional topics relevant to the book.

A more detailed, chapter-by-chapter summary of each part appears at the
beginning of that part.

This text is intended to acquaint you with the design principles and implemen-
tation issues of contemporary computer organization and architecture. Accordingly,
a purely conceptual or theoretical treatment would be inadequate. This book uses
examples from a number of different machines to clarify and reinforce the concepts
being presented. Many, but by no means all, of the examples are drawn from two
computer families: the Intel x86 family and the ARM (Advanced RISC Machine)
family. These two systems together encompass most of the current computer design
trends. The Intel x86 architecture is essentially a complex instruction set computer
(CISC) with some RISC features, while the ARM is essentially a RISC. Both sys-
tems make use of superscalar design principles and both support multiple processor
and multicore configurations.

0.2 A ROADMAP FOR READERS AND INSTRUCTORS

This book follows a top-down approach to the presentation of the material. As we
discuss in more detail in Section 1.2, a computer system can be viewed as a hierar-
chical structure. At a top level, we are concerned with the major components of
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0.3 / WHY STUDY COMPUTER ORGANIZATION AND ARCHITECTURE? 3

the computers: processor, I/O, memory, peripheral devices. Part Two examines
these components and looks in some detail at each component except the proces-
sor. This approach allows us to see the external functional requirements that drive
the processor design, setting the stage for Part Three. In Part Three, we examine
the processor in great detail. Because we have the context provided by Part Two,
we are able, in Part Three, to see the design decisions that must be made so that
the processor supports the overall function of the computer system. Next, in Part
Four, we look at the control unit, which is at the heart of the processor. Again, the
design of the control unit can best be explained in the context of the function it
performs within the context of the processor. Finally, Part Five examines systems
with multiple processors, including clusters, multiprocessor computers, and multi-
core computers.

WHY STUDY COMPUTER ORGANIZATION

AND ARCHITECTURE?

The IEEE/ACM Computer Curricula 2001, prepared by the Joint Task Force on
Computing Curricula of the IEEE (Institute of Electrical and Electronics Engineers)
Computer Society and ACM (Association for Computing Machinery), lists computer
architecture as one of the core subjects that should be in the curriculum of all stu-
dents in computer science and computer engineering. The report says the following:

The computer lies at the heart of computing. Without it most of
the computing disciplines today would be a branch of theoretical
mathematics. To be a professional in any field of computing today,
one should not regard the computer as just a black box that exe-
cutes programs by magic. All students of computing should acquire
some understanding and appreciation of a computer system’s func-
tional components, their characteristics, their performance, and
their interactions. There are practical implications as well. Students
need to understand computer architecture in order to structure a
program so that it runs more efficiently on a real machine. In se-
lecting a system to use, they should be able to understand the
tradeoff among various components, such as CPU clock speed vs.
memory size.

A more recent publication of the task force, Computer Engineering 2004
Curriculum Guidelines, emphasized the importance of Computer Architecture and
Organization as follows:

Computer architecture is a key component of computer engineer-
ing and the practicing computer engineer should have a practical
understanding of this topic. It is concerned with all aspects of the
design and organization of the central processing unit and the inte-
gration of the CPU into the computer system itself. Architecture
extends upward into computer software because a processor’s
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4 CHAPTER 0 / READER’S GUIDE

architecture must cooperate with the operating system and system
software. It is difficult to design an operating system well without
knowledge of the underlying architecture. Moreover, the computer
designer must have an understanding of software in order to imple-
ment the optimum architecture.

The computer architecture curriculum has to achieve multi-
ple objectives. It must provide an overview of computer architec-
ture and teach students the operation of a typical computing
machine. It must cover basic principles, while acknowledging the
complexity of existing commercial systems. Ideally, it should rein-
force topics that are common to other areas of computer engineer-
ing; for example, teaching register indirect addressing reinforces
the concept of pointers in C. Finally, students must understand how
various peripheral devices interact with, and how they are inter-
faced to a CPU.

[CLEMOO] gives the following examples as reasons for studying computer
architecture:

1. Suppose a graduate enters the industry and is asked to select the most cost-
effective computer for use throughout a large organization. An understanding
of the implications of spending more for various alternatives, such as a larger
cache or a higher processor clock rate, is essential to making the decision.

2. Many processors are not used in PCs or servers but in embedded systems. A de-
signer may program a processor in C that is embedded in some real-time or
larger system, such as an intelligent automobile electronics controller. Debugging
the system may require the use of a logic analyzer that displays the relationship
between interrupt requests from engine sensors and machine-level code.

3. Concepts used in computer architecture find application in other courses. In
particular, the way in which the computer provides architectural support for
programming languages and operating system facilities reinforces concepts
from those areas.

As can be seen by perusing the table of contents of this book, computer orga-
nization and architecture encompasses a broad range of design issues and concepts.
A good overall understanding of these concepts will be useful both in other areas of
study and in future work after graduation.

0.4 INTERNET AND WEB RESOURCES

There are a number of resources available on the Internet and the Web that support
this book and help readers keep up with developments in this field.

Web Sites for This Book

There is a Web page for this book at WilliamStallings.com/COA/COAS8e.html. See the
layout at the beginning of this book for a detailed description of that site.
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0.4 / INTERNET AND WEB RESOURCES 5

An errata list for this book will be maintained at the Web site and updated as
needed. Please e-mail any errors that you spot to me. Errata sheets for my other
books are at WilliamStallings.com.

I also maintain the Computer Science Student Resource Site, at WilliamStallings
.com/StudentSupport.html. The purpose of this site is to provide documents, informa-
tion, and links for computer science students and professionals. Links and docu-
ments are organized into six categories:

e Math: Includes a basic math refresher, a queuing analysis primer, a number
system primer, and links to numerous math sites.

* How-to: Advice and guidance for solving homework problems, writing techni-
cal reports, and preparing technical presentations.

¢ Research resources: Links to important collections of papers, technical re-
ports, and bibliographies.

* Miscellaneous: A variety of other useful documents and links.

¢ Computer science careers: Useful links and documents for those considering a
career in computer science.

° Humor and other diversions: You have to take your mind off your work once
in a while.

Other Web Sites

There are numerous Web sites that provide information related to the topics of this
book. In subsequent chapters, lists of specific Web sites can be found in the
Recommended Reading and Web Sites section. Because the addresses for Web sites
tend to change frequently, the book does not provide URLS. For all of the Web sites
listed in the book, the appropriate link can be found at this book’s Web site. Other
links not mentioned in this book will be added to the Web site over time.

The following are Web sites of general interest related to computer organiza-
tion and architecture:

° WWW Computer Architecture Home Page: A comprehensive index to infor-
mation relevant to computer architecture researchers, including architecture
groups and projects, technical organizations, literature, employment, and com-
mercial information

¢ CPU Info Center: Information on specific processors, including technical pa-
pers, product information, and latest announcements

* Processor Emporium: Interesting and useful collection of information

e ACM Special Interest Group on Computer Architecture: Information on
SIGARCH activities and publications

* IEEE Technical Committee on Computer Architecture: Copies of TCAA
newsletter

USENET Newsgroups

A number of USENET newsgroups are devoted to some aspect of computer orga-
nization and architecture. As with virtually all USENET groups, there is a high
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6 CHAPTER 0 / READER’S GUIDE

noise-to-signal ratio, but it is worth experimenting to see if any meet your needs. The
most relevant are as follows:

e comp.arch: A general newsgroup for discussion of computer architecture.
Often quite good.
e comp.arch.arithmetic: Discusses computer arithmetic algorithms and standards.

* comp.arch.storage: Discussion ranges from products to technology to practical
usage issues.

e comp.parallel: Discusses parallel computers and applications.
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PART ONE

P.1 ISSUES FOR PART ONE

The purpose of Part One is to provide a background and context for the remainder
of this book. The fundamental concepts of computer organization and architecture
are presented.

ROAD MAP FOR PART ONE

Chapter 1 Introduction

Chapter 1 introduces the concept of the computer as a hierarchical system.
A computer can be viewed as a structure of components and its function
described in terms of the collective function of its cooperating components.
Each component, in turn, can be described in terms of its internal structure
and function. The major levels of this hierarchical view are introduced. The
remainder of the book is organized, top down, using these levels.

Chapter 2 Computer Evolution and Performance

Chapter 2 serves two purposes. First, a discussion of the history of com-
puter technology is an easy and interesting way of being introduced to the
basic concepts of computer organization and architecture. The chapter
also addresses the technology trends that have made performance the
focus of computer system design and previews the various techniques and
strategies that are used to achieve balanced, efficient performance.

7
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1.1 / ORGANIZATION AND ARCHITECTURE 9

This book is about the structure and function of computers. Its purpose is to present, as
clearly and completely as possible, the nature and characteristics of modern-day com-
puters. This task is a challenging one for two reasons.

First, there is a tremendous variety of products, from single-chip microcomputers
costing a few dollars to supercomputers costing tens of millions of dollars, that can
rightly claim the name computer. Variety is exhibited not only in cost, but also in size,
performance, and application. Second, the rapid pace of change that has always charac-
terized computer technology continues with no letup. These changes cover all aspects
of computer technology, from the underlying integrated circuit technology used to con-
struct computer components to the increasing use of parallel organization concepts in
combining those components.

In spite of the variety and pace of change in the computer field, certain funda-
mental concepts apply consistently throughout. To be sure, the application of these con-
cepts depends on the current state of technology and the price/performance objectives
of the designer. The intent of this book is to provide a thorough discussion of the funda-
mentals of computer organization and architecture and to relate these to contemporary
computer design issues. This chapter introduces the descriptive approach to be taken.

1.1 ORGANIZATION AND ARCHITECTURE

In describing computers, a distinction is often made between computer architecture and
computer organization. Although it is difficult to give precise definitions for these
terms, a consensus exists about the general areas covered by each (e.g.,see [VRANS0],
[STEWS82], and [BELL78a)); an interesting alternative view is presented in [REDD76].

Computer architecture refers to those attributes of a system visible to a pro-
grammer or, put another way, those attributes that have a direct impact on the logi-
cal execution of a program. Computer organization refers to the operational units
and their interconnections that realize the architectural specifications. Examples of
architectural attributes include the instruction set, the number of bits used to repre-
sent various data types (e.g., numbers, characters), I/O mechanisms, and techniques
for addressing memory. Organizational attributes include those hardware details
transparent to the programmer, such as control signals; interfaces between the com-
puter and peripherals; and the memory technology used.

For example, it is an architectural design issue whether a computer will have a
multiply instruction. It is an organizational issue whether that instruction will be im-
plemented by a special multiply unit or by a mechanism that makes repeated use of
the add unit of the system. The organizational decision may be based on the antici-
pated frequency of use of the multiply instruction, the relative speed of the two ap-
proaches, and the cost and physical size of a special multiply unit.

Historically, and still today, the distinction between architecture and organiza-
tion has been an important one. Many computer manufacturers offer a family of
computer models, all with the same architecture but with differences in organization.
Consequently, the different models in the family have different price and perfor-
mance characteristics. Furthermore, a particular architecture may span many years
and encompass a number of different computer models, its organization changing
with changing technology. A prominent example of both these phenomena is the
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10 CHAPTER 1 / INTRODUCTION

IBM System/370 architecture. This architecture was first introduced in 1970 and in-
cluded a number of models. The customer with modest requirements could buy a
cheaper, slower model and, if demand increased, later upgrade to a more expensive,
faster model without having to abandon software that had already been developed.
Over the years, IBM has introduced many new models with improved technology to
replace older models, offering the customer greater speed, lower cost, or both. These
newer models retained the same architecture so that the customer’s software invest-
ment was protected. Remarkably, the System/370 architecture, with a few enhance-
ments, has survived to this day as the architecture of IBM’s mainframe product line.

In a class of computers called microcomputers, the relationship between archi-
tecture and organization is very close. Changes in technology not only influence or-
ganization but also result in the introduction of more powerful and more complex
architectures. Generally, there is less of a requirement for generation-to-generation
compatibility for these smaller machines. Thus, there is more interplay between or-
ganizational and architectural design decisions. An intriguing example of this is the
reduced instruction set computer (RISC), which we examine in Chapter 13.

This book examines both computer organization and computer architecture.
The emphasis is perhaps more on the side of organization. However, because a com-
puter organization must be designed to implement a particular architectural specifi-
cation, a thorough treatment of organization requires a detailed examination of
architecture as well.

1.2 STRUCTURE AND FUNCTION

A computer is a complex system; contemporary computers contain millions of elemen-
tary electronic components. How, then, can one clearly describe them? The key is to rec-
ognize the hierarchical nature of most complex systems, including the computer
[SIMO96]. A hierarchical system is a set of interrelated subsystems, each of the latter, in
turn, hierarchical in structure until we reach some lowest level of elementary subsystem.

The hierarchical nature of complex systems is essential to both their design and
their description. The designer need only deal with a particular level of the system at
a time. At each level, the system consists of a set of components and their interrela-
tionships. The behavior at each level depends only on a simplified, abstracted charac-
terization of the system at the next lower level. At each level, the designer is
concerned with structure and function:

e Structure: The way in which the components are interrelated

* Function: The operation of each individual component as part of the structure

In terms of description, we have two choices: starting at the bottom and build-
ing up to a complete description, or beginning with a top view and decomposing the
system into its subparts. Evidence from a number of fields suggests that the top-
down approach is the clearest and most effective [WEIN75].

The approach taken in this book follows from this viewpoint. The computer
system will be described from the top down. We begin with the major components of
a computer, describing their structure and function, and proceed to successively
lower layers of the hierarchy. The remainder of this section provides a very brief
overview of this plan of attack.
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Operating environment
(source and destination of data)

Data
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facility

Data
processing
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Figure 1.1 A Functional View of the Computer

Function

Both the structure and functioning of a computer are, in essence, simple. Figure 1.1
depicts the basic functions that a computer can perform. In general terms, there are
only four:

e Data processing
¢ Data storage
¢ Data movement
e Control
The computer, of course, must be able to process data. The data may take a wide
variety of forms, and the range of processing requirements is broad. However, we shall
see that there are only a few fundamental methods or types of data processing.
It is also essential that a computer store data. Even if the computer is processing

data on the fly (i.e., data come in and get processed, and the results go out immedi-
ately), the computer must temporarily store at least those pieces of data that are being
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Storage Processing

Processing

(b)

Storage Processing

Storage Processing

© (d)
Figure 1.2 Possible Computer Operations

worked on at any given moment. Thus, there is at least a short-term data storage func-
tion. Equally important, the computer performs a long-term data storage function.
Files of data are stored on the computer for subsequent retrieval and update.

The computer must be able to move data between itself and the outside world.
The computer’s operating environment consists of devices that serve as either
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1.2 / STRUCTURE AND FUNCTION 13

sources or destinations of data. When data are received from or delivered to a device
that is directly connected to the computer, the process is known as input—output
(I/0), and the device is referred to as a peripheral. When data are moved over longer
distances, to or from a remote device, the process is known as data communications.

Finally, there must be control of these three functions. Ultimately, this control
is exercised by the individual(s) who provides the computer with instructions. Within
the computer, a control unit manages the computer’s resources and orchestrates the
performance of its functional parts in response to those instructions.

At this general level of discussion, the number of possible operations that can
be performed is few. Figure 1.2 depicts the four possible types of operations. The
computer can function as a data movement device (Figure 1.2a), simply transferring
data from one peripheral or communications line to another. It can also function as
a data storage device (Figure 1.2b), with data transferred from the external environ-
ment to computer storage (read) and vice versa (write). The final two diagrams
show operations involving data processing, on data either in storage (Figure 1.2c) or
en route between storage and the external environment (Figure 1.2d).

The preceding discussion may seem absurdly generalized. It is certainly possi-
ble, even at a top level of computer structure, to differentiate a variety of functions,
but, to quote [SIEW82],

There is remarkably little shaping of computer structure to fit the
function to be performed. At the root of this lies the general-purpose
nature of computers, in which all the functional specialization occurs
at the time of programming and not at the time of design.

Structure

Figure 1.3 is the simplest possible depiction of a computer. The computer interacts
in some fashion with its external environment. In general, all of its linkages to the
external environment can be classified as peripheral devices or communication
lines. We will have something to say about both types of linkages.

COMPUTER

* Storage
* Processing

Figure 1.3 The Computer
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COMPUTER

Sequencing
logic

Control unit
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decoders

Control
memory

Figure 1.4 The Computer: Top-Level Structure

But of greater concern in this book is the internal structure of the computer
itself, which is shown in Figure 1.4. There are four main structural components:

e Central processing unit (CPU): Controls the operation of the computer and
performs its data processing functions; often simply referred to as processor.

* Main memory: Stores data.

e I/0: Moves data between the computer and its external environment.

* System interconnection: Some mechanism that provides for communica-
tion among CPU, main memory, and I/O. A common example of system
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1.3 / KEY TERMS AND REVIEW QUESTIONS 15

interconnection is by means of a system bus, consisting of a number of con-
ducting wires to which all the other components attach.

There may be one or more of each of the aforementioned components. Tradi-
tionally, there has been just a single processor. In recent years, there has been in-
creasing use of multiple processors in a single computer. Some design issues relating
to multiple processors crop up and are discussed as the text proceeds; Part Five
focuses on such computers.

Each of these components will be examined in some detail in Part Two. How-
ever, for our purposes, the most interesting and in some ways the most complex
component is the CPU. Its major structural components are as follows:

¢ Control unit: Controls the operation of the CPU and hence the computer

e Arithmetic and logic unit (ALU): Performs the computer’s data processing
functions

* Registers: Provides storage internal to the CPU

* CPU interconnection: Some mechanism that provides for communication
among the control unit, ALU, and registers

Each of these components will be examined in some detail in Part Three, where we
will see that complexity is added by the use of parallel and pipelined organizational
techniques. Finally, there are several approaches to the implementation of the con-
trol unit; one common approach is a microprogrammed implementation. In essence,
a microprogrammed control unit operates by executing microinstructions that define
the functionality of the control unit. With this approach, the structure of the control
unit can be depicted, as in Figure 1.4. This structure will be examined in Part Four.

1.3 KEY TERMS AND REVIEW QUESTIONS

Key Terms

arithmetic and logic unit
(ALU)

central processing unit (CPU)

computer architecture

computer organization
control unit
input—output (I/O)
main memory

processor
registers
system bus

Review Questions

1.1.  What, in general terms, is the distinction between computer organization and com-

puter architecture?

1.2.  What, in general terms, is the distinction between computer structure and computer

function?

1.3.  What are the four main functions of a computer?

1.4. List and briefly define the main structural components of a computer.
1.5. List and briefly define the main structural components of a processor.
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KEY POINTS

¢ The evolution of computers has been characterized by increasing processor
speed, decreasing component size, increasing memory size, and increasing
I/O capacity and speed.

# One factor responsible for the great increase in processor speed is the
shrinking size of microprocessor components; this reduces the distance be-
tween components and hence increases speed. However, the true gains in
speed in recent years have come from the organization of the processor, in-
cluding heavy use of pipelining and parallel execution techniques and the
use of speculative execution techniques (tentative execution of future in-
structions that might be needed). All of these techniques are designed to
keep the processor busy as much of the time as possible.

¢ A critical issue in computer system design is balancing the performance of
the various elements so that gains in performance in one area are not hand-
icapped by a lag in other areas. In particular, processor speed has increased
more rapidly than memory access time. A variety of techniques is used to
compensate for this mismatch, including caches, wider data paths from
memory to processor, and more intelligent memory chips.

We begin our study of computers with a brief history. This history is itself interest-
ing and also serves the purpose of providing an overview of computer structure
and function. Next, we address the issue of performance. A consideration of the
need for balanced utilization of computer resources provides a context that is use-
ful throughout the book. Finally, we look briefly at the evolution of the two sys-
tems that serve as key examples throughout the book: the Intel x86 and ARM
processor families.

2.1 A BRIEF HISTORY OF COMPUTERS

The First Generation: Vacuum Tubes

ENIAC The ENIAC (Electronic Numerical Integrator And Computer), designed
and constructed at the University of Pennsylvania, was the world’s first general-
purpose electronic digital computer. The project was a response to U.S. needs during
World War II. The Army’s Ballistics Research Laboratory (BRL), an agency respon-
sible for developing range and trajectory tables for new weapons, was having diffi-
culty supplying these tables accurately and within a reasonable time frame. Without
these firing tables, the new weapons and artillery were useless to gunners. The BRL
employed more than 200 people who, using desktop calculators, solved the neces-
sary ballistics equations. Preparation of the tables for a single weapon would take
one person many hours, even days.
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18 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

John Mauchly, a professor of electrical engineering at the University of
Pennsylvania, and John Eckert, one of his graduate students, proposed to build a
general-purpose computer using vacuum tubes for the BRL’s application. In 1943,
the Army accepted this proposal, and work began on the ENIAC. The resulting
machine was enormous, weighing 30 tons, occupying 1500 square feet of floor
space, and containing more than 18,000 vacuum tubes. When operating, it con-
sumed 140 kilowatts of power. It was also substantially faster than any electro-
mechanical computer, capable of 5000 additions per second.

The ENTAC was a decimal rather than a binary machine. That is, numbers
were represented in decimal form, and arithmetic was performed in the decimal sys-
tem. Its memory consisted of 20 “accumulators,” each capable of holding a 10-digit
decimal number. A ring of 10 vacuum tubes represented each digit. At any time,
only one vacuum tube was in the ON state, representing one of the 10 digits. The
major drawback of the ENTAC was that it had to be programmed manually by set-
ting switches and plugging and unplugging cables.

The ENTAC was completed in 1946, too late to be used in the war effort. In-
stead, its first task was to perform a series of complex calculations that were used to
help determine the feasibility of the hydrogen bomb. The use of the ENIAC for a
purpose other than that for which it was built demonstrated its general-purpose
nature. The ENTAC continued to operate under BRL management until 1955, when
it was disassembled.

THE VON NEUMANN MACHINE The task of entering and altering programs for the
ENIAC was extremely tedious. The programming process could be facilitated if the
program could be represented in a form suitable for storing in memory alongside
the data. Then, a computer could get its instructions by reading them from memory,
and a program could be set or altered by setting the values of a portion of memory.

This idea, known as the stored-program concept, is usually attributed to the
ENIAC designers, most notably the mathematician John von Neumann, who was a
consultant on the ENIAC project. Alan Turing developed the idea at about the same
time. The first publication of the idea was in a 1945 proposal by von Neumann for a
new computer, the EDVAC (Electronic Discrete Variable Computer).

In 1946, von Neumann and his colleagues began the design of a new stored-
program computer, referred to as the IAS computer, at the Princeton Institute for
Advanced Studies. The IAS computer, although not completed until 1952, is the pro-
totype of all subsequent general-purpose computers.

Figure 2.1 shows the general structure of the IAS computer (compare to mid-
dle portion of Figure 1.4). It consists of

* A main memory, which stores both data and instructions'
° An arithmetic and logic unit (ALU) capable of operating on binary data

In this book, unless otherwise noted, the term instruction refers to a machine instruction that is
directly interpreted and executed by the processor, in contrast to an instruction in a high-level lan-
guage, such as Ada or C++, which must first be compiled into a series of machine instructions before
being executed.
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Figure 2.1  Structure of the IAS Computer

e A control unit, which interprets the instructions in memory and causes them to
be executed

e Input and output (I/O) equipment operated by the control unit

This structure was outlined in von Neumann’s earlier proposal, which is worth
quoting at this point [VONN45]:

2.2 First: Because the device is primarily a computer, it will
have to perform the elementary operations of arithmetic most fre-
quently. These are addition, subtraction, multiplication and divi-
sion. It is therefore reasonable that it should contain specialized
organs for just these operations.

It must be observed, however, that while this principle as
such is probably sound, the specific way in which it is realized re-
quires close scrutiny. At any rate a central arithmetical part of the
device will probably have to exist and this constitutes the first spe-
cific part: CA.

2.3 Second: The logical control of the device, that is, the
proper sequencing of its operations, can be most efficiently carried
out by a central control organ. If the device is to be elastic, that is, as
nearly as possible all purpose, then a distinction must be made be-
tween the specific instructions given for and defining a particular
problem, and the general control organs which see to it that these
instructions—no matter what they are—are carried out. The for-
mer must be stored in some way; the latter are represented by def-
inite operating parts of the device. By the central control we mean
this latter function only, and the organs which perform it form the
second specific part: CC.
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20 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

2.4 Third: Any device which is to carry out long and compli-
cated sequences of operations (specifically of calculations) must
have a considerable memory . . .

(b) The instructions which govern a complicated problem
may constitute considerable material, particularly so, if the code is
circumstantial (which it is in most arrangements). This material
must be remembered.

At any rate, the total memory constitutes the third specific
part of the device: M.

2.6 The three specific parts CA, CC (together C), and M cor-
respond to the associative neurons in the human nervous system. It
remains to discuss the equivalents of the sensory or afferent and the
motor or efferent neurons. These are the input and output organs of
the device.

The device must be endowed with the ability to maintain
input and output (sensory and motor) contact with some specific
medium of this type. The medium will be called the outside record-
ing medium of the device: R.

2.7 Fourth: The device must have organs to transfer . . . infor-
mation from R into its specific parts C and M. These organs form
its input, the fourth specific part: I. It will be seen that it is best to
make all transfers from R (by I) into M and never directly from C.

2.8 Fifth: The device must have organs to transfer . . . from its
specific parts C and M into R. These organs form its output, the fifth
specific part: O. It will be seen that it is again best to make all trans-
fers from M (by O) into R, and never directly from C.

With rare exceptions, all of today’s computers have this same general structure
and function and are thus referred to as von Neumann machines. Thus, it is worth-
while at this point to describe briefly the operation of the IAS computer [BURK46].
Following [HAYE9S], the terminology and notation of von Neumann are changed
in the following to conform more closely to modern usage; the examples and illus-
trations accompanying this discussion are based on that latter text.

The memory of the IAS consists of 1000 storage locations, called words, of
40 binary digits (bits) each.” Both data and instructions are stored there. Numbers
are represented in binary form, and each instruction is a binary code. Figure 2.2
illustrates these formats. Each number is represented by a sign bit and a 39-bit value.
A word may also contain two 20-bit instructions, with each instruction consisting of
an 8-bit operation code (opcode) specifying the operation to be performed and a
12-bit address designating one of the words in memory (numbered from 0 to 999).

The control unit operates the IAS by fetching instructions from memory and
executing them one at a time. To explain this, a more detailed structure diagram is

There is no universal definition of the term word. In general, a word is an ordered set of bytes or bits that
is the normal unit in which information may be stored, transmitted, or operated on within a given com-
puter. Typically, if a processor has a fixed-length instruction set, then the instruction length equals the
word length.
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(b) Instruction word

Figure 2.2 TAS Memory Formats

needed, as indicated in Figure 2.3. This figure reveals that both the control unit and
the ALU contain storage locations, called registers, defined as follows:

* Memory buffer register (MBR): Contains a word to be stored in memory or
sent to the I/O unit, or is used to receive a word from memory or from the
1/O unit.

* Memory address register (MAR): Specifies the address in memory of the
word to be written from or read into the MBR.

* Instruction register (IR): Contains the 8-bit opcode instruction being exe-
cuted.

¢ Instruction buffer register (IBR): Employed to hold temporarily the right-
hand instruction from a word in memory.

* Program counter (PC): Contains the address of the next instruction-pair to be
fetched from memory.

¢ Accumulator (AC) and multiplier quotient (MQ): Employed to hold tem-
porarily operands and results of ALU operations. For example, the result of
multiplying two 40-bit numbers is an 80-bit number; the most significant
40 bits are stored in the AC and the least significant in the MQ.

The IAS operates by repetitively performing an instruction cycle, as shown in
Figure 2.4. Each instruction cycle consists of two subcycles. During the fetch cycle,
the opcode of the next instruction is loaded into the IR and the address portion is
loaded into the MAR. This instruction may be taken from the IBR, or it can be ob-
tained from memory by loading a word into the MBR, and then down to the IBR,
IR, and MAR.

Why the indirection? These operations are controlled by electronic circuitry
and result in the use of data paths. To simplify the electronics, there is only one
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Figure 2.3 Expanded Structure of IAS Computer

register that is used to specify the address in memory for a read or write and only
one register used for the source or destination.

Once the opcode is in the IR, the execute cycle is performed. Control circuitry in-
terprets the opcode and executes the instruction by sending out the appropriate con-
trol signals to cause data to be moved or an operation to be performed by the ALU.

The IAS computer had a total of 21 instructions, which are listed in Table 2.1.
These can be grouped as follows:

¢ Data transfer: Move data between memory and ALU registers or between two
ALU registers.
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Figure 2.4 Partial Flowchart of IAS Operation

* Unconditional branch: Normally, the control unit executes instructions in se-
quence from memory. This sequence can be changed by a branch instruction,
which facilitates repetitive operations.

¢ Conditional branch: The branch can be made dependent on a condition, thus
allowing decision points.

o Arithmetic: Operations performed by the ALU.

* Address modify: Permits addresses to be computed in the ALU and then in-
serted into instructions stored in memory. This allows a program considerable
addressing flexibility.
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Table 2.1 The IAS Instruction Set

Instruction Symbolic
Type Opcode  Representation Description
00001010 LOAD MQ Transfer contents of register MQ to the accumulator AC
00001001 LOAD MQ,M(X) Transfer contents of memory location X to MQ
00100001  STOR M(X) Transfer contents of accumulator to memory location X
Data transfer 00000001 LOAD M(X) Transfer M(X) to the accumulator
00000010 LOAD —M(X) Transfer —M(X) to the accumulator
00000011  LOAD [M(X)| Transfer absolute value of M(X) to the accumulator
00000100 LOAD —M(X)| Transfer —|M(X)| to the accumulator
Unconditional 00001101  JUMP M(X,0:19) Take next instruction from left half of M(X)
branch 00001110 JUMP M(X,20:39)  Take next instruction from right half of M(X)
00001111  JUMP+ M(X,0:19)  If number in the accumulator is nonnegative, take next in-
Conditional struction from left half of M(X)
branch 00010000  JUMP+ M(X,20:39) If number in the accumulator is nonnegative, take next
instruction from right half of M(X)
00000101  ADD M(X) Add M(X) to AC; put the result in AC
00000111  ADD |M(X)| Add IM(X)| to AC; put the result in AC
00000110  SUB M(X) Subtract M(X) from AC; put the result in AC
00001000  SUB [M(X)| Subtract [M(X)| from AC; put the remainder in AC
Arithmetic 00001011  MUL M(X) Multiply M(X) by MQ; put most significant bits of result
in AC, put least significant bits in MQ
00001100 DIV M(X) Divide AC by M(X); put the quotient in MQ and the
remainder in AC
00010100 LSH Multiply accumulator by 2;i.e., shift left one bit position
00010101 RSH Divide accumulator by 2;i.e., shift right one position
00010010  STOR M(X,8:19) Replace left address field at M(X) by 12 rightmost bits
Address of AC
modify 00010011  STOR M(X,28:39) Replace right address field at M(X) by 12 rightmost
bits of AC

Table 2.1 presents instructions in a symbolic, easy-to-read form. Actually, each
instruction must conform to the format of Figure 2.2b. The opcode portion (first
8 bits) specifies which of the 21 instructions is to be executed. The address portion
(remaining 12 bits) specifies which of the 1000 memory locations is to be involved in
the execution of the instruction.

Figure 2.4 shows several examples of instruction execution by the control unit.
Note that each operation requires several steps. Some of these are quite elaborate.
The multiplication operation requires 39 suboperations, one for each bit position ex-
cept that of the sign bit.

COMMERCIAL COMPUTERS The 1950s saw the birth of the computer industry with
two companies, Sperry and IBM, dominating the marketplace.
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In 1947, Eckert and Mauchly formed the Eckert-Mauchly Computer Corpora-
tion to manufacture computers commercially. Their first successful machine was the
UNIVAC I (Universal Automatic Computer), which was commissioned by the
Bureau of the Census for the 1950 calculations. The Eckert-Mauchly Computer Cor-
poration became part of the UNIVAC division of Sperry-Rand Corporation, which
went on to build a series of successor machines.

The UNIVAC I was the first successful commercial computer. It was intended
for both scientific and commercial applications. The first paper describing the sys-
tem listed matrix algebraic computations, statistical problems, premium billings
for a life insurance company, and logistical problems as a sample of the tasks it could
perform.

The UNIVAC II, which had greater memory capacity and higher performance
than the UNIVAC I, was delivered in the late 1950s and illustrates several trends that
have remained characteristic of the computer industry. First, advances in technology
allow companies to continue to build larger, more powerful computers. Second, each
company tries to make its new machines backward compatible’ with the older ma-
chines. This means that the programs written for the older machines can be executed
on the new machine. This strategy is adopted in the hopes of retaining the customer
base; that is, when a customer decides to buy a newer machine, he or she is likely to
get it from the same company to avoid losing the investment in programs.

The UNIVAC division also began development of the 1100 series of comput-
ers, which was to be its major source of revenue. This series illustrates a distinction
that existed at one time. The first model, the UNIVAC 1103, and its successors for
many years were primarily intended for scientific applications, involving long and
complex calculations. Other companies concentrated on business applications, which
involved processing large amounts of text data. This split has largely disappeared,
but it was evident for a number of years.

IBM, then the major manufacturer of punched-card processing equipment, de-
livered its first electronic stored-program computer, the 701, in 1953.The 701 was in-
tended primarily for scientific applications [BASHS81]. In 1955, IBM introduced the
companion 702 product, which had a number of hardware features that suited it to
business applications. These were the first of a long series of 700/7000 computers
that established IBM as the overwhelmingly dominant computer manufacturer.

The Second Generation: Transistors

The first major change in the electronic computer came with the replacement of the
vacuum tube by the transistor. The transistor is smaller, cheaper, and dissipates less
heat than a vacuum tube but can be used in the same way as a vacuum tube to con-
struct computers. Unlike the vacuum tube, which requires wires, metal plates, a glass
capsule, and a vacuum, the transistor is a solid-state device, made from silicon.

The transistor was invented at Bell Labs in 1947 and by the 1950s had launched
an electronic revolution. It was not until the late 1950s, however, that fully transis-
torized computers were commercially available. IBM again was not the first

3Also called downward compatible. The same concept, from the point of view of the older system, is
referred to as upward compatible, or forward compatible.
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Table 2.2 Computer Generations

Approximate Typical Speed
Generation Dates Technology (operations per second)

1 1946-1957 Vacuum tube 40,000

2 1958-1964 Transistor 200,000

3 1965-1971 Small and medium scale 1,000,000

integration

4 1972-1977 Large scale integration 10,000,000

5 1978-1991 Very large scale integration 100,000,000

1991- Ultra large scale integration 1,000,000,000

company to deliver the new technology. NCR and, more successfully, RCA were the
front-runners with some small transistor machines. IBM followed shortly with the
7000 series.

The use of the transistor defines the second generation of computers. It has be-
come widely accepted to classify computers into generations based on the fundamen-
tal hardware technology employed (Table 2.2). Each new generation is characterized
by greater processing performance, larger memory capacity, and smaller size than the
previous one.

But there are other changes as well. The second generation saw the introduc-
tion of more complex arithmetic and logic units and control units, the use of high-
level programming languages, and the provision of system software with the
computer.

The second generation is noteworthy also for the appearance of the Digital
Equipment Corporation (DEC). DEC was founded in 1957 and, in that year, deliv-
ered its first computer, the PDP-1. This computer and this company began the mini-
computer phenomenon that would become so prominent in the third generation.

THE IBM 7094 From the introduction of the 700 series in 1952 to the introduction
of the last member of the 7000 series in 1964, this IBM product line underwent an
evolution that is typical of computer products. Successive members of the product
line show increased performance, increased capacity, and/or lower cost.

Table 2.3 illustrates this trend. The size of main memory, in multiples of 2'° 36-bit
words, grew from 2K (1K = 2') to 32K words,* while the time to access one word of
memory, the memory cycle time, fell from 30 us to 1.4 us. The number of opcodes
grew from a modest 24 to 185.

The final column indicates the relative execution speed of the central process-
ing unit (CPU). Speed improvements are achieved by improved electronics (e.g., a
transistor implementation is faster than a vacuum tube implementation) and more
complex circuitry. For example, the IBM 7094 includes an Instruction Backup Reg-
ister, used to buffer the next instruction. The control unit fetches two adjacent words

4A discussion of the uses of numerical prefixes, such as kilo and giga, is contained in a supporting docu-
ment at the Computer Science Student Resource Site at WilliamStallings.com/StudentSupport.html.
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Table 2.3 Example members of the IBM 700/7000 Series

precision)

/0 Instruc-
CPU Memory Cycle Number | Number | Hardwired | Overlap tion Speed
Model First Tech- Tech- Time | Memory of of Index | Floating- (Chan- Fetch (relative
Number | Delivery | nology nology (ps) | Size (K) | Opcodes | Registers Point nels) Overlap | to 701)
701 1952 Vacuum Electrostatic 30 2-4 24 0 no no no 1
tubes tubes
704 1955 Vacuum Core 12 4-32 80 3 yes no no 2.5
tubes
709 1958 Vacuum Core 12 32 140 3 yes yes no 4
tubes
7090 1960 Transistor | Core 218 32 169 3 yes yes no 25
7094 1 1962 Transistor | Core 2 32 185 7 yes (double yes yes 30
precision)
7094 11 1964 Transistor | Core 1.4 32 185 7 yes (double yes yes 50
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Figure 2.5 An IBM 7094 Configuration

from memory for an instruction fetch. Except for the occurrence of a branching in-
struction, which is typically infrequent, this means that the control unit has to access
memory for an instruction on only half the instruction cycles. This prefetching sig-
nificantly reduces the average instruction cycle time.

The remainder of the columns of Table 2.3 will become clear as the text proceeds.

Figure 2.5 shows a large (many peripherals) configuration for an IBM 7094,
which is representative of second-generation computers [BELL71]. Several differ-
ences from the IAS computer are worth noting. The most important of these is the
use of data channels. A data channel is an independent I/O module with its own
processor and its own instruction set. In a computer system with such devices, the
CPU does not execute detailed I/O instructions. Such instructions are stored in a
main memory to be executed by a special-purpose processor in the data channel it-
self. The CPU initiates an I/O transfer by sending a control signal to the data channel,
instructing it to execute a sequence of instructions in memory. The data channel per-
forms its task independently of the CPU and signals the CPU when the operation is
complete. This arrangement relieves the CPU of a considerable processing burden.

Another new feature is the multiplexor, which is the central termination point for
data channels, the CPU, and memory. The multiplexor schedules access to the memory
from the CPU and data channels, allowing these devices to act independently.

The Third Generation: Integrated Circuits

A single, self-contained transistor is called a discrete component. Throughout the
1950s and early 1960s, electronic equipment was composed largely of discrete
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components —transistors, resistors, capacitors, and so on. Discrete components were
manufactured separately, packaged in their own containers, and soldered or wired
together onto masonite-like circuit boards, which were then installed in computers,
oscilloscopes, and other electronic equipment. Whenever an electronic device called
for a transistor, a little tube of metal containing a pinhead-sized piece of silicon had
to be soldered to a circuit board. The entire manufacturing process, from transistor
to circuit board, was expensive and cumbersome.

These facts of life were beginning to create problems in the computer industry.
Early second-generation computers contained about 10,000 transistors. This figure
grew to the hundreds of thousands, making the manufacture of newer, more power-
ful machines increasingly difficult.

In 1958 came the achievement that revolutionized electronics and started the
era of microelectronics: the invention of the integrated circuit. It is the integrated
circuit that defines the third generation of computers. In this section we provide a
brief introduction to the technology of integrated circuits. Then we look at perhaps
the two most important members of the third generation, both of which were intro-
duced at the beginning of that era: the IBM System/360 and the DEC PDP-8.

MICROELECTRONICS Microelectronics means, literally, “small electronics.” Since
the beginnings of digital electronics and the computer industry, there has been a
persistent and consistent trend toward the reduction in size of digital electronic cir-
cuits. Before examining the implications and benefits of this trend, we need to say
something about the nature of digital electronics. A more detailed discussion is
found in Chapter 20.

The basic elements of a digital computer, as we know, must perform storage,
movement, processing, and control functions. Only two fundamental types of com-
ponents are required (Figure 2.6): gates and memory cells. A gate is a device that im-
plements a simple Boolean or logical function, such as IF A AND B ARE TRUE
THEN C IS TRUE (AND gate). Such devices are called gates because they control
data flow in much the same way that canal gates do. The memory cell is a device that
can store one bit of data; that is, the device can be in one of two stable states at any
time. By interconnecting large numbers of these fundamental devices, we can con-
struct a computer. We can relate this to our four basic functions as follows:

* Data storage: Provided by memory cells.
* Data processing: Provided by gates.

— .
. Boolean Binary
Input ° logic —> Output Input —>{ storage = [——> Output
. function cell
Read 41
Activate Write
signal
(a) Gate (b) Memory cell

Figure 2.6 Fundamental Computer Elements
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¢ Data movement: The paths among components are used to move data from
memory to memory and from memory through gates to memory.

e Control: The paths among components can carry control signals. For example,
a gate will have one or two data inputs plus a control signal input that activates
the gate. When the control signal is ON, the gate performs its function on the
data inputs and produces a data output. Similarly, the memory cell will store
the bit that is on its input lead when the WRITE control signal is ON and will
place the bit that is in the cell on its output lead when the READ control sig-
nal is ON.

Thus, a computer consists of gates, memory cells, and interconnections among
these elements. The gates and memory cells are, in turn, constructed of simple digi-
tal electronic components.

The integrated circuit exploits the fact that such components as transistors, re-
sistors, and conductors can be fabricated from a semiconductor such as silicon. It is
merely an extension of the solid-state art to fabricate an entire circuit in a tiny piece
of silicon rather than assemble discrete components made from separate pieces of
silicon into the same circuit. Many transistors can be produced at the same time on
a single wafer of silicon. Equally important, these transistors can be connected with
a process of metallization to form circuits.

Figure 2.7 depicts the key concepts in an integrated circuit. A thin wafer of
silicon is divided into a matrix of small areas, each a few millimeters square. The
identical circuit pattern is fabricated in each area, and the wafer is broken up into
chips. Each chip consists of many gates and/or memory cells plus a number of input
and output attachment points. This chip is then packaged in housing that protects it
and provides pins for attachment to devices beyond the chip. A number of these
packages can then be interconnected on a printed circuit board to produce larger
and more complex circuits.

Initially, only a few gates or memory cells could be reliably manufactured and
packaged together. These early integrated circuits are referred to as small-scale in-
tegration (SSI). As time went on, it became possible to pack more and more com-
ponents on the same chip. This growth in density is illustrated in Figure 2.8; it is one
of the most remarkable technological trends ever recorded.’ This figure reflects the
famous Moore’s law, which was propounded by Gordon Moore, cofounder of Intel,
in 1965 [MOORG65]. Moore observed that the number of transistors that could be
put on a single chip was doubling every year and correctly predicted that this pace
would continue into the near future. To the surprise of many, including Moore,
the pace continued year after year and decade after decade. The pace slowed to a
doubling every 18 months in the 1970s but has sustained that rate ever since.

The consequences of Moore’s law are profound:

1. The cost of a chip has remained virtually unchanged during this period of
rapid growth in density. This means that the cost of computer logic and mem-
ory circuitry has fallen at a dramatic rate.

SNote that the vertical axis uses a log scale. A basic review of log scales is in the math refresher document
at the Computer Science Student Support Site at WilliamStallings.com/StudentSupport.html.
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2. Because logic and memory elements are placed closer together on more densely
packed chips, the electrical path length is shortened, increasing operating speed.

3. The computer becomes smaller, making it more convenient to place in a variety
of environments.

4. There is a reduction in power and cooling requirements.

5. The interconnections on the integrated circuit are much more reliable than
solder connections. With more circuitry on each chip, there are fewer interchip
connections.

IBM sysTEM/360 By 1964, IBM had a firm grip on the computer market with its
7000 series of machines. In that year, IBM announced the System/360, a new family
of computer products. Although the announcement itself was no surprise, it con-
tained some unpleasant news for current IBM customers: the 360 product line was
incompatible with older IBM machines. Thus, the transition to the 360 would be dif-
ficult for the current customer base. This was a bold step by IBM, but one IBM felt
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was necessary to break out of some of the constraints of the 7000 architecture and to
produce a system capable of evolving with the new integrated circuit technology
[PADES1, GIFF87]. The strategy paid off both financially and technically. The 360
was the success of the decade and cemented IBM as the overwhelmingly dominant
computer vendor, with a market share above 70%. And, with some modifications and
extensions, the architecture of the 360 remains to this day the architecture of IBM’s
mainframe® computers. Examples using this architecture can be found throughout
this text.

The System/360 was the industry’s first planned family of computers. The fam-
ily covered a wide range of performance and cost. Table 2.4 indicates some of the
key characteristics of the various models in 1965 (each member of the family is dis-
tinguished by a model number). The models were compatible in the sense that a
program written for one model should be capable of being executed by another
model in the series, with only a difference in the time it takes to execute.

The concept of a family of compatible computers was both novel and ex-
tremely successful. A customer with modest requirements and a budget to match
could start with the relatively inexpensive Model 30. Later, if the customer’s needs
grew, it was possible to upgrade to a faster machine with more memory without

The term mainframe is used for the larger, most powerful computers other than supercomputers. Typical
characteristics of a mainframe are that it supports a large database, has elaborate I/O hardware, and is
used in a central data processing facility.

STUDENTS-HUB.com Uploaded By: anonymous



2.1 / A BRIEF HISTORY OF COMPUTERS 33

Table 2.4 Key Characteristics of the System/360 Family

Model Model Model Model Model

Characteristic 30 40 50 65 75
Maximum memory size (bytes) 64K 256K 256K 512K 512K
Data rate from memory (Mbytes/sec) 0.5 0.8 2.0 8.0 16.0
Processor cycle time us) 1.0 0.625 0.5 0.25 0.2
Relative speed 1 3.5 10 21 50
Maximum number of data channels 3 3 4 6 6
Maximum data rate on one channel 250 400 800 1250 1250
(Kbytes/s)

sacrificing the investment in already-developed software. The characteristics of a
family are as follows:

¢ Similar or identical instruction set: In many cases, the exact same set of ma-
chine instructions is supported on all members of the family. Thus, a program
that executes on one machine will also execute on any other. In some cases, the
lower end of the family has an instruction set that is a subset of that of the top
end of the family. This means that programs can move up but not down.

e Similar or identical operating system: The same basic operating system is
available for all family members. In some cases, additional features are added
to the higher-end members.

* Increasing speed: The rate of instruction execution increases in going from
lower to higher family members.

* Increasing number of I/O ports: The number of I/O ports increases in going
from lower to higher family members.

* Increasing memory size: The size of main memory increases in going from
lower to higher family members.

¢ Increasing cost: At a given point in time, the cost of a system increases in going
from lower to higher family members.

How could such a family concept be implemented? Differences were achieved
based on three factors: basic speed, size, and degree of simultaneity [STEV64]. For
example, greater speed in the execution of a given instruction could be gained by
the use of more complex circuitry in the ALU, allowing suboperations to be carried
out in parallel. Another way of increasing speed was to increase the width of the
data path between main memory and the CPU. On the Model 30, only 1 byte (8 bits)
could be fetched from main memory at a time, whereas 8 bytes could be fetched at a
time on the Model 75.

The System/360 not only dictated the future course of IBM but also had a pro-
found impact on the entire industry. Many of its features have become standard on
other large computers.

DEC PDP-8 In the same year that IBM shipped its first System/360, another
momentous first shipment occurred: PDP-8 from Digital Equipment Corporation
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(DEC). At a time when the average computer required an air-conditioned room, the
PDP-8 (dubbed a minicomputer by the industry, after the miniskirt of the day) was
small enough that it could be placed on top of a lab bench or be built into other
equipment. It could not do everything the mainframe could, but at $16,000, it was
cheap enough for each lab technician to have one. In contrast, the System/360 series
of mainframe computers introduced just a few months before cost hundreds of
thousands of dollars.

The low cost and small size of the PDP-8 enabled another manufacturer to
purchase a PDP-8 and integrate it into a total system for resale. These other manu-
facturers came to be known as original equipment manufacturers (OEMs), and the
OEM market became and remains a major segment of the computer marketplace.

The PDP-8 was an immediate hit and made DEC’s fortune. This machine and
other members of the PDP-8 family that followed it (see Table 2.5) achieved a pro-
duction status formerly reserved for IBM computers, with about 50,000 machines
sold over the next dozen years. As DEC'’s official history puts it, the PDP-8 “estab-
lished the concept of minicomputers, leading the way to a multibillion dollar indus-
try.” It also established DEC as the number one minicomputer vendor, and, by the
time the PDP-8 had reached the end of its useful life, DEC was the number two
computer manufacturer, behind IBM.

In contrast to the central-switched architecture (Figure 2.5) used by IBM on
its 700/7000 and 360 systems, later models of the PDP-8 used a structure that is now
virtually universal for microcomputers: the bus structure. This is illustrated in
Figure 2.9. The PDP-8 bus, called the Omnibus, consists of 96 separate signal paths,
used to carry control, address, and data signals. Because all system components
share a common set of signal paths, their use must be controlled by the CPU. This ar-
chitecture is highly flexible, allowing modules to be plugged into the bus to create
various configurations.

Later Generations

Beyond the third generation there is less general agreement on defining generations
of computers. Table 2.2 suggests that there have been a number of later generations,
based on advances in integrated circuit technology. With the introduction of large-
scale integration (LSI), more than 1000 components can be placed on a single inte-
grated circuit chip. Very-large-scale integration (VLSI) achieved more than 10,000
components per chip, while current ultra-large-scale integration (ULSI) chips can
contain more than one million components.

With the rapid pace of technology, the high rate of introduction of new prod-
ucts, and the importance of software and communications as well as hardware, the
classification by generation becomes less clear and less meaningful. It could be said
that the commercial application of new developments resulted in a major change in
the early 1970s and that the results of these changes are still being worked out. In
this section, we mention two of the most important of these results.

SEMICONDUCTOR MEMORY The first application of integrated circuit technology
to computers was construction of the processor (the control unit and the arithmetic
and logic unit) out of integrated circuit chips. But it was also found that this same
technology could be used to construct memories.
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Table 2.5 Evolution of the PDP-8 [VOELSS8]

Cost of Processor + 4K Data Rate

First 12-bit Words of from Memory Volume
Model Shipped Memory ($1000s) (words/ psec) (cubic feet) Innovations and Improvements
PDP-8 4/65 16.2 1.26 8.0 Automatic wire-wrapping production
PDP-8/5 9/66 8.79 0.08 32 Serial instruction implementation
PDP-8/1 4/68 11.6 1.34 8.0 Medium scale integrated circuits
PDP-8/L 11/68 7.0 1.26 2.0 Smaller cabinet
PDP-8/E 3/71 4.99 1.52 22 Omnibus
PDP-8/M 6/72 3.69 1.52 1.8 Half-size cabinet with fewer slots than 8/E
PDP-8/A 1/75 2.6 1.34 1.2 Semiconductor memory; floating-point processor

¢
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Figure 2.9 PDP-8 Bus Structure

In the 1950s and 1960s, most computer memory was constructed from tiny
rings of ferromagnetic material, each about a sixteenth of an inch in diameter. These
rings were strung up on grids of fine wires suspended on small screens inside the
computer. Magnetized one way, a ring (called a core) represented a one; magnetized
the other way, it stood for a zero. Magnetic-core memory was rather fast; it took as
little as a millionth of a second to read a bit stored in memory. But it was expensive,
bulky, and used destructive readout: The simple act of reading a core erased the data
stored in it. It was therefore necessary to install circuits to restore the data as soon as
it had been extracted.

Then, in 1970, Fairchild produced the first relatively capacious semiconductor
memory. This chip, about the size of a single core, could hold 256 bits of memory. It
was nondestructive and much faster than core. It took only 70 billionths of a second
to read a bit. However, the cost per bit was higher than for that of core.

In 1974, a seminal event occurred: The price per bit of semiconductor memory
dropped below the price per bit of core memory. Following this, there has been a con-
tinuing and rapid decline in memory cost accompanied by a corresponding increase in
physical memory density. This has led the way to smaller, faster machines with mem-
ory sizes of larger and more expensive machines from just a few years earlier. Devel-
opments in memory technology, together with developments in processor technology
to be discussed next, changed the nature of computers in less than a decade. Although
bulky, expensive computers remain a part of the landscape, the computer has also
been brought out to the “end user,” with office machines and personal computers.

Since 1970, semiconductor memory has been through 13 generations: 1K, 4K,
16K, 64K, 256K, 1M, 4M, 16M, 64M, 256M, 1G, 4G, and, as of this writing, 16 Gbits
on a single chip (1K = 2", 1M = 2*,1G = 2¥). Each generation has provided four
times the storage density of the previous generation, accompanied by declining cost
per bit and declining access time.

MICROPROCESSORS Just as the density of elements on memory chips has continued
to rise, so has the density of elements on processor chips. As time went on, more and
more elements were placed on each chip, so that fewer and fewer chips were needed
to construct a single computer processor.

A breakthrough was achieved in 1971, when Intel developed its 4004. The 4004
was the first chip to contain all of the components of a CPU on a single chip: The mi-
croprocessor was born.

The 4004 can add two 4-bit numbers and can multiply only by repeated addi-
tion. By today’s standards, the 4004 is hopelessly primitive, but it marked the begin-
ning of a continuing evolution of microprocessor capability and power.
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This evolution can be seen most easily in the number of bits that the processor
deals with at a time. There is no clear-cut measure of this, but perhaps the best mea-
sure is the data bus width: the number of bits of data that can be brought into or sent
out of the processor at a time. Another measure is the number of bits in the accu-
mulator or in the set of general-purpose registers. Often, these measures coincide,
but not always. For example, a number of microprocessors were developed that op-
erate on 16-bit numbers in registers but can only read and write 8 bits at a time.

The next major step in the evolution of the microprocessor was the introduc-
tion in 1972 of the Intel 8008. This was the first 8-bit microprocessor and was almost
twice as complex as the 4004.

Neither of these steps was to have the impact of the next major event: the in-
troduction in 1974 of the Intel 8080. This was the first general-purpose microproces-
sor. Whereas the 4004 and the 8008 had been designed for specific applications, the
8080 was designed to be the CPU of a general-purpose microcomputer. Like the
8008, the 8080 is an 8-bit microprocessor. The 8080, however, is faster, has a richer
instruction set, and has a large addressing capability.

About the same time, 16-bit microprocessors began to be developed. How-
ever, it was not until the end of the 1970s that powerful, general-purpose 16-bit mi-
croprocessors appeared. One of these was the 8086. The next step in this trend
occurred in 1981, when both Bell Labs and Hewlett-Packard developed 32-bit, sin-
gle-chip microprocessors. Intel introduced its own 32-bit microprocessor, the 80386,
in 1985 (Table 2.6).

Table 2.6 Evolution of Intel Microprocessors
(a) 1970s Processors

4004 8008 8080 8086 8088
Introduced 1971 1972 1974 1978 1979
Clock speeds 108 kHz 108 kHz 2 MHz 5 MHz, 8 MHz, 10 MHz 5 MHz, 8 MHz
Bus width 4 bits 8 bits 8 bits 16 bits 8 bits
Number of transistors 2,300 3,500 6,000 29,000 29,000
Feature size (um) 10 6 3 6
Addressable memory 640 Bytes 16 KB 64 KB 1 MB 1 MB

(b) 1980s Processors

80286 386TM DX 386TM SX 486TM DX CPU
Introduced 1982 1985 1988 1989
Clock speeds 6 MHz-12.5 MHz 16 MHz-33 MHz 16 MHz-33 MHz 25 MHz-50 MHz
Bus width 16 bits 32 bits 16 bits 32 bits
Number of transistors 134,000 275,000 275,000 1.2 million
Feature size (wm) 1.5 1 1 0.8-1
Addressable memory 16 MB 4GB 16 MB 4GB
Virtual memory 1GB 64 TB 64 TB 64 TB
Cache — — — 8 kB
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Table 2.6 Continued
(¢) 1990s Processors

486TM SX Pentium Pentium Pro Pentium IT
Introduced 1991 1993 1995 1997
Clock speeds 16 MHz-33 MHz | 60 MHz-166 MHz, | 150 MHz-200 MHz | 200 MHz-300 MHz
Bus width 32 bits 32 bits 64 bits 64 bits
Number of transistors 1.185 million 3.1 million 5.5 million 7.5 million
Feature size (um) 1 0.8 0.6 0.35
Addressable memory 4GB 4GB 64 GB 64 GB
Virtual memory 64TB 64 TB 64TB 64TB
Cache 8 kB 8 kB 512 kB L1 and S5S12kB L2

1 MB L2
(d) Recent Processors
Pentium III Pentium 4 Core 2 Duo Core 2 Quad

Introduced 1999 2000 2006 2008
Clock speeds 450-660 MHz 1.3-1.8 GHz 1.06-1.2 GHz 3 GHz
Bus sidth 64 bits 64 bits 64 bits 64 bits
Number of transistors 9.5 million 42 million 167 million 820 million
Feature size (nm) 250 180 65 45
Addressable memory 64 GB 64 GB 64 GB 64 GB
Virtual memory 64 TB 64 TB 64 TB 64 TB
Cache 512kB L2 256 kB L2 2MB L2 6 MB L2

2.2 DESIGNING FOR PERFORMANCE

Year by year, the cost of computer systems continues to drop dramatically, while the
performance and capacity of those systems continue to rise equally dramatically. At
a local warehouse club, you can pick up a personal computer for less than $1000 that
packs the wallop of an IBM mainframe from 10 years ago. Thus, we have virtually
“free” computer power. And this continuing technological revolution has enabled
the development of applications of astounding complexity and power. For example,
desktop applications that require the great power of today’s microprocessor-based
systems include

e Image processing

* Speech recognition

¢ Videoconferencing

° Multimedia authoring

* Voice and video annotation of files

* Simulation modeling
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Workstation systems now support highly sophisticated engineering and scien-
tific applications, as well as simulation systems, and have the ability to support
image and video applications. In addition, businesses are relying on increasingly
powerful servers to handle transaction and database processing and to support
massive client/server networks that have replaced the huge mainframe computer
centers of yesteryear.

What is fascinating about all this from the perspective of computer organiza-
tion and architecture is that, on the one hand, the basic building blocks for today’s
computer miracles are virtually the same as those of the IAS computer from over
50 years ago, while on the other hand, the techniques for squeezing the last iota of
performance out of the materials at hand have become increasingly sophisticated.

This observation serves as a guiding principle for the presentation in this book.
As we progress through the various elements and components of a computer, two
objectives are pursued. First, the book explains the fundamental functionality in
each area under consideration, and second, the book explores those techniques re-
quired to achieve maximum performance. In the remainder of this section, we high-
light some of the driving factors behind the need to design for performance.

Microprocessor Speed

What gives Intel x86 processors or IBM mainframe computers such mind-boggling
power is the relentless pursuit of speed by processor chip manufacturers. The evolu-
tion of these machines continues to bear out Moore’s law, mentioned previously. So
long as this law holds, chipmakers can unleash a new generation of chips every three
years—with four times as many transistors. In memory chips, this has quadrupled
the capacity of dynamic random-access memory (DRAM), still the basic technology
for computer main memory, every three years. In microprocessors, the addition of
new circuits, and the speed boost that comes from reducing the distances between
them, has improved performance four- or fivefold every three years or so since Intel
launched its x86 family in 1978.

But the raw speed of the microprocessor will not achieve its potential unless it
is fed a constant stream of work to do in the form of computer instructions. Any-
thing that gets in the way of that smooth flow undermines the power of the proces-
sor. Accordingly, while the chipmakers have been busy learning how to fabricate
chips of greater and greater density, the processor designers must come up with ever
more elaborate techniques for feeding the monster. Among the techniques built
into contemporary processors are the following:

* Branch prediction: The processor looks ahead in the instruction code fetched
from memory and predicts which branches, or groups of instructions, are likely
to be processed next. If the processor guesses right most of the time, it can
prefetch the correct instructions and buffer them so that the processor is kept
busy. The more sophisticated examples of this strategy predict not just the next
branch but multiple branches ahead. Thus, branch prediction increases the
amount of work available for the processor to execute.

* Data flow analysis: The processor analyzes which instructions are dependent
on each other’s results, or data, to create an optimized schedule of instructions.

STUDENTS-HUB.com Uploaded By: anonymous



40 CHAPTER 2 / COMPUTER EVOLUTION AND PERFORMANCE

In fact, instructions are scheduled to be executed when ready, independent of
the original program order. This prevents unnecessary delay.

* Speculative execution: Using branch prediction and data flow analysis, some
processors speculatively execute instructions ahead of their actual appearance
in the program execution, holding the results in temporary locations. This en-
ables the processor to keep its execution engines as busy as possible by exe-
cuting instructions that are likely to be needed.

These and other sophisticated techniques are made necessary by the sheer power
of the processor. They make it possible to exploit the raw speed of the processor.

Performance Balance

While processor power has raced ahead at breakneck speed, other critical compo-
nents of the computer have not kept up. The result is a need to look for performance
balance: an adjusting of the organization and architecture to compensate for the
mismatch among the capabilities of the various components.

Nowhere is the problem created by such mismatches more critical than in the
interface between processor and main memory. Consider the history depicted in
Figure 2.10. While processor speed has grown rapidly, the speed with which data can
be transferred between main memory and the processor has lagged badly. The inter-
face between processor and main memory is the most crucial pathway in the entire
computer because it is responsible for carrying a constant flow of program instruc-
tions and data between memory chips and the processor. If memory or the pathway
fails to keep pace with the processor’s insistent demands, the processor stalls in a
wait state, and valuable processing time is lost.

MHz
3500

} Logic
3000 /
2500 /
2000 /
1500

1000 /
/ Memory
500

1992 1994 1996 1998 2000 2002
Figure 2.10 Logic and Memory Performance Gap [BORKO3]
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There are a number of ways that a system architect can attack this problem, all
of which are reflected in contemporary computer designs. Consider the following
examples:

¢ Increase the number of bits that are retrieved at one time by making DRAMs
“wider” rather than “deeper” and by using wide bus data paths.

 Change the DRAM interface to make it more efficient by including a cache’
or other buffering scheme on the DRAM chip.

¢ Reduce the frequency of memory access by incorporating increasingly com-
plex and efficient cache structures between the processor and main memory.
This includes the incorporation of one or more caches on the processor chip as
well as on an off-chip cache close to the processor chip.

e Increase the interconnect bandwidth between processors and memory by
using higher-speed buses and by using a hierarchy of buses to buffer and struc-
ture data flow.

Another area of design focus is the handling of I/O devices. As computers be-
come faster and more capable, more sophisticated applications are developed that
support the use of peripherals with intensive I/O demands. Figure 2.11 gives some
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Figure 2.11 Typical I/O Device Data Rates

7A cache is a relatively small fast memory interposed between a larger, slower memory and the logic that
accesses the larger memory. The cache holds recently accessed data, and is designed to speed up subse-
quent access to the same data. Caches are discussed in Chapter 4.
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examples of typical peripheral devices in use on personal computers and worksta-
tions. These devices create tremendous data throughput demands. While the current
generation of processors can handle the data pumped out by these devices, there re-
mains the problem of getting that data moved between processor and peripheral.
Strategies here include caching and buffering schemes plus the use of higher-speed
interconnection buses and more elaborate structures of buses. In addition, the use of
multiple-processor configurations can aid in satisfying I/O demands.

The key in all this is balance. Designers constantly strive to balance the
throughput and processing demands of the processor components, main memory,
I/O devices, and the interconnection structures. This design must constantly be
rethought to cope with two constantly evolving factors:

e The rate at which performance is changing in the various technology areas
(processor, buses, memory, peripherals) differs greatly from one type of ele-
ment to another.

e New applications and new peripheral devices constantly change the nature of
the demand on the system in terms of typical instruction profile and the data
access patterns.

Thus, computer design is a constantly evolving art form. This book attempts to
present the fundamentals on which this art form is based and to present a survey of
the current state of that art.

Improvements in Chip Organization and Architecture

As designers wrestle with the challenge of balancing processor performance with that
of main memory and other computer components, the need to increase processor
speed remains. There are three approaches to achieving increased processor speed:

¢ Increase the hardware speed of the processor. This increase is fundamentally
due to shrinking the size of the logic gates on the processor chip, so that more
gates can be packed together more tightly and to increasing the clock rate.
With gates closer together, the propagation time for signals is significantly re-
duced, enabling a speeding up of the processor. An increase in clock rate
means that individual operations are executed more rapidly.

e Increase the size and speed of caches that are interposed between the proces-
sor and main memory. In particular, by dedicating a portion of the processor
chip itself to the cache, cache access times drop significantly.

e Make changes to the processor organization and architecture that increase the
effective speed of instruction execution. Typically, this involves using paral-
lelism in one form or another.

Traditionally, the dominant factor in performance gains has been in increases
in clock speed due and logic density. Figure 2.12 illustrates this trend for Intel
processor chips. However, as clock speed and logic density increase, a number of ob-
stacles become more significant [INTE04b]:

e Power: As the density of logic and the clock speed on a chip increase, so does
the power density (Watts/cm?). The difficulty of dissipating the heat generated
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Figure 2.12  Intel Microprocessor Performance [GIBB04]

on high-density, high-speed chips is becoming a serious design issue ([GIBB04],
[BORKO03]).

RC delay: The speed at which electrons can flow on a chip between transis-
tors is limited by the resistance and capacitance of the metal wires connecting
them; specifically, delay increases as the RC product increases. As compo-
nents on the chip decrease in size, the wire interconnects become thinner, in-
creasing resistance. Also, the wires are closer together, increasing capacitance.

Memory latency: Memory speeds lag processor speeds, as previously discussed.

Thus, there will be more emphasis on organization and architectural ap-

proaches to improving performance. Figure 2.12 highlights the major changes that
have been made over the years to increase the parallelism and therefore the
computational efficiency of processors. These techniques are discussed in later
chapters of the book.

Beginning in the late 1980s, and continuing for about 15 years, two main strate-

gies have been used to increase performance beyond what can be achieved simply
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by increasing clock speed. First, there has been an increase in cache capacity. There
are now typically two or three levels of cache between the processor and main mem-
ory. As chip density has increased, more of the cache memory has been incorporated
on the chip, enabling faster cache access. For example, the original Pentium chip de-
voted about 10% of on-chip area to a cache. The most recent Pentium 4 chip devotes
about half of the chip area to caches.

Second, the instruction execution logic within a processor has become in-
creasingly complex to enable parallel execution of instructions within the proces-
sor. Two noteworthy design approaches have been pipelining and superscalar. A
pipeline works much as an assembly line in a manufacturing plant enabling differ-
ent stages of execution of different instructions to occur at the same time along the
pipeline. A superscalar approach in essence allows multiple pipelines within a sin-
gle processor so that instructions that do not depend on one another can be exe-
cuted in parallel.

Both of these approaches are reaching a point of diminishing returns. The in-
ternal organization of contemporary processors is exceedingly complex and is able
to squeeze a great deal of parallelism out of the instruction stream. It seems likely
that further significant increases in this direction will be relatively modest
[GIBBO04]. With three levels of cache on the processor chip, each level providing
substantial capacity, it also seems that the benefits from the cache are reaching
a limit.

However, simply relying on increasing clock rate for increased performance
runs into the power dissipation problem already referred to. The faster the clock
rate, the greater the amount of power to be dissipated, and some fundamental phys-
ical limits are being reached.

With all of these difficulties in mind, designers have turned to a fundamentally
new approach to improving performance: placing multiple processors on the same
chip, with a large shared cache. The use of multiple processors on the same chip, also
referred to as multiple cores, or multicore, provides the potential to increase perfor-
mance without increasing the clock rate. Studies indicate that, within a processor, the
increase in performance is roughly proportional to the square root of the increase in
complexity [BORKO3]. But if the software can support the effective use of multiple
processors, then doubling the number of processors almost doubles performance.
Thus, the strategy is to use two simpler processors on the chip rather than one more
complex processor.

In addition, with two processors, larger caches are justified. This is important
because the power consumption of memory logic on a chip is much less than that of
processing logic. In coming years, we can expect that most new processor chips will
have multiple processors.

THE EVOLUTION OF THE INTEL x86 ARCHITECTURE

Throughout this book, we rely on many concrete examples of computer design and
implementation to illustrate concepts and to illuminate trade-offs. Most of the time,
the book relies on examples from two computer families: the Intel x86 and the
ARM architecture. The current x86 offerings represent the results of decades of
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design effort on complex instruction set computers (CISCs). The x86 incorporates
the sophisticated design principles once found only on mainframes and supercom-
puters and serves as an excellent example of CISC design. An alternative approach
to processor design in the reduced instruction set computer (RISC). The ARM ar-
chitecture is used in a wide variety of embedded systems and is one of the most
powerful and best-designed RISC-based systems on the market.

In this section and the next, we provide a brief overview of these two systems.

In terms of market share, Intel has ranked as the number one maker of micro-
processors for non-embedded systems for decades, a position it seems unlikely to
yield. The evolution of its flagship microprocessor product serves as a good indica-
tor of the evolution of computer technology in general.

Table 2.6 shows that evolution. Interestingly, as microprocessors have grown
faster and much more complex, Intel has actually picked up the pace. Intel used to
develop microprocessors one after another, every four years. But Intel hopes to
keep rivals at bay by trimming a year or two off this development time, and has
done so with the most recent x86 generations.

It is worthwhile to list some of the highlights of the evolution of the Intel prod-
uct line:

* 8080: The world’s first general-purpose microprocessor. This was an 8-bit ma-
chine, with an 8-bit data path to memory. The 8080 was used in the first per-
sonal computer, the Altair.

e 8086: A far more powerful, 16-bit machine. In addition to a wider data path
and larger registers, the 8086 sported an instruction cache, or queue, that
prefetches a few instructions before they are executed. A variant of this
processor, the 8088, was used in IBM’s first personal computer, securing the
success of Intel. The 8086 is the first appearance of the x86 architecture.

* 80286: This extension of the 8086 enabled addressing a 16-MByte memory in-
stead of just 1 MByte.

¢ 80386: Intel’s first 32-bit machine, and a major overhaul of the product. With a
32-bit architecture, the 80386 rivaled the complexity and power of minicom-
puters and mainframes introduced just a few years earlier. This was the first
Intel processor to support multitasking, meaning it could run multiple pro-
grams at the same time.

* 80486: The 80486 introduced the use of much more sophisticated and powerful
cache technology and sophisticated instruction pipelining. The 80486 also of-
fered a built-in math coprocessor, offloading complex math operations from
the main CPU.

¢ Pentium: With the Pentium, Intel introduced the use of superscalar tech-
niques, which allow multiple instructions to execute in parallel.

* Pentium Pro: The Pentium Pro continued the move into superscalar organiza-
tion begun with the Pentium, with aggressive use of register renaming, branch
prediction, data flow analysis, and speculative execution.

¢ Pentium II: The Pentium II incorporated Intel MMX technology, which is de-
signed specifically to process video, audio, and graphics data efficiently.
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¢ Pentium III: The Pentium III incorporates additional floating-point instruc-
tions to support 3D graphics software.

* Pentium 4: The Pentium 4 includes additional floating-point and other en-
hancements for multimedia.®

¢ Core: This is the first Intel x86 microprocessor with a dual core, referring to
the implementation of two processors on a single chip.

* Core 2: The Core 2 extends the architecture to 64 bits. The Core 2 Quad pro-
vides four processors on a single chip.

Over 30 years after its introduction in 1978, the x86 architecture continues to
dominate the processor market outside of embedded systems. Although the organiza-
tion and technology of the x86 machines has changed dramatically over the decades,
the instruction set architecture has evolved to remain backward compatible with ear-
lier versions. Thus, any program written on an older version of the x86 architecture can
execute on newer versions. All changes to the instruction set architecture have involved
additions to the instruction set, with no subtractions. The rate of change has been the
addition of roughly one instruction per month added to the architecture over the
30 years [ANTHOS], so that there are now over 500 instructions in the instruction set.

The x86 provides an excellent illustration of the advances in computer hard-
ware over the past 30 years. The 1978 8086 was introduced with a clock speed of
5 MHz and had 29,000 transistors. A quad-core Intel Core 2 introduced in 2008 op-
erates at 3 GHz, a speedup of a factor of 600, and has 820 million transistors, about
28,000 times as many as the 8086. Yet the Core 2 is in only a slightly larger package
than the 8086 and has a comparable cost.

2.4 EMBEDDED SYSTEMS AND THE ARM

The ARM architecture refers to a processor architecture that has evolved from
RISC design principles and is used in embedded systems. Chapter 13 examines
RISC design principles in detail. In this section, we give a brief overview of the con-
cept of embedded systems, and then look at the evolution of the ARM.

Embedded Systems

The term embedded system refers to the use of electronics and software within a
product, as opposed to a general-purpose computer, such as a laptop or desktop sys-
tem. The following is a good general definition:’

Embedded system. A combination of computer hardware and software, and perhaps
additional mechanical or other parts, designed to perform a dedicated function. In many
cases, embedded systems are part of a larger system or product, as in the case of an
antilock braking system in a car.

8With the Pentium 4, Intel switched from Roman numerals to Arabic numerals for model numbers.

Michael Barr, Embedded Systems Glossary. Netrino Technical Library. http://www.netrino.com/Publications/
Glossary/index.php
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Table 2.7 Examples of Embedded Systems and Their Markets [NOERO0S]

Market Embedded Device

) Ignition system
Automotive Engine control
Brake system

Digital and analog televisions

Set-top boxes (DVDs, VCRs, Cable boxes)

Personal digital assistants (PDAs)

Kitchen appliances (refrigerators, toasters, microwave ovens)
Consumer electronics Automobiles

Toys/games

Telephones/cell phones/pagers

Cameras

Global positioning systems

Robotics and controls systems for manufacturing

Industrial control
Sensors

Infusion pumps

Dialysis machines
Prosthetic devices
Cardiac monitors

Medical

Fax machine
Photocopier
Office automation Printers
Monitors
Scanners

Embedded systems far outnumber general-purpose computer systems, encom-
passing a broad range of applications (Table 2.7). These systems have widely varying
requirements and constraints, such as the following [GRIMOS5]:

* Small to large systems, implying very different cost constraints, thus different
needs for optimization and reuse

e Relaxed to very strict requirements and combinations of different quality re-
quirements, for example, with respect to safety, reliability, real-time, flexibility,
and legislation

e Short to long life times

e Different environmental conditions in terms of, for example, radiation, vibra-
tions, and humidity

e Different application characteristics resulting in static versus dynamic loads, slow
to fast speed, compute versus interface intensive tasks, and/or combinations
thereof

¢ Different models of computation ranging from discrete-event systems to those
involving continuous time dynamics (usually referred to as hybrid systems)

Often, embedded systems are tightly coupled to their environment. This can
give rise to real-time constraints imposed by the need to interact with the envi-
ronment. Constraints, such as required speeds of motion, required precision of
measurement, and required time durations, dictate the timing of software operations.
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Figure 2.13  Possible Organization of an Embedded
System

If multiple activities must be managed simultaneously, this imposes more complex
real-time constraints.

Figure 2.13, based on [KOOP96], shows in general terms an embedded system
organization. In addition to the processor and memory, there are a number of ele-
ments that differ from the typical desktop or laptop computer:

¢ There may be a variety of interfaces that enable the system to measure, ma-
nipulate, and otherwise interact with the external environment.

e The human interface may be as simple as a flashing light or as complicated as
real-time robotic vision.

e The diagnostic port may be used for diagnosing the system that is being
controlled—not just for diagnosing the computer.

 Special-purpose field programmable (FPGA), application specific (ASIC), or
even nondigital hardware may be used to increase performance or safety.

e Software often has a fixed function and is specific to the application.

ARM Evolution

ARM is a family of RISC-based microprocessors and microcontrollers designed by
ARM Inc., Cambridge, England. The company doesn’t make processors but instead
designs microprocessor and multicore architectures and licenses them to manufac-
turers. ARM chips are high-speed processors that are known for their small die size
and low power requirements. They are widely used in PDAs and other handheld de-
vices, including games and phones as well as a large variety of consumer products.
ARM chips are the processors in Apple’s popular iPod and iPhone devices. ARM is
probably the most widely used embedded processor architecture and indeed the
most widely used processor architecture of any kind in the world.

The origins of ARM technology can be traced back to the British-based Acorn
Computers company. In the early 1980s, Acorn was awarded a contract by the
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Table 2.8 ARM Evolution

Typical MIPS

Family Notable Features Cache @ MHz
ARM1 32-bit RISC None
ARM?2 Multiply and swap instructions; Integrated None 7 MIPS @ 12 MHz

memory management unit, graphics and

1/O processor
ARM3 First use of processor cache 4 KB unified 12 MIPS @ 25 MHz
ARM6 First to support 32-bit addresses; floating-point 4 KB unified 28 MIPS @ 33 MHz

unit
ARM7 Integrated SoC 8 KB unified 60 MIPS @ 60 MHz
ARMS 5-stage pipeline; static branch prediction 8 KB unified 84 MIPS @ 72 MHz
ARM9 16 KB/16 KB 300 MIPS @ 300 MHz
ARMOYE Enhanced DSP instructions 16 KB/16 KB 220 MIPS @ 200 MHz
ARMIOE | 6-stage pipeline 32 KB/32 KB
ARM11 9-stage pipeline Variable 740 MIPS @ 665 MHz
Cortex 13-stage superscalar pipeline Variable 2000 MIPS @ 1 GHz
XScale Applications processor; 7-stage pipeline 32 KB/32 KB L1 1000 MIPS @ 1.25 GHz

512KB L2

DSP = digital signal processor

SoC = system on a chip

British Broadcasting Corporation (BBC) to develop a new microcomputer architec-
ture for the BBC Computer Literacy Project. The success of this contract enabled
Acorn to go on to develop the first commercial RISC processor, the Acorn RISC
Machine (ARM). The first version, ARM1, became operational in 1985 and was
used for internal research and development as well as being used as a coprocessor in
the BBC machine. Also in 1985, Acorn released the ARM2, which had greater func-
tionality and speed within the same physical space. Further improvements were
achieved with the release in 1989 of the ARM3.

Throughout this period, Acorn used the company VLSI Technology to do the
actual fabrication of the processor chips. VLSI was licensed to market the chip on its
own and had some success in getting other companies to use the ARM in their prod-
ucts, particularly as an embedded processor.

The ARM design matched a growing commercial need for a high-performance,
low-power-consumption, small-size and low-cost processor for embedded applica-
tions. But further development was beyond the scope of Acorns capabilities.
Accordingly, a new company was organized, with Acorn, VLSI, and Apple Com-
puter as founding partners, known as ARM Ltd. The Acorn RISC Machine became
the Advanced RISC Machine.'” The new company’s first offering, an improvement
on the ARM3, was designated ARM6. Subsequently, the company has introduced a
number of new families, with increasing functionality and performance. Table 2.8

The company dropped the designation Advanced RISC Machine in the late 1990s. It is now simply
known as the ARM architecture.
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shows some characteristics of the various ARM architecture families. The numbers
in this table are only approximate guides; actual values vary widely for different im-
plementations.

According to the ARM Web site arm.com, ARM processors are designed to
meet the needs of three system categories:

°* Embedded real-time systems: Systems for storage, automotive body and
power-train, industrial, and networking applications

e Application platforms: Devices running open operating systems including
Linux, Palm OS, Symbian OS, and Windows CE in wireless, consumer enter-
tainment and digital imaging applications

¢ Secure applications: Smart cards, SIM cards, and payment terminals

2.5 PERFORMANCE ASSESSMENT

In evaluating processor hardware and setting requirements for new systems, perfor-
mance is one of the key parameters to consider, along with cost, size, security, relia-
bility, and, in some cases power consumption.

It is difficult to make meaningful performance comparisons among different
processors, even among processors in the same family. Raw speed is far less impor-
tant than how a processor performs when executing a given application. Unfortu-
nately, application performance depends not just on the raw speed of the processor,
but on the instruction set, choice of implementation language, efficiency of the com-
piler, and skill of the programming done to implement the application.

We begin this section with a look at some traditional measures of processor
speed. Then we examine the most common approach to assessing processor and
computer system performance. We follow this with a discussion of how to average
results from multiple tests. Finally, we look at the insights produced by considering
Amdahl’s law.

Clock Speed and Instructions per Second

THE SYSTEM CLOCK Operations performed by a processor, such as fetching an in-
struction, decoding the instruction, performing an arithmetic operation, and so on,
are governed by a system clock. Typically, all operations begin with the pulse of the
clock. Thus, at the most fundamental level, the speed of a processor is dictated by the
pulse frequency produced by the clock, measured in cycles per second, or Hertz (Hz).

Typically, clock signals are generated by a quartz crystal, which generates a con-
stant signal wave while power is applied. This wave is converted into a digital voltage
pulse stream that is provided in a constant flow to the processor circuitry (Figure
2.14). For example, a 1-GHz processor receives 1 billion pulses per second. The rate of
pulses is known as the clock rate, or clock speed. One increment, or pulse, of the clock
is referred to as a clock cycle, or a clock tick. The time between pulses is the cycle time.

The clock rate is not arbitrary, but must be appropriate for the physical layout
of the processor. Actions in the processor require signals to be sent from one
processor element to another. When a signal is placed on a line inside the processor,
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From Computer Desktop Encyclopedia,
1998, The Computer Language Co.

Figure 2.14  System Clock

it takes some finite amount of time for the voltage levels to settle down so that an
accurate value (1 or 0) is available. Furthermore, depending on the physical layout
of the processor circuits, some signals may change more rapidly than others. Thus,
operations must be synchronized and paced so that the proper electrical signal
(voltage) values are available for each operation.

The execution of an instruction involves a number of discrete steps, such as
fetching the instruction from memory, decoding the various portions of the instruc-
tion, loading and storing data, and performing arithmetic and logical operations.
Thus, most instructions on most processors require multiple clock cycles to com-
plete. Some instructions may take only a few cycles, while others require dozens. In
addition, when pipelining is used, multiple instructions are being executed simulta-
neously. Thus, a straight comparison of clock speeds on different processors does not
tell the whole story about performance.

INSTRUCTION EXECUTION RATE A processor is driven by a clock with a constant
frequency f or, equivalently, a constant cycle time 7, where 7 = 1/f. Define the in-
struction count, /., for a program as the number of machine instructions executed
for that program until it runs to completion or for some defined time interval. Note
that this is the number of instruction executions, not the number of instructions in
the object code of the program. An important parameter is the average cycles per
instruction CPI for a program. If all instructions required the same number of clock
cycles, then CPI would be a constant value for a processor. However, on any give
processor, the number of clock cycles required varies for different types of instruc-
tions, such as load, store, branch, and so on. Let CPI; be the number of cycles re-
quired for instruction type i. and /; be the number of executed instructions of type i
for a given program. Then we can calculate an overall CPI as follows:
> (CPL X )

CPI = S 2.1

Cc
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Table 2.9 Performance Factors and System Attributes

I, P m k T
Instruction set architecture X X
Compiler technology X X X
Processor implementation X X
Cache and memory hierarchy X X

The processor time 7 needed to execute a given program can be expressed as
T=1XCPI X~

We can refine this formulation by recognizing that during the execution of an
instruction, part of the work is done by the processor, and part of the time a word is
being transferred to or from memory. In this latter case, the time to transfer depends
on the memory cycle time, which may be greater than the processor cycle time. We
can rewrite the preceding equation as

T=ILX[p+(mXk)]Xr

where p is the number of processor cycles needed to decode and execute the instruc-
tion, m is the number of memory references needed, and k is the ratio between mem-
ory cycle time and processor cycle time. The five performance factors in the preceding
equation (1., p, m, k, ) are influenced by four system attributes: the design of the in-
struction set (known as instruction set architecture), compiler technology (how effec-
tive the compiler is in producing an efficient machine language program from a
high-level language program), processor implementation, and cache and memory hi-
erarchy. Table 2.9, based on [HWANDO3], is a matrix in which one dimension shows the
five performance factors and the other dimension shows the four system attributes.
An X in a cell indicates a system attribute that affects a performance factor.

A common measure of performance for a processor is the rate at which in-
structions are executed, expressed as millions of instructions per second (MIPS), re-
ferred to as the MIPS rate. We can express the MIPS rate in terms of the clock rate
and CPI as follows:

L, f
MIPS rate = = 2.2)

T X 10° CPI x 10°

For example, consider the execution of a program which results in the execu-
tion of 2 million instructions on a 400-MHz processor. The program consists of four
major types of instructions. The instruction mix and the CPI for each instruction
type are given below based on the result of a program trace experiment:

Instruction Type CPI Instruction Mix
Arithmetic and logic 1 60%
Load/store with cache hit 2 18%
Branch 4 12%
Memory reference with cache miss 8 10%
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The average CPI when the program is executed on a uniprocessor with the
above trace results is CPI = 0.6 + (2 X 0.18) + (4 X 0.12) + (8 X 0.1) = 2.24.
The corresponding MIPS rate is (400 X 10°)/(2.24 X 10°) ~ 178.

Another common performance measure deals only with floating-point in-
structions. These are common in many scientific and game applications. Floating-
point performance is expressed as millions of floating-point operations per second
(MFLOPS), defined as follows:

Number of executed floating-point operations in a program
MFLOPS rate = / floating-point op pros

Execution time X 10°

Benchmarks

Measures such as MIPS and MFLOPS have proven inadequate to evaluating the
performance of processors. Because of differences in instruction sets, the instruction
execution rate is not a valid means of comparing the performance of different archi-
tectures. For example, consider this high-level language statement:

A =B+ CC /* assume all quantities in main memory */

With a traditional instruction set architecture, referred to as a complex instruction
set computer (CISC), this instruction can be compiled into one processor instruction:

add mem(B), mem(C), mem (A)

On a typical RISC machine, the compilation would look something like this:

load mem(B), reg(l);
load mem(C), reg(2);
add reg(l), reg(2), reg(3);
store reg(3), mem (A)

Because of the nature of the RISC architecture (discussed in Chapter 13),
both machines may execute the original high-level language instruction in about the
same time. If this example is representative of the two machines, then if the CISC
machine is rated at 1 MIPS, the RISC machine would be rated at 4 MIPS. But both
do the same amount of high-level language work in the same amount of time.

Further, the performance of a given processor on a given program may not be
useful in determining how that processor will perform on a very different type of ap-
plication. Accordingly, beginning in the late 1980s and early 1990s, industry and aca-
demic interest shifted to measuring the performance of systems using a set of
benchmark programs. The same set of programs can be run on different machines
and the execution times compared.

[WEIC90] lists the following as desirable characteristics of a benchmark
program:

1. Itis written in a high-level language, making it portable across different machines.

2. It is representative of a particular kind of programming style, such as systems
programming, numerical programming, or commercial programming.
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3. It can be measured easily.
4. Tt has wide distribution.

SPEC BENCHMARKS The common need in industry and academic and research
communities for generally accepted computer performance measurements has led to
the development of standardized benchmark suites. A benchmark suite is a collection
of programs, defined in a high-level language, that together attempt to provide a rep-
resentative test of a computer in a particular application or system programming area.
The best known such collection of benchmark suites is defined and maintained by the
System Performance Evaluation Corporation (SPEC), an industry consortium. SPEC
performance measurements are widely used for comparison and research purposes.

The best known of the SPEC benchmark suites is SPEC CPU2006. This is the in-
dustry standard suite for processor-intensive applications. That is, SPEC CPU2006 is
appropriate for measuring performance for applications that spend most of their time
doing computation rather than I/O. The CPU2006 suite is based on existing applica-
tions that have already been ported to a wide variety of platforms by SPEC industry
members. It consists of 17 floating-point programs written in C, C++, and Fortran;
and 12 integer programs written in C and C++.The suite contains over 3 million lines
of code. This is the fifth generation of processor-intensive suites from SPEC, replacing
SPEC CPU2000, SPEC CPU95, SPEC CPU92, and SPEC CPU89 [HENNO7].

Other SPEC suites include the following:

* SPECjvm98: Intended to evaluate performance of the combined hardware
and software aspects of the Java Virtual Machine (JVM) client platform

* SPECjbb2000 (Java Business Benchmark): A benchmark for evaluating
server-side Java-based electronic commerce applications
° SPECweb99: Evaluates the performance of World Wide Web (WWW) servers

* SPECmail2001: Designed to measure a system’s performance acting as a mail
server

AVERAGING RESULTS To obtain a reliable comparison of the performance of vari-
ous computers, it is preferable to run a number of different benchmark programs on
each machine and then average the results. For example, if m different benchmark
program, then a simple arithmetic mean can be calculated as follows:

1
R,=—> R, 2.3
A m; i ( )

where R; is the high-level language instruction execution rate for the ith benchmark
program.
An alternative is to take the harmonic mean:

m
i 1
i=1 Ri

Ultimately, the user is concerned with the execution time of a system, not its

execution rate. If we take arithmetic mean of the instruction rates of various bench-
mark programs, we get a result that is proportional to the sum of the inverses of
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execution times. But this is not inversely proportional to the sum of execution times.
In other words, the arithmetic mean of the instruction rate does not cleanly relate to
execution time. On the other hand, the harmonic mean instruction rate is the in-
verse of the average execution time.

SPEC benchmarks do not concern themselves with instruction execution
rates. Rather, two fundamental metrics are of interest: a speed metric and a rate met-
ric. The speed metric measures the ability of a computer to complete a single task.
SPEC defines a base runtime for each benchmark program using a reference
machine. Results for a system under test are reported as the ratio of the reference
run time to the system run time. The ratio is calculated as follows:

_ Trefl*

= 2.5
Tsut; 2.5

T
where Tref; is the execution time of benchmark program i on the reference system
and Tsut; is the execution time of benchmark program i on the system under test.

As an example of the calculation and reporting, consider the Sun Blade 6250,
which consists of two chips with four cores, or processors, per chip. One of the SPEC
CPU2006 integer benchmark is 464.h264ref. This is a reference implementation of
H.264/AVC (Advanced Video Coding), the latest state-of-the-art video compres-
sion standard. The Sun system executes this program in 934 seconds. The reference
implementation requires 22,135 seconds. The ratio is calculated as:22136/934 = 23.7.

Because the time for the system under test is in the denominator, the larger
the ratio, the higher the speed. An overall performance measure for the system
under test is calculated by averaging the values for the ratios for all 12 integer
benchmarks. SPEC specifies the use of a geometric mean, defined as follows:

n 1/n
rg = (Hri) (2.6)

where r; is the ratio for the ith benchmark program. For the Sun Blade 6250, the
SPEC integer speed ratios were reported as follows:

Benchmark Ratio Benchmark Ratio
400.perlbench 17.5 458.sjeng 17.0
401.bzip2 14.0 462.libquantum 31.3
403.gcc 13.7 464.h264ref 23.7
429.mcf 17.6 471.omnetpp 9.23
445.gobmk 14.7 473.astar 10.9
456.hmmer 18.6 483.xalancbmk 14.7

The speed metric is calculated by taking the twelfth root of the product of the
ratios:

(17.5 X 14 X 13.7 X 17.6 X 14.7 X 18.6 X 17 X 31.3 X 23.7 X 9.23 X 10.9 X 14.7)"/2 = 185

The rate metric measures the throughput or rate of a machine carrying out a
number of tasks. For the rate metrics, multiple copies of the benchmarks are run si-
multaneously. Typically, the number of copies is the same as the number of proces-
sors on the machine. Again, a ratio is used to report results, although the calculation
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is more complex. The ratio is calculated as follows:
N N X Tref,-

r.
! Tsut;

2.7
where Tref; is the reference execution time for benchmark i, N is the number of
copies of the program that are run simultaneously, and Tsut; is the elapsed time from
the start of the execution of the program on all N processors of the system under
test until the completion of all the copies of the program. Again, a geometric mean
is calculated to determine the overall performance measure.

SPEC chose to use a geometric mean because it is the most appropriate for
normalized numbers, such as ratios. [FLEM86] demonstrates that the geometric
mean has the property of performance relationships consistently maintained re-
gardless of the computer that is used as the basis for normalization.

Amdahl’s Law

When considering system performance, computer system designers look for ways to
improve performance by improvement in technology or change in design. Examples
include the use of parallel processors, the use of a memory cache hierarchy, and
speedup in memory access time and I/O transfer rate due to technology improve-
ments. In all of these cases, it is important to note that a speedup in one aspect of the
technology or design does not result in a corresponding improvement in perfor-
mance. This limitation is succinctly expressed by Amdahl’s law.

Amdahl’s law was first proposed by Gene Amdahl in [AMDAG67] and deals
with the potential speedup of a program using multiple processors compared to a
single processor. Consider a program running on a single processor such that a frac-
tion (1 — f) of the execution time involves code that is inherently serial and a frac-
tion f that involves code that is infinitely parallelizable with no scheduling overhead.
Let T be the total execution time of the program using a single processor. Then the
speedup using a parallel processor with N processors that fully exploits the parallel
portion of the program is as follows:

time to execute program on a single processor

Speedup =
peectp time to execute program on N parallel processors
TA-f)+Tf 1
B T f
T - f) + — 1-f)+=
A-Ht+y A=H+y

Two important conclusions can be drawn:

1. When f is small, the use of parallel processors has little effect.

2. As N approaches infinity, speedup is bound by 1/(1 — f), so that there are
diminishing returns for using more processors.

These conclusions are too pessimistic, an assertion first put forward in
[GUSTSS]. For example, a server can maintain multiple threads or multiple tasks to
handle multiple clients and execute the threads or tasks in parallel up to the limit of
the number of processors. Many database applications involve computations on
massive amounts of data that can be split up into multiple parallel tasks. Nevertheless,
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Amdahl’s law illustrates the problems facing industry in the development of multi-
core machines with an ever-growing number of cores: The software that runs on
such machines must be adapted to a highly parallel execution environment to ex-
ploit the power of parallel processing.

Amdahl’s law can be generalized to evaluate any design or technical improve-
ment in a computer system. Consider any enhancement to a feature of a system that
results in a speedup. The speedup can be expressed as

Performance after enhancement _ Execution time before enhancement

Speedup = = : ;
p P Performance before enhancement Execution time after enhancement

(2.8)
Suppose that a feature of the system is used during execution a fraction of the
time f, before enhancement, and that the speedup of that feature after enhancement
is SUy. Then the overall speedup of the system is
1
Speedup = 7
1-f)+—
1 =1 SU;
For example, suppose that a task makes extensive use of floating-point operations,
with 40% of the time is consumed by floating-point operations. With a new hard-
ware design, the floating-point module is speeded up by a factor of K. Then the
overall speedup is:

1

04
0.6 + —
K

Speedup =

Thus, independent of K, the maximum speedup is 1.67.

2.6 RECOMMENDED READING AND WEB SITES

A description of the IBM 7000 series can be found in [BELL71]. There is good coverage of the
IBM 360 in [SIEWS82] and of the PDP-8 and other DEC machines in [BELL78a]. These three
books also contain numerous detailed examples of other computers spanning the history of
computers through the early 1980s. A more recent book that includes an excellent set of case
studies of historical machines is [BLAA97]. A good history of the microprocessor is [BETK97].

[OLUK96], [HAMMY7], and [SAKAO02] discuss the motivation for multiple processors
on a single chip.

[BREY09] provides a good survey of the Intel microprocessor line. The Intel docu-
mentation itself is also good [INTEO08].

The most thorough documentation available for the ARM architecture is [SEAL00].M
[FURBO00] is another excellent source of information. [SMITO§] is an interesting comparison
of the ARM and x86 approaches to embedding processors in mobile wireless devices.

For interesting discussions of Moore’s law and its consequences, see [HUTC96],
[SCHAY97], and [BOHR98].

[HENNO6] provides a detailed description of each of the benchmarks in CPU2006.
[SMITSS] discusses the relative merits of arithmetic, harmonic, and geometric means.

"Known in the ARM community as the “ARM ARM.”
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BELL71 Bell, C., and Newell, A. Computer Structures: Readings and Examples. New
York: McGraw-Hill, 1971.

BELL78A Bell, C; Mudge, J.; and McNamara, J. Computer Engineering: A DEC View of
Hardware Systems Design. Bedford, MA: Digital Press, 1978.

BETKY97 Betker, M.; Fernando, J.; and Whalen, S. “The History of the Microprocessor.”
Bell Labs Technical Journal, Autumn 1997.

BLAA97 Blaauw, G., and Brooks, E. Computer Architecture: Concepts and Evolution.
Reading, MA: Addison-Wesley, 1997.

BOHRY98 Bohr, M. “Silicon Trends and Limits for Advanced Microprocessors.”
Communications of the ACM, March 1998.

BREY09 Brey, B. The Intel Microprocessors: 8086/8066, 80186/80188, 80286, 80386,
80486, Pentium, Pentium Pro Processor, Pentium II, Pentium III, Pentium 4 and
Core2 with 64-bit Extensions. Upper Saddle River, NJ: Prentice Hall, 2009.

FURBO00 Furber, S. ARM System-On-Chip Architecture. Reading, MA: Addison-Wesley,
2000.

HAMMY97 Hammond, L.; Nayfay, B.; and Olukotun, K. “A Single-Chip Multiprocessor.”
Computer, September 1997.

HENNO6 Henning, J. “SPEC CPU2006 Benchmark Descriptions.” Computer Architec-
ture News, September 2006.

HUTCY96 Hutcheson, G., and Hutcheson, J. “Technology and Economics in the Semicon-
ductor Industry.” Scientific American, January 1996.

INTEO08 Intel Corp. Intel ® 64 and IA-32 Intel Architectures Software Developer’s Man-
ual (3 volumes). Denver, CO, 2008. intel.com/products/processor/manuals

OLUKY96 Olukotun, K., et al. “The Case for a Single-Chip Multiprocessor.” Proceedings,
Seventh International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 1996.

SAKA(02 Sakai, S. “CMP on SoC: Architect’s View.” Proceedings. 15th International
Symposium on System Synthesis,2002.

SCHAY97 Schaller, R. “Moore’s Law: Past, Present, and Future.” I[EEFE Spectrum, June 1997.

SEALO0 Seal, D., ed. ARM Architecture Reference Manual. Reading, MA: Addison-
Wesley, 2000.

SIEWS82 Siewiorek, D.; Bell, C.; and Newell, A. Computer Structures: Principles and Ex-
amples. New York: McGraw-Hill, 1982.

SMIT88 Smith, J. “Characterizing Computer Performance with a Single Number.”
Communications of the ACM, October 1988.

SMIT08 Smith, B. “ARM and Intel Battle over the Mobile Chip’s Future.” Computer,
May 2008.

Recommended Web sites:

¢ Intel Developer’s Page: Intel’s Web page for developers; provides a starting point for
accessing Pentium information. Also includes the Intel Technology Journal.

* ARM: Home page of ARM Limited, developer of the ARM architecture. Includes
technical documentation.
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¢ Standard Performance Evaluation Corporation: SPEC is a widely recognized or-
ganization in the computer industry for its development of standardized benchmarks
used to measure and compare performance of different computer systems.

¢ Top500 Supercomputer Site: Provides brief description of architecture and organi-
zation of current supercomputer products, plus comparisons.

¢ Charles Babbage Institute: Provides links to a number of Web sites dealing with the
history of computers.

2.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
accumulator (AC) instruction cycle opcode
Amdahl’s law instruction register (IR) original equipment manufac-
arithmetic and logic unit (ALU) | instruction set turer (OEM)
benchmark integrated circuit (IC) program control unit
chip main memory program counter (PC)
data channel memory address register SPEC
embedded system (MAR) stored program computer
execute cycle memory buffer register (MBR) | upward compatible
fetch cycle microprocessor von Neumann machine
input-output (I/O) multicore wafer
instruction buffer register (IBR) | multiplexor word

Review Questions

2.1. What is a stored program computer?

2.2.  What are the four main components of any general-purpose computer?

2.3. At the integrated circuit level, what are the three principal constituents of a computer
system?

2.4. Explain Moore’s law.

2.5. List and explain the key characteristics of a computer family.

2.6.  What is the key distinguishing feature of a microprocessor?

Problems

2.1. LetA = A(1),A(2),...,A(1000) and B = B(1), B(2),...,B(1000) be two vectors
(one-dimensional arrays) comprising 1000 numbers each that are to be added to form
an array C such that C(I) = A(I) + B(I) forI = 1,2,...,1000. Using the IAS in-
struction set, write a program for this problem. Ignore the fact that the IAS was de-
signed to have only 1000 words of storage.

2.2. a. On the IAS, what would the machine code instruction look like to load the con-

tents of memory address 2?
b. How many trips to memory does the CPU need to make to complete this instruc-
tion during the instruction cycle?

2.3.  On the IAS, describe in English the process that the CPU must undertake to read a
value from memory and to write a value to memory in terms of what is put into the
MAR, MBR, address bus, data bus, and control bus.
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2.4. Given the memory contents of the IAS computer shown below,

Address Contents

08A 010FA210FB
08B 010FAOF08D
08C 020FA210FB

show the assembly language code for the program, starting at address 08A. Explain
what this program does.

2.5. InFigure 2.3, indicate the width, in bits, of each data path (e.g., between AC and ALU)).

2.6. Inthe IBM 360 Models 65 and 75, addresses are staggered in two separate main mem-
ory units (e.g., all even-numbered words in one unit and all odd-numbered words in
another). What might be the purpose of this technique?

2.7. With reference to Table 2.4, we see that the relative performance of the IBM 360
Model 75 is 50 times that of the 360 Model 30, yet the instruction cycle time is only 5
times as fast. How do you account for this discrepancy?

2.8.  While browsing at Billy Bob’s computer store, you overhear a customer asking Billy
Bob what is the fastest computer in the store that he can buy. Billy Bob replies,“You're
looking at our Macintoshes. The fastest Mac we have runs at a clock speed of 1.2 giga-
hertz. If you really want the fastest machine, you should buy our 2.4-gigahertz Intel
Pentium IV instead.” Is Billy Bob correct? What would you say to help this customer?

2.9. The ENIAC was a decimal machine, where a register was represented by a ring of 10
vacuum tubes. At any time, only one vacuum tube was in the ON state, representing
one of the 10 digits. Assuming that ENIAC had the capability to have multiple vacuum
tubes in the ON and OFF state simultaneously, why is this representation “wasteful”
and what range of integer values could we represent using the 10 vacuum tubes?

2.10. A benchmark program is run on a 40 MHz processor. The executed program consists of
100,000 instruction executions, with the following instruction mix and clock cycle count:

Instruction Type Instruction Count Cycles per Instruction
Integer arithmetic 45000 1
Data transfer 32000 2
Floating point 15000 2
Control transfer 8000 2

Determine the effective CPI, MIPS rate, and execution time for this program.

2.11. Consider two different machines, with two different instruction sets, both of which
have a clock rate of 200 MHz. The following measurements are recorded on the two
machines running a given set of benchmark programs:

Instruction Count
Instruction Type (millions) Cycles per Instruction
Machine A
Arithmetic and logic 8 1
Load and store 4 3
Branch 2 4
Others 4 3
Machine A
Arithmetic and logic 10 1
Load and store 8 2
Branch 2 4
Others 4 3
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a. Determine the effective CPI, MIPS rate, and execution time for each machine.
b. Comment on the results.

Early examples of CISC and RISC design are the VAX 11/780 and the IBM RS/6000,
respectively. Using a typical benchmark program, the following machine characteris-
tics result:

Processor Clock Frequency | Performance CPU Time
VAX 11/780 5 MHz 1 MIPS 12 x seconds
IBM RS/6000 25 MHz 18 MIPS x seconds

The final column shows that the VAX required 12 times longer than the IBM mea-
sured in CPU time.

a. What is the relative size of the instruction count of the machine code for this
benchmark program running on the two machines?

b. What are the CPI values for the two machines?

2.13. Four benchmark programs are executed on three computers with the following results:
Computer A | Computer B| Computer C
Program 1 1 10 20
Program 2 1000 100 20
Program 3 500 1000 50
Program 4 100 800 100

The table shows the execution time in seconds, with 100,000,000 instructions executed in
each of the four programs. Calculate the MIPS values for each computer for each pro-
gram. Then calculate the arithmetic and harmonic means assuming equal weights for the
four programs, and rank the computers based on arithmetic mean and harmonic mean.

The following table, based on data reported in the literature [HEAT84], shows the ex-
ecution times, in seconds, for five different benchmark programs on three machines.

2.14.

Benchmark Processor
R M Z
E 417 244 134
F 83 70 70
H 66 153 135
I 39,449 | 35,527 | 66,000
K 772 368 369

a. Compute the speed metric for each processor for each benchmark, normalized to
machine R. That is, the ratio values for R are all 1.0. Other ratios are calculated
using Equation (2.5) with R treated as the reference system. Then compute the
arithmetic mean value for each system using Equation (2.3). This is the approach
taken in [HEATS84].

b. Repeat part (a) using M as the reference machine. This calculation was not tried in
[HEATS4].

c.  Which machine is the slowest based on each of the preceding two calculations?

d. Repeat the calculations of parts (a) and (b) using the geometric mean, defined in
Equation (2.6). Which machine is the slowest based on the two calculations?
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2.15. To clarify the results of the preceding problem, we look at a simpler example.

Benchmark Processor
X Y v/
1 20 10 40
2 40 80 20

a. Compute the arithmetic mean value for each system using X as the reference ma-
chine and then using Y as the reference machine. Argue that intuitively the three
machines have roughly equivalent performance and that the arithmetic mean
gives misleading results.

b. Compute the geometric mean value for each system using X as the reference ma-
chine and then using Y as the reference machine. Argue that the results are more
realistic than with the arithmetic mean.

2.16. Consider the example in Section 2.5 for the calculation of average CPI and MIPS
rate, which yielded the result of CPI = 2.24 and MIPS rate = 178.Now assume that the
program can be executed in eight parallel tasks or threads with roughly equal number
of instructions executed in each task. Execution is on an 8-core system with each core
(processor) having the same performance as the single processor originally used.
Coordination and synchronization between the parts adds an extra 25,000 instruction
executions to each task. Assume the same instruction mix as in the example for
each task, but increase the CPI for memory reference with cache miss to 12 cycles
due to contention for memory.

a. Determine the average CPI.

b. Determine the corresponding MIPS rate.
c. Calculate the speedup factor.
d.

Compare the actual speedup factor with the theoretical speedup factor deter-
mined by Amdhal’s law.
2.17. A processor accesses main memory with an average access time of 7,. A smaller
cache memory is interposed between the processor and main memory. The cache has
a significantly faster access time of 7y < T,. The cache holds, at any time, copies of
some main memory words and is designed so that the words more likely to be ac-
cessed in the near future are in the cache. Assume that the probability that the next
word accessed by the processor is in the cache is H, known as the hit ratio.

a. For any single memory access, what is the theoretical speedup of accessing the
word in the cache rather than in main memory?

b. LetT be the average access time. Express T as a function of 7, T, and H. What is
the overall speedup as a function of H?

c. In practice, a system may be designed so that the processor must first access the
cache to determine if the word is in the cache and, if it is not, then access main
memory, so that on a miss (opposite of a hit), memory access time is Ty + T,. Ex-
press T as a function of Ty, T, and H. Now calculate the speedup and compare to
the result produced in part (b).
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PART TWO

The Computer System

P.1 ISSUES FOR PART TWO

A computer system consists of a processor, memory, I/O, and the interconnections
among these major components. With the exception of the processor, which is suffi-
ciently complex to devote Part Three to its study, Part Two examines each of these
components in detail.

ROAD MAP FOR PART TWO

Chapter 3 A Top-Level View of Computer Function
and Interconnection

At a top level, a computer consists of a processor, memory, and I/O compo-
nents. The functional behavior of the system consists of the exchange of data
and control signals among these components. To support this exchange, these
components must be interconnected. Chapter 3 begins with a brief examina-
tion of the computer’s components and their input—-output requirements. The
chapter then looks at key issues that affect interconnection design, especially
the need to support interrupts. The bulk of the chapter is devoted to a study of
the most common approach to interconnection: the use of a structure of buses.

Chapter 4 Cache Memory

Computer memory exhibits a wide range of type, technology, organiza-
tion, performance, and cost. The typical computer system is equipped with
a hierarchy of memory subsystems, some internal (directly accessible by
the processor) and some external (accessible by the processor via an I/O
module). Chapter 4 begins with an overview of this hierarchy. Next, the
chapter deals in detail with the design of cache memory, including sepa-
rate code and data caches and two-level caches.

63
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Chapter 5 Internal Memory

The design of a main memory system is a never-ending battle among
three competing design requirements: large storage capacity, rapid access
time, and low cost. As memory technology evolves, each of these three
characteristics is changing, so that the design decisions in organizing main
memory must be revisited anew with each new implementation. Chapter
5 focuses on design issues related to internal memory. First, the nature
and organization of semiconductor main memory is examined. Then,
recent advanced DRAM memory organizations are explored.

Chapter 6 External Memory

For truly large storage capacity and for more permanent storage than is
available with main memory, an external memory organization is needed.
The most widely used type of external memory is magnetic disk, and
much of Chapter 6 concentrates on this topic. First, we look at magnetic
disk technology and design considerations. Then, we look at the use of
RAID organization to improve disk memory performance. Chapter 6 also
examines optical and tape storage.

Chapter 7 Input/Output

I/O modules are interconnected with the processor and main memory, and
each controls one or more external devices. Chapter 7 is devoted to the var-
ious aspects of I/O organization. This is a complex area, and less well under-
stood than other areas of computer system design in terms of meeting
performance demands. Chapter 7 examines the mechanisms by which an
I/O module interacts with the rest of the computer system, using the tech-
niques of programmed I/O, interrupt I/O, and direct memory access (DMA).
The interface between an I/O module and external devices is also described.

Chapter 8 Operating System Support

A detailed examination of operating systems (OSs) is beyond the scope
of this book. However, it is important to understand the basic functions of
an operating system and how the OS exploits hardware to provide the de-
sired performance. Chapter 8 describes the basic principles of operating
systems and discusses the specific design features in the computer hard-
ware intended to provide support for the operating system. The chapter
begins with a brief history, which serves to identify the major types of op-
erating systems and to motivate their use. Next, multiprogramming is ex-
plained by examining the long-term and short-term scheduling functions.
Finally, an examination of memory management includes a discussion of
segmentation, paging, and virtual memory.
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A Topr-LEVEL VIEwWw OF COMPUTER
FUNCTION AND INTERCONNECTION

3.1 Computer Components
3.2 Computer Function
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Bus Structure
Multiple-Bus Hierarchies
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Bus Structure
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KEY POINTS

¢ An instruction cycle consists of an instruction fetch, followed by zero or
more operand fetches, followed by zero or more operand stores, followed
by an interrupt check (if interrupts are enabled).

¢ The major computer system components (processor, main memory, I/O
modules) need to be interconnected in order to exchange data and control
signals. The most popular means of interconnection is the use of a shared
system bus consisting of multiple lines. In contemporary systems, there typ-
ically is a hierarchy of buses to improve performance.

¢ Key design elements for buses include arbitration (whether permission to
send signals on bus lines is controlled centrally or in a distributed fashion);
timing (whether signals on the bus are synchronized to a central clock or
are sent asynchronously based on the most recent transmission); and width
(number of address lines and number of data lines).

At a top level, a computer consists of CPU (central processing unit), memory, and I/O
components, with one or more modules of each type. These components are intercon-
nected in some fashion to achieve the basic function of the computer, which is to exe-
cute programs. Thus, at a top level, we can describe a computer system by (1) describing
the external behavior of each component—that is, the data and control signals that it
exchanges with other components; and (2) describing the interconnection structure
and the controls required to manage the use of the interconnection structure.

This top-level view of structure and function is important because of its explana-
tory power in understanding the nature of a computer. Equally important is its use to
understand the increasingly complex issues of performance evaluation. A grasp of the
top-level structure and function offers insight into system bottlenecks, alternate path-
ways, the magnitude of system failures if a component fails, and the ease of adding per-
formance enhancements. In many cases, requirements for greater system power and
fail-safe capabilities are being met by changing the design rather than merely increas-
ing the speed and reliability of individual components.

This chapter focuses on the basic structures used for computer component in-
terconnection. As background, the chapter begins with a brief examination of the
basic components and their interface requirements. Then a functional overview is
provided. We are then prepared to examine the use of buses to interconnect system
components.

3.1 COMPUTER COMPONENTS

As discussed in Chapter 2, virtually all contemporary computer designs are based
on concepts developed by John von Neumann at the Institute for Advanced Studies,
Princeton. Such a design is referred to as the von Neumann architecture and is based
on three key concepts:
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e Data and instructions are stored in a single read—write memory.

e The contents of this memory are addressable by location, without regard to
the type of data contained there.

* Execution occurs in a sequential fashion (unless explicitly modified) from one
instruction to the next.

The reasoning behind these concepts was discussed in Chapter 2 but is worth
summarizing here. There is a small set of basic logic components that can be com-
bined in various ways to store binary data and to perform arithmetic and logical op-
erations on that data. If there is a particular computation to be performed, a
configuration of logic components designed specifically for that computation could
be constructed. We can think of the process of connecting the various components in
the desired configuration as a form of programming. The resulting “program” is in
the form of hardware and is termed a hardwired program.

Now consider this alternative. Suppose we construct a general-purpose config-
uration of arithmetic and logic functions. This set of hardware will perform various
functions on data depending on control signals applied to the hardware. In the orig-
inal case of customized hardware, the system accepts data and produces results
(Figure 3.1a). With general-purpose hardware, the system accepts data and control
signals and produces results. Thus, instead of rewiring the hardware for each new
program, the programmer merely needs to supply a new set of control signals.

How shall control signals be supplied? The answer is simple but subtle. The en-
tire program is actually a sequence of steps. At each step, some arithmetic or logical

Sequence of
arithmetic
and logic
functions

Data —————————> —> Results

(a) Programming in hardware

Instruction Instruction
—
codes interpreter

Control
signals

General-purpose
Data arlthme?lc ——————> Results
- and logic

functions

(b) Programming in software

Figure 3.1 Hardware and Software Approaches
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operation is performed on some data. For each step, a new set of control signals is
needed. Let us provide a unique code for each possible set of control signals, and let
us add to the general-purpose hardware a segment that can accept a code and gen-
erate control signals (Figure 3.1b).

Programming is now much easier. Instead of rewiring the hardware for each
new program, all we need to do is provide a new sequence of codes. Each code is, in
effect, an instruction, and part of the hardware interprets each instruction and gen-
erates control signals. To distinguish this new method of programming, a sequence
of codes or instructions is called software.

Figure 3.1b indicates two major components of the system: an instruction in-
terpreter and a module of general-purpose arithmetic and logic functions. These two
constitute the CPU. Several other components are needed to yield a functioning
computer. Data and instructions must be put into the system. For this we need some
sort of input module. This module contains basic components for accepting data and
instructions in some form and converting them into an internal form of signals us-
able by the system. A means of reporting results is needed, and this is in the form of
an output module. Taken together, these are referred to as I/O components.

One more component is needed. An input device will bring instructions and
data in sequentially. But a program is not invariably executed sequentially; it may
jump around (e.g., the TAS jump instruction). Similarly, operations on data may re-
quire access to more than just one element at a time in a predetermined sequence.
Thus, there must be a place to store temporarily both instructions and data. That
module is called memory, or main memory to distinguish it from external storage or
peripheral devices. Von Neumann pointed out that the same memory could be used
to store both instructions and data.

Figure 3.2 illustrates these top-level components and suggests the interactions
among them. The CPU exchanges data with memory. For this purpose, it typically
makes use of two internal (to the CPU) registers: a memory address register
(MAR), which specifies the address in memory for the next read or write, and a
memory buffer register (MBR), which contains the data to be written into memory
or receives the data read from memory. Similarly, an I/O address register (I/OAR)
specifies a particular I/O device. An I/O buffer (I/OBR) register is used for the ex-
change of data between an I/O module and the CPU.

A memory module consists of a set of locations, defined by sequentially num-
bered addresses. Each location contains a binary number that can be interpreted as
either an instruction or data. An I/O module transfers data from external devices to
CPU and memory, and vice versa. It contains internal buffers for temporarily hold-
ing these data until they can be sent on.

Having looked briefly at these major components, we now turn to an overview
of how these components function together to execute programs.

3.2 COMPUTER FUNCTION

The basic function performed by a computer is execution of a program, which con-
sists of a set of instructions stored in memory. The processor does the actual work by
executing instructions specified in the program. This section provides an overview of
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CPU Main memory
0
System : 1
. 2
PC MAR bus X
Instruction .
Instruction '
IR MBR Instruction
I/0 AR i )
Data
1/0 BR Data
Data
Data
/O Module . w2
n-1
. PC =  Program counter
Buffers IR =  Instruction register
MAR =  Memory address register
MBR =  Memory buffer register
I/OAR = Input/output address register
IVJOBR = Input/output buffer register

Figure 3.2 Computer Components:Top-Level View

the key elements of program execution. In its simplest form, instruction processing
consists of two steps: The processor reads ( fetches) instructions from memory one at
a time and executes each instruction. Program execution consists of repeating the
process of instruction fetch and instruction execution. The instruction execution
may involve several operations and depends on the nature of the instruction (see,
for example, the lower portion of Figure 2.4).

The processing required for a single instruction is called an instruction cycle.
Using the simplified two-step description given previously, the instruction cycle is de-
picted in Figure 3.3. The two steps are referred to as the fetch cycle and the execute
cycle. Program execution halts only if the machine is turned off, some sort of unrecov-
erable error occurs, or a program instruction that halts the computer is encountered.

Instruction Fetch and Execute

At the beginning of each instruction cycle, the processor fetches an instruction from
memory. In a typical processor, a register called the program counter (PC) holds the
address of the instruction to be fetched next. Unless told otherwise, the processor
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Fetch cycle Execute cycle

Fetch next Execute
( ) —
START instruction instruction HALT

Figure 3.3 Basic Instruction Cycle

always increments the PC after each instruction fetch so that it will fetch the next in-
struction in sequence (i.e., the instruction located at the next higher memory ad-
dress). So, for example, consider a computer in which each instruction occupies one
16-bit word of memory. Assume that the program counter is set to location 300. The
processor will next fetch the instruction at location 300. On succeeding instruction
cycles, it will fetch instructions from locations 301, 302,303, and so on. This sequence
may be altered, as explained presently.

The fetched instruction is loaded into a register in the processor known as the
instruction register (IR). The instruction contains bits that specify the action the
processor is to take. The processor interprets the instruction and performs the re-
quired action. In general, these actions fall into four categories:

* Processor-memory: Data may be transferred from processor to memory or
from memory to processor.

* Processor-1/0: Data may be transferred to or from a peripheral device by
transferring between the processor and an I/O module.

* Data processing: The processor may perform some arithmetic or logic opera-
tion on data.

* Control: An instruction may specify that the sequence of execution be altered.
For example, the processor may fetch an instruction from location 149, which
specifies that the next instruction be from location 182. The processor will re-
member this fact by setting the program counter to 182. Thus, on the next fetch
cycle, the instruction will be fetched from location 182 rather than 150.

An instruction’s execution may involve a combination of these actions.

Consider a simple example using a hypothetical machine that includes the
characteristics listed in Figure 3.4. The processor contains a single data register,
called an accumulator (AC). Both instructions and data are 16 bits long. Thus, it is
convenient to organize memory using 16-bit words. The instruction format provides
4 bits for the opcode, so that there can be as many as 2* = 16 different opcodes, and
up to 2'? = 4096 (4K) words of memory can be directly addressed.

Figure 3.5 illustrates a partial program execution, showing the relevant por-
tions of memory and processor registers.' The program fragment shown adds the
contents of the memory word at address 940 to the contents of the memory word at

'Hexadecimal notation is used, in which each digit represents 4 bits. This is the most convenient notation
for representing the contents of memory and registers when the word length is a multiple of 4. See Chap-
ter 19 for a basic refresher on number systems (decimal, binary, hexadecimal).
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15

Opcode

Address

(a) Instruction format

15

Magnitude

(b) Integer format

Program counter (PC) = Address of instruction
Instruction register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

(c) Internal CPU registers

0001 = Load AC from memory
0010 = Store AC to memory
0101 = Add to AC from memory

(d) Partial list of opcodes

Figure 3.4 Characteristics of a Hypothetical Machine

Memory CPU registers Memory CPU registers
300[1 9 4 0 3 0 0]PC 300(1 9 4 0 3 0 1]PC
30159411 AC|301(5 9 4 1 0 0 0 3]AC
302{2 9 4 1 1 9 4 0/IR |302]2 9 4 1 1 94 0|/IR
940(0 0 0 3 940(0 0 0 3

9410 0 0 2 9410 0 0 2

Step 1 Step 2

Memory CPU registers Memory CPU registers
300[1 9 4 0 3 0 1]PC 300(1 9 40 3 0 2|PC
301594110003AC3015941 000 5/AC
30202 9 4 1 59 4 1|IR 3022941(5941>IR
940(0 0 0 3 940[0 0 0 3 3+2=5

941[0 0 0 2 ai[o00o0 2——7+

Step 3 Step 4

Memory CPU registers Memory CPU registers
300[1 9 4 0 3 0 2]PC 300(1 9 40 3 0 3|pPC
301(5 9 4 1 000 5/AC|301(5 9 4 1 0 0 0 5|AC
302(2 9 4 1 2 9 4 1|IR |302]2 9 4 1 2 9 4 1|IR
940[0 0 0 3 940[0 0 0 3

9410 0 0 2 941(0 0 0 5

Step 5 Step 6

Figure 3.5 Example of Program Execution (contents of memory and
registers in hexadecimal)
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address 941 and stores the result in the latter location. Three instructions, which can
be described as three fetch and three execute cycles, are required:

1. The PC contains 300, the address of the first instruction. This instruction (the
value 1940 in hexadecimal) is loaded into the instruction register IR and the
PC is incremented. Note that this process involves the use of a memory ad-
dress register (MAR) and a memory buffer register (MBR). For simplicity,
these intermediate registers are ignored.

2. The first 4 bits (first hexadecimal digit) in the IR indicate that the AC is to be
loaded. The remaining 12 bits (three hexadecimal digits) specify the address
(940) from which data are to be loaded.

3. The next instruction (5941) is fetched from location 301 and the PC is
incremented.

4. The old contents of the AC and the contents of location 941 are added and the
result is stored in the AC.

5. The next instruction (2941) is fetched from location 302 and the PC is
incremented.

6. The contents of the AC are stored in location 941.

In this example, three instruction cycles, each consisting of a fetch cycle and an
execute cycle, are needed to add the contents of location 940 to the contents of 941.
With a more complex set of instructions, fewer cycles would be needed. Some older
processors, for example, included instructions that contain more than one memory
address. Thus the execution cycle for a particular instruction on such processors
could involve more than one reference to memory. Also, instead of memory refer-
ences, an instruction may specify an I/O operation.

For example, the PDP-11 processor includes an instruction, expressed symbol-
ically as ADD B, A, that stores the sum of the contents of memory locations B and A
into memory location A. A single instruction cycle with the following steps occurs:

e Fetch the ADD instruction.

¢ Read the contents of memory location A into the processor.

¢ Read the contents of memory location B into the processor. In order that the
contents of A are not lost, the processor must have at least two registers for
storing memory values, rather than a single accumulator.

e Add the two values.

e Write the result from the processor to memory location A.

Thus, the execution cycle for a particular instruction may involve more than
one reference to memory. Also, instead of memory references, an instruction may
specify an I/O operation. With these additional considerations in mind, Figure 3.6
provides a more detailed look at the basic instruction cycle of Figure 3.3. The figure is
in the form of a state diagram. For any given instruction cycle, some states may be
null and others may be visited more than once. The states can be described as follows:

e Instruction address calculation (iac): Determine the address of the next in-
struction to be executed. Usually, this involves adding a fixed number to the
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Instruction Operand Operand
fetch fetch store
Multiple Multiple
operands results
Instruction Instruction Operand Operand
. Data
address operation —— address B eratio— address
calculation decoding calculation P calculation
Instruction complete, Return for string
fetch next instruction or vector data

Figure 3.6 Instruction Cycle State Diagram

address of the previous instruction. For example, if each instruction is 16 bits
long and memory is organized into 16-bit words, then add 1 to the previous ad-
dress. If, instead, memory is organized as individually addressable 8-bit bytes,
then add 2 to the previous address.

¢ Instruction fetch (if): Read instruction from its memory location into the
processor.

¢ Instruction operation decoding (iod): Analyze instruction to determine type
of operation to be performed and operand(s) to be used.

* Operand address calculation (oac): If the operation involves reference to an
operand in memory or available via I/O, then determine the address of the
operand.

¢ Operand fetch (of): Fetch the operand from memory or read it in from I/O.
* Data operation (do): Perform the operation indicated in the instruction.
¢ Operand store (os): Write the result into memory or out to I/O.

States in the upper part of Figure 3.6 involve an exchange between the processor
and either memory or an I/O module. States in the lower part of the diagram involve
only internal processor operations. The oac state appears twice, because an instruction
may involve a read, a write, or both. However, the action performed during that state
is fundamentally the same in both cases, and so only a single state identifier is needed.

Also note that the diagram allows for multiple operands and multiple results,
because some instructions on some machines require this. For example, the PDP-11
instruction ADD A,B results in the following sequence of states: iac, if, iod, oac, of,
oac, of, do, oac, os.

Finally, on some machines, a single instruction can specify an operation to be per-
formed on a vector (one-dimensional array) of numbers or a string (one-dimensional
array) of characters. As Figure 3.6 indicates, this would involve repetitive operand
fetch and/or store operations.
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Table 3.1 Classes of Interrupts

Program Generated by some condition that occurs as a result of an instruction
execution, such as arithmetic overflow, division by zero, attempt to
execute an illegal machine instruction, or reference outside a user’s
allowed memory space.

Timer Generated by a timer within the processor. This allows the operating
system to perform certain functions on a regular basis.
/o Generated by an I/O controller, to signal normal completion of an
operation or to signal a variety of error conditions.
Hardware failure Generated by a failure such as power failure or memory parity error.
Interrupts

Virtually all computers provide a mechanism by which other modules (I/O, mem-
ory) may interrupt the normal processing of the processor. Table 3.1 lists the most
common classes of interrupts. The specific nature of these interrupts is examined
later in this book, especially in Chapters 7 and 12. However, we need to introduce
the concept now to understand more clearly the nature of the instruction cycle and
the implications of interrupts on the interconnection structure. The reader need not
be concerned at this stage about the details of the generation and processing of in-
terrupts, but only focus on the communication between modules that results from
interrupts.

Interrupts are provided primarily as a way to improve processing efficiency.
For example, most external devices are much slower than the processor. Suppose
that the processor is transferring data to a printer using the instruction cycle scheme
of Figure 3.3. After each write operation, the processor must pause and remain idle
until the printer catches up. The length of this pause may be on the order of many
hundreds or even thousands of instruction cycles that do not involve memory.
Clearly, this is a very wasteful use of the processor.

Figure 3.7a illustrates this state of affairs. The user program performs a series
of WRITE calls interleaved with processing. Code segments 1, 2, and 3 refer to se-
quences of instructions that do not involve I/O. The WRITE calls are to an I/O pro-
gram that is a system utility and that will perform the actual I/O operation. The 1I/O
program consists of three sections:

* A sequence of instructions, labeled 4 in the figure, to prepare for the actual I/O
operation. This may include copying the data to be output into a special buffer
and preparing the parameters for a device command.

e The actual I/O command. Without the use of interrupts, once this command
is issued, the program must wait for the I/O device to perform the requested
function (or periodically poll the device). The program might wait by simply
repeatedly performing a test operation to determine if the I/O operation
is done.

e A sequence of instructions, labeled 5 in the figure, to complete the opera-
tion. This may include setting a flag indicating the success or failure of the
operation.
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Figure 3.7 Program Flow of Control without and with Interrupts
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Because the I/O operation may take a relatively long time to complete, the
I/O program is hung up waiting for the operation to complete; hence, the user
program is stopped at the point of the WRITE call for some considerable period
of time.

INTERRUPTS AND THE INSTRUCTION CYCLE With interrupts, the processor can
be engaged in executing other instructions while an I/O operation is in progress.
Consider the flow of control in Figure 3.7b. As before, the user program reaches a
point at which it makes a system call in the form of a WRITE call. The I/O program
that is invoked in this case consists only of the preparation code and the actual I/O
command. After these few instructions have been executed, control returns to the
user program. Meanwhile, the external device is busy accepting data from computer
memory and printing it. This I/O operation is conducted concurrently with the exe-
cution of instructions in the user program.

When the external device becomes ready to be serviced—that is, when it is
ready to accept more data from the processor,—the I/O module for that external
device sends an interrupt request signal to the processor. The processor responds by
suspending operation of the current program, branching off to a program to service
that particular I/O device, known as an interrupt handler, and resuming the original
execution after the device is serviced. The points at which such interrupts occur are
indicated by an asterisk in Figure 3.7b.

From the point of view of the user program, an interrupt is just that: an inter-
ruption of the normal sequence of execution. When the interrupt processing is com-
pleted, execution resumes (Figure 3.8). Thus, the user program does not have to
contain any special code to accommodate interrupts; the processor and the operat-
ing system are responsible for suspending the user program and then resuming it at
the same point.

To accommodate interrupts, an interrupt cycle is added to the instruction cycle,
as shown in Figure 3.9. In the interrupt cycle, the processor checks to see if any

User program Interrupt handler

b

Interrupt
occurs here

M
Figure 3.8 Transfer of Control via Interrupts
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Fetch cycle Execute cycle Interrupt cycle
Interrupts
disabled
START Fetch next Execute i?llt]:ffui)otl:
< > instruction instruction Interrupts| process in ter;'up .
enabled

( HALT )

Figure 3.9 Instruction Cycle with Interrupts

interrupts have occurred, indicated by the presence of an interrupt signal. If no
interrupts are pending, the processor proceeds to the fetch cycle and fetches the
next instruction of the current program. If an interrupt is pending, the processor
does the following:

e It suspends execution of the current program being executed and saves its
context. This means saving the address of the next instruction to be executed
(current contents of the program counter) and any other data relevant to the
processor’s current activity.

e Itsets the program counter to the starting address of an interrupt handler routine.

The processor now proceeds to the fetch cycle and fetches the first instruction
in the interrupt handler program, which will service the interrupt. The interrupt han-
dler program is generally part of the operating system. Typically, this program deter-
mines the nature of the interrupt and performs whatever actions are needed. In the
example we have been using, the handler determines which I/O module generated
the interrupt and may branch to a program that will write more data out to that I/O
module. When the interrupt handler routine is completed, the processor can resume
execution of the user program at the point of interruption.

It is clear that there is some overhead involved in this process. Extra instructions
must be executed (in the interrupt handler) to determine the nature of the interrupt
and to decide on the appropriate action. Nevertheless, because of the relatively large
amount of time that would be wasted by simply waiting on an I/O operation, the
processor can be employed much more efficiently with the use of interrupts.

To appreciate the gain in efficiency, consider Figure 3.10, which is a timing dia-
gram based on the flow of control in Figures 3.7a and 3.7b. Figures 3.7b and 3.10 as-
sume that the time required for the I/O operation is relatively short: less than the
time to complete the execution of instructions between write operations in the user
program. The more typical case, especially for a slow device such as a printer, is that
the I/O operation will take much more time than executing a sequence of user in-
structions. Figure 3.7c indicates this state of affairs. In this case, the user program
reaches the second WRITE call before the I/O operation spawned by the first call is
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Figure 3.10 Program Timing: Short I/O Wait

complete. The result is that the user program is hung up at that point. When the
preceding I/O operation is completed, this new WRITE call may be processed, and
a new I/O operation may be started. Figure 3.11 shows the timing for this situation
with and without the use of interrupts. We can see that there is still a gain in effi-
ciency because part of the time during which the I/O operation is underway over-
laps with the execution of user instructions.

Figure 3.12 shows a revised instruction cycle state diagram that includes inter-
rupt cycle processing.

MULTIPLE INTERRUPTS The discussion so far has focused only on the occur-
rence of a single interrupt. Suppose, however, that multiple interrupts can occur.
For example, a program may be receiving data from a communications line and
printing results. The printer will generate an interrupt every time that it com-
pletes a print operation. The communication line controller will generate an in-
terrupt every time a unit of data arrives. The unit could either be a single
character or a block, depending on the nature of the communications discipline.
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Figure 3.11 Program Timing: Long I/O Wait

In any case, it is possible for a communications interrupt to occur while a printer
interrupt is being processed.

Two approaches can be taken to dealing with multiple interrupts. The first is to
disable interrupts while an interrupt is being processed. A disabled interrupt simply
means that the processor can and will ignore that interrupt request signal. If an inter-
rupt occurs during this time, it generally remains pending and will be checked by the
processor after the processor has enabled interrupts. Thus, when a user program is exe-
cuting and an interrupt occurs, interrupts are disabled immediately. After the interrupt
handler routine completes, interrupts are enabled before resuming the user program,
and the processor checks to see if additional interrupts have occurred. This approach is
nice and simple, as interrupts are handled in strict sequential order (Figure 3.13a).
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Figure 3.12 Instruction Cycle State Diagram, with Interrupts
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Figure 3.14 Example Time Sequence of Multiple Interrupts

The drawback to the preceding approach is that it does not take into account
relative priority or time-critical needs. For example, when input arrives from the
communications line, it may need to be absorbed rapidly to make room for more
input. If the first batch of input has not been processed before the second batch
arrives, data may be lost.

A second approach is to define priorities for interrupts and to allow an interrupt
of higher priority to cause a lower-priority interrupt handler to be itself interrupted
(Figure 3.13b). As an example of this second approach, consider a system with three
1/O devices: a printer, a disk, and a communications line, with increasing priorities of 2,
4,and 5, respectively. Figure 3.14, based on an example in [TANE97], illustrates a pos-
sible sequence. A user program begins at t = 0. At ¢ = 10, a printer interrupt occurs;
user information is placed on the system stack and execution continues at the printer
interrupt service routine (ISR). While this routine is still executing, at ¢ = 15, a com-
munications interrupt occurs. Because the communications line has higher priority
than the printer, the interrupt is honored. The printer ISR is interrupted, its state is
pushed onto the stack, and execution continues at the communications ISR. While this
routine is executing, a disk interrupt occurs (¢ = 20). Because this interrupt is of lower
priority, it is simply held, and the communications ISR runs to completion.

When the communications ISR is complete (¢ = 25), the previous processor
state is restored, which is the execution of the printer ISR. However, before even a
single instruction in that routine can be executed, the processor honors the higher-
priority disk interrupt and control transfers to the disk ISR. Only when that routine is
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complete (¢t = 35) is the printer ISR resumed. When that routine completes (¢ = 40),
control finally returns to the user program.

I/0O Function

Thus far, we have discussed the operation of the computer as controlled by the
processor, and we have looked primarily at the interaction of processor and mem-
ory. The discussion has only alluded to the role of the I/O component. This role is
discussed in detail in Chapter 7, but a brief summary is in order here.

An I/O module (e.g., a disk controller) can exchange data directly with the
processor. Just as the processor can initiate a read or write with memory, designat-
ing the address of a specific location, the processor can also read data from or write
data to an I/O module. In this latter case, the processor identifies a specific device
that is controlled by a particular I/O module. Thus, an instruction sequence similar
in form to that of Figure 3.5 could occur, with I/O instructions rather than memory-
referencing instructions.

In some cases, it is desirable to allow I/O exchanges to occur directly with
memory. In such a case, the processor grants to an I/O module the authority to read
from or write to memory, so that the I/O-memory transfer can occur without tying
up the processor. During such a transfer, the I/O module issues read or write com-
mands to memory, relieving the processor of responsibility for the exchange. This
operation is known as direct memory access (DMA) and is examined Chapter 7.

3.3 INTERCONNECTION STRUCTURES

A computer consists of a set of components or modules of three basic types (proces-
sor, memory, I/O) that communicate with each other. In effect, a computer is a net-
work of basic modules. Thus, there must be paths for connecting the modules.

The collection of paths connecting the various modules is called the
interconnection structure. The design of this structure will depend on the exchanges
that must be made among modules.

Figure 3.15 suggests the types of exchanges that are needed by indicating the
major forms of input and output for each module type:

* Memory: Typically, a memory module will consist of N words of equal length.
Each word is assigned a unique numerical address (0,1,..., N —1). A word of
data can be read from or written into the memory. The nature of the operation
is indicated by read and write control signals. The location for the operation is
specified by an address.

* 1/0 module: From an internal (to the computer system) point of view, I/O is
functionally similar to memory. There are two operations, read and write. Fur-
ther, an I/O module may control more than one external device. We can refer
to each of the interfaces to an external device as a port and give each a unique
address (e.g.,0,1,..., M —1).In addition, there are external data paths for the

>The wide arrows represent multiple signal lines carrying multiple bits of information in parallel. Each
narrow arrows represents a single signal line.
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Figure 3.15 Computer Modules

input and output of data with an external device. Finally, an I/O module may
be able to send interrupt signals to the processor.

e Processor: The processor reads in instructions and data, writes out data after
processing, and uses control signals to control the overall operation of the sys-
tem. It also receives interrupt signals.

The preceding list defines the data to be exchanged. The interconnection
structure must support the following types of transfers:

° Memory to processor: The processor reads an instruction or a unit of data
from memory.

* Processor to memory: The processor writes a unit of data to memory.

e I/O to processor: The processor reads data from an I/O device via an I/O module.

e Processor to I/0: The processor sends data to the I/O device.

e 1/O to or from memory: For these two cases, an I/O module is allowed to ex-
change data directly with memory, without going through the processor, using
direct memory access (DMA).
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Over the years, a number of interconnection structures have been tried. By far
the most common is the bus and various multiple-bus structures. The remainder of
this chapter is devoted to an assessment of bus structures.

3.4 BUS INTERCONNECTION

A bus is a communication pathway connecting two or more devices. A key charac-
teristic of a bus is that it is a shared transmission medium. Multiple devices connect
to the bus, and a signal transmitted by any one device is available for reception by all
other devices attached to the bus. If two devices transmit during the same time pe-
riod, their signals will overlap and become garbled. Thus, only one device at a time
can successfully transmit.

Typically, a bus consists of multiple communication pathways, or lines. Each
line is capable of transmitting signals representing binary 1 and binary 0. Over time,
a sequence of binary digits can be transmitted across a single line. Taken together,
several lines of a bus can be used to transmit binary digits simultaneously (in paral-
lel). For example, an 8-bit unit of data can be transmitted over eight bus lines.

Computer systems contain a number of different buses that provide pathways
between components at various levels of the computer system hierarchy. A bus that
connects major computer components (processor, memory, I/O) is called a system
bus. The most common computer interconnection structures are based on the use of
one or more system buses.

Bus Structure

A system bus consists, typically, of from about 50 to hundreds of separate lines. Each
line is assigned a particular meaning or function. Although there are many different
bus designs, on any bus the lines can be classified into three functional groups
(Figure 3.16): data, address, and control lines. In addition, there may be power distri-
bution lines that supply power to the attached modules.

The data lines provide a path for moving data among system modules. These
lines, collectively, are called the data bus. The data bus may consist of 32, 64, 128, or
even more separate lines, the number of lines being referred to as the width of the
data bus. Because each line can carry only 1 bit at a time, the number of lines deter-
mines how many bits can be transferred at a time. The width of the data bus is a key

CPU Memory || ¢*° | Memory | 7[0) LX)  7[0)

Control lines

Address lines Bus

Data lines

Figure 3.16 Bus Interconnection Scheme
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factor in determining overall system performance. For example, if the data bus is
32 bits wide and each instruction is 64 bits long, then the processor must access the
memory module twice during each instruction cycle.

The address lines are used to designate the source or destination of the data
on the data bus. For example, if the processor wishes to read a word (8, 16, or
32 bits) of data from memory, it puts the address of the desired word on the address
lines. Clearly, the width of the address bus determines the maximum possible mem-
ory capacity of the system. Furthermore, the address lines are generally also used
to address 1/O ports. Typically, the higher-order bits are used to select a particular
module on the bus, and the lower-order bits select a memory location or I/O port
within the module. For example, on an 8-bit address bus, address 01111111 and
below might reference locations in a memory module (module 0) with 128 words
of memory, and address 10000000 and above refer to devices attached to an I/O
module (module 1).

The control lines are used to control the access to and the use of the data and
address lines. Because the data and address lines are shared by all components,
there must be a means of controlling their use. Control signals transmit both com-
mand and timing information among system modules. Timing signals indicate the
validity of data and address information. Command signals specify operations to be
performed. Typical control lines include

° Memory write: Causes data on the bus to be written into the addressed location
* Memory read: Causes data from the addressed location to be placed on the bus
* 1/O write: Causes data on the bus to be output to the addressed I/O port

¢ 1/0O read: Causes data from the addressed I/O port to be placed on the bus

* Transfer ACK: Indicates that data have been accepted from or placed on
the bus

¢ Bus request: Indicates that a module needs to gain control of the bus

* Bus grant: Indicates that a requesting module has been granted control of the bus
¢ Interrupt request: Indicates that an interrupt is pending

* Interrupt ACK: Acknowledges that the pending interrupt has been recognized
¢ Clock: Is used to synchronize operations

¢ Reset: Initializes all modules

The operation of the bus is as follows. If one module wishes to send data to an-
other, it must do two things: (1) obtain the use of the bus, and (2) transfer data via
the bus. If one module wishes to request data from another module, it must (1)
obtain the use of the bus, and (2) transfer a request to the other module over the
appropriate control and address lines. It must then wait for that second module to
send the data.

Physically, the system bus is actually a number of parallel electrical con-
ductors. In the classic bus arrangement, these conductors are metal lines etched
in a card or board (printed circuit board). The bus extends across all of the sys-
tem components, each of which taps into some or all of the bus lines. The classic
physical arrangement is depicted in Figure 3.17. In this example, the bus consists
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CPU Boards

/Vlemory

I/0

Figure 3.17 Typical Physical Realization of a Bus
Architecture

of two vertical columns of conductors. At regular intervals along the columns,
there are attachment points in the form of slots that extend out horizontally to
support a printed circuit board. Each of the major system components occupies
one or more boards and plugs into the bus at these slots. The entire arrangement
is housed in a chassis. This scheme can still be used for some of the buses associ-
ated with a computer system. However, modern systems tend to have all of the
major components on the same board with more elements on the same chip as
the processor. Thus, an on-chip bus may connect the processor and cache mem-
ory, whereas an on-board bus may connect the processor to main memory and
other components.

This arrangement is most convenient. A small computer system may be ac-
quired and then expanded later (more memory, more 1/O) by adding more boards.
If a component on a board fails, that board can easily be removed and replaced.

Multiple-Bus Hierarchies

If a great number of devices are connected to the bus, performance will suffer. There
are two main causes:

1. In general, the more devices attached to the bus, the greater the bus length and
hence the greater the propagation delay. This delay determines the time it
takes for devices to coordinate the use of the bus. When control of the bus
passes from one device to another frequently, these propagation delays can
noticeably affect performance.
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2. The bus may become a bottleneck as the aggregate data transfer demand
approaches the capacity of the bus. This problem can be countered to some
extent by increasing the data rate that the bus can carry and by using wider
buses (e.g., increasing the data bus from 32 to 64 bits). However, because the
data rates generated by attached devices (e.g., graphics and video controllers,
network interfaces) are growing rapidly, this is a race that a single bus is ulti-
mately destined to lose.

Accordingly, most computer systems use multiple buses, generally laid out in
a hierarchy. A typical traditional structure is shown in Figure 3.18a. There is a local
bus that connects the processor to a cache memory and that may support one or
more local devices. The cache memory controller connects the cache not only to
this local bus, but to a system bus to which are attached all of the main memory
modules. As will be discussed in Chapter 4, the use of a cache structure insulates
the processor from a requirement to access main memory frequently. Hence, main
memory can be moved off of the local bus onto a system bus. In this way, I/O trans-
fers to and from the main memory across the system bus do not interfere with the
processor’s activity.

It is possible to connect I/O controllers directly onto the system bus. A more
efficient solution is to make use of one or more expansion buses for this purpose. An
expansion bus interface buffers data transfers between the system bus and the I/O
controllers on the expansion bus. This arrangement allows the system to support a
wide variety of I/O devices and at the same time insulate memory-to-processor traf-
fic from I/O traffic.

Figure 3.18a shows some typical examples of I/O devices that might be attached
to the expansion bus. Network connections include local area networks (LANs) such
as a 10-Mbps Ethernet and connections to wide area networks (WANs) such as a
packet-switching network. SCSI (small computer system interface) is itself a type of
bus used to support local disk drives and other peripherals. A serial port could be
used to support a printer or scanner.

This traditional bus architecture is reasonably efficient but begins to break
down as higher and higher performance is seen in the I/O devices. In response to
these growing demands, a common approach taken by industry is to build a high-
speed bus that is closely integrated with the rest of the system, requiring only a
bridge between the processor’s bus and the high-speed bus. This arrangement is
sometimes known as a mezzanine architecture.

Figure 3.18b shows a typical realization of this approach. Again, there is a local
bus that connects the processor to a cache controller, which is in turn connected to a
system bus that supports main memory. The cache controller is integrated into a
bridge, or buffering device, that connects to the high-speed bus. This bus supports
connections to high-speed LANSs, such as Fast Ethernet at 100 Mbps, video and
graphics workstation controllers, as well as interface controllers to local peripheral
buses, including SCSI and FireWire. The latter is a high-speed bus arrangement
specifically designed to support high-capacity I/O devices. Lower-speed devices are
still supported off an expansion bus, with an interface buffering traffic between the
expansion bus and the high-speed bus.

The advantage of this arrangement is that the high-speed bus brings high-
demand devices into closer integration with the processor and at the same time is
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Figure 3.18 Example Bus Configurations

independent of the processor. Thus, differences in processor and high-speed bus
speeds and signal line definitions are tolerated. Changes in processor architecture
do not affect the high-speed bus, and vice versa.

Elements of Bus Design

Although a variety of different bus implementations exist, there are a few basic pa-
rameters or design elements that serve to classify and differentiate buses. Table 3.2
lists key elements.
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Table 3.2 Elements of Bus Design

Type Bus Width
Dedicated Address
Multiplexed Data

Method of Arbitration Data Transfer Type
Centralized Read
Distributed Write

Timing Read-modify-write
Synchronous Read-after-write
Asynchronous Block

BUS TYPES Bus lines can be separated into two generic types: dedicated and multi-
plexed. A dedicated bus line is permanently assigned either to one function or to a
physical subset of computer components.

An example of functional dedication is the use of separate dedicated address
and data lines, which is common on many buses. However, it is not essential. For ex-
ample, address and data information may be transmitted over the same set of lines
using an Address Valid control line. At the beginning of a data transfer, the address
is placed on the bus and the Address Valid line is activated. At this point, each mod-
ule has a specified period of time to copy the address and determine if it is the ad-
dressed module. The address is then removed from the bus, and the same bus
connections are used for the subsequent read or write data transfer. This method of
using the same lines for multiple purposes is known as time multiplexing.

The advantage of time multiplexing is the use of fewer lines, which saves space
and, usually, cost. The disadvantage is that more complex circuitry is needed within
each module. Also, there is a potential reduction in performance because certain
events that share the same lines cannot take place in parallel.

Physical dedication refers to the use of multiple buses, each of which connects
only a subset of modules. A typical example is the use of an I/O bus to interconnect
all I/O modules; this bus is then connected to the main bus through some type of I/O
adapter module. The potential advantage of physical dedication is high throughput,
because there is less bus contention. A disadvantage is the increased size and cost of
the system.

METHOD OF ARBITRATION In all but the simplest systems, more than one module
may need control of the bus. For example, an /O module may need to read or write
directly to memory, without sending the data to the processor. Because only one
unit at a time can successfully transmit over the bus, some method of arbitration is
needed. The various methods can be roughly classified as being either centralized or
distributed. In a centralized scheme, a single hardware device, referred to as a bus
controller or arbiter, is responsible for allocating time on the bus. The device may be
a separate module or part of the processor. In a distributed scheme, there is no cen-
tral controller. Rather, each module contains access control logic and the modules
act together to share the bus. With both methods of arbitration, the purpose is to
designate one device, either the processor or an I/O module, as master. The master
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may then initiate a data transfer (e.g., read or write) with some other device, which
acts as slave for this particular exchange.

TIMING Timing refers to the way in which events are coordinated on the bus. Buses
use either synchronous timing or asynchronous timing.

With synchronous timing, the occurrence of events on the bus is determined
by a clock. The bus includes a clock line upon which a clock transmits a regular se-
quence of alternating 1s and Os of equal duration. A single 1-0 transmission is re-
ferred to as a clock cycle or bus cycle and defines a time slot. All other devices on
the bus can read the clock line, and all events start at the beginning of a clock
cycle. Figure 3.19 shows a typical, but simplified, timing diagram for synchronous
read and write operations (see Appendix 3A for a description of timing dia-
grams). Other bus signals may change at the leading edge of the clock signal (with
a slight reaction delay). Most events occupy a single clock cycle. In this simple ex-
ample, the processor places a memory address on the address lines during the first

|
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|
|
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|
|
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|
|
|
|
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Figure 3.19 Timing of Synchronous Bus Operations
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clock cycle and may assert various status lines. Once the address lines have stabi-
lized, the processor issues an address enable signal. For a read operation, the
processor issues a read command at the start of the second cycle. A memory mod-
ule recognizes the address and, after a delay of one cycle, places the data on the
data lines. The processor reads the data from the data lines and drops the read sig-
nal. For a write operation, the processor puts the data on the data lines at the start
of the second cycle, and issues a write command after the data lines have stabi-
lized. The memory module copies the information from the data lines during the
third clock cycle.

With asynchronous timing, the occurrence of one event on a bus follows and
depends on the occurrence of a previous event. In the simple read example of
Figure 3.20a, the processor places address and status signals on the bus. After

Stat
lz.l us Status signals
ines
Address
lines Stable address

Read —\ /

Data
lines Valid data

Acknowledge \ /

(a) System bus read cycle

Status X
li Status signals
ines
Address
lines Stable address
Data
lines Valid data

Write —\ /
Acknowledge \ /

(b) System bus write cycle

Figure 3.20 Timing of Asynchronous Bus Operations
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pausing for these signals to stabilize, it issues a read command, indicating the pres-
ence of valid address and control signals. The appropriate memory decodes the ad-
dress and responds by placing the data on the data line. Once the data lines have
stabilized, the memory module asserts the acknowledged line to signal the proces-
sor that the data are available. Once the master has read the data from the data
lines, it deasserts the read signal. This causes the memory module to drop the data
and acknowledge lines. Finally, once the acknowledge line is dropped, the master
removes the address information.

Figure 3.20b shows a simple asynchronous write operation. In this case, the
master places the data on the data line at the same time that is puts signals on the
status and address lines. The memory module responds to the write command by
copying the data from the data lines and then asserting the acknowledge line. The
master then drops the write signal and the memory module drops the acknowl-
edge signal.

Synchronous timing is simpler to implement and test. However, it is less flexi-
ble than asynchronous timing. Because all devices on a synchronous bus are tied to
a fixed clock rate, the system cannot take advantage of advances in device perfor-
mance. With asynchronous timing, a mixture of slow and fast devices, using older
and newer technology, can share a bus.

BUS WIDTH We have already addressed the concept of bus width. The width of the
data bus has an impact on system performance: The wider the data bus, the greater
the number of bits transferred at one time. The width of the address bus has an im-
pact on system capacity: the wider the address bus, the greater the range of locations
that can be referenced.

DATA TRANSFER TYPE Finally, a bus supports various data transfer types, as illus-
trated in Figure 3.21. All buses support both write (master to slave) and read (slave
to master) transfers. In the case of a multiplexed address/data bus, the bus is first
used for specifying the address and then for transferring the data. For a read opera-
tion, there is typically a wait while the data are being fetched from the slave to be
put on the bus. For either a read or a write, there may also be a delay if it is necessary
to go through arbitration to gain control of the bus for the remainder of the opera-
tion (i.e., seize the bus to request a read or write, then seize the bus again to perform
aread or write).

In the case of dedicated address and data buses, the address is put on the ad-
dress bus and remains there while the data are put on the data bus. For a write oper-
ation, the master puts the data onto the data bus as soon as the address has
stabilized and the slave has had the opportunity to recognize its address. For a read
operation, the slave puts the data onto the data bus as soon as it has recognized its
address and has fetched the data.

There are also several combination operations that some buses allow. A
read—-modify—write operation is simply a read followed immediately by a write to
the same address. The address is only broadcast once at the beginning of the
operation. The whole operation is typically indivisible to prevent any access to
the data element by other potential bus masters. The principal purpose of this
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capability is to protect shared memory resources in a multiprogramming system
(see Chapter 8).

Read-after-write is an indivisible operation consisting of a write followed im-
mediately by a read from the same address. The read operation may be performed
for checking purposes.

Some bus systems also support a block data transfer. In this case, one address
cycle is followed by n data cycles. The first data item is transferred to or from the
specified address; the remaining data items are transferred to or from subsequent
addresses.

STUDENTS-HUB.com

Uploaded By: anonymous



35/ PCI 95

3.5 PCI

The peripheral component interconnect (PCI) is a popular high-bandwidth,
processor-independent bus that can function as a mezzanine or peripheral bus.
Compared with other common bus specifications, PCI delivers better system per-
formance for high-speed 1/O subsystems (e.g., graphic display adapters, network
interface controllers, disk controllers, and so on). The current standard allows the
use of up to 64 data lines at 66 MHz, for a raw transfer rate of 528 MByte/s, or
4.224 Gbps. But it is not just a high speed that makes PCI attractive. PCI is specif-
ically designed to meet economically the I/O requirements of modern systems; it
requires very few chips to implement and supports other buses attached to the
PCI bus.

Intel began work on PCI in 1990 for its Pentium-based systems. Intel soon re-
leased all the patents to the public domain and promoted the creation of an industry
association, the PCI Special Interest Group (SIG), to develop further and maintain
the compatibility of the PCI specifications. The result is that PCI has been widely
adopted and is finding increasing use in personal computer, workstation, and server
systems. Because the specification is in the public domain and is supported by a
broad cross section of the microprocessor and peripheral industry, PCI products
built by different vendors are compatible.

PCI is designed to support a variety of microprocessor-based configurations,
including both single- and multiple-processor systems. Accordingly, it provides a
general-purpose set of functions. It makes use of synchronous timing and a central-
ized arbitration scheme.

Figure 3.22a shows a typical use of PCI in a single-processor system. A com-
bined DRAM controller and bridge to the PCI bus provides tight coupling with the
processor and the ability to deliver data at high speeds. The bridge acts as a data
buffer so that the speed of the PCI bus may differ from that of the processor’s I/O
capability. In a multiprocessor system (Figure 3.22b), one or more PCI configura-
tions may be connected by bridges to the processor’s system bus. The system bus
supports only the processor/cache units, main memory, and the PCI bridges. Again,
the use of bridges keeps the PCI independent of the processor speed yet provides
the ability to receive and deliver data rapidly.

Bus Structure

PCI may be configured as a 32- or 64-bit bus. Table 3.3 defines the 49 mandatory sig-
nal lines for PCI. These are divided into the following functional groups:
* System pins: Include the clock and reset pins.

* Address and data pins: Include 32 lines that are time multiplexed for ad-
dresses and data. The other lines in this group are used to interpret and vali-
date the signal lines that carry the addresses and data.

¢ Interface control pins: Control the timing of transactions and provide coordi-
nation among initiators and targets.
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Figure 3.22 Example PCI Configurations

e Arbitration pins: Unlike the other PCI signal lines, these are not shared lines.
Rather, each PCI master has its own pair of arbitration lines that connect it di-
rectly to the PCI bus arbiter.

* Error reporting pins: Used to report parity and other errors.

STUDENTS-HUB.com Uploaded By: anonymous



3.5/ pCr 97

Table 3.3 Mandatory PCI Signal Lines

Designation | Type Description
System Pins

CLK in Provides timing for all transactions and is sampled by all inputs on the rising edge.
Clock rates up to 33 MHz are supported.

RST# in Forces all PCI-specific registers, sequencers, and signals to an initialized state.

Address and Data Pins

AD[31::0] t/s Multiplexed lines used for address and data

C/BE|[3::0]# t/s Multiplexed bus command and byte enable signals. During the data phase, the lines
indicate which of the four byte lanes carry meaningful data.

PAR t/s Provides even parity across AD and C/BE lines one clock cycle later. The master
drives PAR for address and write data phases; the target drive PAR for read data
phases.

Interface Control Pins

FRAME# s/t/s | Driven by current master to indicate the start and duration of a transaction. It is as-
serted at the start and deasserted when the initiator is ready to begin the final data
phase.

IRDY# s/t/s Initiator Ready. Driven by current bus master (initiator of transaction). During a
read, indicates that the master is prepared to accept data; during a write, indicates
that valid data are present on AD.

TRDY# s/t/s | Target Ready. Driven by the target (selected device). During a read, indicates that
valid data are present on AD; during a write, indicates that target is ready to accept
data.

STOP# s/t/s Indicates that current target wishes the initiator to stop the current transaction.

IDSEL in Initialization Device Select. Used as a chip select during configuration read and
write transactions.

DEVSEL# in Device Select. Asserted by target when it has recognized its address. Indicates to cur-
rent initiator whether any device has been selected.

Arbitration Pins

REQ# t/s Indicates to the arbiter that this device requires use of the bus. This is a device-
specific point-to-point line.

GNT# t/s Indicates to the device that the arbiter has granted bus access. This is a device-
specific point-to-point line.

Error Reporting Pins

PERR# s/t/s | Parity Error. Indicates a data parity error is detected by a target during a write data
phase or by an initiator during a read data phase.

SERR# o/d System Error. May be pulsed by any device to report address parity errors and
critical errors other than parity.

In addition, the PCI specification defines 51 optional signal lines (Table 3.4),
divided into the following functional groups:

e Interrupt pins: These are provided for PCI devices that must generate re-
quests for service. As with the arbitration pins, these are not shared lines.
Rather, each PCI device has its own interrupt line or lines to an interrupt
controller.
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Table 3.4 Optional PCI Signal Lines

Designation | Type Description

Interrupt Pins

INTA# o/d Used to request an interrupt.
INTB# o/d Used to request an interrupt; only has meaning on a multifunction device.
INTC# o/d Used to request an interrupt; only has meaning on a multifunction device.
INTD# o/d Used to request an interrupt; only has meaning on a multifunction device.
Cache Support Pins
SBO# in/out | Snoop Backoff. Indicates a hit to a modified line.
SDONE in/out | Snoop Done. Indicates the status of the snoop for the current access. Asserted when

snoop has been completed.
64-Bit Bus Extension Pins
AD[63::32] t/s Multiplexed lines used for address and data to extend bus to 64 bits.

C/BE|[7:4]# t/s Multiplexed bus command and byte enable signals. During the address phase, the
lines provide additional bus commands. During the data phase, the lines indicate
which of the four extended byte lanes carry meaningful data.

REQ64# s/t/s Used to request 64-bit transfer.

ACKO644# s/t/s Indicates target is willing to perform 64-bit transfer.

PARG64 t/s Provides even parity across extended AD and C/BE lines one clock cycle later.

JTAG/Boundary Scan Pins

TCK in Test clock. Used to clock state information and test data into and out of the device
during boundary scan.

TDI in Test input. Used to serially shift test data and instructions into the device.

TDO out Test output. Used to serially shift test data and instructions out of the device.

T™S in Test mode Select. Used to control state of test access port controller.

TRST# in Test reset. Used to initialize test access port controller.

in Input-only signal

out Output-only signal

t/s Bidirectional, tri-state, I/O signal

s/t/s Sustained tri-state signal driven by only one owner at a time

o/d Open drain: allows multiple devices to share as a wire-OR

# Signal’s active state occurs at low voltage

¢ Cache support pins: These pins are needed to support a memory on PCI that
can be cached in the processor or another device. These pins support snoopy
cache protocols (see Chapter 18 for a discussion of such protocols).

° 64-bit bus extension pins: Include 32 lines that are time multiplexed for ad-
dresses and data and that are combined with the mandatory address/data lines
to form a 64-bit address/data bus. Other lines in this group are used to interpret
and validate the signal lines that carry the addresses and data. Finally, there are
two lines that enable two PCI devices to agree to the use of the 64-bit capability.

* JTAG/boundary scan pins: These signal lines support testing procedures de-
fined in IEEE Standard 1149.1.
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PCI Commands

Bus activity occurs in the form of transactions between an initiator, or master, and a
target. When a bus master acquires control of the bus, it determines the type of
transaction that will occur next. During the address phase of the transaction, the
C/BE lines are used to signal the transaction type. The commands are as follows:

e Interrupt Acknowledge
* Special Cycle

e I/0O Read

* I/O Write

e Memory Read

* Memory Read Line

* Memory Read Multiple
° Memory Write

* Memory Write and Invalidate
e Configuration Read

¢ Configuration Write

* Dual address Cycle

Interrupt Acknowledge is a read command intended for the device that func-
tions as an interrupt controller on the PCI bus. The address lines are not used during
the address phase, and the byte enable lines indicate the size of the interrupt identi-
fier to be returned.

The Special Cycle command is used by the initiator to broadcast a message to
one or more targets.

The I/O Read and Write commands are used to transfer data between the initia-
tor and an I/O controller. Each I/O device has its own address space, and the address
lines are used to indicate a particular device and to specify the data to be transferred
to or from that device. The concept of I/O addresses is explored in Chapter 7.

The memory read and write commands are used to specify the transfer of a
burst of data, occupying one or more clock cycles. The interpretation of these com-
mands depends on whether or not the memory controller on the PCI bus supports
the PCI protocol for transfers between memory and cache. If so, the transfer of data
to and from the memory is typically in terms of cache lines, or blocks.® The three
memory read commands have the uses outlined in Table 3.5. The Memory Write
command is used to transfer data in one or more data cycles to memory. The Mem-
ory Write and Invalidate command transfers data in one or more cycles to memory.
In addition, it guarantees that at least one cache line is written. This command sup-
ports the cache function of writing back a line to memory.

The two configuration commands enable a master to read and update configu-
ration parameters in a device connected to the PCI. Each PCI device may include

3The fundamental principles of cache memory are described in Chapter 4; bus-based cache protocols are
described in Chapter 17.
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Table 3.5 Interpretation of PCI Read Commands

Read Command Type For Cachable Memory For Noncachable Memory

Memory Read Bursting one-half or less of a Bursting 2 data transfer cycles
cache line or less

Memory Read Line Bursting more than one-half a Bursting 3 to 12 data transfers
cache line to three cache lines

Memory Read Multiple Bursting more than three cache Bursting more than 12 data
lines transfers

up to 256 internal registers that are used during system initialization to configure
that device.

The Dual Address Cycle command is used by an initiator to indicate that it is
using 64-bit addressing.

Data Transfers

Every data transfer on the PCI bus is a single transaction consisting of one address
phase and one or more data phases. In this discussion, we illustrate a typical read
operation; a write operation proceeds similarly.

Figure 3.23 shows the timing of the read transaction. All events are synchro-
nized to the falling transitions of the clock, which occur in the middle of each clock
cycle. Bus devices sample the bus lines on the rising edge at the beginning of a bus
cycle. The following are the significant events, labeled on the diagram:

a. Once a bus master has gained control of the bus, it may begin the transaction
by asserting FRAME. This line remains asserted until the initiator is ready to
complete the last data phase. The initiator also puts the start address on the ad-
dress bus, and the read command on the C/BE lines.

b. At the start of clock 2, the target device will recognize its address on the AD lines.

c. The initiator ceases driving the AD bus. A turnaround cycle (indicated by the
two circular arrows) is required on all signal lines that may be driven by more
than one device, so that the dropping of the address signal will prepare the bus
for use by the target device. The initiator changes the information on the C/BE
lines to designate which AD lines are to be used for transfer for the currently
addressed data (from 1 to 4 bytes). The initiator also asserts IRDY to indicate
that it is ready for the first data item.

d. The selected target asserts DEVSEL to indicate that it has recognized its ad-
dress and will respond. It places the requested data on the AD lines and as-
serts TRDY to indicate that valid data are present on the bus.

e. The initiator reads the data at the beginning of clock 4 and changes the byte
enable lines as needed in preparation for the next read.

f. In this example, the target needs some time to prepare the second block of data
for transmission. Therefore, it deasserts TRDY to signal the initiator that there
will not be new data during the coming cycle. Accordingly, the initiator does not
read the data lines at the beginning of the fifth clock cycle and does not change
byte enable during that cycle. The block of data is read at beginning of clock 6.
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102 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

g. During clock 6, the target places the third data item on the bus. However, in
this example, the initiator is not yet ready to read the data item (e.g., it has a
temporary buffer full condition). It therefore deasserts IRDY. This will cause
the target to maintain the third data item on the bus for an extra clock cycle.

h. The initiator knows that the third data transfer is the last, and so it deasserts
FRAME to signal the target that this is the last data transfer. It also asserts
IRDY to signal that it is ready to complete that transfer.

i. The initiator deasserts IRDY, returning the bus to the idle state, and the target
deasserts TRDY and DEVSEL.

Arbitration

PCI makes use of a centralized, synchronous arbitration scheme in which each mas-
ter has a unique request (REQ) and grant (GNT) signal. These signal lines are at-
tached to a central arbiter (Figure 3.24) and a simple request—grant handshake is
used to grant access to the bus.

The PCI specification does not dictate a particular arbitration algorithm. The
arbiter can use a first-come-first-served approach, a round-robin approach, or some
sort of priority scheme. A PCI master must arbitrate for each transaction that it
wishes to perform, where a single transaction consists of an address phase followed
by one or more contiguous data phases.

Figure 3.25 is an example in which devices A and B are arbitrating for the bus.
The following sequence occurs:

a. At some point prior to the start of clock 1, A has asserted its REQ signal. The
arbiter samples this signal at the beginning of clock cycle 1.

b. During clock cycle 1, B requests use of the bus by asserting its REQ signal.
c. At the same time, the arbiter asserts GNT-A to grant bus access to A.

d. Bus master A samples GNT-A at the beginning of clock 2 and learns that it has
been granted bus access. It also finds IRDY and TRDY deasserted, indicating
that the bus is idle. Accordingly, it asserts FRAME and places the address
information on the address bus and the command on the C/BE bus (not
shown). It also continues to assert REQ-A, because it has a second transaction
to perform after this one.

3 3 3 23
Z = Z = Z = Z =
PCI arbiter O & O X O~ (CN~
PCI PCI PCI PCI
device device device device

Figure 3.24 PCI Bus Arbiter
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104 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

e. The bus arbiter samples all REQ lines at the beginning of clock 3 and makes
an arbitration decision to grant the bus to B for the next transaction. It then
asserts GNT-B and deasserts GNT-A. B will not be able to use the bus until it
returns to an idle state.

f. A deasserts FRAME to indicate that the last (and only) data transfer is in
progress. It puts the data on the data bus and signals the target with IRDY. The
target reads the data at the beginning of the next clock cycle.

g. At the beginning of clock 5, B finds IRDY and FRAME deasserted and so is

able to take control of the bus by asserting FRAME. It also deasserts its REQ
line, because it only wants to perform one transaction.

Subsequently, master A is granted access to the bus for its next transaction.

Notice that arbitration can take place at the same time that the current bus
master is performing a data transfer. Therefore, no bus cycles are lost in performing
arbitration. This is referred to as hidden arbitration.

3.6 RECOMMENDED READING AND WEB SITES

The clearest book-length description of PCI is [SHAN99]. [ABBO04] also contains a lot of
solid information on PCIL

ABBO04 Abbot, D. PCI Bus Demystified. New York: Elsevier, 2004.

SHAN99 Shanley, T., and Anderson, D. PCI Systems Architecture. Richardson, TX:
Mindshare Press, 1999.

Recommended Web sites:

e PCI Special Interest Group: Information about PCI specifications and products
e PCI Pointers: Links to PCI vendors and other sources of information

3.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

address bus
asynchronous timing
bus

bus arbitration

bus width

centralized arbitration
data bus

disabled interrupt

distributed arbitration
instruction cycle
instruction execute
instruction fetch
interrupt

interrupt handler
interrupt service routine

memory address register
(MAR)

memory buffer register (MBR)

peripheral component

interconnect (PCI)
synchronous timing
system bus
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Review Questions

3.1 What general categories of functions are specified by computer instructions?

3.2 List and briefly define the possible states that define an instruction execution.

3.3 List and briefly define two approaches to dealing with multiple interrupts.

3.4 What types of transfers must a computer’s interconnection structure (e.g., bus)

support?
3.5 What is the benefit of using a multiple-bus architecture compared to a single-bus
architecture?

3.6 List and briefly define the functional groups of signal lines for PCI.

Problems

3.1 The hypothetical machine of Figure 3.4 also has two I/O instructions:

0011 = Load AC from I/O
0011 = Store AC to I/O

In these cases, the 12-bit address identifies a particular I/O device. Show the program
execution (using the format of Figure 3.5) for the following program:

1. Load AC from device 5.

2. Add contents of memory location 940.

3. Store AC to device 6.

Assume that the next value retrieved from device 5 is 3 and that location 940 contains
a value of 2.

3.2 The program execution of Figure 3.5 is described in the text using six steps. Expand
this description to show the use of the MAR and MBR.

3.3 Consider a hypothetical 32-bit microprocessor having 32-bit instructions composed of
two fields: the first byte contains the opcode and the remainder the immediate
operand or an operand address.

a. What is the maximum directly addressable memory capacity (in bytes)?
b. Discuss the impact on the system speed if the microprocessor bus has
1. a32-bit local address bus and a 16-bit local data bus, or
2. a 16-bit local address bus and a 16-bit local data bus.
c¢. How many bits are needed for the program counter and the instruction register?

3.4 Consider a hypothetical microprocessor generating a 16-bit address (for example, as-
sume that the program counter and the address registers are 16 bits wide) and having
a 16-bit data bus.

a. What is the maximum memory address space that the processor can access di-
rectly if it is connected to a “16-bit memory”?

b. What is the maximum memory address space that the processor can access di-
rectly if it is connected to an “8-bit memory”?

c. What architectural features will allow this microprocessor to access a separate
“I/O space”?

d. If an input and an output instruction can specify an 8-bit [/O port number, how
many 8-bit I/O ports can the microprocessor support? How many 16-bit I/O
ports? Explain.

3.5 Consider a 32-bit microprocessor, with a 16-bit external data bus, driven by an
8-MHz input clock. Assume that this microprocessor has a bus cycle whose minimum
duration equals four input clock cycles. What is the maximum data transfer rate
across the bus that this microprocessor can sustain, in bytes/s? To increase its perfor-
mance, would it be better to make its external data bus 32 bits or to double the exter-
nal clock frequency supplied to the microprocessor? State any other assumptions
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106 CHAPTER 3 / A TOP-LEVEL VIEW OF COMPUTER FUNCTION

you make, and explain. Hint: Determine the number of bytes that can be transferred
per bus cycle.

3.6 Consider a computer system that contains an I/O module controlling a simple key-
board/printer teletype. The following registers are contained in the processor and
connected directly to the system bus:

INPR: Input Register, 8 bits
OUTR: Output Register, 8 bits
FGI: Input Flag, 1 bit

FGO: Output Flag, 1 bit
IEN: Interrupt Enable, 1 bit

Keystroke input from the teletype and printer output to the teletype are controlled

by the I/O module. The teletype is able to encode an alphanumeric symbol to an 8-bit

word and decode an 8-bit word into an alphanumeric symbol.

a. Describe how the processor, using the first four registers listed in this problem,
can achieve I/O with the teletype.

b. Describe how the function can be performed more efficiently by also employing IEN.

3.7 Consider two microprocessors having 8- and 16-bit-wide external data buses, re-
spectively. The two processors are identical otherwise and their bus cycles take just
as long.

a. Suppose all instructions and operands are two bytes long. By what factor do the
maximum data transfer rates differ?
b. Repeat assuming that half of the operands and instructions are one byte long.

3.8 Figure 3.26 indicates a distributed arbitration scheme that can be used with an obso-
lete bus scheme known as Multibus 1. Agents are daisy-chained physically in priority
order. The left-most agent in the diagram receives a constant bus priority in (BPRN)
signal indicating that no higher-priority agent desires the bus. If the agent does not re-
quire the bus, it asserts its bus priority out (BPRO) line. At the beginning of a clock
cycle, any agent can request control of the bus by lowering its BPRO line. This lowers
the BPRN line of the next agent in the chain, which is in turn required to lower its
BPRO line. Thus, the signal is propagated the length of the chain. At the end of this
chain reaction, there should be only one agent whose BPRN is asserted and whose
BPRO is not. This agent has priority. If, at the beginning of a bus cycle, the bus is not
busy (BUSY inactive), the agent that has priority may seize control of the bus by as-
serting the BUSY line.

It takes a certain amount of time for the BPR signal to propagate from the
highest-priority agent to the lowest. Must this time be less than the clock cycle? Explain.

3.9 The VAX SBI bus uses a distributed, synchronous arbitration scheme. Each SBI
device (i.e., processor, memory, I/O module) has a unique priority and is assigned a

Bus Bus
terminator terminator
BPRN BPRO BPRN BPRO BPRN BPRO
(highest priority) (lowest priority)

Master 1 Master 2 Master 3

Figure 3.26 Multibus I Distributed Arbitration
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unique transfer request (TR) line. The SBI has 16 such lines (TR0, TR1,. . .,TR15),
with TRO having the highest priority. When a device wants to use the bus, it places
a reservation for a future time slot by asserting its TR line during the current time
slot. At the end of the current time slot, each device with a pending reservation
examines the TR lines; the highest-priority device with a reservation uses the next
time slot.

A maximum of 17 devices can be attached to the bus. The device with priority
16 has no TR line. Why not?

3.10  On the VAX SBI, the lowest-priority device usually has the lowest average wait time.
For this reason, the processor is usually given the lowest priority on the SBI. Why
does the priority 16 device usually have the lowest average wait time? Under what
circumstances would this not be true?

3.11 For a synchronous read operation (Figure 3.19), the memory module must place the
data on the bus sufficiently ahead of the falling edge of the Read signal to allow for
signal settling. Assume a microprocessor bus is clocked at 10 MHz and that the Read
signal begins to fall in the middle of the second half of T;.

a. Determine the length of the memory read instruction cycle.
b. When, at the latest, should memory data be placed on the bus? Allow 20 ns for the
settling of data lines.

3.12  Consider a microprocessor that has a memory read timing as shown in Figure 3.19.
After some analysis, a designer determines that the memory falls short of providing
read data on time by about 180 ns.

a. How many wait states (clock cycles) need to be inserted for proper system opera-
tion if the bus clocking rate is 8§ MHz?

b. To enforce the wait states, a Ready status line is employed. Once the processor has
issued a Read command, it must wait until the Ready line is asserted before at-
tempting to read data. At what time interval must we keep the Ready line low in
order to force the processor to insert the required number of wait states?

3.13 A microprocessor has a memory write timing as shown in Figure 3.19. Its manufac-
turer specifies that the width of the Write signal can be determined by 7' — 50, where
T is the clock period in ns.

a. What width should we expect for the Write signal if bus clocking rate is 5 MHz?

b. The data sheet for the microprocessor specifies that the data remain valid for
20 ns after the falling edge of the Write signal. What is the total duration of valid
data presentation to memory?

c¢. How many wait states should we insert if memory requires valid data presentation
for at least 190 ns?

3.14 A microprocessor has an increment memory direct instruction, which adds 1 to the
value in a memory location. The instruction has five stages: fetch opcode (four bus
clock cycles), fetch operand address (three cycles), fetch operand (three cycles), add 1
to operand (three cycles), and store operand (three cycles).

a. By what amount (in percent) will the duration of the instruction increase if we
have to insert two bus wait states in each memory read and memory write
operation?

b. Repeat assuming that the increment operation takes 13 cycles instead of 3 cycles.

3.15 The Intel 8088 microprocessor has a read bus timing similar to that of Figure 3.19, but
requires four processor clock cycles. The valid data is on the bus for an amount of
time that extends into the fourth processor clock cycle. Assume a processor clock rate
of 8 MHz.

a. What is the maximum data transfer rate?

b. Repeat but assume the need to insert one wait state per byte transferred.

3.16 The Intel 8086 is a 16-bit processor similar in many ways to the 8-bit 8088. The 8086
uses a 16-bit bus that can transfer 2 bytes at a time, provided that the lower-order
byte has an even address. However, the 8086 allows both even- and odd-aligned
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word operands. If an odd-aligned word is referenced, two memory cycles, each con-
sisting of four bus cycles, are required to transfer the word. Consider an instruction
on the 8086 that involves two 16-bit operands. How long does it take to fetch the
operands? Give the range of possible answers. Assume a clocking rate of 4 MHz and
no wait states.

3.17 Consider a 32-bit microprocessor whose bus cycle is the same duration as that of a 16-
bit microprocessor. Assume that, on average, 20% of the operands and instructions
are 32 bits long, 40% are 16 bits long, and 40% are only 8 bits long. Calculate the im-
provement achieved when fetching instructions and operands with the 32-bit micro-
processor.

3.18 The microprocessor of Problem 3.14 initiates the fetch operand stage of the incre-
ment memory direct instruction at the same time that a keyboard actives an interrupt
request line. After how long does the processor enter the interrupt processing cycle?
Assume a bus clocking rate of 10 MHz.

3.19 Draw and explain a timing diagram for a PCI write operation (similar to Fig-
ure 3.23).

APPENDIX 3A TIMING DIAGRAMS

In this chapter, timing diagrams are used to illustrate sequences of events and de-
pendencies among events. For the reader unfamiliar with timing diagrams, this ap-
pendix provides a brief explanation.

Communication among devices connected to a bus takes place along a set of
lines capable of carrying signals. Two different signal levels (voltage levels), repre-
senting binary 0 and binary 1, may be transmitted. A timing diagram shows the
signal level on a line as a function of time (Figure 3.27a). By convention, the
binary 1 signal level is depicted as a higher level than that of binary 0. Usually, bi-
nary 0 is the default value. That is, if no data or other signal is being transmitted,
then the level on a line is that which represents binary 0. A signal transition from
0 to 1 is frequently referred to as the signal’s leading edge; a transition from 1 to 0
is referred to as a trailing edge. Such transitions are not instantaneous, but this
transition time is usually small compared with the duration of a signal level. For
clarity, the transition is usually depicted as an angled line that exaggerates the rel-
ative amount of time that the transition takes. Occasionally, you will see diagrams
that use vertical lines, which incorrectly suggests that the transition is instanta-
neous. On a timing diagram, it may happen that a variable or at least irrelevant
amount of time elapses between events of interest. This is depicted by a gap in the
time line.

Signals are sometimes represented in groups (Figure 3.27b). For example, if
data are transferred a byte at a time, then eight lines are required. Generally, it is not
important to know the exact value being transferred on such a group, but rather
whether signals are present or not.

A signal transition on one line may trigger an attached device to make signal
changes on other lines. For example, if a memory module detects a read control
signal (0 or 1 transition), it will place data signals on the data lines. Such cause-and-
effect relationships produce sequences of events. Arrows are used on timing dia-
grams to show these dependencies (Figure 3.27c¢).
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(a) Signal as a function of time

All lines Each line may All lines
at 0 beOor1 at(

(b) Groups of lines

Command

Response

(c) Cause-and-effect dependencies

(d) Clock signal
Figure 3.27 Timing Diagrams

In Figure 3.27c, the overbar over the signal name indicates that the signal is ac-
tive low as shown. For example, Command is active, or asserted, at 0 volts. This
means that Command = 0 is interpreted as logical 1, or true.

A clock line is often part of a system bus. An electronic clock is connected to
the clock line and provides a repetitive, regular sequence of transitions (Fig-
ure 3.27d). Other events may be synchronized to the clock signal.
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KEY POINTS

¢ Computer memory is organized into a hierarchy. At the highest level (clos-
est to the processor) are the processor registers. Next comes one or more
levels of cache, When multiple levels are used, they are denoted L1,1.2, and
so on. Next comes main memory, which is usually made out of dynamic
random-access memory (DRAM). All of these are considered internal to
the computer system. The hierarchy continues with external memory, with
the next level typically being a fixed hard disk, and one or more levels
below that consisting of removable media such as optical disks and tape.

¢ As one goes down the memory hierarchy, one finds decreasing cost/bit, in-
creasing capacity, and slower access time. It would be nice to use only the
fastest memory, but because that is the most expensive memory, we trade
off access time for cost by using more of the slower memory. The design
challenge is to organize the data and programs in memory so that the ac-
cessed memory words are usually in the faster memory.

¢ In general, it is likely that most future accesses to main memory by the
processor will be to locations recently accessed. So the cache automatically
retains a copy of some of the recently used words from the DRAM. If the
cache is designed properly, then most of the time the processor will request
memory words that are already in the cache.

Although seemingly simple in concept, computer memory exhibits perhaps the widest
range of type, technology, organization, performance, and cost of any feature of a com-
puter system. No one technology is optimal in satisfying the memory requirements for
a computer system. As a consequence, the typical computer system is equipped with a
hierarchy of memory subsystems, some internal to the system (directly accessible by
the processor) and some external (accessible by the processor via an I/O module).

This chapter and the next focus on internal memory elements, while Chapter 6 is
devoted to external memory. To begin, the first section examines key characteristics of
computer memories. The remainder of the chapter examines an essential element of all
modern computer systems: cache memory.

4.1 COMPUTER MEMORY SYSTEM OVERVIEW

Characteristics of Memory Systems

The complex subject of computer memory is made more manageable if we classify
memory systems according to their key characteristics. The most important of these
are listed in Table 4.1.

The term location in Table 4.1 refers to whether memory is internal and exter-
nal to the computer. Internal memory is often equated with main memory. But there
are other forms of internal memory. The processor requires its own local memory, in
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Table 4.1 Key Characteristics of Computer Memory Systems

Location Performance

Internal (e.g. processor registers, main Access time

memory, cache) Cycle time

External (e.g. optical disks, magnetic
disks, tapes)

Transfer rate

. Physical Type
apacit
ey Semiconductor
Number of words .
Magnetic
Number of bytes .
Optical

Unit of Transfer .
Magneto-optical

Word . L.
Physical Characteristics
Block . .
Volatile/nonvolatile
Access Method
. Erasable/nonerasable
Sequential L.
. Organization
Direct
Memory modules
Random
Associative

the form of registers (e.g., see Figure 2.3). Further, as we shall see, the control unit
portion of the processor may also require its own internal memory. We will defer dis-
cussion of these latter two types of internal memory to later chapters. Cache is
another form of internal memory. External memory consists of peripheral storage
devices, such as disk and tape, that are accessible to the processor via I/O controllers.

An obvious characteristic of memory is its capacity. For internal memory, this
is typically expressed in terms of bytes (1 byte = 8 bits) or words. Common word
lengths are 8, 16, and 32 bits. External memory capacity is typically expressed in
terms of bytes.

A related concept is the unit of transfer. For internal memory, the unit of
transfer is equal to the number of electrical lines into and out of the memory
module. This may be equal to the word length, but is often larger, such as 64, 128, or
256 bits. To clarify this point, consider three related concepts for internal memory:

e Word: The “natural” unit of organization of memory. The size of the word is
typically equal to the number of bits used to represent an integer and to the in-
struction length. Unfortunately, there are many exceptions. For example, the
CRAY C90 (an older model CRAY supercomputer) has a 64-bit word length
but uses a 46-bit integer representation. The Intel x86 architecture has a wide
variety of instruction lengths, expressed as multiples of bytes, and a word size
of 32 bits.

* Addressable units: In some systems, the addressable unit is the word. How-
ever, many systems allow addressing at the byte level. In any case, the rela-
tionship between the length in bits A of an address and the number N of
addressable units is 24 = N.

e Unit of transfer: For main memory, this is the number of bits read out of or
written into memory at a time. The unit of transfer need not equal a word or an
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addressable unit. For external memory, data are often transferred in much
larger units than a word, and these are referred to as blocks.

Another distinction among memory types is the method of accessing units of
data. These include the following:

e Sequential access: Memory is organized into units of data, called records. Ac-
cess must be made in a specific linear sequence. Stored addressing information
is used to separate records and assist in the retrieval process. A shared read—
write mechanism is used, and this must be moved from its current location to
the desired location, passing and rejecting each intermediate record. Thus, the
time to access an arbitrary record is highly variable. Tape units, discussed in
Chapter 6, are sequential access.

* Direct access: As with sequential access, direct access involves a shared
read-write mechanism. However, individual blocks or records have a unique
address based on physical location. Access is accomplished by direct access to
reach a general vicinity plus sequential searching, counting, or waiting to reach
the final location. Again, access time is variable. Disk units, discussed in
Chapter 6, are direct access.

* Random access: Each addressable location in memory has a unique, physically
wired-in addressing mechanism. The time to access a given location is inde-
pendent of the sequence of prior accesses and is constant. Thus, any location
can be selected at random and directly addressed and accessed. Main memory
and some cache systems are random access.

* Associative: This is a random access type of memory that enables one to make
a comparison of desired bit locations within a word for a specified match, and
to do this for all words simultaneously. Thus, a word is retrieved based on a
portion of its contents rather than its address. As with ordinary random-access
memory, each location has its own addressing mechanism, and retrieval time is
constant independent of location or prior access patterns. Cache memories
may employ associative access.

From a user’s point of view, the two most important characteristics of memory
are capacity and performance. Three performance parameters are used:

e Access time (latency): For random-access memory, this is the time it takes to
perform a read or write operation, that is, the time from the instant that an ad-
dress is presented to the memory to the instant that data have been stored or
made available for use. For non-random-access memory, access time is the
time it takes to position the read-write mechanism at the desired location.

* Memory cycle time: This concept is primarily applied to random-access mem-
ory and consists of the access time plus any additional time required before a
second access can commence. This additional time may be required for tran-
sients to die out on signal lines or to regenerate data if they are read destruc-
tively. Note that memory cycle time is concerned with the system bus, not the
processor.

e Transfer rate: This is the rate at which data can be transferred into or out of a
memory unit. For random-access memory, it is equal to 1/(cycle time).
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For non-random-access memory, the following relationship holds:

n
Ty =Ty + 41
vETatp 4.1)

where

Ty = Average time to read or write N bits
T, = Average access time

n = Number of bits

R

Transfer rate, in bits per second (bps)

A variety of physical types of memory have been employed. The most com-
mon today are semiconductor memory, magnetic surface memory, used for disk and
tape, and optical and magneto-optical.

Several physical characteristics of data storage are important. In a volatile
memory, information decays naturally or is lost when electrical power is switched off.
In a nonvolatile memory, information once recorded remains without deterioration
until deliberately changed; no electrical power is needed to retain information.
Magnetic-surface memories are nonvolatile. Semiconductor memory may be either
volatile or nonvolatile. Nonerasable memory cannot be altered, except by destroying
the storage unit. Semiconductor memory of this type is known as read-only memory
(ROM). Of necessity, a practical nonerasable memory must also be nonvolatile.

For random-access memory, the organization is a key design issue. By organi-
zation is meant the physical arrangement of bits to form words. The obvious
arrangement is not always used, as is explained in Chapter 5.

The Memory Hierarchy

The design constraints on a computer’s memory can be summed up by three ques-
tions: How much? How fast? How expensive?

The question of how much is somewhat open ended. If the capacity is there,
applications will likely be developed to use it. The question of how fast is, in a sense,
easier to answer. To achieve greatest performance, the memory must be able to keep
up with the processor. That is, as the processor is executing instructions, we would
not want it to have to pause waiting for instructions or operands. The final question
must also be considered. For a practical system, the cost of memory must be reason-
able in relationship to other components.

As might be expected, there is a trade-off among the three key characteristics
of memory: namely, capacity, access time, and cost. A variety of technologies are
used to implement memory systems, and across this spectrum of technologies, the
following relationships hold:

* Faster access time, greater cost per bit
e Greater capacity, smaller cost per bit
e Greater capacity, slower access time
The dilemma facing the designer is clear. The designer would like to use mem-

ory technologies that provide for large-capacity memory, both because the capacity
is needed and because the cost per bit is low. However, to meet performance
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requirements, the designer needs to use expensive, relatively lower-capacity memo-
ries with short access times.

The way out of this dilemma is not to rely on a single memory component or
technology, but to employ a memory hierarchy. A typical hierarchy is illustrated in
Figure 4.1. As one goes down the hierarchy, the following occur:

a. Decreasing cost per bit
b. Increasing capacity
c. Increasing access time
d. Decreasing frequency of access of the memory by the processor
Thus, smaller, more expensive, faster memories are supplemented by larger,
cheaper, slower memories. The key to the success of this organization is item (d):
decreasing frequency of access. We examine this concept in greater detail when we

discuss the cache, later in this chapter, and virtual memory in Chapter 8. A brief
explanation is provided at this point.

Figure 4.1 The Memory Hierarchy
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Example 4.1 Suppose that the processor has access to two levels of memory. Level 1
contains 1000 words and has an access time of 0.01 us;level 2 contains 100,000 words and
has an access time of 0.1 us. Assume that if a word to be accessed is in level 1, then the
processor accesses it directly. If it is in level 2, then the word is first transferred to level 1
and then accessed by the processor. For simplicity, we ignore the time required for the
processor to determine whether the word is in level 1 or level 2. Figure 4.2 shows the gen-
eral shape of the curve that covers this situation. The figure shows the average access
time to a two-level memory as a function of the hit ratio H, where H is defined as the
fraction of all memory accesses that are found in the faster memory (e.g., the cache), T is
the access time to level 1, and T, is the access time to level 2.! As can be seen, for high
percentages of level 1 access, the average total access time is much closer to that of level
1 than that of level 2.

In our example, suppose 95% of the memory accesses are found in the cache. Then
the average time to access a word can be expressed as

(0.95)(0.01 ps) + (0.05)(0.01 ps + 0.1 ws) = 0.0095 + 0.0055 = 0.015 us

The average access time is much closer to 0.01 us than to 0.1 us, as desired.

T,+T,

T, —

Average access time

T, —

Fraction of accesses involving only level 1 (hit ratio)

Figure 4.2 Performance of accesses involving only
level 1 (hit ratio)

UIf the accessed word is found in the faster memory, that is defined as a hit. A miss occurs if the accessed
word is not found in the faster memory.
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The use of two levels of memory to reduce average access time works in prin-
ciple, but only if conditions (a) through (d) apply. By employing a variety of tech-
nologies, a spectrum of memory systems exists that satisfies conditions (a) through
(¢). Fortunately, condition (d) is also generally valid.

The basis for the validity of condition (d) is a principle known as locality of
reference [DENNG68]. During the course of execution of a program, memory refer-
ences by the processor, for both instructions and data, tend to cluster. Programs typ-
ically contain a number of iterative loops and subroutines. Once a loop or subroutine
is entered, there are repeated references to a small set of instructions. Similarly,
operations on tables and arrays involve access to a clustered set of data words. Over
a long period of time, the clusters in use change, but over a short period of time, the
processor is primarily working with fixed clusters of memory references.

Accordingly, it is possible to organize data across the hierarchy such that the
percentage of accesses to each successively lower level is substantially less than that of
the level above. Consider the two-level example already presented. Let level 2 mem-
ory contain all program instructions and data. The current clusters can be temporarily
placed in level 1. From time to time, one of the clusters in level 1 will have to be
swapped back to level 2 to make room for a new cluster coming in to level 1. On aver-
age, however, most references will be to instructions and data contained in level 1.

This principle can be applied across more than two levels of memory, as sug-
gested by the hierarchy shown in Figure 4.1. The fastest, smallest, and most expen-
sive type of memory consists of the registers internal to the processor. Typically, a
processor will contain a few dozen such registers, although some machines contain
hundreds of registers. Skipping down two levels, main memory is the principal inter-
nal memory system of the computer. Each location in main memory has a unique
address. Main memory is usually extended with a higher-speed, smaller cache. The
cache is not usually visible to the programmer or, indeed, to the processor. It is a de-
vice for staging the movement of data between main memory and processor regis-
ters to improve performance.

The three forms of memory just described are, typically, volatile and employ
semiconductor technology. The use of three levels exploits the fact that semiconduc-
tor memory comes in a variety of types, which differ in speed and cost. Data are
stored more permanently on external mass storage devices, of which the most com-
mon are hard disk and removable media, such as removable magnetic disk, tape, and
optical storage. External, nonvolatile memory is also referred to as secondary mem-
ory or auxiliary memory. These are used to store program and data files and are usu-
ally visible to the programmer only in terms of files and records, as opposed to
individual bytes or words. Disk is also used to provide an extension to main memory
known as virtual memory, which is discussed in Chapter 8.

Other forms of memory may be included in the hierarchy. For example, large
IBM mainframes include a form of internal memory known as expanded storage.
This uses a semiconductor technology that is slower and less expensive than that of
main memory. Strictly speaking, this memory does not fit into the hierarchy but is a
side branch: Data can be moved between main memory and expanded storage but
not between expanded storage and external memory. Other forms of secondary
memory include optical and magneto-optical disks. Finally, additional levels can be
effectively added to the hierarchy in software. A portion of main memory can be
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used as a buffer to hold data temporarily that is to be read out to disk. Such a tech-
nique, sometimes referred to as a disk cache, improves performance in two ways:

¢ Disk writes are clustered. Instead of many small transfers of data, we have a
few large transfers of data. This improves disk performance and minimizes
processor involvement.

* Some data destined for write-out may be referenced by a program before the
next dump to disk. In that case, the data are retrieved rapidly from the soft-
ware cache rather than slowly from the disk.

Appendix 4A examines the performance implications of multilevel memory
structures.

4.2 CACHE MEMORY PRINCIPLES

Cache memory is intended to give memory speed approaching that of the fastest
memories available, and at the same time provide a large memory size at the price
of less expensive types of semiconductor memories. The concept is illustrated in
Figure 4.3a. There is a relatively large and slow main memory together with a
smaller, faster cache memory. The cache contains a copy of portions of main mem-
ory. When the processor attempts to read a word of memory, a check is made to

Block Transfer
Word Transfer
CPU Cache Main memory
Fast Slow
(a) Single cache
CPU Level 1 |+—>-| Level 2 Level 3 Main
(L1) cache|{e—{(L2) cache (L3) cache memory
Fastest Fast
Less Slow
fast

(b) Three-level cache organization

Figure 4.3 Cache and Main Memory

Disk cache is generally a purely software technique and is not examined in this book. See [STAL09] for
a discussion.
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determine if the word is in the cache. If so, the word is delivered to the processor. If
not, a block of main memory, consisting of some fixed number of words, is read into
the cache and then the word is delivered to the processor. Because of the phenome-
non of locality of reference, when a block of data is fetched into the cache to satisfy
a single memory reference, it is likely that there will be future references to that
same memory location or to other words in the block.

Figure 4.3b depicts the use of multiple levels of cache. The L2 cache is slower
and typically larger than the L1 cache, and the L3 cache is slower and typically
larger than the L2 cache.

Figure 4.4 depicts the structure of a cache/main-memory system. Main memory
consists of up to 2" addressable words, with each word having a unique #-bit address.
For mapping purposes, this memory is considered to consist of a number of fixed-
length blocks of K words each. That is, there are M = 2"/K blocks in main memory.
The cache consists of 7 blocks, called lines.> Each line contains K words, plus a tag of
a few bits. Each line also includes control bits (not shown), such as a bit to indicate

Line Memory
number Tag Block address
0 0
1 1
2 2 Block
3 (K words)
Cc—1
Block length
(K Words) .
(a) Cache :
Block
2" =1
Word
length

(b) Main memory

Figure 4.4 Cache/Main Memory Structure

*In referring to the basic unit of the cache, the term /ine is used, rather than the term block, for two rea-
sons: (1) to avoid confusion with a main memory block, which contains the same number of data words as
a cache line; and (2) because a cache line includes not only K words of data, just as a main memory block,
but also include tag and control bits.
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whether the line has been modified since being loaded into the cache. The length of
a line, not including tag and control bits, is the line size. The line size may be as small
as 32 bits, with each “word” being a single byte; in this case the line size is 4 bytes.
The number of lines is considerably less than the number of main memory blocks
(m << M). At any time, some subset of the blocks of memory resides in lines in the
cache. If a word in a block of memory is read, that block is transferred to one of the
lines of the cache. Because there are more blocks than lines, an individual line can-
not be uniquely and permanently dedicated to a particular block. Thus, each line in-
cludes a tag that identifies which particular block is currently being stored. The tag
is usually a portion of the main memory address, as described later in this section.

Figure 4.5 illustrates the read operation. The processor generates the read ad-
dress (RA) of a word to be read. If the word is contained in the cache, it is delivered

START

Receive address
RA from CPU

Access main
memory for block
containing RA

Is block
containing RA
in cache?

Allocate cache
line for main
memory block

Fetch RA word
and deliver
to CPU

Load main
memory block
into cache line

Deliver RA word
to CPU

( DONE r

Figure 4.5 Cache Read Operation
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Address

>

Control

Cache

Address
buffer

Control

System bus

Data
buffer

Figure 4.6 Typical Cache Organization

Data

to the processor. Otherwise, the block containing that word is loaded into the cache,
and the word is delivered to the processor. Figure 4.5 shows these last two opera-
tions occurring in parallel and reflects the organization shown in Figure 4.6, which is
typical of contemporary cache organizations. In this organization, the cache con-
nects to the processor via data, control, and address lines. The data and address lines
also attach to data and address buffers, which attach to a system bus from which
main memory is reached. When a cache hit occurs, the data and address buffers are
disabled and communication is only between processor and cache, with no system
bus traffic. When a cache miss occurs, the desired address is loaded onto the system
bus and the data are returned through the data buffer to both the cache and the
processor. In other organizations, the cache is physically interposed between the
processor and the main memory for all data, address, and control lines. In this latter
case, for a cache miss, the desired word is first read into the cache and then trans-
ferred from cache to processor.

A discussion of the performance parameters related to cache use is contained

in Appendix 4A.

4.3 ELEMENTS OF CACHE DESIGN

This section provides an overview of cache design parameters and reports some typ-
ical results. We occasionally refer to the use of caches in high-performance comput-
ing (HPC). HPC deals with supercomputers and supercomputer software, especially
for scientific applications that involve large amounts of data, vector and matrix
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Table 4.2 Elements of Cache Design

Cache Addresses Write Policy
Logical Write through
Physical Write back

Cache Size Write once

Mapping Function Line Size
Direct Number of caches
Associative Single or two level
Set Associative Unified or split

Replacement Algorithm
Least recently used (LRU)

First in first out (FIFO)
Least frequently used (LFU)
Random

computation, and the use of parallel algorithms. Cache design for HPC is quite dif-
ferent than for other hardware platforms and applications. Indeed, many researchers
have found that HPC applications perform poorly on computer architectures that
employ caches [BAIL93]. Other researchers have since shown that a cache hierar-
chy can be useful in improving performance if the application software is tuned to
exploit the cache [WANG99, PRES01].*

Although there are a large number of cache implementations, there are a few
basic design elements that serve to classify and differentiate cache architectures.
Table 4.2 lists key elements.

Cache Addresses

Almost all nonembedded processors, and many embedded processors, support vir-
tual memory, a concept discussed in Chapter 8. In essence, virtual memory is a facil-
ity that allows programs to address memory from a logical point of view, without
regard to the amount of main m