Control Systems Representation

Block and Signal-flow Diagrams
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Block Diagrams and Signal-flow Diagrams:

A control system is composed of several subsystems that interact and exchange signals and employ signal combination
through sum nodes and distribution through derivation points.

A simple representation that describes the subsystems interaction and signal flow become necessary to analyze and
study.

Block diagrams and Signal-flow diagrams are among the most used universal languages in control systems.

An analogy relation exists between Block diagrams and signal flow diagrams. That is between the input and output
vocabularies of the these languages and their grammar.

Whenever, these representation are used, it is inherently assumed that the chain rule is satisfied, that is the connection
of two subsystems does not affect the validity of their mathematical models. That is each system maintains its transfer
relation.

Specific subsystems interconnection (cascade, parallel, and feedback) and other rules related to signals combination
(sum nodes) and extraction (derivation points) are used to reduce the system representation to an equivalent one that

includes only the necessary components for the control systems obiectives.
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R(s) C(s) R(s) G(s) C(s)
Block Diagrams: Input Output
The basic input vocabulary components of the block v v T
diagrams are shown in figure, with the signal represented
. . R(:
by an arrow, system transfer relation (gain) represented by L
. . . . R(s) R(s)
a block and signal combination and extraction represented ‘ -
. . R(s)
by sum and derivation nodes. -
Summing junction Pickoff point
Block Algebra: © @
e Cascade connection Xo(s) = X,(5) = Cs) =
R(s) G(s)R(s) G(5)G(5)R(5) Gl 5)GA(5)G(5)R(s)
— G y(s) ™ (s(5) = (5(5) -
la)
R(s) C(s)
i G_';(.T]G:{.?]{;][.‘f} -
* Parallel connection ®)
X1(5) =R(5)G(s5)
—{ G(5)
R(s) Xo(s5) = R(S)Go(s) + ol C(s) = [+ Gy(5) £ Gols) £ G(s)]R(s) R(s) Cls)
| Gy(s) Dt bl el : — - R — G (5) £ Go(s) £ Gi(s) f—=

H

X5(5) = R(5)Gs(s)

G_g{."i'}
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 Feedback connection
Plant and
controller

R(s) + E(: Cl.
(s) (s) G(s) (s)
Output

Actuating
signal
{error)

Input

T

H(s) [[*+——

Feedback

Moving Blocks to Create Familiar Forms:

Ris) +
Gix)
* Transfer of a sum node from the input to the output of a block: T'i
C(s) = G(s)[R(s) + X(s)] = G(s)R(s) + G(s)X(s)

* Transfer of a sum node from the output to the input of a block:

C(s) =G(S)R(s) +X(s) = G(s)[R(s) +
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C(s) = G(s)E(s)

E(s) =R(s) — H(s)C(s) = R(s) —H(s)G(s)E(s) —»
E(S)(l + H(S)G(S)) = R(s) 2> E(s) =

G(s)
1+ H(s)G(s)

C(s) = R(s)

X(5)

Ris)

—=  (s)

1
——=X(s)]

R(s)

1+ H(s)G(s)

G(s)

Inpu

t - 1 £ Gis)H(s)

C(s)

C(s)

G(s)

+

Xis)

1 % Cis) S

R(s)

Ris) +

S ——

R(s) »

o e

Output

c_' ..
Gs) + (5)
T

Gi5)
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R(s)Gix) R(5)G(s)

—=| ((5) p———

* Transfer of a derivation point from the input to
the output of a block: R(s) R(s) RO | R(s)
- ——  —=| ((5) = G =
R(s) I R(s)
B ™ G(s) |
* Transfer of a derivation point from the output to R(s)G(s) R()G(s)
the input of a block: " = Gs) [
R(s) R(5)G(s) __ Ris) R(5)(G(s)
—= G(s) - — = G(s) F———=
Ri(5)G(s) R(5)G(x)
e = G(s) f—"

e Signal-node switching:
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Examplel: Reduce the block diagram shown in Figure to a single transfer function.

Reduction Steps: RO 6o N I U
1. Cascade(G3,G,) =T;
2. Parallel (Hl, Hz,Hg) = TZ Hys) |
3. feedback(T,, T,) =Ts
4. Cascade(T;,G,) =T o
Hs(s)
()G + GA(5)Go(s) R(s) n Ga(5)Fa(5)G(5) l‘:{.':]l.-_
FETRY LW ETR — = - FETRY L ETRY
] e Hi() — B+ Hy(s) 1= _ ’ B | + Gy(5)G5(5)[H (5) — Hs(s) + Hy(s5)]

H]{.’!':] - HE{S} + H}{S}

Ris) Gy 5)Galx) C{::}-__
1 + Ga(5)Ga(s) | H(s) — Ha(s) + Hy(s)]
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Example2: Reduce the block diagram shown in Figure to a single transfer function.

C(s)

(r5(5)

H_:,'f.i‘)

[ 4

Iy

Hy(s)

Reduction Steps:

Transfer the derivation point from the
input of G, to its outputand apply
feedback (G, H3)

* Transfer the sum node from the output of

G4 to its output + para]]e](%(s), 1)
2

* cascade and parallel
* feedback and then cascade

R(s) + Vy(s) | Cry(5) Cis)
G1(5)Gals) - ( + l)( : ) —
- (ra(5) I+ Gals)H;(5)
H3(s) )
Gry(s)
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Gﬂ.‘f]‘

Viis)

H(s) =

(ia(5) Cis)
I + Gyl shH i)

(71(s)

1 + Gs(s)Hs(s)

Cis)

Vil5) |
G1(5)Gals) - G-{-:}+] -
Ho(s)
==
Gy(s)

Ris) o

Cry(5)Ga(5)

G5(s)

|+ G(s)H5(5) + G (5)Ga(5)H  (5)

V4|:.T}=_ I. + |_
GE{.E':I

Ris)

—_—

Cis)
1+ G_:,{.?}H_:,{.?})

G(s)Gs(s)[1 + Gals)]

Cis)
-

[1+ Ga(s)HA(5) + G(5)G(5)H ()] 1 + Gs(5)H5(5)]
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Signal-Flow diagrams:

The basic input vocabulary of the signal flow Ry(s)
diagrams are shown in figure, with the signal

represented by a node, system transfer relation

(gain) represented by an arrow, and signal

combination and extraction represented by rows Gls)
converging in a node and rows diverging from it.

Rs(5)

Cl E _:-ll: 5)

G]L‘fj GE{.T} {;_1"[.'5'} ,
R(s) O——CO——0O——0 ) )
1._'\-[_\'] ll.-|l:_'\|.']

| Gl(.
C(s) R(s) O——)—> C(s)
Ei(x)

Converting a Block Diagram to a Signal-Flow Graph V(s) 1

(r4(5)

+l 1

Vil Vil Cls )
als) + 5(5) Gy(s) () Ris») O

Gi(s)

i

H_J,{.S'} -

Hl{_ﬂ =%

Hy(s)
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Mason’s Rule:

We define the following:

Pathi,j : the sequence of branching that connects node i and node j without going through any node more than one time.
Path-gain: the product of the gains of all the branches of the path.

Loop: a closed path.

Loop gain: its relative path gain.

Nontouching loops: Loops that do not have any nodes and branches in common. Nontouching loops are inspected as two,
three, four, or more at a time.

Nontouching loops gains: the product of nontouching loops taken as two, three, four, or more at a time.

Loops and nontouching loops with a path;: the loops and nontoucing loops that do not have any nodes or branches in
common.

Loops and nontouching loops with a path; gains: the product of the gains of the Loops and nontouching loops with the
path;.

Masons Formula:

where
G(s) = C(s) = 2Tk k = number of forward paths
R(s) A T} = the kth forward-path gain

A =1 - Xloop gains + £ nontouching-loop gains taken two ata time — X
nontouching-loop gains taken three at a time + X nontouching-loop gains
taken four at a time — . . .

A = A — X loop gain terms in A that touch the kth forward path. In other words, A;

is formed by eliminating from A those loop gains that touch the kth forward path.
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Example 1: determine the transfer function of
the following system using Masons rule.

Solution:

graph elements gains will be written directly.

Path gains:
Pl == GleG3G4G5G7
P2 == GlG2G3G4G6G7

Loop gains:
Ly = H1G,
L, = HyGy
Lz = H3G,G5
Ly = H3G4Gq

Nontouching Loops gains (2-2):
Li; = HiHyG,Gy

Li3 = HiH3G,G4G5

L1y = HiH3GyG,Gg
Nontouching Loops gains (3-3):
Do not exist

Nontouching Loops with P;gains:

Do not exist

Nontouching Loops with P, gains:

Do not exist
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Gf]'[.'!'-'}
G (5) (5(5) G4(s) Gy(s) m G4(5)
R(s) O——- ——-ri ——{ —> = —{) ((s)
| '_:.[ %) 'I-'_p: %) ! '..','i 5) ! '_-I' (] ! '-_ (5]
Hy(s)

H_'-*.':-‘f]

Computation:

A=1— (H162+HzG4+H3G4G5 + H3G4G6) +(H1H2G2G4 + H1H3G2G4G5 + H1H3GzG4_G6)
AP1= 1,Ap2= 1

T(s) =

C(s) _ G1G2G3G4G7(Gs + Gg)

R(s) 1— (H{G,+H,G4+H3G,G) + (H{H,G,G, + H{H3G,G,G:)
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Example 2: determine the transfer function of the following system using Masons rule.

Solution:

graph elements gains will be written directly. G(s) Gals) Ga(s) Gy(s) Gs(s)
Path gains: '
Py = G1G3G3G4G5

Loop gains:

L, = H1G,

L, = HyG,4

Ly = HyGy

Ly = G5G3G4G5GGGg
Nontouching Loops gains (2-2):
Li; = HiH;G,Gy

Li3 = H1HyG, Gy

Lyz = HyHyuGyGy

Nontouching Loops gains (3-3):
L33 = HiHyHyG,GyGy
Nontouching Loops with P, gains:
LP1_3 = HuGy

Computation:

A=1— (H1G,+H,G4+H,G7 + G,G3G,G5G¢G,Gg) +(H H,G,G, + H{H,G,G, + HyH,G,G7) — (H{H,H,G,G4G), Ap, =1 — HuGy
C(s) _ G1G7G3G,4Gs - (1 — HyGy)

R(s) 11— (H G,+H,G4+H,G7 + G,G3G4GsGoG,Gg) + (H{H,G,G, + HHH,G,G, + HyH,G4G7) — (H{H,HyG,G4G)
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State Space Representation

Dr. Jamal Siam
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State Space Representation:

* |tis an internal system time-domain representation composed of a set of simultaneous first-order differential
equations that describes the evolution of the internal state variables (memory elements variables or other
related variables ) and a second set of algebraic equations that set the relation between the input and the
state.

x = f(x,u)
y=g(xu)
 The number of independent state equations is equal to the order of the system.
* The natural selection of the independent state variables is the energy variable of the conservative elements.
e The state equation includes only state variables and input excitation.
* For alinear type invariant system of order n with m inputs and d outputs, the state equations representation
is formulated as follow:

X = ApxnXnx1 T BuxmUmxa X : state vector, A:state Space matrix, B: state-input matrix,
Vax1= CaxnX + DgxmU C: output-ste matrix, D:output-input Matrix
M
Example:
* The system is first order system, thus we need one state variable. The output is vz (t). o) i) 8
e Select the mesh current which is equal to the inductor current as state variable.

diy(t)

* The energy element equation is v (t) = L—== which is not a state equation because v, (t) is not a state

variable an has to be eliminated.
* Applying KVL and the resistor characteristic equation we obtain v, (t) = v(t) — Ri(t)

e Substituting in the energy equation, we obtain (t) —v(t) ——i(t) ... state equation
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Example?2
* The system of a second-order system, thus we need two independent state variables.

* The natural selection of state variables is i; (t) and V.(t).
* Assume the output variable is V.(t). The output equation becomes y(t) = V.(t)

e Solution:
dip(t) . dv.(t) . )
* The energy equations are v, (t) = L——= ” and i (t) = c— = which are both not state equations.
* From the node equations i.(t) = i, (t) —the first state equation: ;f ) Z, i (t) ’\/ﬁ/\, =
* From the KVL and the resistor characteristic equation: v, (t) = v(t) — Ri; (t) — v.(t)
* Applying in the inductor characteristic equation and ordering we obtain: o () o ) T ¢
diL(t) 1
=7v() - —lL(t) - —vc(t)
1
. O —
v V.(t
In matrix form [ .-C] =1 ¢ [ ( )] [ ] v (t)
) I R (®)
Ve(®)
t)=[1 0][.°
yO=[1 0 LL =

Exercise: Write the state equations of the following systems in algebraic matrix form. Outputs: v, (t), x, x;andx, , respectively.

Node 1 % = x(1) i
T — ] —_— A2
i g . M w0000
. |_ R e e e et s e e St e e i s e e e
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Transforming Internal representation to external representation (unigue form)
» State space representation — Transfer Matrix/System of differential equations.
* For a SISO system: State space representation — Transfer function/ differential equations.

Given the state and output equations

x = Ax + Bu (3.68a)
y = Cx+Du (3.68b)

take the Laplace transform assuming zero initial conditions:®

sX(s) = AX(s) + BU(s) (3.692)
Y(s) = CX(s) + DU(s) (3.69b)
Solving for X(s) in Eq. (3.69a),
(sI — A)X(s) = BU(s) (3.70)
or
X(s) = (sI — A)"'BU(s) (3.71)

where I is the identity matrix.
Substituting Eq. (3.71) into Eq. (3.69b) yields

Y(s) = C(sI - A)"'BU(s) + DU(s) = [C(SI -A)'B+ D] U(s) (3.72)
We call the matrix [C(sl -A)'B+ D] the transfer function matrix, since it relates

the output vector, Y(s), to the input vector, U(s). However, if U(s) = U(s) and Y(s) = Y(s)
are scalars, we can find the transfer function, Thus,

T(s) = % =CsI-A)"'B+D
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Example:
Determine the transfer function of the system defined by the following state space representation.

0 1 0 10
)k:! 0 0 1}(+[O]u
-1 =2 =3 0

y=[1 0 0]x

-1 s(s+3) s

s 00 0 1 0 s =1 0 I [ . s+ 1) 2
(-A)=10 s of=| 0 o 1l=]0o s —1| o c1-a =200 _
det(sI — A) s +352+ 25+ 1
0 0 - 1 2 s+3

(s +3s+2) s+3 1}

10
B=10 N T(s):is):C(sI—A)‘lB+D N _ 10(52+3s+2)
0 U(s) T(s) = = 5
§7 4+ 35+ 25+ 1
C=[1 0 0]
D=0

Exercise: determine the transfer function of the system represented by the following state space representation

. [-4 -15 2
x:[ 4 0}x+[0]u(t)
y=|15 0625]x
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Converting external representation to internal representation:

differential equation/ transfer function — state space representation (not unique)

Phase-variable state space representation:

Consider the following differential equation and the following variable assignment:
dny dn—ly
ar Tt g

dy
+ --- +a;—+ apy = bou
la’z‘ 0y 0

_ dy
Xl = y x = — .
" dr X1 = X2
dy )
Xy = — b ! -
) - dr?
dy ; -
X = —— s .
3 dr? X3 = d_g Xp—1 = X
. dt .
: _ Xp = —aoX| — A1 X2+ + — dy—1X, + bou
dn—ly .
X, = d”}-’
dr-1 X, =
. ! dt}z . . . . . . . .
In matrix form-The state matrix is called companion matrix because it includes the coefficient of the transfer
equation: _ . . _ e
X1 0 1 0 0 0 0 0 X1 0 [ xp ]
i o 0 1 0 0 0 .- 0 X2 X
X3 0 0 0 1 0 0 0 X3 0 X3
=| | y=[1 0 0 -+ 0]
Kot o 0 0 0 0 0 - 1 X1 0 Xp—1
X —ayp —a; —a —az; —as —as -+ —dp_1 || X, | | bo] L X,
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Examplel: Consider the following transfer and
* determine the system differential equation and the phase variable representation.

* Plot the block diagram of the system

C(s) 24
R(s) (53 +9s2 4 265 + 24)

Solution:

(s° +95® + 265 4 24)C(s) = 24R(s) —

State variable assignment -

Block Diagram: o)

STUDENTS-HUB.com

¢+ 9¢ + 26¢ + 24c = 24r

w1 T 0 1 07 [x
- Xy | = 0 0 1 Xy | + 0 |r
).C3 -24 =26 -9 X3 24

X1
X3

x, (1) ()

X|]=c¢ X = X2
R
Xo =¢C
X3 = =24x1 — 26x7 — 9x3 + 24r
X3 =¢C
y=c=x
J x;(1) J X, (1) J
9 J
26 |
24
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Example2: Transfer function with polynomial numerator

Determine the state space representation of the following system and plot the corresponding block diagram

C(s)

C(s)

R(s) bos® + bys+ by C(s) - R(s) 1 Xi(s) 5
bys™tbyis+b
) - — 2 15+ bo
a3s® + ars* + ais + ag a333 + a252 +as+ag
R(s) 2+ Ts+2 C(s) R(s) | Xi(s) 2p 7540
- A §
53+ 95% + 265 + 24 - B3+ 92 4+ 265+ 24
jC[ 0 1 0 X1 0
Xy | = 0 0 | x| + |0|r
5C3 =24 =26 -9 X3 1
. X1 =X
C(s) = (bas* + bis + bo)X1(s) = (s* + Ts + 2)X1(s) — c=Xx +7k1+2x; using =x —
.3%1 = X3 )

o= [0 h MHZ[Q ; l]H

A3 X3

| y(f) = ngl + bIXQ + bzl’3

Exercise: Determine the state space representation of the following system and

plot the representation block diagram
25+ 1
s2+Ts+9

G(s) =

STUDENTS-HUB.com

X, (1)

26

24
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Alternative Representations in State Space:

Controller Canonical Form:( a variant of the phase variable representation with companion matrix)

Gls) = C(s) s+ Ts+2 Phase b9 0 1L 07 [x 0

°) = -3 2 | =

R(s) s°+9s*+26s+24 variable: |:XQ:| _[ 0 0 l} |:JC2:| + {0]
-24 -26 -9 1

y=1[2 7 1] F;]

The controller canonical representation is obtained by changing the numbers of the variables and reordering the equations

X3 0 1 0 X3 0 X1 -9 =26 -24 X 1
| = 0 0O 1| |x|+|0|r nl|l=] 1 0 0| |x2| +|[0]r
X =24 =26 -9 X1 1 X3 0 1 0 X3 0

X3 - X1
y=[2 7 1]{;@} y=[1 7 2][3@}

X1

X3 X3

(b)
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Observer Canonical Form:
The transfer function/differential equation are written in integral form which is then written as a sequence of

integration and variables are assigned accordingly.

Example:
1 7 2
C(s) s+ Ts+2 ——+—
G(s) = —— = - C(s) s | §2 0§ 1 7 2 9,26 24
R(s) s> +9s%+265+24 R(s) =79 26 24 - [—‘ =+ —} R(s) = [1 = ] C(s) =
l+-+5+= 5 S s 82
A) S A}

C(s) = [R(s) 9C(s)] + - SITR() = 26C(s)] + ! S2R() = 24CE)] - ) =% [R(s) — 9C(s)] +% ([7R(s) —26C(s)] +%[2R(s) - 24C(s)])]

X1= —9%; +xy +r -9 1 0 17 7
Xy =265 +x347r o X= 7260 x4 7y IVEI
=24 0 O 2]
X3 = —24x + 2r
y=[1 0 0]x
y=c(t) =x

Controller-Observer Duality: o
The controller representation of the same system is given by: ~ Observe the duality relation between the two representations:

Exercise: Determine the phase-variable, controller, and observer Ap=A",Bp=C’", Cp =B".
representation of the following system represented by state space X1 -9 26 -247 [x 1
and plot the signal flow diagrams Ll=1 0 0ofl|lx|+]|0]|r
Hint: convert the state space representation to the transfer function X3 0 1 0] [ 3 0

: -105 =506 1 o x|

X:[ 1 O}HMF Y= 100300 y=[1 7 2]|x
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Cascade representation(for transfer functions with simple roots(Triangular Matrix Form):
The Transfer function is written as the product of its basic-first-order terms and cascaded with the numerator term.

| l 1 [ C)

> -l — —
s+2 | X30s) | S+3 | Xo(s) | s+4 | X(s)

Yy

C(s) 24 _, R 9

R(s) (s+2)(s+3)(s+4)

Representation of the general first-order term

C,'(S) 1 |
Ri(s) - (s + a;) - (s + a;)Ci(s) = Ri(s) — di}(t) _

The system can be represented using this representation as: **

Writing the equations of each block we obtain:

Jlfl :—4X1+XQ —4 1 0 0

- X = 0 -3 Il {x+| Ofr
Xy = —3x2 + x3 0O 0 =2 24
X3 = — 2x3 + 24r yz[l 0 O}x
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Parallel representation: systems with simple roots written in the form of the partial fraction(Diagonal Matrix)

C(s) 24 12

24 12

R(s) (9 +2)(s+3)(s+4) (s‘ +2)

Using the general first-order representation we can obtain the parallel
plot in the figure. Writing the equation of each block we obtain:

-2
ﬁz! 0 -3

Xp = —2x +12r
_IX2 = —3XZ —24r
iy = —dxy +12r

y=c(t) =x; +x+x3

643 T 6+49

— C(s) =R(s) ——

(s +

)|

y=[1 1 1]x

12
2)

—24

12
s
(s+4)

R(s) C(s)

Mixed Parallel-Cascade representation: partial fractions with repeated roots(Jordan Matrix):

Cis)  (s+3) _, C(s)

| 1

RS (s+1%+2)  R(es) (541

i’l =—Xx; “+x2
JITQ = %) + 2r
X3 = —2x3+ r

1
y =c(t) = xl—§x2 + X3
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Plotting using the first-order cell and
G+ 6+ reading the equation we obtain:
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