Question (10 points)

Consider the following two random independent samples taken from two normal populations.

Sample 1 10

Sample 2

9

Provide a 95% confidence interval estimate for the difference between the two population

eans.
$$S_{ample} = 1 \text{ B} \text{ N}_1 = 6$$
, $\overline{X}_1 = 9$, $S_1 = 2.28$.

$$= (9-7) \pm (2.262) \int_{0.282}^{2.282} + 1.792$$

95% CI for
$$M_1 - M_2 = (\overline{X_1} - \overline{X_2}) \pm \frac{1}{2} = \frac{S_2^2}{h_1} + \frac{S_2^2}{h_2}$$

$$= (9-7) \pm (2.262) \frac{2.282}{6} + \frac{1.742}{6}$$

$$= 2 \pm 2.68 = \left[-0.68, 4.68\right].$$

$$4f = \left[\frac{\left(S_1^2 + S_2^2\right)^2}{\left(\frac{1}{h_1-1}\right)\left(\frac{S_1^2}{h_1}\right)^2 + \left(\frac{S_2^2}{h_2}\right)^2}{\left(\frac{1}{h_2-1}\right)\left(\frac{S_1^2}{h_2}\right)^2}\right] = \left[9.4667\right] = 9.$$

Question (10 points)

Consider the following two random independent samples taken from two normal populations.

Sample 1	5	6	5	3	3	5
Sample 2	6	5	4	2	7	6

Test if the two population variances are equal using a 5% level of significance.

- 1) Write the hypotheses.
- 2) Calculate the test statistic.
- 3) What is your conclusion? Use the critical value approach.
- 4) What is your conclusion? Use the p-value approach.

2-
$$F = S_1^2 = \frac{3.20}{S_2^2} = \frac{2.13}{3.20}$$
, $df_1 = 6-1=5$, $df_2 = 5$.

$$S_2 = \frac{1.50}{5}$$
, $S_4 = 3.20$.

3-
$$F_{\alpha} = 7.15$$
.

 $F \langle F_{\alpha} \Rightarrow D_{\text{on}} | F_{\text{eject}} | F_{\text{o}} (\alpha = 0.05)$.

 $\Rightarrow \nabla_{1}^{2} = \nabla_{2}^{2} \cdot (\alpha = 0.05)$.

Question (10 points)

The following table shows the data obtained for a study regarding the gender of individuals and their selected field of study. We want to determine if the selected field of study and gender are independent using a 10% level of significance.

	x=0.1.			
Field of study	Male	Female	Total	
Medicine	30 (30)	20 (20)	50	
Business	30 (36)	30 (zy)	60	
Engineering	60 (54)	30 (36)	90	
Total	120	80	200	

- 1) Write the hypotheses.
- 2) Calculate the test statistic.
- 3) What is your conclusion? Use the critical value approach.
- 4) What is your conclusion? Use the p-value approach.

1) Hos The selected field of study and geneder are independent.

His The selected field of study and geneder are not independent.

2)
$$\chi^2 = \frac{15}{2} \frac{2}{1-1} \frac{2}{1$$

all eig
$$\gtrsim 5.$$
 V.

3) $\chi_{d}^{2} = 4.605$.

 $\chi^2 \angle \chi^2_{\alpha} \rightarrow Da't$ Reject Ho ($\alpha = 0.10$)

The selected field of study and geneder over independent. ($\alpha = 0.10$).