APPLICATIONS OF
DEFINITE INTEGRALS

OVERVIEW In Chapter 5 we saw that a continuous function over a closed interval has a
definite integral, which is the limit of any Riemann sum for the function. We proved that
we could evaluate definite integrals using the Fundamental Theorem of Calculus. We also
found that the area under a curve and the area between two curves could be computed as
definite integrals.

In this chapter we extend the applications of definite integrals to finding volumes,
lengths of plane curves, and areas of surfaces of revolution. We also use integrals to
solve physical problems involving the work done by a force, the fluid force against a
planar wall, and the location of an object’s center of mass.

6 1 | Volumes Using Cross-Sections
s |

Cross-section S(x)
with area A(x)

FIGURE 6.1 A cross-section S(x) of the
solid § formed by intersecting § with a plane
P, perpendicular to the x-axis through the
point x in the interval [a, b].
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In this section we define volumes of solids using the areas of their cross-sections. A cross-
section of a solid S is the plane region formed by intersecting S with a plane (Figure 6.1).
We present three different methods for obtaining the cross-sections appropriate to finding
the volume of a particular solid: the method of slicing, the disk method, and the washer
method.

Suppose we want to find the volume of a solid S like the one in Figure 6.1. We begin
by extending the definition of a cylinder from classical geometry to cylindrical solids with
arbitrary bases (Figure 6.2). If the cylindrical solid has a known base area 4 and height A,
then the volume of the cylindrical solid is

Volume = area X height = 4+ h.

This equation forms the basis for defining the volumes of many solids that are not cylin-
ders, like the one in Figure 6.1. If the cross-section of the solid § at each point x in the in-
terval [a, b] is a region S(x) of area A(x), and A4 is a continuous function of x, we can define
and calculate the volume of the solid S as the definite integral of 4(x). We now show how
this integral is obtained by the method of slicing.

&" i '4'-;‘[1=heigh:

Plane region whose
area we know

Cylindrical solid based on region
Volume = base area X height = Ah

FIGURE 6.2 The volume of a cylindrical solid is always defined to
be its base area times its height.
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6.1 Volumes Using Cross-Sections 309

y Slicing by Parallel Planes

We partition [a, b] into subintervals of width (length) Ax; and slice the solid, as we
would a loaf of bread, by planes perpendicular to the x-axis at the partition points
a = xp < x; << ux,=b.The planes P,,, perpendicular to the x-axis at the parti-
tion points, slice S into thin “slabs” (like thin slices of a loaf of bread). A typical slab is
shown in Figure 6.3. We approximate the slab between the plane at x;— and the plane at
x; by a cylindrical solid with base area A(x;) and height Ax;, = x; — x;—; (Figure 6.4).
The volume ¥} of this cylindrical solid is A(x;) + Axy, which is approximately the same
volume as that of the slab:

Volume of the kth slab = V, = A(x;) Axy.

=

The volume ¥ of the entire solid § is therefore approximated by the sum of these cylindri-
FIGURE 6.3 A typical thin slab in the cal volumes,
solid S. " n
Ve D= 2 A(x) Ax.
=1 =l

A At This is a Riemann sum for the function 4(x) on [a, b]. We expect the approximations from
Pl cylinder based these sums to improve as the norm of the partition of [a, b] goes to zero. Taking a partition

aneatx_; A - S(x;) has height of [a, b] into n subintervals with |P|| — 0 gives

Axp = x, — x| i B
e / lim 3 A(x) Axy = / A(x)d.

n—200 k=1

So we define the limiting definite integral of the Riemann sum to be the volume of the

solid S.
‘ / Plane at x; DEFINITION The volume of a solid of integrable cross-sectional area A(x)
N fromx = a tox = b is the integral of 4 from a to b,
The cylinder’s base g b
is the region S(x;) V = / A(x) dx.
with area A(x;) a

NOT TO SCALE

FIGURE 6.4 The solid thin slab in
Figure 6.3 is shown enlarged here. It is
approximated by the cylindrical solid with
base S(x;) having area A(x;) and height
Axp = xp — x5

This definition applies whenever A(x) is integrable, and in particular when it is
continuous. To apply the definition to calculate the volume of a solid, take the follow-
ing steps:

Calculating the Volume of a Solid

1. Sketch the solid and a tvpical cross-section.

(3]

. Find a formula for A(x), the area of a typical cross-section.

75

. Find the limits of integration.

=

. Integrate A(x) to find the volume.

EXAMPLE 1 A pyramid 3 m high has a square base that is 3 m on a side. The cross-
section of the pyramid perpendicular to the altitude x m down from the vertex is a square
xm on a side. Find the volume of the pyramid.

Solution

1. A sketch. We draw the pyramid with its altitude along the x-axis and its vertex at the
origin and include a typical cross-section (Figure 6.5).
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310 Chapter 6: Applications of Definite Integrals

. Typical cross-section

FIGURE 6.5 The cross-sections of the
pyramid in Example | are squares.

V9 42

FIGURE 6.6 The wedge of Example 2,

sliced perpendicular to the x-axis. The
cross-sections are rectangles.

HISTORICAL BIOGRAPHY

Bonaventura Cavalieri
(1598-1647)
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2. A formula for A(x). The cross-section at x is a square x meters on a side, so its area is

2

Alx) = x=.

3. The limits of integration. The squares lie on the planes from x = 0 to x = 3.
4. Integrate to find the volume:

3 3 37 )
V= ] A(x) dx = / = —} = 9m". [
0 0 3 Jo

EXAMPLE 2 A curved wedge is cut from a circular cylinder of radius 3 by two planes.
One plane is perpendicular to the axis of the cylinder. The second plane crosses the first
plane at a 45° angle at the center of the cylinder. Find the volume of the wedge.

Solution We draw the wedge and sketch a typical cross-section perpendicular to the
x-axis (Figure 6.6). The base of the wedge in the figure is the semi-circle with x = 0
that is cut from the circle x* + y* = 9 by the 45° plane when it intersects the y-axis.
For any x in the interval [0, 3], the y-values in this semi-circular base vary from

vy=-V9 —x*toy = V9 — x%. When we slice through the wedge by a plane perpen-
dicular to the x-axis, we obtain a cross-section at x which is a rectangle of height x whose
width extends across the semi-circular base. The area of this cross-section is

A(x) = (height)(width) = (x)(2V9 — »?)
=2xV9 — x2.

The rectangles run from x = 0 to x = 3, so we have

b 3
V= / A(x) dx / 2V9 — x?dx
a 0

3 Let u 9 — x2
=5 o 2 (9 — '.‘.2}3!2] du = —2x dx, integrate,
3 0 and substitute back.
=0+ 2(9)
3
= 18. ]

EXAMPLE 3  Cavalieri’s principle says that solids with equal altitudes and identical
cross-sectional areas at each height have the same volume (Figure 6.7). This follows im-
mediately from the definition of volume, because the cross-sectional area function A(x)
and the interval [a, b] are the same for both solids.

bl __— Same volume

Same cross-section
area at every level

FIGURE 6.7 Cavalieri s principle: These solids have the
same volume, which can be illustrated with stacks of coins. | |
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6.1 Volumes Using Cross-Sections 311

¥ Solids of Revolution: The Disk Method

The solid generated by rotating (or revolving) a plane region about an axis in its plane is

called a solid of revelution. To find the volume of a solid like the one shown in Figure 6.8,

we need only observe that the cross-sectional area A(x) is the area of a disk of radius

R(x) = Vx R(x), the distance of the planar region’s boundary from the axis of revolution. The area is
D then

b .__kl)l_’ X

y=Va

@ A(x) = m(radius)?® = 7[R(x)]%.

So the definition of volume in this case gives

y
A

Volume by Disks for Rotation About the x-axis

b b
V= / A(x) dx = / w[R(x)]* dx.

b . This method for calculating the volume of a solid of revolution is often called the disk
Disk | ' method because a cross-section is a circular disk of radius R(x).

EXAMPLE 4  The region between the curve y = Vx,0 = x = 4, and the x-axis is

(®) revolved about the x-axis to generate a solid. Find its volume.

FIGURE 6.8 The region (a) and solid of

cerplution () 0 Bxample:d: Solution We draw figures showing the region, a typical radius, and the generated solid

(Figure 6.8). The volume is
b
V= [ w[R(x)]* dx

l4 s
] 77[\/;]2 dx Radius R(x) = V. for
0

rotation around y-axis

-4.d,— ﬁ4— @—8 ]
TTO)\—TTZO—‘JTz—’JT.

EXAMPLE 5  The circle

is rotated about the x-axis to generate a sphere. Find its volume.
Solution We imagine the sphere cut into thin slices by planes perpendicular to the x-axis
(Figure 6.9). The cross-sectional area at a typical point x between —a and a is

Rix) Via® — x? for

A(x) = my? = w(a? — x2). . .
rotation around yv-axis

Therefore, the volume is
¢ “ 2 2 Sl i 4 3
V= Alx) dx = mla —x}dx='rrax—? =3 ma. |

The axis of revolution in the next example is not the x-axis, but the rule for calculating
the volume is the same: Integrate 7r(radius)? between appropriate limits.

EXAMPLE 6  Find the volume of the solid generated by revolving the region bounded
by y = V/x and the lines v = l,x = 4 about the line y = 1.
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312 Chapter 6: Applications of Definite Integrals

HHH"“‘-«

—

FIGURE 6.9 The sphere generated by rotating the circle
x? + y? = a” about the x-axis. The radius is

R(x) = v = Va* — x* (Example 5).

Solution We draw figures showing the region, a typical radius, and the generated solid
(Figure 6.10). The volume is

4
V= / w[R(x))? dx
N
# adius R(x) = /%
2/17[\/.;—1]2(1'.\‘ Radius R(x) = \ I
I

for rotation around y = |

4
= 1:'] |:,\' — 2'\/; + 1] dx Expand integrand,
1

2 4
S X 2 .2_1-332 +x!| = 7_7T Integrate.
2 3 |

(a) (b)

FIGURE 6.10 The region (a) and solid of revolution (b) in Example 6. ul

To find the volume of a solid generated by revolving a region between the v-axis and a
curve x = R(y), ¢ = y = d, about the v-axis, we use the same method with x replaced by v.
In this case, the circular cross-section 1s

A(v) = m[radius]® = w[R(»)]%

and the definition of volume gives
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(b)

FIGURE 6.11 The region (a) and part of
the solid of revolution (b) in Example 7.
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Volume by Disks for Rotation About the p-axis

vd vl
v = / A(y)dy = / wR(Y)T dy.

EXAMPLE 7  Find the volume of the solid generated by revolving the region between
the y-axis and the curve x = 2/y, 1 = y = 4, about the y-axis.

Solution We draw figures showing the region, a typical radius, and the generated solid
(Figure 6.11). The volume is

‘4
V=] m[R(y)]? dy
1
4 2
[+
L

4 4
71'[ P dy—47{ yl 41?[4] 3t [ |

EXAMPLE 8  Find the volume of the solid generated by revolving the region between
the parabola x = y? + 1 and the line x = 3 about the line x = 3.

-
Radius R(y) = 3 for

Il

rotation around y-axis

Solution We draw figures showing the region, a typical radius, and the generated solid
(Figure 6.12). Note that the cross-sections are perpendicular to the line x = 3 and
have y-coordinates from y = -V21to v = V2.The volume is

V2
V= / _ F[R(}’)]z dy v = + V2whenx =3
—3/2
¥;
V2 " . . o

. 22 Radius R(y) =3 — (= + 1)

- / .—17[2 ¥ ] dy for rotation around axisx = 3
V2

Expand integrand.

V2
w/ [4 = 47 + ydy
V2

57V2

v

- 11'[4)/ on iy} + —}
3 SRRV

_ 64m\V2

Integrate.

15
Y RW=3-(+1) y
=2-y* 65
V2| __4(3.V2) Va2
Y+ J Y-
( ] L
o 1% 3 5 0 57t
Vo T }"km. V) Vil
(a) (b)
FIGURE 6.12 The region (a) and solid of revolution (b) in Example 8. ]
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(x. R(x))

Washer

FIEURE 6.13 The cross-sections of the solid of revolution generated here are washers, not disks, so the integral
/. A(x) dx leads to a slightly different formula.

Solids of Revolution: The Washer Method

If the region we revolve to generate a solid does not border on or cross the axis of revolu-
tion, the solid has a hole in it (Figure 6.13). The cross-sections perpendicular to the axis of
revolution are washers (the purplish circular surface in Figure 6.13) instead of disks. The
dimensions of a typical washer are

-t

Outer radius:  R(x)
{~2: 3)
Inner radius:  #(x)
RGx)==x +3 Y B The washer’s area is
LY j(.‘ 5 AW) = TREOP ~ 7[rOF = 7(ROP - [FOP).
| Sy=xt+1 Consequently, the definition of volume in this case gives
—2/ X ""-th—@“,
Interval of 1 >«
mwgml:u? Volume by Washers for Rotation About the x-axis
a

b b
Vs j A(x) dx = ] m([R(x)] — [Hx)]?) dx.

This method for calculating the volume of a solid of revolution is called the washer
method because a thin slab of the solid resembles a circular washer of outer radius R(x)
and inner radius r(x).

EXAMPLE 9  The region bounded by the curve y = x? + 1 and the line y = —x + 3
is revolved about the x-axis to generate a solid. Find the volume of the solid.

Solution  We use the four steps for calculating the volume of a solid as discussed early in
this section.

Washer cross-section 1. Draw the region and sketch a line segment across it perpendicular to the axis of revo-
Outer radius: R(x) = -x + 3 lution (the red segment in Figure 6.14a).
Inner radius: r(x) = x~ + 1 . ; i :
) 2. Find the outer and inner radii of the washer that would be swept out by the line seg-
ment if it were revolved about the x-axis along with the region.
FIGURE 6.14 (a) The region in Example 9 These radii are the distances of the ends of the line segment from the axis of revolu-
spanned by a line segment perpendicular to tion (Figure 6.14).

the axis of revolution. (b) When the region
is revolved about the x-axis, the line
segment generates a washer. Inner radius: rix) =x>+1

QOuter radius: R(x) = —x+3
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G2
R(y) = Vy
(2,4)
4 —
y
g riy) =3
.2 le—— =
8
mo| vl
o ]
= y=2xor
e 2 ¥
< A
. $=2
=]
a9
= y=x%or
x= \e"’;
L 1 %
0 2

(a)

(b)

FIGURE 6.15 (a) The region being rotated
about the y-axis, the washer radii, and
limits of integration in Example 10.

(b) The washer swept out by the line
segment in part (a).
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3. Find the limits of integration by finding the x-coordinates of the intersection points of
the curve and line in Figure 6.14a.
)
T T
P24 x—2=0
x+2)(x—1=0

x=-2, »=1 Limits of integration
4. Evaluate the volume integral.
“h
V :/ Tr[[R(x)]2 F— [."(.‘-\']]2} dx Rotation around v-axis
o
.i " - =
s Al =43 2 -‘.2 | 7 % Values from Steps 2
/2 {( ) { } ) and 3
1
e TT/ {8 — By — x2 T X4) dx Simplify algebraically.
2
L S A O VL

_ 2.2 X
—7:'[81 3x 3 51, 5

To find the volume of a solid formed by revolving a region about the v-axis, we
use the same procedure as in Example 9, but integrate with respect to y instead of x.
In this situation the line segment sweeping out a typical washer is perpendicular to the
y-axis (the axis of revolution), and the outer and inner radii of the washer are func-
tions of y.

EXAMPLE 10  The region bounded by the parabola y = x? and the line y = 2x in the
first quadrant is revolved about the y-axis to generate a solid. Find the volume of the
solid.

Solution  First we sketch the region and draw a line segment across it perpendicular to
the axis of revolution (the y-axis). See Figure 6.15a.

The radii of the washer swept out by the line segment are R(y) = \/;, r(y) = y/2
(Figure 6.15).

The line and parabola intersect at y = 0 and y = 4, so the limits of integration are
¢ = 0and d = 4. We integrate to find the volume:

d
V= / w{[R(y)]z — [1»)]?) dv Rotation around y-axis

A \/_ 2 y 2 d Substitute for radii and
0 L y 2 i limits of integration.

Il
3
h
=
o
|
B,
~—
=
=
Il
3
e
M| -3
|
]
| T |
(=] =
Il
| e
3
[ ]
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316 Chapter 6: Applications of Definite Integrals

Exercises 6.1

Volumes by Slicing
Find the volumes of the solids in Exercises 1-10.

1. The solid lies between planes perpendicular to the x-axisat x = 0
and x = 4. The cross-sections perpendicular to the axis on the
interval 0 = x = 4 are squares whose diagonals run from the
parabola y = — Vx to the parabola vy = V.

2. The solid lies between planes perpendicular to the x-axis at
x = —1 and x = 1. The cross-sections perpendicular to the
x-axis are circular disks whose diameters run from the parabola
v = x?to the parabola y = 2 — x°,

=2 —
y=2-x 5

3. The solid lies between planes perpendicular to the x-axis at
x = —land x = 1. The cross-sections perpendicular to the x-axis
between these planes are squares whose bases run from the semi-

cirele y = —V/1 — x? to the semicircle y = V1 — x2,

4. The solid lies between planes perpendicular to the x-axis at x = —1
and x = 1. The cross-sections perpendicular to the x-axis be-
tween these planes are squares whose diagonals run from the

semicircle v = —V1 — x? to the semicircle y=VI1-—xk

5. The base of a solid is the region between the curve y = 2V sinx
and the interval [0, 7] on the x-axis. The cross-sections perpendi-
cular to the x-axis are
a. equilateral triangles with bases running from the x-axis to the

curve as shown in the accompanying figure.

b. squares with bases running from the x-axis to the curve.

6. The solid lies between planes perpendicular to the x-axis at
x = —m/3 and x = /3. The cross-sections perpendicular to the
X-axis are

a. circular disks with diameters running from the curve
» = tanx to the curve y = secx.
b. squares whose bases run from the curve y = tanx to the
curve y = secx.
7. The base of a solid is the region bounded by the graphs of
¥ = 3x, vy = 6, and x = 0. The cross-sections perpendicular to
the x-axis are

a. rectangles of height 10,
b. rectangles of perimeter 20.
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8. The base of a solid is the region bounded by the graphs of y = Vi
and y = x/2. The cross-sections perpendicular to the x-axis are

a. isosceles triangles of height 6.
b. semi-circles with diameters running across the base of the solid.

9. The solid lies between planes perpendicular to the y-axisat y = 0
and v = 2. The cross-sections perpendicular to the v-axis are cir-
cular disks with diameters running from the y-axis to the parabola

x = V52
10. The base of the solid is the disk x> + y?* = 1. The cross-sections
by planes perpendicular to the y-axis between y = —l and y = 1

are isosceles right triangles with one leg in the disk.

2 +yr=1

11. Find the volume of the given tetrahedron. (Hint: Consider slices
perpendicular to one of the labeled edges.)

12. Find the volume of the given pyramid, which has a square base of
area 9 and height 5.

3

13. A twisted solid A square of side length s lies in a plane perpen-
dicular to a line L. One vertex of the square lies on L. As this square
moves a distance / along L, the square turns one revolution about L
to generate a corkscrew-like column with square cross-sections.

a. Find the volume of the column.
b. What will the volume be if the square turns twice instead of
once? Give reasons for your answer.
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14. Cavalieri’s principle A solid lies between planes perpendicular
to the x-axis at x = 0 and x = 12. The cross-sections by planes
perpendicular to the x-axis are circular disks whose diameters run
from the line ¥ = x/2 to the line ¥ = x as shown in the accompa-
nying figure. Explain why the solid has the same volume as a
right circular cone with base radius 3 and height 12,

Volumes by the Disk Method
In Exercises 15-18, find the volume of the solid generated by revolv-
ing the shaded region about the given axis.

15. About the x-axis 16. About the y-axis

»
2
3y
X = ?
L x
0 3
17. About the y-axis 18. About the x-axis
¥ ¥
1 1 i ¥ = sin ¥ cosx
|
X = tan [%v)
X 2
0 0 T ¥
2

Find the volumes of the solids generated by revolving the regions
bounded by the lines and curves in Exercises 19-24 about the x-axis.

19. y=x% =0, x=2 20.y=x p=0, x=2
21.y=\/m. =10 22.y=x—x2, y=20

23, y= Veosy, 0=x=m/2, y=0, x=0

24, y=secx, y=0, x=-7w/4, x=m7/4

In Exercises 25 and 26, find the volume of the solid generated by re-
volving the region about the given line.

25. The region in the first quadrant bounded above by the line
y= \/5 below by the curve v = sec.x tanx, and on the left by
the v-axis, about the line y = V2

26. The region in the first quadrant bounded above by the line y = 2,
below by the curve v = 2sinx, 0 = x = /2, and on the left by
the y-axis, about the line y = 2
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Find the volumes of the solids generated by revolving the regions
bounded by the lines and curves in Exercises 27-32 about the y-axis.
27. The regionenclosed by x = V532, x =0, y=—1, y=1
— 32
= 3

RS ]

28. The region enclosed by x
29. Theregionenclosedbyx = V2sin2y, 0=y =a/2, x=

0
30. The region enclosed by x = Vcos(my/4), -2 =y =0,
x=10
Mox=2/(y+ 1), x=0, y=0, v=3

32.x= \/5/{_\12 +1), x=0, y=1

, x=0, y=

Volumes by the Washer Method
Find the volumes of the solids generated by revolving the shaded re-
gions in Exercises 33 and 34 about the indicated axes.

33. The x-axis 34. The y-axis

pom—
y=Vcosx

N

r=tany

Find the volumes of the solids generated by revolving the regions
bounded by the lines and curves in Exercises 35-40 about the x-axis.

3[/.y=x, y=1, x
36. y=2Vx, y=2, x=0

3. y=x*+1, p=x+3

B, y=4-x% y=2-2x

39. y =secx, y= V2, —-m/4d =x = 7/4

40, y = secx, y=tanx, x =10, x=1

In Exercises 41-44, find the volume of the solid generated by revolv-

ing each region about the y-axis.

41. The region enclosed by the triangle with vertices (1, 0), (2, 1), and
(1, 1)

42. The region enclosed by the triangle with vertices (0, 1), (1, 0), and
(1. 1)

43. The region in the first quadrant bounded above by the parabola
v = x?, below by the x-axis, and on the right by the line x = 2

44. The region in the first quadrant bounded on the left by the circle
x2 + 2 = 3, on the right by the line x = \/3, and above by the

liney = V3

In Exercises 45 and 46, find the volume of the solid generated by re-
volving each region about the given axis.

45. The region in the first quadrant bounded above by the curve
v = x?, below by the x-axis, and on the right by the line x = 1,
about the line x = —1

46. The region in the second quadrant bounded above by the curve
¥ = —x%, below by the x-axis, and on the left by the line x = —1,
about the linex = -2
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318 Chapter 6: Applications of Definite Integrals

Volumes of Solids of Revolution
47. Find the volume of the solid generated by revolving the region
bounded by y = Vx and the lines y = 2and x = 0 about

a. the x-axis. b. the y-axis.
¢, the line y = 2. d. thelinex = 4.

48. Find the volume of the solid generated by revolving the triangular
region bounded by the lines y = 2x, y = 0, and x = 1 about

a. the line x = 1. b. the line x = 2.

49. Find the volume of the solid generated by revolving the region
bounded by the parabola y = x? and the line y = 1 about

a. the line y = 1. b. the line y = 2.
c. theline y = —1.

50. By integration, find the volume of the solid generated by re-
volving the triangular region with vertices (0, 0), (b, 0), (0, &)
about
a. the x-axis. b. the y-axis.

Theory and Applications

51. The volume of a torus  The disk x> + y?> = a? is revolved about
the line x = b (b > a) to generate a solid shaped like a doughnut
and called a rorus. Find its volume, (Hint: f_aﬂ\/:az —yidy =

7ra?/2, since it is the area of a semicircle of radius a.)

52. Volume of a bowl A bowl has a shape that can be generated by
revolving the graph of y = _t2/2 between v = 0 and y = 5 about
the y-axis.

a. Find the volume of the bowl.

b. Related rates If we fill the bowl with water at a constant
rate of 3 cubic units per second, how fast will the water level
in the bowl be rising when the water is 4 units deep?

Ln
T

Volume of a bowl

a. A hemispherical bowl of radius a contains water to a depth A.
Find the volume of water in the bowl.

b. Related rates Water runs into a sunken concrete hemi-
spherical bowl of radius 5 m at the rate of 0.2 m*/sec. How
fast is the water level in the bowl rising when the water is
4 m deep?

54. Explain how you could estimate the volume of a solid of revolu-
tion by measuring the shadow cast on a table parallel to its axis of
revolution by a light shining directly above it.

55. Volume of a hemisphere Derive the formula IV = (2/3)wR>
for the volume of a hemisphere of radius R by comparing its
cross-sections with the cross-sections of a solid right circular
cylinder of radius R and height R from which a solid right circular
cone of base radius R and height R has been removed, as sug-
gested by the accompanying figure.

7 { el i h
£ - F: P =
| T H h =

e R b

.
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56. Designing a plumb bob Having been asked to design a brass

57.

58.

plumb bob that will weigh in the neighborhood of 190 g, you de-
cide to shape it like the solid of revolution shown here. Find the
plumb bob’s volume. If you specify a brass that weighs 8.5 g/cm",
how much will the plumb bob weigh (to the nearest gram)?

|f\m —
y (cm) y—x\/fiﬁ—x

x{cm)

Designing a wok You are designing a wok frying pan that will
be shaped like a spherical bowl with handles. A bit of experimen-
tation at home persuades you that you can get one that holds
about 3 L if you make it 9 cm deep and give the sphere a radius of
16 cm. To be sure, you picture the wok as a solid of revolution, as
shown here, and calculate its volume with an integral. To the
nearest cubic centimeter, what volume do you really get?
(1L = 1000cm’.)

y(cm)

xi{cm)

9 ¢cm deep

Max-min The arch v = sinx, 0 = x = 7, is revolved about

the line y = ¢,0 = ¢ = 1, to generate the solid in the accompa-

nying figure.

a. Find the value of ¢ that minimizes the volume of the solid.
What is the minimum volume?

b. What value of ¢ in [0, 1] maximizes the volume of the solid?

¢. Graph the solid’s volume as a function of c, first for

0 = ¢ = 1 and then on a larger domain., What happens to the
volume of the solid as ¢ moves away from [0, 1]?7 Does this
make sense physically? Give reasons for your answers.
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6.2 Volumes Using Cylindrical Shells 319

59. Consider the region R bounded by the graphs of y = f(x) = 0, 60. Consider the region R given in Exercise 59. If the volume of the

x=a>0,x=»h>aqg,and y = 0 (see accomanying figure). If solid formed by revolving R around the x-axis is 64, and the vol-
the volume of the solid formed by revolving R about the x-axis is ume of the solid formed by revolving R around the line v = —21is
44r, and the volume of the solid formed by revolving R about the 107r, find the area of R.
line v = —1 is 8, find the area of R.
y
¥ =fx)
|
R
| |
I | >
0f a b

6 2 | Volumes Using Cylindrical Shells

|

In Section 6.1 we defined the volume of a solid as the definite integral ' = LbA(x) dx,
where A(x) is an integrable cross-sectional area of the solid from x = a tox = b. The area
A(x) was obtained by slicing through the solid with a plane perpendicular to the x-axis.
However, this method of slicing is sometimes awkward to apply, as we will illustrate in our
first example. To overcome this difficulty, we use the same integral definition for volume,
but obtain the area by slicing through the solid in a different way.

Slicing with Cylinders

Suppose we slice through the solid using circular cylinders of increasing radii, like cookie
cutters. We slice straight down through the solid so that the axis of each cylinder is paral-
lel to the y-axis. The vertical axis of each cylinder is the same line, but the radii of the
cylinders increase with each slice. In this way the solid is sliced up into thin cylindrical
shells of constant thickness that grow outward from their common axis, like circular tree
rings. Unrolling a cylindrical shell shows that its volume is approximately that of a rectan-
gular slab with area A(x) and thickness Ax. This slab interpretation allows us to apply the
same integral definition for volume as before. The following example provides some in-
sight before we derive the general method.

EXAMPLE 1  The region enclosed by the x-axis and the parabola y = f(x) = 3x — x*
is revolved about the vertical line x = —1 to generate a solid (Figure 6.16). Find the volume
of the solid.

Solution  Using the washer method from Section 6.1 would be awkward here because
we would need to express the x-values of the left and right sides of the parabola in Fig-
ure 6.16a in terms of y. (These x-values are the inner and outer radii for a typical washer,
requiring us to solve y = 3x — x? for x, which leads to complicated formulas.) Instead
of rotating a horizontal strip of thickness Ay, we rotate a vertical strip of thickness Ax.
This rotation produces a cvlindrical shell of height v; above a point x; within the base of
the vertical strip and of thickness Ax. An example of a cylindrical shell is shown as the
orange-shaded region in Figure 6.17. We can think of the cylindrical shell shown in the
figure as approximating a slice of the solid obtained by cutting straight down through
it, parallel to the axis of revolution, all the way around close to the inside hole. We
then cut another cylindrical slice around the enlarged hole, then another, and so on,
obtaining » cylinders. The radii of the cylinders gradually increase, and the heights of
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320 Chapter 6: Applications of Definite Integrals

FIGURE 6.17 A cylindrical shell of
height v, obtained by rotating a vertical
strip of thickness Ax; about the line

x = —1.The outer radius of the cylinder
occurs at x;, where the height of the
parabola is vy = 3x; — x> (Example 1).

STUDENTS-HUB.com

-2 -1 0 1 2 3

Axis of Axis of
revolution | -2 revolution
x=-1 x=-1

FIGURE 6.16 (a) The graph of the region in Example 1, before revolution.
(b) The solid formed when the region in part (a) is revolved about the
axis of revolution x = —1.

the cylinders follow the contour of the parabola: shorter to taller, then back to shorter
(Figure 6.16a).

Each slice is sitting over a subinterval of the x-axis of length (width) Ax;. Its radius is
approximately (1 + x;), and its height is approximately 3x; — x;2. If we unroll the cylin-
der at x; and flatten it out, it becomes (approximately) a rectangular slab with thickness Ax;
(Figure 6.18). The outer circumference of the Ath cylinder is 27 - radius = 27 (1 + x),
and this is the length of the rolled-out rectangular slab. Its volume is approximated by that
of a rectangular solid,

AV, = circumference X height X thickness
= 2m(1l + x;)- (3.\‘;( - ).Tkz) = Axy.
Summing together the volumes AV of the individual cylindrical shells over the interval

[0, 3] gives the Riemann sum

Savi= X2aly + D35 — %) Axi.
= =1

Outer circumference = 27 - tadius = 27(1 + x;)
Radius = 1 + x,

e B /
h=@x— %) ?TyAxk = thickness

1=2a(1 +x)

FIGURE 6.18 Cutting and unrolling a cylindrical shell gives a
nearly rectangular solid (Example 1).
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The volume of a cylindrical shell of
height & with inner radius » and outer
radius R is

TR h — wrlh = 27 (%)(k)[ﬂ’ —r)
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Taking the limit as the thickness Ax; — 0 and n — 00 gives the volume integral

n

lim E 2ar(xy + l)(3x;( — .n-z) Axy

n—>00 =1

~
I

3
/ 2mr(x + 1)(3x — x?) dx
0
3
s / 2r(3x% + 3x — x7 — 2 dx
Jo

3
= Zw[ (2x% + 3x — xV) dx
Jo

3
|23 03 2 1 4 _ 45w
- 21'{3,\ + TR R 0 =5 ]

We now generalize the procedure used in Example 1.

The Shell Method

Suppose the region bounded by the graph of a nonnegative continuous function
v = flx) and the x-axis over the finite closed interval [a, b] lies to the right of the vertical
line x = L (Figure 6.19a). We assume a = L, so the vertical line may touch the region,
but not pass through it. We generate a solid § by rotating this region about the vertical
line L.

Let P be a partition of the interval [a, ] by the pointsa = xp < x; < -+ < x, = b,
and let ¢; be the midpoint of the kth subinterval [x;—, x;]. We approximate the region in
Figure 6.19a with rectangles based on this partition of [a, h]. A typical approximating rec-
tangle has height f(e;) and width Ax; = x; — x;—. If this rectangle is rotated about the
vertical line x = L, then a shell is swept out, as in Figure 6.19b. A formula from geometry
tells us that the volume of the shell swept out by the rectangle is

AV, = 27 X average shell radius X shell height X thickness
= 2a+(c;p — L) flcp) - Axy.

Vertical axis
of revolution

Vertical axis
of revolution

e

Rectangle
height = fic,)

b

FIGURE 6.19 When the region shown in (a) is revolved about the vertical line
x = L, asolid is produced which can be sliced into cylindrical shells. A typical
shell is shown in (b).
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We approximate the volume of the solid S by summing the volumes of the shells swept out
by the # rectangles based on P:

n
Va DAV
k=1

The limit of this Riemann sum as each Ax;— 0and n — o0 gives the volume of the
solid as a definite integral:

n

b
V= lim EL\.V =/ 2 (shell radius)(shell height) dx.
a

N =1 '
b
_ f Sarte — L)f0) d

We refer to the variable of integration, here x, as the thickness variable. We use the
first integral, rather than the second containing a formula for the integrand, to empha-
size the process of the shell method. This will allow for rotations about a horizontal
line L as well.

Shell Formula for Revolution About a Vertical Line
The volume of the solid generated by revolving the region between the x-axis and
the graph of a continuous function y = f(x) = 0,L = a = x = b, about a ver-

tical linex = L 1s
b
pre f 211_(8]‘1&?11 )( s]'fell )dx
» radius / \height

EXAMPLE 2 The region bounded by the curve y = \/; the x-axis, and the line x = 4
is revolved about the y-axis to generate a solid. Find the volume of the solid.

Solution Sketch the region and draw a line segment across it parallel to the axis of
revolution (Figure 6.20a). Label the segment’s height (shell height) and distance from
the axis of revolution (shell radius). (We drew the shell in Figure 6.20b, but you need
not do that.)

v Shell radius
3
."I
—|—. Shell radius
S
2
; y =V Vx = Shell height
2r Shell i
) . height
0= Vx -
- Interval of
> T J : .
0 b /—-1/ # integration

Interval of integration

(a) (b)

FIGURE 6.20 (a) The region, shell dimensions, and interval of integration in Example 2. (b) The shell
swept out by the vertical segment in part (a) with a width Ax.
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The shell thickness variable is x, so the limits of integration for the shell formula are
a = 0and b = 4 (Figure 6.20). The volume is then

. shell \ [ shell \ ,_
V__[; 271.(rat:lius height o
4
= / 211'()()(\/;) dx
Jo

.4 "
= 27 x"'-'flz dx = 29 ;‘,53"2 — % .
Jo " 5% Is 5 -

So far, we have used vertical axes of revolution. For horizontal axes, we replace the x’s
with v’s.

EXAMPLE 3 The region bounded by the curve y = \/; the x-axis, and the line x = 4
is revolved about the x-axis to generate a solid. Find the volume of the solid by the shell
method.

Solution  This is the solid whose volume was found by the disk method in Example 4 of
Section 6.1. Now we find its volume by the shell method. First, sketch the region and draw a
line segment across it parallel to the axis of revolution (Figure 6.21a). Label the segment’s
length (shell height) and distance from the axis of revolution (shell radius). (We drew the
shell in Figure 6.21b, but you need not do that.)

In this case, the shell thickness variable is y, so the limits of integration for the shell
formula method are @ = 0 and b = 2 (along the y-axis in Figure 6.21). The volume of

the solid is
"
shell shell
V= 2 : ; dv
o radius / \ height /
2
i
= / 2m(y)(4 — y*) dv
0
2
= 217/ (4y — »3) dy
0
=27 |2y” — P 8
= 2|2y i = 8.
y
b Shell height
5 /
- .\""---._‘_‘_‘q q
4 -y
¥
4 - _v2
Shell height
! gl p (4.2)
)
E =
= E ¥ Shell radius o — Shell
I {ﬁﬁ X I radius
0 4 o/
(a) (b)

FIGURE 6.21 (a) The region, shell dimensions, and interval of integration in Example 3.
(b) The shell swept out by the horizontal segment in part (a) with a width Ay. =}
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324 Chapter 6: Applications of Definite Integrals

Summary of the Shell Method

Regardless of the position of the axis of revolution (horizontal or vertical), the
steps for implementing the shell method are these.

1. Draw the region and sketch a line segment across it parallel to the axis of rev-
olution. Label the segment’s height or length (shell height) and distance from
the axis of revolution (shell radius).

2. Find the limits of integration for the thickness variable.

3. Integrate the product 27 (shell radius) (shell height) with respect to the thick-
ness variable (x or y) to find the volume.

The shell method gives the same answer as the washer method when both are used to
calculate the volume of a region. We do not prove that result here, but it is illustrated in
Exercises 37 and 38. (Exercise 60 in Section 7.1 outlines a proof.) Both volume formulas
are actually special cases of a general volume formula we will look at when studying dou-
ble and triple integrals in Chapter 15. That general formula also allows for computing vol-
umes of solids other than those swept out by regions of revolution.

Exercises 6.2

Revolution About the Axes 5. The y-axis 6. The v-axis

In Exercises 1-6, use the shell method to find the volumes of the y g

solids generated by revolving the shaded region about the indicated ' ; yo
axis. ST Ve +9

Revolution About the y-Axis
Use the shell method to find the volumes of the solids generated by re-
volving the regions bounded by the curves and lines in Exercises 712
about the v-axis.

T.y=x, y=—xf2, x=2

8. y=2x, y=x/2, x=1

9. y=x% y=2-x, x=0, forx=0

10, y=2-x% p=x% x=0
M.y=2x—1, v=Vx, x=0
12. y=3/(2Vx), y=0, x=1, x=4
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(sinx)/x, 0 <x=m
1, xr=10

a. Show that x f(x) = sinx, 0 = x = 7.

13. Let f(x) = {

b. Find the volume of the solid generated by revolving the shaded
region about the v-axis in the accompanying figure.

(tanx)’/x, 0 <x = mw/4
0, x=10
a. Show that xg(x) = (tanx)%, 0 = x = w/4.

14. Letg(x) = {

b. Find the volume of the solid generated by revolving the
shaded region about the y-axis in the accompanying
figure.

Revolution About the x-Axis

Use the shell method to find the volumes of the solids generated by re-
volving the regions bounded by the curves and lines in Exercises
15-22 about the x-axis.

15. x = \/l: x=—y, y=2

16. x=y% x=—-y, v=2, y=0
17. x=2y—y% x=10 18, x =2y —y% x=y
19. y=|x|, y=1
2. v= \/_, v=0 y=x-—-2
2. y=Vx, y=0, y=2—x

20. y=x, y=2, y=2

Revolution About Horizontal and Vertical Lines

In Exercises 23-26, use the shell method to find the volumes of the
solids generated by revolving the regions bounded by the given curves
about the given lines.

23, y=3x, y=0, x=2

a. The y-axis b. Thelinex = 4

¢. Thelinex = —1 d. The x-axis

e. Theliney =7 f. Theliney = -2
4. y=x y=8 x=0

a. The y-axis b. Thelinex = 3

¢. Thelinex = -2 d. The x-axis

e. The line y = 8 f. Theliney = —1
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25. y=x+2, y=x?
a. The linex = 2 b. The line x

d. The line y

Il
|
s

¢. The x-axis
26. y =x', y=4-3x?
a. Thelinex = 1

Il
e

¢. The x-axis

In Exercises 27 and 28, use the shell method to find the volumes of the
solids generated by revolving the shaded regions about the indicated axes.
b. Theliney =1

b. The line y = —2/5

27. a. The x-axis
¢. The line y = 8/5

v

1 x= 1207 — »Y

0 1

28. a. The x-axis

¢. Theliney =5

b. The line v
d. Theline y = —5/8

Il
[}

Choosing the Washer Method or Shell Method

For some regions, both the washer and shell methods work well for the
solid generated by revolving the region about the coordinate axes, but
this is not always the case. When a region is revolved about the y-axis,
for example, and washers are used, we must integrate with respect to v.
It may not be possible, however, to express the integrand in terms of y.
In such a case, the shell method allows us to integrate with respect to x
instead. Exercises 29 and 30 provide some insight.

29. Compute the volume of the solid generated by revolving the region

bounded by ¥ = xand v = x? about each coordinate axis using
a. the shell method. b. the washer method.

30. Compute the volume of the solid generated by revolving the trian-
gular region bounded by the lines 2v = x + 4,y = x,andx = 0
about

a. the x-axis using the washer method.
b. the v-axis using the shell method.
¢. the line x = 4 using the shell method.

d. the line ¥ = 8 using the washer method.
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In Exercises 31-36, find the volumes of the solids generated by re-
volving the regions about the given axes. If you think it would be bet-
ter to use washers in any given instance, feel free to do so.

31. The triangle with vertices (1, 1), (1, 2), and (2, 2) about
a. the x-axis b.
¢. the line x = 10/3 d. theliney = 1
32. The region bounded by y = \/J_c‘y = 2, x = (0 about
a. the x-axis b. the y-axis
c. thelinex = 4 d.

33. The region in the first quadrant bounded by the curvex = y — v
and the y-axis about

the y-axis

the line y = 2
3

a. the v-axis b. theline y = 1

34. The region in the first quadrant bounded by x = y — v, x = 1,
and vy = | about
a. the y-axis b. the y-axis

c. thelinex = 1 d. theline y = |

The region bounded by y = Vx and »y = x%/8 about

a. the x-axis b.

35

the y-axis
36. The region bounded by v = 2x — x*and y = x about

a. the y-axis b. theline x = 1

37. The region in the first quadrant that is bounded above by the
curve v = 1/x'/, on the left by the line x = 1/16, and below by
the line v = 1 is revolved about the x-axis to generate a solid.

Find the volume of the solid by

a. the washer method. b. the shell method.

38. The region in the first quadrant that is bounded above by the
curve v = l;’\/;, on the left by the line x = 1/4, and below by
the line v = 1 is revolved about the y-axis to generate a solid.
Find the volume of the solid by

a. the washer method. b. the shell method.

Choosing Disks, Washers, or Shells
39. The region shown here is to be revolved about the x-axis to gener-
ate a solid. Which of the methods (disk, washer, shell) could you

40.

41.

42

44

use to find the volume of the solid? How many integrals would be
required in each case? Explain.

The region shown here is to be revolved about the y-axis to gener-
ate a solid. Which of the methods (disk, washer, shell) could you
use to find the volume of the solid? How many integrals would be
required in each case? Give reasons for your answers.

-1

A bead is formed from a sphere of radius 5 by drilling through a
diameter of the sphere with a drill bit of radius 3.

a. Find the volume of the bead.
b. Find the volume of the removed portion of the sphere.

A Bundt cake, well known for having a ringed shape, is
formed by revolving around the y-axis the region bounded by
the graph of v = sin (x> — 1) and the x-axis over the interval
1 = x = V1 + . Find the volume of the cake.

Derive the formula for the volume of a right circular cone of
height / and radius r using an appropriate solid of revolution,

Derive the equation for the volume of a sphere of radius r using
the shell method.

6.3 ‘l Arc Length

We know what is meant by the length of a straight line segment, but without calculus, we
have no precise definition of the length of a general winding curve. If the curve is the graph
of a continuous function defined over an interval, then we can find the length of the curve
using a procedure similar to that we used for defining the area between the curve and the
x-axis. This procedure results in a division of the curve from point 4 to point 5B into many
pieces and joining successive points of division by straight line segments. We then sum the
lengths of all these line segments and define the length of the curve to be the limiting value
of this sum as the number of segments goes to infinity.

Length of a Curve y = f(x%)

Suppose the curve whose length we want to find is the graph of the function y = f(x) from
x = atox = b. In order to derive an integral formula for the length of the curve, we assume
that f has a continuous derivative at every point of [a, b]. Such a function is called smooth,
and its graph is a smooth curve because it does not have any breaks, corners, or cusps.
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FIGURE 6.23 The arc Py Py of the
curve v = f(x) is approximated by the
straight line segment shown here, which
has length L; = \/(A:c;t)2 + (Ayp)?,
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FIGURE 6.22 The length of the polygonal path PyPP; -+ - P, approximates the
length of the curve y = f(x) from point 4 to point B.

We partition the interval [, b] into # subintervals witha = xp < x; < x; < +++ <

x, = b. If y; = f(x3), then the corresponding point Py(xy, v;) lies on the curve. Next we

connect successive points P, and Pj with straight line segments that, taken together,
form a polygonal path whose length approximates the length of the curve (Figure 6.22). If
Axp = xp — x3— and Ay = » — -1, then a representative line segment in the path has

length (see Figure 6.23)
Ly = V(Ax)? + (Ayd)?,
so the length of the curve is approximated by the sum

; Li = Q V(Axy? + (Ayp)’. 6!

We expect the approximation to improve as the partition of [a, b] becomes finer. Now, by
the Mean Value Theorem, there is a point ¢, with x;—; < ¢; < xy, such that

Ayp = f'(cr) Ax.
With this substitution for Ayy, the sums in Equation (1) take the form

;1 Ly = ;1 V(Ax)? + (f'(cnAxp)’ = ;vl + [f' (o] Axp. (2)

Because V1 + [f'(x)]’ is continuous on [, ], the limit of the Riemann sum on the right-
hand side of Equation (2) exists as the norm of the partition goes to zero, giving

n n ) b .
im > L= lim S V1 + [f(co)f Axy = f V1 + [f')] dx.
n—>00 k=1 a

n—oC k=1

We define the value of this limiting integral to be the length of the curve.

DEFINITION If f' is continuous on [a, b]. then the length (arc length) of the
curve y = f(x) from the point 4 = (a, f(a)) to the point B = (b, f(b)) is the value
of the integral

"b " 4
I= / V1 + [ff(0))fdx = /J A1+ (%)24&. (3)
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EXAMPLE 1  Find the length of the curve (Figure 6.24)

N2 4

_v=—3~x* -1, 0=x=1.

Solution  We use Equation (3) witha = 0,5 = 1, and

N2

y=——x""—1 ¥=1,r= 089

3

—1s

dy _ 4\/5 . ix]!,-'z _ 2,\/5“(1'{.’2
3 2

FIGURE 6.24 The length of the dx
curve is slightly larger than the 4
length of the line segment joining (f‘,{t) - (2\/5\_1;'2)2 =R
points 4 and B (Example 1). dx
The length of the curve overx = Otox = 1 is
d1 [g. (3) with
L= I.+ Vl+8.,\dx a=048=1
Let u 1 + 8x,
_ 3 _ 13 _ integrate, and
= g _“ + 8x)° EL T 2.17. replace u by
1 + Bx.

Notice that the length of the curve is slightly larger than the length of the straight-line segment
joining the points 4 = (0, —1)and B = (1, 4\/5/3 = l) on the curve (see Figure 6.24):

217> V1% + (1.039)2 ~ 2.14 Decimal approximations [ ]

EXAMPLE 2  Find the length of the graph of
R Y ﬁ + l - =
f('l) == 12 X |l =x =4,

y Solution A graph of the function is shown in Figure 6.25. To use Equation (3), we find

50

.2 2 4
e =1 (B- L) e (-1 L)

|
|
|
|
|
|
|
|
0 1 4
The length of the graph over [1, 4] is
FIGURE 6.25 The curve in

E le 2, where 4 = (1, 13/12)
xample 2, where (1, 13/12) I ]‘/1+Lf{x)]2dl /(’L_ %)dx

and B = (4, 67/12).
[ ] (e 1) _ L aledl =g ]
12 _1’1 12 4 12 12 '

Dealing with Discontinuities in dy/dx

At a point on a curve where dy/dx fails to exist, dx/dy may exist. In this case, we may be
able to find the curve’s length by expressing x as a function of y and applying the follow-
ing analogue of Equation (3):
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Formula for the Lengthof x = g(y).c =y =d
If g’ is continuous on [¢, d], the length of the curve x = g(v) from 4 = (g(c), ¢)
toB = (g(d).d)is

d 2 d R
L= / L1+ (%) dv =/ V1 o+ [g'(v)]* dv. (4)

EXAMPLE 3 Find the length of the curve y = (x/2)*" fromx = O tox = 2.

dy _2(x\'"P (1) _1/(2)”
d 3\2 2/ 3\*

1s not defined at x = 0, so we cannot find the curve’s length with Equation (3).

Solution The derivative

¥ We therefore rewrite the equation to express x in terms of y:
2/3
[X 213 y = (£)
- -
2 o 2
i _ X Raise both sides
2 to the power 3/2.
| \ X = 2']?3';2. Solve for x.
X
0 1 2

From this we see that the curve whose length we want is also the graph of x = 2y*/? from

FIGURE 6.26 The graph of v = 0toy = 1 (Figure 6.26).

= (x/2)** fromx = Otox = 2 The derivative
is also the graph of x = 2y from dx _ ) 3 P2 = 312
y = 0toy = 1 (Example 3). dy 2

is continuous on [0, 1]. We may therefore use Equation (4) to find the curve’s length:

L—] 1+ d;f—/ Vi1+oydp  DEOTE

Letu 1 +-9y,
_ | 2 32 du/9 = dy,
B g 3 ) 0 integrate, and
) substitute back.
=55 (10V10 - 1) ~ 2.27. £

The Differential Formula for Arc Length

If y = f(x)and if f' is continuous on [a, b], then by the Fundamental Theorem of Calculus
we can define a new function

s(x) = /x V1 + [f(OF dt. (5)

From Equation (3) and Figure 6.22, we see that this function s(x) is continuous and meas-
ures the length along the curve v = f(x) from the initial point Py(a, f(a)) to the point
O(x, f(x)) for each x € [a, b]. The function s is called the arc length function for y = f(x).
From the Fundamental Theorem, the function s is differentiable on (a, b) and

2
= VI1+[f@®F=4/1+ (%)
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330 Chapter 6: Applications of Definite Integrals

y Then the differential of arc length is

ds = [1+ (%)zdx. (6)

A useful way to remember Equation (6) is to write
ds = Vax* + dy?, (7)

0 ! which can be integrated between appropriate limits to give the total length of a curve. From

(a) this point of view, all the arc length formulas are simply different expressions for the equation
L= f ds. Figure 6.27a gives the exact interpretation of ds corresponding to Equation (7).

>

ds
dy

dx

0
(b)

EXAMPLE 4

Figure 6.27a. That is, ds =~ As.

Figure 6.27b is not strictly accurate, but is to be thought of as a simplified approximation of

Find the arc length function for the curve in Example 2 taking
A = (1, 13/12) as the starting point (see Figure 6.25).

Solution  In the solution to Example 2, we found that

2 2

Therefore the arc length function is given by

FIGURE 6.27 Diagrams for remembering
the equation ds = Vdx* + dy?.

To compute the arc length along the curve from 4 = (1, 13/12)to B = (4, 67/12), for

s(x)

Il

ol
12

instance, we simply calculate

[vizvara- [ (§+4)a

1 X 11
AT-2-1.l

t

t), 12 12

This is the same result we obtained in Example 2.

Exercises 6.3

Finding Lengths of Curves

Find the lengths of the curves in Exercises 1-10. If you have a grapher,

you may want to graph these curves to see what they look like.
1. v =(1/3)(x*+2)** from x=0tox=3

2. v=x? from x=0tox=4

3.x=(¥3) + 1/(4p) from y=1toy=3

4. x = (p¥3) — 2 from y=1toy=29
5.x=0Y%4) + 1/(8%?) from y=1ltoy=2

6. x = (*/6) + 1/(2y) from y=2toy =3
7oy = (34" — (3/8x +5, 1=x=28

8. y=(3)+x+x+1/4x+4), 0=x=2
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9. x :j Vsect — 1dl, —wjd=y=ma/4
o

10. y=f\/3f4—1d;, e

Finding Integrals for Lengths of Curves
In Exercises 11-18, do the following.

a.
b.

c.

Set up an integral for the length of the curve.
Graph the curve to see what it looks like.

Use vour grapher’s or computer’s integral evaluator to find
the curve’s length numerically.
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11.
12.
13.
14.
15.
16.

17.

18.

5

y=x°, —-l=x=2
y=tany, —w/3=x=0
x=siny, 0=y=7w

x=V1—y? -1/2=y=1/2
P42y =20+ 1 (—1,=1)to(7,3)

vy =sinx —xcosx, 0=x=7

from

X
V= / tantdt, 0=x=mw/6
0

x= / Vsect — ldl, —w/3=y=ma/4
S0

Theory and Examples

19.

20.

21.

22.

23

a. Find a curve through the point (1, 1) whose length integral

(Equation 3) is
ol "I
L =[ 1+ e dx.

b. How many such curves are there? Give reasons for your
answer.

a. Find a curve through the point (0, 1) whose length integral

(Equation 4) is
L
L= 1 +—dy.
[ Y

b. How many such curves are there? Give reasons for your
answer.

Find the length of the curve
y = j \ cos 2t dt
0

fromx = 0tox = /4.

The length of an astroid The graph of the equation x> +

y*3 = 1 is one of a family of curves called astroids (not “aster-
0ids”) because of their starlike appearance (see the accompanying
figure). Find the length of this particular astroid by finding the
length of half the first-quadrant portion, y = (1 — x¥%)¥2,
V2/4 = x = 1, and multiplying by 8.

Length of a line segment Use the arc length formula (Equation 3)
to find the length of the line segment y = 3 — 2x, 0 = x = 2.
Check your answer by finding the length of the segment as the
hypotenuse of a right triangle.
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24.

25.

26.

27.

28.

6.3 Arc Length 331

Circumference of a circle Set up an integral to find the circum-
ference of a circle of radius r centered at the origin. You will learn
how to evaluate the integral in Section 8.3.

If9x? = y(v — 3)%, show that

@+ 1.,
e dy”.

 J-

ds

If4x? — 2 = 64, show that

ds? = & (522 - 16) .
2\

Is there a smooth (continuously differentiable) curve v = f(x)

whose length over the interval 0 = x = a is always \V2a? Give
reasons for your answer.

Using tangent fins to derive the length formula for curves

Assume that f is smooth on [a, ] and partition the interval [a, b]

in the usual way. In each subinterval [x;—,x;], construct the

tangent fin at the point (xz—y, f(xz—1)), as shown in the accom-

panying figure.

a. Show that the length of the &th tangent fin over the interval
[re—1, %] equals V(Axg)? + (f (xe—1) Axe)?.

b. Show that

n h
lim > (length of kth tangent fin) = [ V1 + (f'(x))* dx,
it

rrRlo ]

which is the length L of the curve y = f(x) from a to b.

y=flx)

)
T Tangent fin
(g SOxy) ! with slope
: A"—k : f{"—k_l)
| |
| 1

K-t A

29. Approximate the arc length of one-quarter of the unit circle

30.

31.

(which is §) by computing the length of the polygonal approxima-
tion with n = 4 segments (see accompanying figure).

1 | |
0] 02505075 1

Distance between two points Assume that the two points (xy, vi)
and (xz, v2) lie on the graph of the straight line y = mx + b. Use
the arc length formula (Equation 3) to find the distance between
the two points.

Find the arc length function for the graph of f(x) = 2x*? using (0, 0)
as the starting point. What is the length of the curve from (0, 0) to (1, 2)?
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332 Chapter 6: Applications of Definite Integrals

32. Find the arc length function for the curve in Exercise 8, using (0, 1/4) ¢. Evaluate the length of the curve using an integral. Compare
as the starting point, What is the length of the curve from (0, 1/4) to your approximations for n = 2,4, 8 with the actual length
(1,59/24)? given by the integral. How does the actual length compare

with the approximations as n increases? Explain your answer,

COMPUTER EXPLORATIONS 33. flix) = V1 — X, —l=x=1

In Exercises 33-38, use a CAS to perform the following steps for the 4. fx) =xP+x*, 0=x

=
given graph of the function over the closed interval. 35, f(x) = sin(med), 0=x= V2

a. Plot the curve together with the polygonal path approxima- 9. U= R, SRS

tions for n = 2,4, 8 partition points over the interval, (See
Figure 6.22.) 37. fix) =

b. Find the corresponding approximation to the length of the
curve by summing the lengths of the line segments.

x — 1 1
ar+ 1 2
8. flx)=x—x? —-l1=x=1

6 4 | Areas of Surfaces of Revolution

When you jump rope, the rope sweeps out a surface in the space around you similar to what
is called a surface of revolution. The surface surrounds a volume of revolution, and many
applications require that we know the area of the surface rather than the volume it en-
closes. In this section we define areas of surfaces of revolution. More general surfaces are
treated in Chapter 16.

i Defining Surface Area
Ax

If you revolve a region in the plane that is bounded by the graph of a function over an in-
terval, it sweeps out a solid of revolution, as we saw earlier in the chapter. However. if
|—Ax—| you revolve only the bounding curve itself, it does not sweep out any interior volume but
A B 27y  rather a surface that surrounds the solid and forms part of its boundary. Just as we were
" interested in defining and finding the length of a curve in the last section, we are now
interested in defining and finding the area of a surface generated by revolving a curve

0| \ f U about an axis.
p NOT TO SCALE Before considering general curves, we begin by rotating horizontal and slanted line
(a) (b) segments about the x-axis. If we rotate the horizontal line segment 4B having length Ax
about the x-axis (Figure 6.28a), we generate a cylinder with surface area 27ryAx. This area
FIGURE 6.28 (a) A cylindrical surface is the same as that of a rectangle with side lengths Ax and 27y (Figure 6.28b). The length

generated by rotating the horizontal line 277y is the circumference of the circle of radius y generated by rotating the point (x, ) on
segment 48 of length Ax about the x-axis the line AB about the yv-axis.

has area 2mryAx. (b) The cut and rolled-out Suppose the line segment 4B has length L and is slanted rather than horizontal. Now
cylindrical surface as a rectangle. when AB is rotated about the x-axis, it generates a frustum of a cone (Figure 6.29a). From

classical geometry, the surface area of this frustum is 21ry$ L, where y* = (y1 + y2)/2 18
the average height of the slanted segment 4B above the x-axis. This surface area is the
same as that of a rectangle with side lengths L and 27y* (Figure 6.29b).

Let’s build on these geometric principles to define the area of a surface swept out by
revolving more general curves about the x-axis. Suppose we want to find the area of the
surface swept out by revolving the graph of a nonnegative continuous function
v = f(x),a = x = b, about the x-axis. We partition the closed interval [, b] in the usual
way and use the points in the partition to subdivide the graph into short arcs. Figure 6.30
shows a typical arc PQ and the band it sweeps out as part of the graph of f.
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6.4 Areas of Surfaces of Revolution 333

2y

NOT TO SCALE
(b)

FIGURE 6.29 (a) The frustum of a cone generated by rotating the
slanted line segment 4B of length L about the x-axis has area

ity
2my* L. (b) The area of the rectangle for y* = - ] 5 - , the average
height of 4B above the x-axis.

As the arc PQ revolves about the x-axis, the line segment joining P and QO sweeps
out a frustum of a cone whose axis lies along the x-axis (Figure 6.31). The surface area
g\ of this frustum approximates the surface area of the band swept out by the arc PQ. The
x,f'_ — surface area of the frustum of the cone shown in Figure 6.31 is 27y*L, where y* is the

average height of the line segment joining P and O, and L is its length (just as before).
FIGURE 6.30 The surface generated by Since f = 0, from Figure 6.32 we see that the average height of the line segment is

revolving the graph of a nonnegative v = (flxz—1) + f(xz))/2, and the slant lengthis L = "V (Ax)* + (Ayp)?. Therefore,
function ¥ = f(x), @ = x = b, about the
! Fxi—1) + flx)
2+ T V(A + (A

x-axis. The surface is a union of bands like Frustum surface area
= 7(f(xi-1) + fx)) V(Axe)? + (Awe)*.

the one swept out by the arc PQ.
The area of the original surface, being the sum of the areas of the bands swept out by
arcs like arc PQ, is approximated by the frustum area sum

;v(f(xr; D+ f("*))\/m, o

1l

We expect the approximation to improve as the partition of [a, b] becomes finer. More-
over, if the function f is differentiable, then by the Mean Value Theorem, there is a point
(ck, flep)) on the curve between P and O where the tangent is parallel to the segment PO
(Figure 6.33). At this point,

FIGURE 6.31 The line segment joining P Avg
and @ sweeps out a frustum of a cone. i) = T—M

Ay = () Axg.

Segment length:

L= V@x )+ Ay, With this substitution for Ay, the sums in Equation (1) take the form

n
i S m(fsn) + 1) VA + (e An)
_L _] n
1 =) = > a(f(x1) + fe) VT + (f () Ax. (2)
rg:‘ﬂ-";‘.) k=1
! These sums are not the Riemann sums of any function because the points x;—, x, and ¢;
Th—1 g are not the same. However, it can be proved that as the norm of the partition of [a, b] goes
I Ax, to zero, the sums in Equation (2) converge to the integral
‘b
FIGURE 6.32 Dimensions associated ] 27 f(x)\ /1 + (f’(x)}2 dv.
with the arc and line segment PQ. a
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334 Chapter 6: Applications of Definite Integrals

(e flee)) We therefore define this integral to be the area of the surface swept out by the graph of f

Tangent parallel from a to b.
1o chord

DEFINITION If the function f(x) = 0 is continuously differentiable on
[a, b], the area of the surface generated by revolving the graph of v = f(x)
about the x-axis is

.}-—;\.r,‘.v—-'{. b iy \2 *h
5= / 2my 1 + (E{;) dx = / 27 f(X)V1 + (f'(x))* dx. (3)
FIGURE 6.33 If f is smooth, the Mean 4 4

Value Theorem guarantees the existence of
a point ¢; where the tangent is parallel to

segment PQ. The square root in Equation (3) is the same one that appears in the formula for the arc
length differential of the generating curve in Equation (6) of Section 6.3.

EXAMPLE 1  Find the area of the surface generated by revolving the curve y = 2\/;:,
1 = x = 2, about the x-axis (Figure 6.34).

Solution  We evaluate the formula

b dv 2
S :l 27y 1 + (a) dx Eq. (3)

dy
p=1, B=d z=0\% ?:L_
* o Vx
First, we perform some algebraic manipulation on the radical in the integrand to transform
it into an expression that is easier to integrate.

FIGURE 6.34 In Example 1 we calculate dv\? 1 \?
the area of this surface. Ik E = L+ ﬁ
=\/l +l=\/x+ L _. Vx +1
* ! Vi

with

With these substitutions, we have

2 B i
s=/ 2n-2\57"i;1dx=4w/ At o
1 X 1

2
—dm 2+ 1}-*-’2} =ST”(3\/§—2\/§). .
1

Revolution About the y-Axis

For revolution about the y-axis, we interchange x and v in Equation (3).

Surface Area for Revolution About the y-Axis
If x = g(v) = 0 is continuously differentiable on [¢, d], the area of the surface
generated by revolving the graph of x = g(y’) about the y-axis is

d 2 o
§ = / sumec |1 4 (d%) dy = / 2rgIVI T (@ P dv. (4
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6.4 Areas of Surfaces of Revolution 335

EXAMPLE 2  The line segmentx = 1 — y, 0 = y = 1, is revolved about the y-axis to
generate the cone in Figure 6.35. Find its lateral surface area (which excludes the base area).

Solution Here we have a calculation we can check with a formula from geometry:

base circumference
2

To see how Equation (4) gives the same result, we take

Lateral surface area = X slant height = V2.

¢ =0, d =1, x=1-y g%=—l,
— 1+(g;)-m=\/5

alculat
FIGURE 6.35 Revolving line segment AB aud sleuide

about the y-axis generates a cone whose . d _
lateral surface area we can now calculate in = / 2mx d N / 2m(1 v)\/_ 2dy
two different ways (Example 2).
=2Tr\/_{y——] =27 \/5(1 _E)
= V2.
The results agree, as they should. [ |

Exercises 6.4

Finding Integrals for Surface Area
In Exercises 1-8:

a. Setup an integral for the area of the surface generated by
revolving the given curve about the indicated axis.

b. Graph the curve to see what it looks like, If you can, graph
the surface too.

¢. Use your grapher’s or computer’s integral evaluator to find
the surface’s area numerically.

1. y=tanx, 0 =x = w/4;, x-axis

2. y=2x% 0=x=2; x-axis

Lw=1 1l=y=2;, ypaxis

4. x =siny, 0=y = y-axis

5. x4+ 32 =3 from (4,1)to(1,4); x-axis

6. v+ 2V =,

ry
7. x= ] tantdt, 0=y =mw/3, yaxis
0

8. _v=/- Vi —1d, 1=x= \/g; x-axis
!

1l =y =2, y-axis

Finding Surface Area

9. Find the lateral (side) surface area of the cone generated by re-
volving the line segment v = x/2, 0 = x = 4, about the x-axis.
Check your answer with the geometry formula

1 . . .
Lateral surface area = 5 X base circumference X slant height.
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10. Find the lateral surface area of the cone generated by revolving
the line segment y = x/2,0 = x = 4, about the y-axis. Check
your answer with the geometry formula

1 . .
Lateral surface area = 3 X base circumference X slant height.

11. Find the surface area of the cone frustum generated by revolv-

ing the line segment y = (x/2) + (1/2),1 = x = 3, about the
x-axis. Check your result with the geometry formula

Frustum surface area = 7(r) + r2) X slant height.

12. Find the surface area of the cone frustum generated by revolv-
ing the line segment y = (x/2) + (1/2),1 = x = 3, about the
y-axis. Check your result with the geometry formula

Frustum surface area = (7| + r2) X slant height.

Find the areas of the surfaces generated by revolving the curves in
Exercises 13-23 about the indicated axes. If you have a grapher, you
may want to graph these curves to see what they look like.

13. y =x%9, 0=x=2; x-axis

14. y = Vi, 3/4 =x=15/4; xaxis

15. v = V2xr — x%, 05 =x=1.5; x-axis
16. vy = \/x +1, 1 =x=35; x-axis

17. x =y%/3, 0=yp=1; yaxis

18. x = (1/3¥? —y'2 1=y =3; yaxis
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336 Chapter 6: Applications of Definite Integrals

19. x =2V4 —y, 0=y =15/4; y-axis

28. Slicing bread Did you know that if you cut a spherical loaf of
bread into slices of equal width, each slice will have the same
amount _of crust? To see why, suppose the semicircle
y= V/r2 — x? shown here is revolved about the x-axis to generate
a sphere. Let 4B be an arc of the semicircle that lies above an in-
terval of length A on the x-axis. Show that the area swept out by
AB does not depend on the location of the interval. (It does de-
pend on the length of the interval.)

i
—=r Ol a a+h o

=

21 y = (x%/2) + (1/2), 0 =<x=1; y-axis
B % S 32 . ) 29. The shaded band shown here is cut from a sphere of radius R by
22. y = (1/3)x” + 2075 0=x= V2 yaxis (Hint: Express parallel planes & units apart. Show that the surface area of the
ds = Vdx* + dv? in terms of dx, and evaluate the integral band is 27 RA.

5= / "2mx ds with appropriate limits.)

23, x = (Y4 + 1/(8Y, | =y =2; xaxis (Hint: Express
ds = Ve + dv? in terms of dy, and evaluate the integral
S= / 2y ds with appropriate limits.)

24. Write an integral for the area of the surface generated by revolv-

ing the curve y = cosx, —m/2 = x = 7/2, about the x-axis. In
Section 8.4 we will see how to evaluate such integrals.

25. Testing the new definition Show that the surface area of a
sphere of radius a is still 47a’ by using Equation (3) to find the
area of the surface generated by revolving the curve

y= a’ — x*, —a = x = q, about the x-axis.

30. Here is a schematic drawing of the 90-ft dome used by the U.S.
National Weather Service to house radar in Bozeman, Montana.

. a. How much outside surface is there to paint (not counting the

26. Testing the new definition The lateral (side) surface area of a bottom)?
cone of height / and base radius r should be mr\/r? + % the
semiperimeter of the base times the slant height. Show that
this is still the case by finding the area of the surface generated

b. Express the answer to the nearest square foot.

by revolving the line segment y = (r/h)x, 0 = x = h, about 3

the x-axis.
27. Enameling woks Your company decided to put out a deluxe T:
|

version of a wok you designed. The plan is to coat it inside with

white enamel and outside with blue enamel. Each enamel will be |

sprayed on 0.5 mm thick before baking. (See accompanying fig- L/ Rad
) s ) i / 45 ft

ure.) Your manufacturing department wants to know how much |

enamel to have on hand for a production run of 5000 woks. ! ;

‘What do you tell them? (Neglect waste and unused material and ]

give your answer in liters. Remember that 1 cm® = 1 mL, so
1L = 1000 em®.)
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6.5 Work and Fluid Forces 337

31. An alternative derivation of the surface area formula Assume c. Show that the lateral surface area of the frustum of the cone
£ is smooth on [a, b] and partition [a, 4] in the usual way. In the kth swept out by the tangent line segment as it revolves about the
subinterval [x;—, xz], construct the tangent line to the curve at the x-axis is 2 f(m) V1 + (f'(me))? Axg.

idpoint = (x3—; + x4)/2, as in the acc ing fi . . .
midpointmy = (i) +%)/2, a8 in the accompanying figure d. Show that the area of the surface generated by revolving

a. Show that v = fl(x) about the x-axis over [a, b] is
ﬁxk .ﬁ,\‘k }
ro= flm) — f'm)—— and ry = flmy) + f(mp) ——. o (latcral surface arca) /' — T
A 2 = V1 + 2 d.
nl—l!-]clo ,;2{ of kth frustum S vl Fx)) dx

b. Show that the length L; of the tangent line segment in the kth
subinterval is L; = VA Axp)? + (f (my) Axp)?.

32. The surface of an astroid Find the area of the surface generated
by revolving about the x-axis the portion of the astroid
x4 323 = 1 shown in the accompanying figure.

(Hint: Revolve the first-quadrant portion y = (1 — x/*)¥2,
0 = x = 1, about the x-axis and double your result.)

T S

¥

-1 0 1

6 5 | Work and Fluid Forces

|

In everyday life, work means an activity that requires muscular or mental effort. In
science, the term refers specifically to a force acting on a body (or object) and the body’s
subsequent displacement. This section shows how to calculate work. The applications
run from compressing railroad car springs and emptying subterranean tanks to forcing
electrons together and lifting satellites into orbit.

Work Done by a Constant Force

When a body moves a distance d along a straight line as a result of being acted on by a
force of constant magnitude F in the direction of motion, we define the work ¥ done by
the force on the body with the formula

W= Fd (Constant-force formula for work). (1)

From Equation (1) we see that the unit of work in any system is the unit of force multi-
plied by the unit of distance. In SI units (SI stands for Systéme International, or International
System), the unit of force is a newton, the unit of distance is a meter, and the unit of work is
a newton-meter (N * m). This combination appears so often it has a special name, the joule.
In the British system, the unit of work is the foot-pound, a unit frequently used by engineers.

Joules
The joule, abbreviated J and pronounced

“jewel,” is named after the English
physicist James Prescott Joule

EXAMPLE 1  Suppose you jack up the side of a 2000-1b car 1.25 ft to change a tire.
The jack applies a constant vertical force of about 1000 Ib in lifting the side of the car

(1818-1889). The defining equation is (but because of the mechanical advantage of the jack, the force you apply to the jack
. itself is only about 30 1lb). The total work performed by the jack on the car is
Ljpgle:= (Lnewton){] mister). 1000 X 1.25 = 1250 ft-1b. In SI units, the jack has applied a force of 4448 N through a

In symbols, 1 J = 1 N=m. distance of 0.381 m to do 4448 X 0.381 = 1695 J of work. [ ]
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338 Chapter 6: Applications of Definite Integrals

Work Done by a Variable Force Along a Line

If the force you apply varies along the way, as it will if you are compressing a spring, the
formula W = Fd has to be replaced by an integral formula that takes the variation in F
into account.

Suppose that the force performing the work acts on an object moving along a straight
line, which we take to be the x-axis. We assume that the magnitude of the force is a contin-
uous function F' of the object’s position x. We want to find the work done over the interval
from x = atox = b. We partition [a, b] in the usual way and choose an arbitrary point ¢,
in each subinterval [x;_, x;]. If the subinterval is short enough, the continuous function F*
will not vary much from x;_; to x;. The amount of work done across the interval will be
about F(c;) times the distance Ax;, the same as it would be if F were constant and we
could apply Equation (1). The total work done from a to b 1s therefore approximated by the
Riemann sum

n
Work = 2 F(ci) Axy.
f=y

We expect the approximation to improve as the norm of the partition goes to zero, so we
define the work done by the force from a to b to be the integral of F from a to b:

" b
lim E Flep) Axy = ] F(x) dx.

A—00 i

DEFINITION  The work done by a variable force F(x) in the direction of
motion along the x-axis fromx = gatox = bis

b
W= / F(x) dx. (2)

The units of the integral are joules if F' 18 in newtons and x is in meters, and foot-pounds 1f
F is in pounds and x is in feet. So the work done by a force of F(x) = 1/x* newtons in

1 . moving an object along the x-axis fromx = I mtox = 10 mis
Compressed
ol PV W= / L= —}} = =5+ 1=091.
) .' -.-. Ir A I... ..I.". I\"\ i\ .-.:. I .1- l
VWAWAMAMAML
0 : Uncompressed 1 .
U (@) Hooke's Law for Springs: F = kx
| «l
r : Hooke’s Law says that the force required to hold a stretched or compressed spring x units
l from its natural (unstressed) length is proportional to x. In symbols,
—_ |
= I
3 } F = 16x F = kx. (3)
5 |
s y ' Wotk dotie by F The constant &, measured in force units per unit length, is a characteristic of the spring,
fromx =0 tox =025 called the force constant (or spring constant) of the spring. Hooke’s Law, Equation (3),
< € () gives good results as long as the force doesn’t distort the metal in the spring. We assume
0 0.25 ) that the forces in this section are too small to do that.
Amount compressed
(b)

EXAMPLE 2 Find the work required to compress a spring from its natural length of 1 ft
FIGURE 6.36 The force F needed to hold  to a length of 0.75 ft if the force constant is £ = 16 Ib/ft.
a spring under compression increases
linearly as the spring is compressed Solution  We picture the uncompressed spring laid out along the x-axis with its movable
(Example 2). end at the origin and its fixed end at x = 1 fi (Figure 6.36). This enables us to describe the
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6.5 Work and Fluid Forces 339

force required to compress the spring from 0 to x with the formula F = 16x. To compress
the spring from 0 to 0.25 ft, the force must increase from

F(0) =16-0=01b to F(0.25) = 16+0.25 = 4 Ib.

The work done by F over this interval is

0.25 0.25 Eq. (2) with
W= f 16x dx = 8.:;2} = 05flb. = 0.h=025
0 0 Fix) 16x u

EXAMPLE 3 A spring has a natural length of 1 m. A force of 24 N holds the spring

;; [ stretched to a total length of 1.8 m.
- -
= > (a) Find the force constant k.
E < (b) How much work will it take to stretch the spring 2 m beyond its natural length?
Salls SR (¢) How far will a 45-N force stretch the spring?
&
: Solution
o e = (a) The force constant. We find the force constant from Equation (3). A force of 24 N
i 24N maintains the spring at a position where it is stretched 0.8 m from its natural length,
S0
24 = k{OS) Eq. (3) with
iy k=24/08 = 30N/m. /=208
FIGURE 6.37 A 24-N weight (b) The won.k to .strff.tch the spring 2 m. We .imagine the unstressed spripg hanging along
stretches this spring 0.8 m beyond the.x-ams with its f.ree end at x = 0 ‘{_Flgure 6.37). Tbe force required to stretch the
its unstressed length (Example 3). spring x m ‘beyond its nat.ut.'al length is the foTce required to hold th‘e free e:;nd of the
spring x units from the origin. Hooke’s Law with £ = 30 says that this force is
F(x) = 30x.

The work done by F on the spring fromx = Omtox = 2 mis

2 2
sz 0xdy = 15;-2} =60 J.
(1] 0

(¢) How far will a 45-N force stretch the spring? We substitute /' = 45 in the equation
F = 30x to find
45 = 30x, or x=15m.

A 45-N force will keep the spring stretched 1.5 m beyond its natural length. |

The work integral is useful to calculate the work done in lifting objects whose weights
vary with their elevation.

EXAMPLE &4 A 5-lb bucket is lifted from the ground into the air by pulling in 20 ft of
rope at a constant speed (Figure 6.38). The rope weighs 0.08 Ib/ft. How much work was
spent lifting the bucket and rope?

Solution  The bucket has constant weight, so the work done lifting it alone is weight X
distance = 5-20 = 100 ft-Ib.

The weight of the rope varies with the bucket’s elevation, because less of it is freely
hanging. When the bucket is x ft off the ground, the remaining proportion of the rope still
being lifted weighs (0.08) - (20 — x) Ib. So the work in lifting the rope is

*20

Work on rope

20
(0.08)(20 — x) dx = / (1.6 — 0.08x) dx
Jo 0

[1.6x — 0.04x%]2" = 32 — 16 = 16 ft-Ib.

"f
FIGURE 6.38 Li&ing the bucket The total work for the bucket and Tope combined is
in Example 4. 100 + 16 = 116 ft-Ib. |
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340 Chapter 6: Applications of Definite Integrals

Pumping Liquids from Containers

How much work does it take to pump all or part of the liquid from a container? Engineers
often need to know the answer in order to design or choose the right pump to transport water
or some other liquid from one place to another. To find out how much work is required
to pump the liquid, we imagine lifting the liquid out one thin horizontal slab at a time and
applying the equation W = Fd to each slab. We then evaluate the integral this leads to as
the slabs become thinner and more numerous. The integral we get each time depends on
the weight of the liquid and the dimensions of the container, but the way we find the inte-
gral is always the same. The next example shows what to do.

EXAMPLE 5  The conical tank in Figure 6.39 is filled to within 2 ft of the top with olive
y=2xorx= 3y oil weighing 57 1b/f‘t3. How much work does it take to pump the oil to the rim of the tank?

Tt

Solution  We imagine the oil divided into thin slabs by planes perpendicular to the y-axis
at the points of a partition of the interval [0, 8].
The typical slab between the planes at y and y + Ay has a volume of about

2
AV = m(radius)*(thickness) = W(%y) Ay = %.Vz Ay fe.

The force F( v) required to lift this slab is equal to its weight,

F(y) =57AV = S’j'T”ysz Ib.

Weight = (weight per unit
volume) X volume

FIGURE 6.39 The olive oil and tank in . . . ; ;
The distance through which F(y) must act to lift this slab to the level of the rim of the

Example 5. . pii :
cone is about (10 — y) ft, so the work done lifting the slab is about
AW = -5% (10 — y)y> Ay ft-Ib.

Assuming there are n slabs associated with the partition of [0, 8], and that y = y; denotes
the plane associated with the kth slab of thickness Ay;, we can approximate the work done
lifting all of the slabs with the Riemann sum

W i 7710 - yewi® A flb.
= : :

The work of pumping the oil to the rim is the limit of these sums as the norm of the parti-
tion goes to zero and the number of slabs tends to infinity;

" 8
W= lim E YL (10 — yowe? Ay = 5?’T7r(]0 — ypldy
0

n—»OOk_l 4

'8

= "-:r-/ (10y% — y3) dy
Jo

57w {l{}y3 B y“T

34

~ 30,561 ft-lb. m

Fluid Pressures and Forces

Dams are built thicker at the bottom than at the top (Figure 6.40) because the pressure
against them increases with depth. The pressure at any point on a dam depends only on
how far below the surface the point is and not on how much the surface of the dam happens
to be tilted at that point. The pressure, in pounds per square foot at a point / feet below the

FIGURE 6.40 To withstand the surface, is always 62.4h. The number 62.4 is the weight-density of freshwater in pounds
increasing pressure, dams are built per cubic foot. The pressure # feet below the surface of any fluid is the fluid’s weight-
thicker as they go down. density times h.
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| Weight-density
A fluid’s weight-density w is its weight

per unit volume. Typical values (1b/ft})
are listed below.

Gasoline 42
Mercury 849
Milk 64.3
Molasses 100
Olive oil 57
Seawater 64
Freshwater 62.4

FIGURE 6.41 These containers are filled
with water to the same depth and have the
same base area. The total force is therefore
the same on the bottom of each container.

The containers” shapes do not matter here.

Surface of luid

Submerged vertical

late Stri
b e P rip
5 “'74 —__ depth
Il, \.\I l l
s 8 44y
¥, RS = :'_‘“1_____—-“"’--'

i Liyy |
Strip length at level y

FIGURE 6.42 The force exerted by a fluid

against one side of a thin, flat horizontal
strip is about AF = pressure X area =
w X (strip depth) X L(y)Ay.
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The Pressure-Depth Equation
In a fluid that is standing still, the pressure p at depth / is the fluid’s weight-
density w times A:

p = wh. (4)

In a container of fluid with a flat horizontal base, the total force exerted by the fluid
against the base can be calculated by multiplying the area of the base by the pressure at the
base. We can do this because total force equals force per unit area (pressure) times area.
(See Figure 6.41.) If F, p, and A are the total force, pressure, and area, then

F = total force = force per unit area X area

pressure X area = pA
= whd.

p = wh from Eq. (4)

Fluid Force on a Constant-Depth Surface

F = pd = whd (5)

For example, the weight-density of freshwater is 62.4 lb/ ft?, so the fluid force at the bot-
tom of a 10 ft X 20 ft rectangular swimming pool 3 ft deep is

F = whd = (62.41b/ft*)(3 ft)(10 - 20 %)
= 37,440 Ib.

For a flat plate submerged horizontally, like the bottom of the swimming pool just dis-
cussed, the downward force acting on its upper face due to liquid pressure is given by Equa-
tion (5). If the plate is submerged vertically, however, then the pressure against it will be dif-
ferent at different depths and Equation (5) no longer is usable in that form (because / varies).

Suppose we want to know the force exerted by a fluid against one side of a vertical
plate submerged in a fluid of weight-density w. To find it, we model the plate as a region
extending from y = a to y = b in the xy-plane (Figure 6.42). We partition [a, b] in the
usual way and imagine the region to be cut into thin horizontal strips by planes perpen-
dicular to the y-axis at the partition points. The typical strip from v to v + Ay is Ay units
wide by L(y) units long. We assume L(y) to be a continuous function of y.

The pressure varies across the strip from top to bottom. If the strip is narrow enough,
however, the pressure will remain close to its bottom-edge value of w X (strip depth). The
force exerted by the fluid against one side of the strip will be about

AF = (pressure along bottom edge) X (area)
= w * (strip depth) - L(y) Ay.

Assume there are n strips associated with the partition of ¢ = y = b and that y; is the bot-
tom edge of the kth strip having length L(y;) and width Ay,. The force against the entire
plate is approximated by summing the forces against each strip, giving the Riemann sum

F = g{w' (strip depth)g L(vi)) Ay (6)

The sum in Equation (6) is a Riemann sum for a continuous function on [a, b], and we ex-
pect the approximations to improve as the norm of the partition goes to zero. The force
against the plate is the limit of these sums:

H

b
lim " (w - (strip depth);+ L()) Ay = / w = (strip depth) * L( v) dv.

n—>00 iy
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342 Chapter 6: Applications of Definite Integrals

The Integral for Fluid Force Against a Vertical Flat Plate

Suppose that a plate submerged vertically in fluid of weight-density w runs from
v = atoy = bonthe y-axis. Let L(y) be the length of the horizontal strip meas-
ured from left to right along the surface of the plate at level y. Then the force ex-
erted by the fluid against one side of the plate is

“h
F = / w = (strip depth) * L(y) dy. (7)
a
v (ft) EXAMPLE 6 A flat isosceles right-triangular plate with base 6 ft and height 3 ft is sub-
_ y=xorx=y/ merged vertically, base up, 2 ft below the surface of a swimming pool. Find the force ex-
P‘T’O] Aurtdce at ,.”' y=3 erted by the water against one side of the plate.
[‘:egrt:_ | X =3 Solution ~ We establish a coordinate system to work in by placing the origin at the plate’s
2 \\}iﬂ/’{ > 3) bottom vertex and running the y-axis upward along the plate’s axis of symmetry (Figure 6.43).
e xx) =) The surface of the pool lies along the line y = 5 and the plate’s top edge along the line
_ \> x(f) v = 3.The plate’s right-hand edge lies along the line y = x, with the upper-right vertex at
el (3, 3). The length of a thin strip at level y is
L(y) = 2x = 2y.

FIGURE 6.43 To find the force on one
side of the submerged plate in Example 6,
we can use a coordinate system like the

b .
one here. 7= o strip ) | s g
F [ " (depth) L(y) dy Eq. (7)

3
/ 62.4(5 — v)2vdy
Jo

124.8 f (5y — ¥y} dv
0

The depth of the strip beneath the surface is (5 — v). The force exerted by the water
against one side of the plate is therefore

5 ERE
= 1248|5y? — 5| = 1684.8Ib. n
%]
Exercises 6.5
Springs 4. Stretching a spring If a force of 90 N stretches a spring 1 m
1. Spring constant Tt took 1800 J of work to stretch a spring from beyond its natural length, how much work does it take to stretch
its natural length of 2 m to a length of 5 m. Find the spring’s force the spring 5 m beyond its natural length?
constant. 5. Subway car springs [t takes a force of 21,714 Ib to compress a
2. Stretching a spring A spring has a natural length of 10 in. An coil spring assembly on a New York City Transit Authority subway
800-1b force stretches the spring to 14 in. car from its free height of 8 in. to its fully compressed height of 5 in.
a. Find the force constant. a. What is the assembly’s force constant?
b.  How much work is done in stretching the spring from 10 in. b. How much work does it take to compress the assembly the
to 12 in.? first half inch? the second half inch? Answer to the nearest
¢. How far beyond its natural length will a 1600-1b force stretch in.-1b.
the spring? 6. Bathroom scale A bathroom scale is compressed 1/16 in. when
3. Stretching a rubber band A force of 2 N will stretch a rubber a 150-1b person stands on it. Assuming that the scale behaves like
band 2 em (0.02 m). Assuming that Hooke’s Law applies, how far a spring that obeys Hooke’s Law, how much does someone who
will a 4-N force stretch the rubber band? How much work does it compresses the scale 1/8 in. weigh? How much work is done
take to stretch the rubber band this far? compressing the scale 1/8 in.?
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Work Done by a Variable Force
7. Lifting a rope A mountain climber is about to haul up a 50 m

9

10.

11.

12.

length of hanging rope. How much work will it take if the rope
weighs 0.624 N/m?

Leaky sandbag A bag of sand originally weighing 144 1b was
lifted at a constant rate. As it rose, sand also leaked out at a con-
stant rate. The sand was half gone by the time the bag had been
lifted to 18 ft. How much work was done lifting the sand this far?
{Neglect the weight of the bag and lifting equipment.)

Lifting an elevator cable  An electric elevator with a motor at the
top has a multistrand cable weighing 4.5 1b/ft. When the car is at the
first floor, 180 fi of cable are paid out, and effectively 0 ft are out when
the car is at the top floor. How much work does the motor do just
lifting the cable when it takes the car from the first floor to the top?

Force of attraction When a particle of mass m is at (x, 0), it is
attracted toward the origin with a force whose magnitude is /x”.
If the particle starts from rest at x = b and is acted on by no other
forces, find the work done on it by the time it reaches x = a,
0<a<bh

Leaky bucket Assume the bucket in Example 4 is leaking. It
starts with 2 gal of water (16 1b) and leaks at a constant rate. It
finishes draining just as it reaches the top. How much work was
spent lifting the water alone? (Hint: Do not include the rope and
bucket, and find the proportion of water left at clevation x ft.)

(Continuation of Exercise 11.) The workers in Example 4 and
Exercise 11 changed to a larger bucket that held 5 gal (40 lb) of
water, but the new bucket had an even larger leak so that it, too,
was empty by the time it reached the top. Assuming that the water
leaked out at a steady rate, how much work was done lifting the
water alone? (Do not include the rope and bucket.)

Pumping Liquids from Containers

13. Pumping water

The rectangular tank shown here, with its top
at ground level, is used to catch runoff water. Assume that the
water weighs 62.4 Ib/ft*.

a. How much work does it take to empty the tank by pumping
the water back to ground level once the tank is full?

b. If the water is pumped to ground level with a (5/11)-
horsepower (hp) motor (work output 250 fi-1b/sec), how long

will it take to empty the full tank (to the nearest minute)?

Show that the pump in part (b) will lower the water level 10 ft
(halfway) during the first 25 min of pumping.

£

d. The weight of water What are the answers to parts (a) and
(b) in a location where water weighs 62.26 1b/ft*? 62.59 1b/ft?

12 ft
Ground 10 fi

——
level \

20/~ j o

14, Emptying a cistern The rectangular cistern (storage tank for

rainwater) shown has its top 10 ft below ground level. The cistern,
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15.

16.

17.

18.

20.

21
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currently full, is to be emptied for inspection by pumping its con-
tents to ground level.

a. How much work will it take to empty the cistern?

b. How long will it take a 1/2-hp pump, rated at 275 ft-1b/sec, to
pump the tank dry?

¢. How long will it take the pump in part (b) to empty the tank
halfway? (It will be less than half the time required to empty
the tank completely.)

d. The weight of water What are the answers to parts (a)
through (c¢) in a location where water weighs 62.26 1b/ft’?
62.59 Ib/ft?

Ground level

s

10 ft

20 ft 121t
¥ -

Pumping oil How much work would it take to pump oil from

the tank in Example 5 to the level of the top of the tank if the tank

were completely full?

Pumping a half-full tank Suppose that, instead of being full,
the tank in Example 5 is only half full. How much work does it take
to pump the remaining oil to a level 4 ft above the top of the tank?

Emptying a tank A vertical right-circular cylindrical tank
measures 30 ft high and 20 ft in diameter. It is full of kerosene
weighing 51.2 Ib/ft*. How much work does it take to pump the
kerosene to the level of the top of the tank?

a. Pumping milk Suppose that the conical container in Example 5
contains milk (weighing 64.5 Ib/ft") instead of olive oil. How
much work will it take to pump the contents to the rim?

b. Pumping oil How much work will it take to pump the oil in
Example 5 to a level 3 ft above the cone’s rim?

. The graphof y = x?on 0 = x = 2 is revolved about the y-axis to

form a tank that is then filled with salt water from the Dead Sea
(weighing approximately 73 1bs/ft*). How much work does it take
to pump all of the water to the top of the tank?

A right-circular cylindrical tank of height 10 ft and radius 5 ft is
lying horizontally and is full of diesel fuel weighing 53 Ibs/ft’.
How much work is required to pump all of the fuel to a point 15 ft
above the top of the tank?

Emptying a water reservoir We model pumping from spheri-
cal containers the way we do from other containers, with the axis
of integration along the vertical axis of the sphere. Use the figure
here to find how much work it takes to empty a full hemispherical
water reservoir of radius 5 m by pumping the water to a height of
4 m above the top of the reservoir. Water weighs 9800 N/m”,
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22,

Chapter 6: Applications of Definite Integrals

You are in charge of the evacuation and repair of the storage tank
shown here. The tank is a hemisphere of radius 10 ft and is full of
benzene weighing 56 Ib/fi". A firm you contacted says it can
empty the tank for 1/2¢ per foot-pound of work. Find the work
required to empty the tank by pumping the benzene to an outlet 2 ft
above the top of the tank. If you have $5000 budgeted for the job,
can you afford to hire the firm?

i 3 Outlet pi
Rty 2= 100 gy PP
~

40—

Work and Kinetic Energy

23.

Kinetic energy If a variable force of magnitude F{x) moves a
body of mass m along the x-axis from x| to x», the body’s velocity
v can be written as dx/dt (where 7 represents time). Use Newton’s
second law of motion F = m(dv/dt) and the Chain Rule

dv _dvdx _ dv
dt  dcd Udxc

to show that the net work done by the force in moving the body
from x| to x7 is

= 1 2 1
W= .[| Fl(x) dx = Emvg‘ = Emvlz,

where v and v; are the body’s velocities at x| and x». In physics,
the expression (1/2)mv? is called the kinetic energy of a body of
mass m moving with velocity v. Therefore, the work done by the

force equals the change in the body s kinetic energy, and we can

find the work by calculating this change.

In Exercises 24-28, use the result of Exercise 23.

24,

26.

27.

28.

29.

. Baseball

Tennis A 2-0z tennis ball was served at 160 ft/sec (about 109
mph). How much work was done on the ball to make it go this
fast? (To find the ball’s mass from its weight, express the weight
in pounds and divide by 32 ft/sec?, the acceleration of gravity.)

How many foot-pounds of work does it take to throw a
baseball 90 mph? A baseball weighs 5 oz, or 0.3125 Ib.

Golf A 1.6-0z golf ball is driven off the tee at a speed of 280 ft/
sec (about 191 mph). How many foot-pounds of work are done on
the ball getting it into the air?

On June 11, 2004, in a tennis match between Andy Roddick and
Paradorn Srichaphan at the Stella Artois tournament in London,
England, Roddick hit a serve measured at 153 mi/h. How much
work was required by Andy to serve a 2-0z tennis ball at that speed?

Softball How much work has to be performed on a 6.5-0z sofi-
ball to pitch it 132 ft/sec (90 mph)?

Drinking a milkshake The truncated conical container shown
here is full of strawberry milkshake that weighs 4/9 oz/in®. As
you can see, the container is 7 in. deep, 2.5 in. across at the base,
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30.

and 3.5 in. across at the top (a standard size at Brigham’ in
Boston). The straw sticks up an inch above the top. About how
much work does it take to suck up the milkshake through the
straw (neglecting friction)? Answer in inch-ounces.

Dimensions in inches

Putting a satellite in orbit The strength of Earth’s gravita-
tional field varies with the distance r from Earth’s center, and the
magnitude of the gravitational force experienced by a satellite of
mass m during and after launch is

Fr) = mﬁ{G‘
7

Here, M = 5.975 X 10 kg is Earth’s mass, G = 6.6720 X
107" N-m? kg? is the universal gravitational constant, and » is
measured in meters. The work it takes to lift a 1000-kg satellite
from Earth’s surface to a circular orbit 35,780 km above Earth’s
center is therefore given by the integral

+35,780,000
Work = j Mdrjoules.
6

2
370,000 e

Evaluate the integral. The lower limit of integration is Earth’s ra-
dius in meters at the launch site. (This calculation does not take
into account energy spent lifting the launch vehicle or energy
spent bringing the satellite to orbit velocity.)

Finding Fluid Forces

31,

32. Triangular plate

Triangular plate Calculate the fluid force on one side of the
plate in Example 6 using the coordinate system shown here.

y (L)

A

Surface of pool |~ <

x ()
1 0 5
Depth |y| __,__f_/ y=-2
N 4
s I ? (x, v)
A y 4
|
-50F

Calculate the fluid force on one side of the
plate in Example 6 using the coordinate system shown here.
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34.

35.

36.

37.

v (ft)

Pool surface |at y = 2

1+

L 1

x(ft)

Rectangular plate In a pool filled with water to a depth of 10 f,
calculate the fluid force on one side of a 3 ft by 4 fit rectangular

plate if the plate rests vertically at the bottom of the pool
a. on its 4-ft edge b. on its 3-ft edge.

Semicircular plate Calculate the fluid force on one side of a
semicircular plate of radius 5 fi that rests vertically on its diame-
ter at the bottom of a pool filled with water to a depth of 6 ft.

.‘I

Surface of water |6
5

X

Triangular plate The isosceles triangular plate shown here is
submerged vertically 1 ft below the surface of a freshwater lake.
a. Find the fluid force against one face of the plate.

b. What would be the fluid force on one side of the plate if the

water were seawater instead of freshwater?

Surface level

f—af— |11

A8+
\

/
/

\ /
\ /
/
/
v

Rotated triangular plate The plate in Exercise 35 is revolved
180° about line 4B so that part of the plate sticks out of the lake,
as shown here. What force does the water exert on one face of the

plate now?
A\
£\
£\

o / \\ Surface
l. /£ D, level
LN, i

|4 ft—

New England Aquarium The viewing portion of the rectangular
glass window in a typical fish tank at the New England Aquarium in
Boston is 63 in. wide and runs from 0.5 in. below the water’s surface
to 33.5 in. below the surface. Find the fluid force against this portion
of the window. The weight-density of seawater is 64 Ib/ft". (In case
you were wondering, the glass is 3/4 in. thick and the tank walls ex-
tend 4 in. above the water to keep the fish from jumping out.)
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42,

44

45.
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Semicircular plate A semicircular plate 2 ft in diameter sticks
straight down into freshwater with the diameter along the surface.
Find the force exerted by the water on one side of the plate.

Tilted plate Calculate the fluid force on one side of a 5 ft by 5 fi

square plate if the plate is at the bottom of a pool filled with water

to a depth of 8 ft and

a. lying flat on its 5 ft by 5 ft face.

b. resting vertically on a 5-ft edge.

¢, resting on a 5-ft edge and tilted at 45° to the bottom of the pool.

Tilted plate Calculate the fluid force on one side of a right-

triangular plate with edges 3 ft, 4 ft, and 5 ft if the plate sits at the

bottom of a pool filled with water to a depth of 6 ft on its 3-ft

edge and tilted at 60° to the bottom of the pool.

The cubical metal tank shown here has a parabolic gate held in

place by bolts and designed to withstand a fluid force of 160 1b

without rupturing. The liquid you plan to store has a weight-

density of 50 Ib/ft*.

a. What is the fluid force on the gate when the liquid is 2 ft deep?

b. What is the maximum height to which the container can be
filled without exceeding the gate’s design limitation?

y (ft)

x(ft)

Enlarged view of
parabolic gate

Parabolic gate

The end plates of the trough shown here were designed to with-
stand a fluid force of 6667 lb. How many cubic feet of water can
the tank hold without exceeding this limitation? Round down to
the nearest cubic foot.
vy

(-4, 10) (4, 10)

(0, )

301t

0
/ Dimensional
i

x(ft)

End view of trough view of trough

A vertical rectangular plate @ units long by b units wide is sub-
merged in a fluid of weight-density w with its long edges parallel
to the fluid’s surface. Find the average value of the pressure along
the vertical dimension of the plate. Explain your answer.

(Continuation of Exercise 43.) Show that the force exerted by the
fluid on one side of the plate is the average value of the pressure
(found in Exercise 43) times the area of the plate.

Water pours into the tank shown here at the rate of 4 ft/min. The
tank’s cross-sections are 4-ft-diameter semicircles. One end of the
tank is movable, but moving it to increase the volume compresses a
spring. The spring constant is & = 100 Ib/ft. If the end of the tank
moves 5 ft against the spring, the water will drain out of a safety
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346 Chapter 6: Applications of Definite Integrals

hole in the bottom at the rate of 5 ft*/min. Will the movable end
reach the hole before the tank overflows?

Movable end Water in
/
Drain in Movable
hole end
Side view

46. Watering trough The vertical ends of a watering trough are
squares 3 ft on a side.

a. Find the fluid force against the ends when the trough is full.

b. How many inches do you have to lower the water level in the
trough to reduce the fluid force by 25%?

6 6 | Moments and Centers of Mass
2 |

STUDENTS-HUB.com

Many structures and mechanical systems behave as if their masses were concentrated at a
single point, called the center of mass (Figure 6.44). It is important to know how to locate
this point, and doing so is basically a mathematical enterprise. For the moment, we deal
with one- and two-dimensional objects. Three-dimensional objects are best done with the
multiple integrals of Chapter 15.

Masses Along a Line

We develop our mathematical model in stages. The first stage is to imagine masses nj, s,
and m3 on a rigid y-axis supported by a fulcrum at the origin.

Xy 0 X2 X3
& = = ¥
my A ms my
Fulcrum
at origin

The resulting system might balance, or it might not, depending on how large the masses
are and how they are arranged along the x-axis.

Each mass my exerts a downward force myg (the weight of my) equal to the magnitude
of the mass times the acceleration due to gravity. Each of these forces has a tendency to
turn the axis about the origin, the way a child turns a seesaw. This turning effect, called a
torque, is measured by multiplying the force myg by the signed distance x; from the point
of application to the origin. Masses to the left of the origin exert negative (counterclock-
wise) torque. Masses to the right of the origin exert positive (clockwise) torque.

The sum of the torques measures the tendency of a system to rotate about the origin.
This sum is called the system torque.

System torque = mgx; + magxa + myga; (1)

The system will balance if and only if its torque is zero.
If we factor out the g in Equation (1), we see that the system torque is

g+ (mx) + myxy; + max3).
a featu re of the
gnvironment

4 feature of
the system
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6.6 Moments and Centers of Mass 347

Thus. the torque is the product of the gravitational acceleration g, which is a feature of
the environment in which the system happens to reside, and the number (m;x; +
maxy + msxs), which is a feature of the system itself, a constant that stays the same no
matter where the system is placed.

The number (X, + myxs + m3x3) is called the moment of the system about the
origin. It is the sum of the moments m, x|, m,x,, m3x; of the individual masses.

My = Moment of system about origin = >, mx;

(We shift to sigma notation here to allow for sums with more terms.)
We usually want to know where to place the fulerum to make the system balance, that
is, at what point X to place it to make the torques add to zero.

X ] Xa X Xy

. e —> X
my / \\, ny A m;
Special location
for balance

The torque of each mass about the fulcrum in this special location is

signed distance) (downward)

Torque of my about x = ( of my, from ¥ force
= (xp — X)mg.

When we write the equation that says that the sum of these torques is zero, we get an equa-
tion we can solve for x:

E (xp — X)mpg
- E mj.Xp

X= . Solved for X
> m

0 Sum of the torques equals zero.

This last equation tells us to find x by dividing the system’s moment about the origin by
the system’s total mass:

B E mgXg  system moment about origin

2= > my - system mass ’ @)
The point ¥ is called the system’s center of mass.
Masses Distributed over a Plane Region
FIGURE 6.44 A wrench gliding on Suppose that we have a finite collection of masses located in the plane, with mass my. at the
ice turning about its center of mass as point (xi, yi) (see Figure 6.45). The mass of the system is
the center glides in a vertical line.
System mass: M = > my.
¥ Each mass m; has a moment about each axis. Its moment about the x-axis is m vy, and its

moment about the y-axis is m;x;. The moments of the entire system about the two axes are

(2 ) Moment about x-axis: M, = E My Vi,

Moment about y-axis: M, = 2 X

The x-coordinate of the system’s center of mass is defined to be

M, _ 2 nxg G)
M 2 mp

FIGURE 6.45 TEach mass m; has a X =
moment about each axis.
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348 Chapter 6: Applications of Definite Integrals

With this choice of x, as in the one-dimensional case, the system balances about the line
x = x (Figure 6.46).
The y-coordinate of the system’s center of mass is defined to be

WL @
{ E my

With this choice of v, the system balances about the line y = y as well. The torques ex-
erted by the masses about the line y = v cancel out. Thus, as far as balance is concerned,
the system behaves as if all its mass were at the single point (X, ¥). We call this point the
system’s center of mass.

Thin, Flat Plates
FIGURE 6.46 A two-dimensional array

ofimasses baldnces o e center of mass. In many applications, we need to find the center of mass of a thin, flat plate: a disk of alu-

minum, say, or a triangular sheet of steel. In such cases, we assume the distribution of

mass to be continuous, and the formulas we use to calculate ¥ and y contain integrals in-
¥ stead of finite sums. The integrals arise in the following way.
Strip of mass Am Imagine that the plate occupying a region in the xy-plane is cut into thin strips parallel
to one of the axes (in Figure 6.47, the v-axis). The center of mass of a typical strip is
(X, V). We treat the strip’s mass Am as if it were concentrated at (¥, ¥). The moment of the
strip about the y-axis is then X Am. The moment of the strip about the x-axis is ¥ Am.
Equations (3) and (4) then become

M, D %Am M, > 7 Am

o=

The sums are Riemann sums for integrals and approach these integrals as limiting values
as the strips into which the plate is cut become narrower and narrower. We write these inte-
FIGURE 6.47 A plate cut into thin strips ~ grals symbolically as

X =

parallel to the y-axis. The moment exerted ~ o~

; "~ 5 [ Xdm [ Vdm
by a typical strip about each axis is the P — and J=r
moment its mass Am would exert if / dm I dm
concentrated at the strip’s center of mass
(¥, 7).

Moments, Mass, and Center of Mass of a Thin Plate Covering a Region in
the xy-Plane

Moment about the x-axis: M, = / Vdm

Moment about the y-axis: M, = / X dm
_ 5)
Mass: M= ] dm
Fsity
A material’s density is its mass per unit . = Mv = M,
area. For wires, rods, and narrow strips, we Center of mass: B M Y= M

use mass per unit length.

The differential dm is the mass of the strip. Assuming the density & of the plate to be a con-
tinuous function, the mass differential dm equals the product 6 d4 (mass per unit area times
area). Here dA represents the area of the strip.

To evaluate the integrals in Equations (5), we picture the plate in the coordinate plane
and sketch a strip of mass parallel to one of the coordinate axes. We then express the strip’s
mass dm and the coordinates (X, ) of the strip’s center of mass in terms of x or y. Finally,
we integrate 3 dm, X dm, and dm between limits of integration determined by the plate’s
location in the plane.
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y=2

x{cm)

0 y=0 1

FIGURE 6.48 The plate in Example 1.

2k (1, 2)

Strip c.m.
is halfway.
T E ) = (6w

= — 2x

0 _.|dx|._ 1

Units in centimeters

FIGURE 6.49 Modeling the plate in
Example 1 with vertical strips.

p(1,2)

Strip ¢.m.

is hallfway.

B (_v +2
B 4

—

(¥, ¥

x{cm)

FIGURE 6.50 Modeling the plate in
Example 1 with horizontal strips.
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EXAMPLE 1  The triangular plate shown in Figure 6.48 has a constant density of
8 = 3 g/cm’. Find

(a) the plate’s moment M, about the y-axis. (b) the plate’s mass M.

(¢) the x-coordinate of the plate’s center of mass (c.m.).

Solution Method 1: Vertical Strips (Figure 6.49)
(a) The moment M,: The typical vertical strip has the following relevant data.
center of mass (c.m.):  (X,7) = (x,x)
length: 2x
width:  dx
area: dd = 2xdx
mass: dm = 6d4 = 3+2xdx = 6xdx
distance of c.m. from y-axis: ¥ = x
The moment of the strip about the v-axis is
Xdm = x+6xdx = 6x? dx.

The moment of the plate about the y-axis is therefore

1 1
M1,=/f\"dm=/ ﬁrdeIZx"} =2g-cm.
0 0

1 1
M=/dm=/ 6xdx=3x2] =38
0 0

(¢) The x-coordinate of the plate’s center of mass:

(b) The plate’s mass:

M, 2g-em 2

=
I

|

I
|
(]
g

By a similar computation, we could find M, and v = M, /M.

Method 2: Horizontal Strips  (Figure 6.50)

(a) The moment M,: The y-coordinate of the center of mass of a typical horizontal strip is
v (see the figure), so
V=

The x-coordinate is the x-coordinate of the point halfway across the triangle. This
makes it the average of y/2 (the strip’s left-hand x-value) and 1 (the strip’s right-hand

x-value):
~_ W2)+1 Pl _yt2
B 3 472 4
We also have
y 22—y
length: 1 — 77>
width:  dy
2—-vy
area: dd4d = 5 —dy
2-y
mass: dm = 6d4d = 3- 5 dy
; .o yt2
distance of c.m. to y-axis: ¥ = 3
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y=4- x?
Center of mass

FIGURE 6.51 Modeling the plate in
Example 2 with vertical strips.
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The moment of the strip about the y-axis is

. _yt2 2=y _ 3 5
Xdm = 7] 3 - dy—8(4 V) dy.

The moment of the plate about the y-axis is

24 372
== vt = ol i _i _L _EE = a
Mp—/,xdm—l (4 —y7)dy 8{41} 3}0_8(3)_25(:"1'

(b) The plate’s mass:

3 #_ 3
M= ]a‘m‘/ 2(2—v}dv=§[21—7]{):5(4—2}:3&

(¢) The x-coordinate of the plate’s center of mass:

M, 2g-rcm 2
“ M~ 3g 39
By a similar computation, we could find M, and y. [ ]

If the distribution of mass in a thin, flat plate has an axis of symmetry, the center of
mass will lie on this axis. If there are two axes of symmetry, the center of mass will lie at
their intersection. These facts often help to simplify our work.

EXAMPLE 2  Find the center of mass of a thin plate covering the region bounded above
by the parabola y = 4 — x? and below by the x-axis (Figure 6.51). Assume the density of
the plate at the point (x, y) is & = 2x%, which is twice the square of the distance from the
point to the y-axis.

Solution The mass distribution is symmetric about the y-axis, so x = 0. We model the
distribution of mass with vertical strips since the density is given as a function of the vari-
ble x. The typical vertical strip (see Figure 6.51) has the following relevant data.

center of mass (c.m.): (X,¥) = ( 4 —24 )
length: 4 — x?
width:  dx
area: dA = (4 — x%) dx
mass: dm = 8dA = 8(4 — x?) dx
distance from c.m. to x-axis: ¥ = 4_7"2

The moment of the strip about the x-axis is

=5

Vdm = % <84 — xdy == (4 — x?)dr.

(]

The moment of the plate about the x-axis is

i 2 5 2
My= [ Ydmn= | Z(4—-x)de= [ x%(4—-xMdx
J=2 2 =2

2
_ 2 oud o 6y . 2048
]:2(160, 8x* + x°) dx 105

/drn—f8(4—1)d¥—fl\ (4 — x?) dx

E / (82 — 204 dy = 222
8 s
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Therefore,
M, 2048 15 8

M 105 256 T°

(%.7) = (0, %) .

=

The plate’s center of mass is

Plates Bounded by Two Curves

v Suppose a plate covers a region that lies between two curves v = g(x) and v = f(x),
where f(x) = g(x)and @ = x = b. The typical vertical strip (see Figure 6.52) has

center of mass (c.m.): (X,7) = (x, % [f(x) + g(x)])
length:  f(x) — g(x)

width:  dx
area: dA = [f(x) — g(x)] dx
5 mass: dm = 6dA = o[f(x) — g(x)] dx.

0

The moment of the plate about the yv-axis is
FIGURE 6.52 Modeling the plate bounded

*h
by two curves with vertical strips. The strip M, = / xdm = ] X8 f(x) — g(x)] dx,
c.m. is halfway, so v = %[f{x} + g(x)]. ¢

and the moment about the x-axis is

' b
M, = / ydm = f S0 + g0+ 8L/) — g d

b 5
= [ 21fw - £l

These moments give the formulas

b
%= 97 | oxlf® — gl ds ©)
W . T N —
L M L 2 [f (X] g {‘)] dx (7)

EXAMPLE 3 Find the center of mass for the thin plate bounded by the curves g(x) = x/2

and f(x) = Vx,0=x= 1, (Figure 6.53) using Equations (6) and (7) with the density

function 8(x) = x°.

Solution We first compute the mass of the plate, where dm = 8[f(x) — g(x)] dx:

1 1 3 1
_ 2 N sp X (292 _1af _ 9
M ﬂ x (\/_ 2) dx l (x 5 ) dx [?x g L 56
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0

FIGURE 6.53 The region in Example 3.

A typical small
segment of wire has

. m_ dm = & ds = dadb.

i d;- S (L F) =
/ \}’// (a cosf, a sinf)
& //// ./__.. \_\
/240
%

—a 0 a

(b)

FIGURE 6.54 The semicircular wire in
Example 4. (a) The dimensions and
variables used in finding the center of
mass. (b) The center of mass does not lie
on the wire.
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Then from Equations (6) and (7) we get

!
=38 [ (V- 5)n
' 4
_ 56 T XN o
= 9‘[0 (x 2)(11

919 0% |, 405

s6 [ x? ¥
and P ? A 7(& == I) dx

S|
28 3 _1-4)
= — X == )il

% U 4

81 41 5| _252

9 |4 207 |, 405
The center of mass is shown in Figure 6.53. =
Centroids

When the density function is constant, it cancels out of the numerator and denominator of
the formulas for X and y. Thus, when the density is constant, the location of the center of
mass is a feature of the geometry of the object and not of the material from which it is
made. In such cases, engineers may call the center of mass the centroid of the shape, as in
“Find the centroid of a triangle or a solid cone.” To do so, just set & equal to 1 and proceed
to find X and v as before, by dividing moments by masses.

EXAMPLE 4  Find the center of mass (centroid) of a thin wire of constant density &
shaped like a semicircle of radius a.

Solution We model the wire with the semicircle v = Va? — x? (Figure 6.54). The
distribution of mass is symmetric about the y-axis, so x = 0. To find y, we imagine
the wire divided into short subarc segments. If (¥, 7 ) is the center of mass of a subarc
and 0 is the angle between the x-axis and the radial line joining the origin to (X,7 ),
then 7 = a sin 6 is a function of the angle # measured in radians (see Figure 6.54a).
The length ds of the subarc containing (¥, ¥ ) subtends an angle of df radians, so
ds = a df. Thus a typical subarc segment has these relevant data for calculating y:

length: ds = a df

Mass per unit length
mass: dm = 8ds = da db times l';:n-.tlh -
distance of c.m. to x-axis: ¥ = a sin 6.
Hence,
/.fi«‘dm _fowa sin 6 * da df 5::.'2[—(:088]; 2
y —1 _ t—1 _ Fa‘

Jdm fnw da db darm

The center of mass lies on the axis of symmetry at the point (0, 2a/ ), about two-thirds of
the way up from the origin (Figure 6.54b). Notice how & cancels in the equation for y, so
we could have set 8 = | everywhere and obtained the same value for y. ]

In Example 4 we found the center of mass of a thin wire lying along the graph of a
differentiable function in the xy-plane. In Chapter 16 we will learn how to find the center
of mass of wires lying along more general smooth curves in the plane (or in space).
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6.6 Moments and Centers of Mass 353

Surface level of fluid Fluid Forces and Centroids

If we know the location of the centroid of a submerged flat vertical plate (Figure 6.55), we
h = centroid depth can take a shortcut to find the force against one side of the plate. From Equation (7) in
Section 6.5,

L] .
Plate centroid

F

b
/ w X (strip depth) X L(y) dv

b
w [ (strip depth) X L(v) dy

FIGURE 6.55 The force against one side

of the plate is w -/ - plate area.
= w X (moment about surface level line of region occupied by plate)

= w X (depth of plate’s centroid) X (area of plate).

Fluid Forces and Centroids
The force of a fluid of weight-density w against one side of a submerged flat ver-
tical plate is the product of w, the distance /4 from the plate’s centroid to the fluid
surface, and the plate’s area:

F = whA. (8)

EXAMPLE 5 A flat isosceles triangular plate with base 6 ft and height 3 ft is sub-
merged vertically, base up with its vertex at the origin, so that the base is 2 ft below the
surface of a swimming pool. (This is Example 6, Section 6.5.) Use Equation (8) to find the
force exerted by the water against one side of the plate.

Solution  The centroid of the triangle (Figure 6.43) lies on the y-axis, one-third of the
way from the base to the vertex, so & = 3 (where y = 2) since the pool’s surface is v = 5.
The triangle’s area is

A = 1 (base)(height) = 1 (6)(3) = 9.
Hence,
F = whd = (62.4)(3)(9) = 1684.8 Ib. [
y The Theorems of Pappus
In the third century, an Alexandrian Greek named Pappus discovered two formulas that re-
G == late centroids to surfaces and solids of revolution. The formulas provide shortcuts to a
// %\ 1@ - afy a
number of otherwise lengthy calculations.
|ﬁ L(y\ J
ol B i
A=75 /
L]
\_ & /.
T i ol THEOREM 1 Pappus’s Theorem for Volumes
kgl If a plane region is revolved once about a line in the plane that does not cut
o~ through the region’s interior, then the volume of the solid it generates is equal to
0 ‘mi),i g the region’s area times the distance traveled by the region’s centroid during the
revolution. If p is the distance from the axis of revolution to the centroid, then
FIGURE 6.56 The region R is to be V = 2mpA. (9)
revolved (once) about the x-axis to

generate a solid. A 1700-year-old theorem
says that the solid’s volume can be
calculated by multiplying the region’sarea ~ Proof We draw the axis of revolution as the x-axis with the region R in the first quadrant

by the distance traveled by its centroid (Figure 6.56). We let L(v) denote the length of the cross-section of R perpendicular to the
during the revolution. v-axis at y. We assume L(y) to be continuous.
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Distance from axis of
revolution to centroid

-
Area: wa~
Circumference: 27a

FIGURE 6.57 With Pappus’s first

theorem, we can find the volume of a torus

without having to integrate (Example 6).

4 a® Centroid
Ar

: > x
-a 0l aw/

FIGURE 6.58 With Pappus’s first
theorem, we can locate the centroid of a
semicircular region without having to
integrate (Example 7).
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By the method of cylindrical shells, the volume of the solid generated by revolving
the region about the x-axis is

td d
V= ] 2mr(shell radius)(shell height) dy = 27rf v L(y)dy. (10)
The y-coordinate of R’s centroid is

d d
f VdA / v L(y)dy

y= y . 1 . Vo=, d4d = L{y)dy

so that
d
/ yL(y)dy = A4y.
JO

Substituting Ay for the last integral in Equation (10) gives V' = 2my4. With p equal to ¥,
we have V = 2mpA. ]

EXAMPLE 6  Find the volume of the torus (doughnut) generated by revolving a circular
disk of radius « about an axis in its plane at a distance b = «a from its center (Figure 6.57).

Solution  We apply Pappus’s Theorem for volumes. The centroid of a disk is located at
its center, the area is 4 = wa>, and p = b is the distance from the centroid to the axis of
revolution (see Figure 6.57). Substituting these values into Equation (9), we find the
volume of the torus to be

V = 2m(b)(ma?) = 2mw*ba*. &

The next example shows how we can use Equation (9) in Pappus’s Theorem to find one
of the coordinates of the centroid of a plane region of known area 4 when we also know the
volume V" of the solid generated by revolving the region about the other coordinate axis. That
is, if v is the coordinate we want to find, we revolve the region around the x-axis so that
v = pis the distance from the centroid to the axis of revolution. The idea is that the rotation
generates a solid of revolution whose volume V is an already known quantity. Then we can
solve Equation (9) for p, which is the value of the centroid’s coordinate y.

EXAMPLE 7  Locate the centroid of a semicircular region of radius a.
Solution ~ We consider the region between the semicircle y = Va* — x? (Figure 6.58) and

the x-axis and imagine revolving the region about the x-axis to generate a solid sphere. By
symmetry, the x-coordinate of the centroid is ¥ = 0. With v = p in Equation (9), we have
Vo (-’-1/3)171;'3 4

YT 2md T 27(1/2)wa? B a

THEOREM 2 Pappus’s Theorem for Surface Areas

If an arc of a smooth plane curve is revolved once about a line in the plane that does
not cut through the arc’s interior, then the area of the surface generated by the arc
equals the length L of the arc times the distance traveled by the arc’s centroid during
the revolution. If p is the distance from the axis of revolution to the centroid, then

S = 2mpl. (11)
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FIGURE 6.59 Figure for proving
Pappus’s Theorem for surface area. The arc
length differential ds is given by Equation
(6) in Section 6.3.

6.6 Moments and Centers of Mass 355

The proof we give assumes that we can model the axis of revolution as the x-axis and the
arc as the graph of a continuously differentiable function of x.

Proof We draw the axis of revolution as the x-axis with the arc extending from x = a to
x = b in the first quadrant (Figure 6.59). The area of the surface generated by the arc is

x=b x=b
S = / 2wy ds = Zw[ yds. (12)

Jx=a x=a

The y-coordinate of the arc’s centroid is

w=h x=h
/ Vds / vds
X=da X=ua -

y = _— L = { dsisthearc’s

"x=bh L ’ length and 7 =
ds
SJX=d

Hence

Substituting yvL for the last integral in Equation (12) gives S = 27ryL. With p equal to v,
we have § = 2mplL. =

EXAMPLE 8  Use Pappus’s area theorem to find the surface area of the torus in Example 6.

Solution  From Figure 6.57, the surface of the torus is generated by revolving a circle of
radius @ about the z-axis, and » = a is the distance from the centroid to the axis of revolu-
tion. The arc length of the smooth curve generating this surface of revolution is the cir-
cumference of the circle, so L = 2ma. Substituting these values into Equation (11), we

find the surface area of the torus to be

Exercises 6.6

S = 27(b)(2mwa) = 4w’ba. =

Thin Plates with Constant Density
In Exercises 1-12, find the center of mass of a thin plate of constant
density & covering the given region.

1. The region bounded by the parabola v = x? and the line y = 4

2. The region bounded by the parabola v = 25 — x” and the x-axis

3. The region bounded by the parabola y = x — x* and the line
y=—x

4. The region enclosed by the parabolas v = x* — 3and y = —2x?

5. The region bounded by the y-axis and the curve x = y — y?,
0=yv=1

6. The region bounded by the parabola x = y? — yand the line y = x

7. The region bounded by the x-axis and the curve y = cosx,
—7f2 =x =72

8. The region between the curve v = sec’x, —7/4 = x = 7/4 and
the x-axis

9. The region bounded by the parabolas vy = 2x* — 4x and

3
y=2x — x°
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10. a. The region cut from the first quadrant by the circle x* + y? = 9
b. The region bounded by the x-axis and the semicircle
Compare your answer in part (b) with the answer in part (a).

11. The “triangular” region in the first quadrant between the circle
x* 4+ v? = 9 and the lines x = 3 and y = 3. (Hint: Use geome-
try to find the arca.)

12. The region bounded above by the curve ¥ = 1/x*, below by the
curve y = —1/x7, and on the left and right by the lines x = 1 and
x = a > 1, Also, find lim,—x ¥.

Thin Plates with Varying Density

13. Find the center of mass of a thin plate covering the region
between the x-axis and the curve v = 2,fx2, 1 =x =2, if the
plate’s density at the point (x, y) is 8(x) = x°.

14. Find the center of mass of a thin plate covering the region
bounded below by the parabola y = x* and above by the line
v = xifthe plate’s density at the point (x, y) is 8(x) = 12x.
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15. The region bounded by the curves y = +4/ VY and the lines
x = land x = 4 is revolved about the y-axis to generate a solid.
a. Find the volume of the solid.
b. Find the center of mass of a thin plate covering the region if
the plate’s density at the point (x, y) is 8(x) = 1/x.
c. Sketch the plate and show the center of mass in your sketch.
16. The region between the curve y = 2/x and the x-axis from x = 1
to x = 4 is revolved about the x-axis to generate a solid.
a. Find the volume of the solid.
b. Find the center of mass of a thin plate covering the region if
the plate’s density at the point (x, v) is 8(x) = Vx.

¢. Sketch the plate and show the center of mass in your sketch,

Centroids of Triangles
17. The centroid of a triangle lies at the intersection of the trian-
gle’s medians  You may recall that the point inside a triangle that
lies one-third of the way from ecach side toward the opposite vertex
is the point where the triangle’s three medians intersect. Show that
the centroid lies at the intersection of the medians by showing that
it too lies one-third of the way from each side toward the opposite
vertex. To do so, take the following steps.
i) Stand one side of the triangle on the x-axis as in part (b) of
the accompanying figure. Express dm in terms of L and dy.
ii) Use similar triangles to show that L = (b/h)(h — y). Substi-
tute this expression for L in your formula for dm.
iii) Show that y = &/3.
iv) Extend the argument to the other sides.

y

e
_ Centroid-
. \ e

P 3 +
|

(a) (b)
Use the result in Exercise 17 to find the centroids of the triangles
whose vertices appear in Exercises 18-22. Assume a, b = 0.
18. (—1,0),(1,0),(0,3)
19. (0, 0), (1, 0), (0, 1)
20. (0, 0), (a, 0), (0, a)
21. (0, 0), (a, 0), (0, b)
22, (0,0), (a, 0), (a/2, b)
Thin Wires
23. Constant density Find the moment about the x-axis of a wire

of constant density that lies along the curve y = Vi fromx = 0
tox = 2.

24. Constant density Find the moment about the x-axis of a wire of
constant density that lies along the curve v = x” from x = 0
tox = 1.
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25. Variable density Suppose that the density of the wire in Exam-
ple 4 is 6 = ksin# (k constant). Find the center of mass.

26. Variable density Suppose that the density of the wire in Exam-
pledis6 = | + k|cos 8| (k constant). Find the center of mass.

Plates Bounded by Two Curves

In Exercises 27-30, find the centroid of the thin plate bounded by the
graphs of the given functions. Use Equations (6) and (7) with é = 1
and M = area of the region covered by the plate.

27. g(x) = x> and flx) =x+ 6

28. g(x) = x> (x+ 1), f(x)=2, and x =0

29, g(x) =x*x — 1) and f(x) = x°

30. gx) =0, flx)=2+sinx, x=0, and x =27

(Hint: / xsinxdx = sinx — xcosx + C.)

Theory and Examples
Verify the statements and formulas in Exercises 31 and 32.

31. The coordinates of the centroid of a differentiable plane curve are

f x ds [ yds
length’

" "~ length”

y

32. Whatever the value of p > 0 in the equation y = x?/(4p), the
v-coordinate of the centroid of the parabolic segment shown here
is v = (3/5)a.

The Theorems of Pappus

33. The square region with vertices (0, 2), (2, 0), (4, 2), and (2, 4) is
revolved about the x-axis to generate a solid. Find the volume and
surface area of the solid.

34. Use a theorem of Pappus to find the volume generated by revolv-
ing about the line x = 3 the triangular region bounded by the co-
ordinate axes and the line 2x + v = 6 (see Exercise 17).

35. Find the volume of the torus generated by revolving the circle
(x — 2)* + y? = 1 about the y-axis.
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36.

37

38

39.

40.

41.

Use the theorems of Pappus to find the lateral surface area and
the volume of a right-circular cone.

Use Pappus’s Theorem for surface area and the fact that the sur-
face area of a sphere of radius a is 47a? to find the centroid of the

s = A2 2
semicircle vy = Va* — x°.

As found in Exercise 37, the centroid of the semicircle
v = Va* — x? lies at the point (0, 2a/m). Find the area of the
surface swept out by revolving the semicircle about the line
Yy =da.

The area of the region R enclosed by the semiellipse
v = (bfa)Va® — x? and the x-axis is (1/2)mab, and the volume
of the ellipsoid generated by revolving R about the x-axis is
[4;’3)17‘(1!)2. Find the centroid of R. Notice that the location is in-
dependent of a.

As found in Example 7, the centroid of the region enclosed by the
x-axis and the semicircle y = Va® — x? lies at the point
(0,4a/37). Find the volume of the solid generated by revolving
this region about the line y = —a.

The region of Exercise 40 is revolved about the line y = x — a to
generate a solid. Find the volume of the solid.

Chapter 6 Practice Exercises 357

42. As found in Exercise 37, the centroid of the semicircle
¥ = Va? — x? lies at the point (0, 2a/#). Find the area of the
surface generated by revolving the semicircle about the line

y=x-—a.

In Exercises 43 and 44, use a theorem of Pappus to find the centroid
of the given triangle. Use the fact that the volume of a cone of radius »
and height  is I = ; wrh,

43. y
A
L \
X
0,0y (a. 0)
44. ¥ (a4, &)
A
(a, b)
x
0, 0)

Chapter

. How do you define and calculate the volumes of solids by the

method of slicing? Give an example.

. How are the disk and washer methods for calculating volumes de-

rived from the method of slicing? Give examples of volume cal-
culations by these methods.

Questions to Guide Your Review

6. How do you define and calculate the work done by a variable
force directed along a portion of the x-axis? How do you calculate
the work it takes to pump a liquid from a tank? Give examples.

7. How do you calculate the force exerted by a liquid against a por-
tion of a flat vertical wall? Give an example.

3. Describe the method of cylindrical shells. Give an example. 8. What is a center of mass? a centroid?
4. How do vou find the length of the graph of a smooth function 9. How do you locate the center of mass of a thin flat plate of mate-
over a closed interval? Give an example. What about functions rial? Give an example.
that do not have continuous first derivatives? 10. How do you locate the center of mass of a thin plate bounded by
5. How do you define and calculate the area of the surface swept out two curves y = f(x)and y = g(x) overa = x = b?
by revolving the graph of a smooth function y = f(x),a = x = b,
about the x-axis? Give an example.
Chapter Practice Exercises
Volumes the solid perpendicular to the x-axis are equilateral triangles

Find the volumes of the solids in Exercises 1-16.

1.

The solid lies between planes perpendicular to the x-axisatx = 0
and x = 1. The cross-sections perpendicular to the x-axis be-
tween these planes are circular disks whose diameters run from
the parabola v = x to the parabola y = V.

. The base of the solid is the region in the first quadrant between

the line ¥ = x and the parabola v = 2\/x. The cross-sections of
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whose bases stretch from the line to the curve,

3. The solid lies between planes perpendicular to the x-axis at x = /4
and x = 57 /4. The cross-sections between these planes are circular
disks whose diameters run from the curve y = 2 cos x to the curve
y = 2sinx.

4. The solid lies between planes perpendicular to the x-axis at
x=0 and x = 6. The cross-sections between these planes
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10.

11

12

—
wn

16.

are squares whose bases run from the x-axis up to the curve

x4 2 = V6.

. The solid lies between planes perpendicular to the x-axisat x = (0

and x = 4. The cross-sections of the solid perpendicular to the
xv-axis between these planes are circular disks whose diameters
run from the curve x* = 4y to the curve y* = 4x.

. The base of the solid is the region bounded by the parabola

y? = 4x and the line x = 1 in the xy-plane. Each cross-section
perpendicular to the x-axis is an equilateral triangle with one
edge in the plane. (The triangles all lie on the same side of the
plane.)

. Find the volume of the solid generated by revolving the region

bounded by the x-axis, the curve vy = 3x*, and the lines x = 1
and x = —1 about (a) the x-axis; (b) the y-axis; (c) the line
x = 1;(d) the line y = 3.

. Find the volume of the solid generated by revolving the “triangu-

lar™ region bounded by the curve y = 4/x" and the lines x = 1
and v = 1/2 about (a) the x-axis; (b) the y-axis; (¢) the line
x = 2;(d) the line y = 4.

Find the volume of the solid generated by revolving the region
bounded on the left by the parabola x = y* + 1 and on the right by
the line x = 5 about (a) the x-axis; (b) the y-axis; (c) the line x = 5.

Find the volume of the solid generated by revolving the region
bounded by the parabola v* = 4x and the line v = x about (a) the
x-axis; (b) the y-axis; (c) the line x = 4; (d) the line y = 4.

Find the volume of the solid generated by revolving the “triangu-
lar” region bounded by the x-axis, the line x = m/3, and the
curve y = tanx in the first quadrant about the x-axis.

Find the volume of the solid generated by revolving the region
bounded by the curve y = sinx and the lines x = 0,x = 7, and
v = 2 about the line y = 2.

. Find the volume of the solid generated by revolving the region be-

tween the x-axis and the curve y = x? — 2x about (a) the x-axis;

(b) the line y = —1; (¢) the line x = 2; (d) the line y = 2.

Find the volume of the solid generated by revolving about the
x-axis the region bounded by y = 2tanx,y = 0,x = —7/4, and
x = /4. (The region lies in the first and third quadrants and re-
sembles a skewed bowtie.)

Volume of a solid sphere hole A round hole of radius V3 fris
bored through the center of a solid sphere of a radius 2 ft. Find the
volume of material removed from the sphere.

Volume of a football The profile of a football resembles the ellipse
shown here. Find the football’s volume to the nearest cubic inch.
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Lengths of Curves

Find the lengths of the curves in Exercises 17-20.
17. y=x" - (132, 1=x=4

18, x=y%, 1=y=38

19. y = (5/12)x%° — (5/8)x*%, 1 =x =32
20 x= (/1) +(1fy), 1=y=2

Areas of Surfaces of Revolution
In Exercises 21-24, find the areas of the surfaces generated by revolv-
ing the curves about the given axes.

2l. v= V2x + 1, 0=x=3; x-axis
22. y=x%/3, 0=x=1; x-axis
23 x=V4y— % 1 =yp=2; ypaxis

24, x = \/; 2=y =6, yaxis

Work

25. Lifting equipment A rock climber is about to haul up 100 N
(about 22.5 1b) of equipment that has been hanging beneath her
on 40 m of rope that weighs 0.8 newton per meter. How much
work will it take? (Hint: Solve for the rope and equipment sepa-
rately, then add.)

26. Leaky tank truck You drove an 800-gal tank truck of water
from the base of Mt. Washington to the summit and discovered on
arrival that the tank was only half full. You started with a full tank,
climbed at a steady rate, and accomplished the 4750-ft elevation
change in 50 min. Assuming that the water leaked out at a steady
rate, how much work was spent in carrying water to the top? Do
not count the work done in getting yourself and the truck there.
Water weighs 8 1b/U.S. gal.

27. Stretching a spring 1f a force of 20 1b is required to hold a spring
1 ft beyond its unstressed length, how much work does it take to
stretch the spring this far? An additional foot?

28. Garage door spring A force of 200 N will stretch a garage
door spring 0.8 m beyond its unstressed length, How far will
a 300-N force stretch the spring? How much work does it
take to stretch the spring this far from its unstressed length?

29. Pumping a reservoir A reservoir shaped like a right-circular
cone, point down, 20 ft across the top and 8 ft deep, is full of
water. How much work does it take to pump the water to a level
6 ft above the top?

30. Pumping a reservoir (Continuation of Exercise 29.) The
reservoir is filled to a depth of 5 ft, and the water is to be pumped
to the same level as the top. How much work does it take?

31. Pumping a conical tank A right-circular conical tank, point
down, with top radius 5 ft and height 10 ft is filled with a liquid
whose weight-density is 60 Ib/ft’. How much work does it take to
pump the liquid to a point 2 ft above the tank? If the pump is
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driven by a motor rated at 275 fi-1b/sec (1/2 hp), how long will it
take to empty the tank?

Pumping a cylindrical tank A storage tank is a right-circular
cylinder 20 ft long and 8 ft in diameter with its axis horizontal.
If the tank is half full of olive oil weighing 57 1b/f13_. find the
work done in emptying it through a pipe that runs from the bot-
tom of the tank to an outlet that is 6 ft above the top of the tank.

Centers of Mass and Centroids
33. Find the centroid of a thin, flat plate covering the region enclosed
by the parabolas vy = 2xZand y = 3 — x2,

34. Find the centroid of a thin, flat plate covering the region enclosed by

the x-axis, the lines x = 2 and x = —2, and the parabola y = x?.

35. Find the centroid of a thin, flat plate covering the “triangular” re-
gion in the first quadrant bounded by the y-axis, the parabola

v = x%/4, and the line y = 4,

Find the centroid of a thin, flat plate covering the region enclosed
by the parabola y? = x and the line x = 2y.

36.

37. Find the center of mass of a thin, flat plate covering the region
enclosed by the parabola y? = x and the line x = 2y if the

density function is 8(v) = 1 + y. (Use horizontal strips.)

38. a. Find the center of mass of a thin plate of constant density cov-
ering the region between the curve y = 3/x*? and the x-axis
fromx = ltox =9,

b. Find the plate’s center of mass if, instead of being constant, the
density is 8(x) = x. (Use vertical strips.)

Fluid Force

39. Trough of water The vertical triangular plate shown here is the
end plate of a trough full of water (w = 62.4). What is the fluid
force against the plate?

40.

41.

42.
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UNITS IN FEET

Trough of maple syrup The vertical trapezoidal plate shown
here is the end plate of a trough full of maple syrup weighing
75 Ib/ft}. What is the force exerted by the syrup against the end
plate of the trough when the syrup is 10 in. deep?

'

N v

-2 0

UNITS IN FEET

Force on a parabolic gate A flat vertical gate in the face of a
dam is shaped like the parabolic region between the curve
y = 4x? and the line y = 4, with measurements in feet. The top
of the gate lies 5 ft below the surface of the water. Find the force
exerted by the water against the gate (w = 62.4).

You plan to store mercury (w = 849 Ib/ft*) in a vertical rectan-
gular tank with a 1 ft square base side whose interior side wall can
withstand a total fluid force of 40,000 1b. About how many cubic
feet of mercury can you store in the tank at any one time?

Chapter

Volume and Length
1. A solid is generated by revolving about the x-axis the region
bounded by the graph of the positive continuous function
v = f(x), the x-axis, and the fixed line x = a and the variable
line x = b, b > a. Its volume, for all b, is b* — ab. Find fix).

2. A solid is generated by revolving about the x-axis the region
bounded by the graph of the positive continuous function
v = f(x), the x-axis, and the lines x = 0 and x = . Its volume,
foralla > 0,isa® + a. Find f(x).

3. Suppose that the increasing function f(x) is smooth for x = O and
that f(0) = a. Let s(x) denote the length of the graph of f from
(0, @) to (x, f(x)),x = 0. Find f(x) if s(x) = Cx for some con-
stant C. What are the allowable values for C'?

4. a. Show thatfor0 < a = /2,

/ \/1 + cos?0dl > Va® + sinfa.
Jo

b. Generalize the result in part (a).
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Additional and Advanced Exercises

. Find the volume of the solid formed by revolving the region

bounded by the graphs of y = xand y = x? about the line y = x.

Consider a right-circular cylinder of diameter 1. Form a wedge
by making one slice parallel to the base of the cylinder com-
pletely through the cylinder, and another slice at an angle of 45°
to the first slice and intersecting the first slice at the opposite
edge of the cylinder (see accompanying diagram). Find the vol-
ume of the wedge.

45° wedge
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Surface Area 10. Work and Kinetic energy Suppose a 1.6-0z golf ball is placed

7. At points on the curve y = 2\/;, line segments of length h = v on a vertical spring with force constant k = 2 1b/in. The spring is

are drawn perpendicular to the xy-plane. (See accompanying compressed 6 in. and released. About how high does the ball go
figure.) Find the area of the surface formed by these perpendicu- (measured from the spring’s rest position)?

lars from (0, 0) to (3, 2\/3),
Centers of Mass

11. Find the centroid of the region bounded below by the x-axis and
above by the curve y = 1 — x", n an even positive integer. What
is the limiting position of the centroid as n — 00?

12, If you haul a telephone pole on a two-wheeled carriage behind a
truck, you want the wheels to be 3 ft or so behind the pole’s center
of mass to provide an adequate “tongue” weight. The 40-ft
wooden telephone poles used by Verizon have a 27-in. circumfer-
ence at the top and a 43.5-in. circumference at the base. About

how far from the top is the center of mass?

13. Suppose that a thin metal plate of area 4 and constant density &
occupies a region R in the xy-plane, and let M, be the plate’s mo-
ment about the v-axis. Show that the plate’s moment about the

linex = bis
8. At points on a circle of radius a, line segments are drawn perpen- a. M, — béA if the plate lies to the right of the line, and
dicular to the plane of the circle, the perpendicular at each point P b. h84 — M, if the plate lies to the left of the line.

being of length ks, where 5 is the length of the arc of the circle
measured counterclockwise from (a, 0) to P and & is a positive
constant, as shown here. Find the area of the surface formed by
the perpendiculars along the arc beginning at (a, 0) and extending
once around the circle. 15. a. Find the centroid of the region in the first quadrant bounded by
two concentric circles and the coordinate axes, if the circles have
radii @ and b, 0 << @ << b, and their centers are at the origin.

14

Find the center of mass of a thin plate covering the region bounded
by the curve y? = dax and the line x = a, a = positive constant,
if the density at (x, y) is directly proportional to (a) x, (b) |»].

L
' b. Find the limits of the coordinates of the centroid as a ap-
proaches b and discuss the meaning of the result.

16. A triangular corner is cut from a square 1 ft on a side. The area of
the triangle removed is 36 in®. If the centroid of the remaining re-
gion is 7 in. from one side of the original square, how far is it
from the remaining sides?

a Fluid Force
/ 17. A triangular plate 4BC is submerged in water with its plane verti-
x cal. The side 4B, 4 ft long, is 6 ft below the surface of the water,
while the vertex C is 2 ft below the surface. Find the force exerted
Work by the water on one side of the plate.

9. A particle of mass m starts from rest at time 1 = 0 and is moved 18. A vertical rectangular plate is submerged in a fluid with its top
along the x-axis with constant acceleration a fromx = Otox = A edge parallel to the fluid’s surface. Show that the force exerted by
against a variable force of magnitude F(¢) = +>. Find the work the fluid on one side of the plate equals the average value of the
done. pressure up and down the plate times the area of the plate.

Chapter Technology Application Projects

Mathematica/Maple Modules:

Using Riemann Sums to Estimate Areas, Volumes, and Lengths of Curves
Visualize and approximate areas and volumes in Part I and Part II: Volumes of Revolution; and Part III: Lengths of Curves.

Modeling a Bungee Cord Jump
Collect data (or use data previously collected) to build and refine a model for the force exerted by a jumper’s bungee cord. Use the work-energy
theorem to compute the distance fallen for a given jumper and a given length of bungee cord.
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