Change of Basis

Definition

Let V be a vector space and let $E = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be an ordered basis for V. If \mathbf{v} is any element of V, then \mathbf{v} can be written in the form

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

where c_1, c_2, \ldots, c_n are scalars. Thus, we can associate with each vector \mathbf{v} a unique vector $\mathbf{c} = (c_1, c_2, \ldots, c_n)^T$ in \mathbb{R}^n . The vector \mathbf{c} defined in this way is called the **coordinate vector** of \mathbf{v} with respect to the ordered basis E and is denoted $[\mathbf{v}]_E$. The c_i 's are called the **coordinates** of \mathbf{v} relative to E.

EXAMPLE I

Let $\mathbf{y} = (2, 1)^T$ and $\mathbf{z} = (1, 4)^T$. The vectors \mathbf{y} and \mathbf{z} are linearly independent and hence form a basis for \mathbb{R}^2 . The vector $\mathbf{x} = (7, 7)^T$ can be written as a linear combination

$$\mathbf{x} = 3\mathbf{y} + \mathbf{z}$$

STUDENTS-HUB. Thus, the coordinate vector of \mathbf{x} with respect to $[\mathbf{y}, \mathbf{z}]$ is $(3 \cup \mathbf{y})_{0}^{T}$ and $(3 \cup \mathbf{y})_{0}^{T}$ and $(3 \cup \mathbf{y})_{0}^{T}$ is $(3 \cup \mathbf{y})_{0}^{T}$ and $(3 \cup \mathbf{y})_{0}^{T}$ is $(3 \cup \mathbf{y})_{0}^{T}$.

The Change-of-Basis Problem:

Let V be a finite-dimensional vector space and B be a basis for V. Let $\mathbf{v} \in V$ and $[\mathbf{v}]_B$ is the coordinate vector of \mathbf{v} relative to B.

If we change the basis for V from a basis B to a basis B', how are the coordinate vectors $[\mathbf{v}]_B$ and $[\mathbf{v}]_{B'}$ related?

Solution of the Change-of-Basis Problem:

If we change the basis for a vector space V from an old basis $B = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ to a new basis $B' = \{\mathbf{u}_1', \mathbf{u}_2', ..., \mathbf{u}_n'\}$, then for each vector \mathbf{v} in V, the old coordinate vector $[\mathbf{v}]_B$ is related to the new coordinate vector $[\mathbf{v}]_{B'}$ by the equation

$$[\mathbf{v}]_B = P_{B' \to B}[\mathbf{v}]_{B'}$$

where the columns of the $n \times n$ matrix $P_{B' \to B}$ are the coordinate vectors of the new basis vectors relative to the old basis; that is,

$$P_{B'\to B} = \begin{bmatrix} [\mathbf{u}_1']_B \mid [\mathbf{u}_2']_B \mid \cdots \mid [\mathbf{u}_n']_B \end{bmatrix}_{\square n}$$

STUDENTS-HUB.com

Transition Matrices:

The transition matrix from B' to B:

$$P_{B'\to B} = \begin{bmatrix} [\mathbf{u}_1']_B \mid [\mathbf{u}_2']_B \mid \cdots \mid [\mathbf{u}_n']_B \end{bmatrix}$$

The transition matrix from B to B':

$$P_{B\rightarrow B'} = \begin{bmatrix} & [\mathbf{u}_1]_{B'} \mid [\mathbf{u}_2]_{B'} \mid \cdots \mid [\mathbf{u}_n]_{B'} \end{bmatrix}$$

Remark

$$(P_{B'\to B})^{-1} = P_{B\to B'}$$

Remark

$$[\mathbf{v}]_B = P_{B' \to B}[\mathbf{v}]_{B'}$$
$$[\mathbf{v}]_{B'} = P_{B \to B'}[\mathbf{v}]_B$$

A Procedure for Computing $P_{B\to B'}$: $(1 \cap \mathbb{R}^n)$

- 1. B is the matrix whose columns are the old bases vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$.
- 2. B' is the matrix whose columns are the new bases vectors $\mathbf{u}'_1, \mathbf{u}'_2, \dots, \mathbf{u}'_n$.
- 3. Form the matrix $[B' \mid B]$.
- 4. Use elementary row operations to reduce the matrix in Step 1 to reduced row echelon form.
- 5. The resulting matrix will be $[I \mid P_{B \to B'}]$. i.e., $\beta \to \beta' = (\beta')^{-1} \beta$

Remark:

We can also compute $P_{B'\to B}$ by using elementary row operations to reduce the matrix

$$[B \mid B']$$

to

$$[I \mid P_{B' \rightarrow B}]$$

i.e. Uploaded By: Rawan Fares

Example.

Consider the bases $B = \{\mathbf{u}_1, \mathbf{u}_2\}$ and $B' = \{\mathbf{u}_1', \mathbf{u}_2'\}$ for \mathbb{R}^2 , where

$$\mathbf{u}_1 = (1,0), \quad \mathbf{u}_2 = (0,1), \quad \mathbf{u}_1' = (1,1), \quad \mathbf{u}_2' = (2,1),$$

- a) Find the transition matrix $P_{B\to B'}$ from B to B'.
- b) Find the transition matrix $P_{B'\to B}$ from B' to B.
- c) Find $[\mathbf{v}]_{B'}$ given that

$$[\mathbf{v}]_B = \begin{bmatrix} 7 \\ 2 \end{bmatrix}$$

$$\left[\begin{array}{ccccc} 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & -1 \end{array}\right], \left[\begin{array}{cccccc} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{array}\right]$$

$$P_{\mathcal{B} \to \mathcal{B}'} = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$$

b)

$$\begin{bmatrix} \mathcal{B} & \mathcal{B}' \end{bmatrix} = \begin{bmatrix} (1) & 0 & 1 & 2 \\ 0 & (1) & 1 & 1 \end{bmatrix}$$

$$P_{\mathcal{B}' \to \mathcal{B}} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$$

STUDENTS-HUB.com

EXAMPLE 5 If

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} 1 \\ 5 \\ 4 \end{bmatrix}$$

and

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \ \mathbf{u}_3 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

then $E = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ and $F = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ are ordered bases for \mathbb{R}^3 . Let

$$x = 3v_1 + 2v_2 - v_3$$
 and $y = v_1 - 3v_2 + 2v_3$

Find the transition matrix from E to F and use it to find the coordinates of \mathbf{x} and \mathbf{y} with respect to the ordered basis F.

Solution

the transition matrix is given by

$$U^{-1}V = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 5 \\ 1 & 2 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & -3 \\ -1 & -1 & 0 \\ 1 & 2 & 4 \end{bmatrix}$$

The coordinate vectors of \mathbf{x} and \mathbf{y} with respect to the ordered basis F are given by

$$[\mathbf{x}]_F = \begin{bmatrix} 1 & 1 & -3 \\ -1 & -1 & 0 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 8 \\ -5 \\ 3 \end{bmatrix}$$

and

$$[\mathbf{y}]_F = \begin{bmatrix} 1 & 1 & -3 \\ -1 & -1 & 0 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix} = \begin{bmatrix} -8 \\ 2 \\ 3 \end{bmatrix}$$

The reader may verify that

$$8\mathbf{u}_1 - 5\mathbf{u}_2 + 3\mathbf{u}_3 = 3\mathbf{v}_1 + 2\mathbf{v}_2 - \mathbf{v}_3$$

EXAMPLE 6

Suppose that in P_3 we want to change from the ordered basis $[1, x, x^2]$ to the ordered basis $[1, 2x, 4x^2 - 2]$. Because $[1, x, x^2]$ is the standard basis for P_3 , it is easier to find the transition matrix from $[1, 2x, 4x^2 - 2]$ to $[1, x, x^2]$. Since

$$1 = 1 \cdot 1 + 0x + 0x^{2}$$
$$2x = 0 \cdot 1 + 2x + 0x^{2}$$
$$4x^{2} - 2 = -2 \cdot 1 + 0x + 4x^{2}$$

the transition matrix is

$$S = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

The inverse of S will be the transition matrix from $[1, x, x^2]$ to $[1, 2x, 4x^2 - 2]$:

$$S^{-1} = \left[\begin{array}{ccc} 1 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{4} \end{array} \right]$$

Given any $p(x) = a + bx + cx^2$ in P_3 , to find the coordinates of p(x) with respect to $[1, 2x, 4x^2 - 2]$, we simply multiply

$$\begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{4} \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a + \frac{1}{2}c \\ \frac{1}{2}b \\ \frac{1}{4}c \end{bmatrix}$$

Thus,

$$p(x) = (a + \frac{1}{2}c) \cdot 1 + (\frac{1}{2}b) \cdot 2x + \frac{1}{4}c \cdot (4x^2 - 2)$$

SECTION 3.5 EXERCISES

- 1. For each of the following, find the transition matrix corresponding to the change of basis from $\{\mathbf{u}_1, \mathbf{u}_2\}$ to $\{\mathbf{e}_1, \mathbf{e}_2\}$.
 - (a) $\mathbf{u}_1 = (1,1)^T$, $\mathbf{u}_2 = (-1,1)^T$
 - **(b)** $\mathbf{u}_1 = (1,2)^T$, $\mathbf{u}_2 = (2,5)^T$
 - (c) $\mathbf{u}_1 = (0, 1)^T$, $\mathbf{u}_2 = (1, 0)^T$
- **2.** For each of the ordered bases $\{\mathbf{u}_1, \mathbf{u}_2\}$ in Exercise 1, find the transition matrix corresponding to the change of basis from $\{\mathbf{e}_1, \mathbf{e}_2\}$ to $\{\mathbf{u}_1, \mathbf{u}_2\}$.
- 3. Let $\mathbf{v}_1 = (3, 2)^T$ and $\mathbf{v}_2 = (4, 3)^T$. For each ordered basis $\{\mathbf{u}_1, \mathbf{u}_2\}$ given in Exercise 1, find the transition matrix from $\{\mathbf{v}_1, \mathbf{v}_2\}$ to $\{\mathbf{u}_1, \mathbf{u}_2\}$.
- 4. Let $E = [(5,3)^T, (3,2)^T]$ and let $\mathbf{x} = (1,1)^T$, $\mathbf{y} = (1,-1)^T$, and $\mathbf{z} = (10,7)^T$. Determine the STUDEN stress of $[\mathbf{x}]_E$, $[\mathbf{y}]_E$, and $[\mathbf{z}]_E$.

- 9. Let [x, 1] and [2x 1, 2x + 1] be ordered bases for P_2 .
 - (a) Find the transition matrix representing the change in coordinates from [2x 1, 2x + 1] to [x, 1].
 - (b) Find the transition matrix representing the change in coordinates from [x, 1] to [2x 1, 2x + 1].

