
Verilog

Part I

Uploaded By: anonymousSTUDENTS-HUB.com

Presentation Outline

❖ Hardware Description Language

❖ Logic Simulation versus Synthesis

❖ Verilog Module

❖ Gate-Level Description and Gate Delays

❖ Module Instantiation

❖ Continuous Assignment

❖ Writing a Simple Test Bench

Uploaded By: anonymousSTUDENTS-HUB.com

Hardware Description Language

❖ Describes the hardware of digital systems in a textual form

❖ Describes the hardware structures and behavior

❖ Can represent logic diagrams, expressions, and complex circuits

❖ NOT a software programming language

❖ Two standard hardware description languages (HDLs)

1. Verilog (will be studied in this course)

2. VHDL (harder to learn than Verilog)

Uploaded By: anonymousSTUDENTS-HUB.com

Verilog = "Verifying Logic"

❖ Invented as a simulation language in 1984 by Phil Moorby

❖ Opened to public in 1990 by Cadence Design Systems

❖ Became an IEEE standard in 1995 (Verilog-95)

❖ Revised and upgraded in 2001 (Verilog-2001)

❖ Revised also in 2005 (Verilog-2005)

❖ Verilog allows designers to describe hardware at different levels

 Can describe anything from a single gate to a full computer system

❖ Verilog is supported by the majority of electronic design tools

❖ Verilog can be used for logic simulation and synthesis

Uploaded By: anonymousSTUDENTS-HUB.com

Logic Simulation

❖ Logic simulator interprets the Verilog (HDL) description

❖ Produces timing diagrams

❖ Predicts how the hardware will behave before it is fabricated

❖ Simulation allows the detection of functional errors in a design

 Without having to physically implement the circuit

❖ Errors detected during the simulation can be corrected

 By modifying the appropriate statements in the Verilog description

❖ Simulating and verifying a design requires a test bench

❖ The test bench is also written in Verilog

Uploaded By: anonymousSTUDENTS-HUB.com

Logic Synthesis

❖ Logic synthesis is similar to translating a program

❖ However, the output of logic synthesis is a digital circuit

❖ A digital circuit modeled in Verilog can be translated into a list

of components and their interconnections, called netlist

❖ Synthesis can be used to fabricate an integrated circuit

❖ Synthesis can also target a Field Programmable Gate Array

 An FPGA chip can be configured to implement a digital circuit

 The digital circuit can also be modified by reconfiguring the FPGA

❖ Logic simulation and synthesis are automated

 Using special software, called Electronic Design Automation (EDA) tools

Uploaded By: anonymousSTUDENTS-HUB.com

HDL Verilog

❖A module can be described in any one (or a
combination) of the following modeling techniques:

1. Gate – level modeling using instantiation of primitive
gates and user - defined modules

2. Data flow modeling using continuous assignment
statements with keyword assign

3. Behavioral modeling using procedural assignment
statements with keyword always

Uploaded By: anonymousSTUDENTS-HUB.com

Gate – Level Modeling (Structural Modeling)

❖ Structural Modeling is the set of interconnected components.

❖ It describes the structure (as in, the components that are

visible in a structure).

❖ The visible components are instantiated in the declarative part

of the architecture body while the declared components are

instantiated with their respective interface ports in the

statement part of the architecture body.

❖ Structural Modeling doesn’t say anything about functionality.

❖ The component instantiation statements are concurrent

in nature. Thus, the order of these statements is not

important.

Uploaded By: anonymousSTUDENTS-HUB.com

Basic Gates

❖ Basic gates: and, nand, or, nor, xor, xnor, not, buf

❖ Verilog define these gates as keywords

❖ Each gate has an optional name

❖ Each gate has an output (listed first) and one or more inputs

❖ The not and buf gates can have only one input

❖ Examples:

and g1(x,a,b); // 2-input and gate named g1

or g2(y,a,b,c); // 3-input or gate named g2

nor g3(z,a,b,c,d); // 4-input nor gate named g3

inputsoutputname
Uploaded By: anonymousSTUDENTS-HUB.com

Verilog Module

❖ A digital circuit is described in Verilog as a set of modules

❖ A module is the design entity in Verilog

❖ A module is declared using the module keyword

❖ A module is terminated using the endmodule keyword

❖ A module has a name and a list of input and output ports

❖ A module is described by a group of statements

❖ The statements can describe the module structure or behavior

Uploaded By: anonymousSTUDENTS-HUB.com

Verilog Syntax

❖ Keywords: have special meaning in Verilog

Many keywords: module, input, output, wire, and, or, etc.

Keywords cannot be used as identifiers

❖ Identifiers: are user-defined names for modules, ports, etc.

Verilog is case-sensitive: A and a are different names

❖ Comments: can be specified in two ways (similar to C)

 Single-line comments begin with // and terminate at end of line

 Multi-line comments are enclosed between /* and */

❖ White space: space, tab, newline can be used freely in Verilog

❖ Operators: operate on variables (similar to C: ~ & | ^ + - etc.)

Uploaded By: anonymousSTUDENTS-HUB.com

Verilog Four-Valued Logic

❖Verilog Value Set consists of four basic values:

0 – represents a logic zero, or false condition

1 – represents a logic one, or true condition

X – represents an unknown logic value

Z – represents a high-impedance value

x or X represents an unknown or uninitialized value

z or Z represents the output of a disabled tri-state buffer

Uploaded By: anonymousSTUDENTS-HUB.com

Structure Description in Verilog

Module portsModule name

Verilog keywords

module Add_half(sum,c_out,a,b);

input a,b;

output sum,c_out;

wire c_out_bar;

xor Gate1 (sum,a,b);

nand (c_out_bar,a,b);

not (c_out,c_out_bar);

endmodule

c_out

a

b sum

c_out_bar

Declaration of port modes

Declaration of internal signal

Instantiation of primitive gatesInstance name

Uploaded By: anonymousSTUDENTS-HUB.com

Gate level representation example: Half
Adder

A half adder adds two bits: a and b

Two output bits:

1. Carry bit: cout = a · b

2. Sum bit: sum = a  b

module Half_Adder(a, b, cout, sum);

input a, b;

output sum, cout;

and (cout, a, b);

xor (sum, a, b);

endmodule

a b cout sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Truth Table

ba

cout sum

Half_Adder

Uploaded By: anonymousSTUDENTS-HUB.com

Full Adder

❖ Full adder adds 3 bits: a, b, and c

❖ Two output bits:

1. Carry bit: cout

2. Sum bit: sum

❖ Sum bit is 1 if the number of 1's in

the input is odd (odd function)

sum = (a  b)  c

❖ Carry bit is 1 if the number of 1's in

the input is 2 or 3

cout = a·b + (a  b)·c

a b c cout sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Truth Table

Uploaded By: anonymousSTUDENTS-HUB.com

Full Adder Module

module Full_Adder(input a, b, c, output cout, sum);

wire w1, w2, w3;

and (w1, a, b);

xor (w2, a, b);

and (w3, w2, c);

xor (sum, w2, c);

or (cout, w1, w3)

endmodule

a b c

sumcout

w1

w2w3

Full_Adder

Uploaded By: anonymousSTUDENTS-HUB.com

Modular Design

A full adder can be designed using

two half adders and one OR gate

First Half Adder: HA1

w1 = a·b

w2 = a  b

Second Half Adder: HA2

w3 = w2·c = (a  b)·c

sum = w2  c = (a  b)  c

cout = w1 + w3 = a·b + (a  b)·c

a b

cout sum

Half_Adder

a b

cout sum

H
A
1

H
A
2

c

Half_Adder

a b

cout sum

w2w1

w3

a b c

cout sum

Full_Adder

Uploaded By: anonymousSTUDENTS-HUB.com

Module Instantiation

❖ Module declarations are like templates

❖ Module instantiation is like creating an object

❖ Modules are instantiated inside other modules at different levels

❖ The top-level module does not require instantiation

❖ Module instantiation defines the structure of a digital design

❖ It produces a tree of module instances at different levels

❖ The ports of a module instance must match those declared

❖ The matching of the ports can be done by name or by position

Uploaded By: anonymousSTUDENTS-HUB.com

Example of Module Instantiation

module Full_Adder (input a, b, c, output cout, sum);

wire w1, w2, w3;

// Instantiate two Half Adders: HA1, HA2

// The ports are matched by position

Half_Adder HA1 (a, b, w1, w2);

Half_Adder HA2 (w2, c, w3, sum);

or (cout, w1, w3);

// Can also match the ports by name

// Half_Adder HA2

// (.a(w2), .b(c), .cout(w3), .sum(sum));

endmodule

a b

cout sum

Half_Adder

a b

cout sum

H
A
1

H
A
2

c

Half_Adder

a b

cout sum

w2w1

w3

Uploaded By: anonymousSTUDENTS-HUB.com

Number Representation in Verilog

Uploaded By: anonymousSTUDENTS-HUB.com

Bit Vectors in Verilog

❖ A Bit Vector is multi-bit declaration that uses a single name

❖ A Bit Vector is specified as a Range [msb:lsb]

❖ msb is most-significant bit and lsb is least-significant bit

❖ Examples:

input [15:0] A; // A is a 16-bit input vector

output [0:15] B; // Bit 0 is most-significant bit

wire [3:0] W; // Bit 3 is most-significant bit

❖ Bit select: W[1] is bit 1 of W

❖ Part select: A[11:8] is a 4-bit select of A with range [11:8]

❖ The part select range must be consistent with vector declaration

Uploaded By: anonymousSTUDENTS-HUB.com

4-bit Binary Adder Example

Uploaded By: anonymousSTUDENTS-HUB.com

4-bit Binary Adder Example
module adder4(sum,C4,A,B,C0);

output [3:0] sum;

output C4;

input [3:0] A,B;

input C0;

wire C1,C2,C3; // Intermediate carries

// Instantiate chain of full adders

Add_full FA0(sum[0],C1,A[0],B[0],C0);

Add_full FA1(sum[1],C2,A[1],B[1],C1);

Add_full FA2(sum[2],C3,A[2],B[2],C2);

Add_full FA3(sum[3],C4,A[3],B[3],C3);

endmodule
Uploaded By: anonymousSTUDENTS-HUB.com

Dataflow Modeling

❖Dataflow modeling provides the means of describing
combinational circuits by their function rather than by their
gate structure.

❖ Used mostly for describing Boolean equations and

combinational logic

❖ Synthesis tool can map a dataflow model into a target
technology

❖ Can describe: adders, comparators, multiplexers, etc.

❖Dataflow modeling uses a number of operators that act on
operands to produce desired results

❖Dataflow modeling uses continuous assignments and the
keyword assign.

Uploaded By: anonymousSTUDENTS-HUB.com

Continuous Assignment

❖ The assign statement defines continuous assignment

❖ Syntax: assign net_name = expression;

❖ Assigns expression value to net_name (wire or output port)

❖ Continuous assignment statements are concurrent

❖ Can appear in any order inside a module

❖ Continuous assignment can model combinational circuits

❖ Describes the flow of data between input and output

Uploaded By: anonymousSTUDENTS-HUB.com

Continuous Assignment

❖ Examples:

assign x = a&b | c&~d; // x = ab + cd'

assign y = (a|b) & ~c; // y = (a+b)c'

assign z = ~(a|b|c); // z = (a+b+c)'

assign sum = (a^b) ^ c; // sum = (a  b)  c

❖ Verilog uses the bit operators: ~ (not), & (and), | (or), ^ (xor)

❖ Operator precedence: (parentheses), ~ , & , | , ^

Uploaded By: anonymousSTUDENTS-HUB.com

Verilog Operators

Bitwise Operators

~a Bitwise NOT

a & b Bitwise AND

a | b Bitwise OR

a ^ b Bitwise XOR

a ~^ b Bitwise XNOR

a ^~ b Same as ~^

Arithmetic Operators

a + b ADD

a – b Subtract

-a Negate

a * b Multiply

a / b Divide

a % b Remainder

Shift Operators

a << n Shift Left

a >> n Shift Right

Reduction Operators

&a AND all bits

|a OR all bits

^a XOR all bits

~&a NAND all bits

~|a NOR all bits

~^a XNOR all bits

Relational Operators

a == b Equality

a != b Inequality

a < b Less than

a > b Greater than

a <= b Less or equal

a >= b Greater or equal

Reduction operators produce a 1-bit result

Relational operators produce a 1-bit result

{a, b} concatenates the bits of a and b

Miscellaneous Operators

sel?a:b Conditional

{a, b} Concatenate

Uploaded By: anonymousSTUDENTS-HUB.com

Nets and Variables

Verilog has two major data types:

1. Net data types: are connections between parts of a design

2. Variable data types: can store data values

 The wire is a net data type (physical connection)

▪ A wire cannot store the value of a procedural assignment

▪ However, a wire can be driven by continuous assignment

 The reg is a variable data type

▪ Can store the value of a procedural assignment

▪ However, cannot be driven by continuous assignment

Uploaded By: anonymousSTUDENTS-HUB.com

Reduction Operators

module Reduce

(input [3:0] A, B, output X, Y, Z);

// A, B are input vectors, X, Y, Z are 1-bit outputs

// X = A[3] | A[2] | A[1] | A[0];

assign X = |A;

// Y = B[3] & B[2] & B[1] & B[0];

assign Y = &B;

// Z = X & (B[3] ^ B[2] ^ B[1] ^ B[0]);

assign Z = X & (^B);

endmodule

Uploaded By: anonymousSTUDENTS-HUB.com

Concatenation Operator { }

module Concatenate

(input [7:0] A, B, output [7:0] X, Y, Z);

// A, B are input vectors, X, Y, Z are output vectors

// X = A is right-shifted 3 bits using { } operator

assign X = {3'b000, A[7:3]};

// Y = A is right-rotated 3 bits using { } operator

assign Y = {A[2:0], A[7:3]};

// Z = selecting and concatenating bits of A and B

assign Z = {A[5:4], B[6:3], A[1:0]};

endmodule

Uploaded By: anonymousSTUDENTS-HUB.com

Modeling a 16-bit Adder

module Adder16

(input [15:0] A, B, input cin,

output [15:0] Sum, output cout);

// A and B are 16-bit input vectors

// Sum is a 16-bit output vector

// {cout, Sum} is a concatenated 17-bit vector

// A + B + cin is 16-bit addition + input carry

// The + operator is translated into an adder

assign {cout, Sum} = A + B + cin;

endmodule

Uploaded By: anonymousSTUDENTS-HUB.com

Modeling a Magnitude Comparator

// n-bit magnitude comparator, No default value for n

module Comparator (input [1:0] A, B, output GT, EQ,
LT);

// A and B are n-bit input vectors (unsigned)

// GT, EQ, and LT are 1-bit outputs

assign GT = (A > B);

assign EQ = (A == B);

assign LT = (A < B);

endmodule

n-bit

Magnitude

Comparator

A[n–1:0]
n

B[n–1:0]
n

GT

EQ

LT

Uploaded By: anonymousSTUDENTS-HUB.com

Conditional Operator

❖ Syntax:

Boolean_expr ? True_expression : False_expression

If Boolean_expr is true then select True_expression

Else select False_Expression

❖ Examples:

assign max = (a>b)? a : b; // maximum of a and b

assign min = (a>b)? b : a; // minimum of a and b

❖ Conditional operators can be nested

Uploaded By: anonymousSTUDENTS-HUB.com

Modeling a 2-Input Multiplexer

// Parametric 2-input Mux, default value for n = 1

module Mux2(input [1:0] A, B, input sel,

output [1:0] Z);

// A and B are n-bit input vectors

// Z is the n-bit output vector

// if (sel==0) Z = A; else Z = B;

// Conditional operator used for selection

assign Z = (sel == 0)? A : B;

endmodule

Z
n

sel

0A
n

1B
n

Uploaded By: anonymousSTUDENTS-HUB.com

Modeling a 4-Input Multiplexer

// Parametric 4-input Mux, default value for n = 1

module Mux4 #(parameter n = 1)

(input [n-1:0] A, B, C, D,

input [1:0] sel,

output [n-1:0] Z);

// sel is a 2-bit vector

// Nested conditional operators

assign Z = (sel == 'b00)? A :

(sel == 'b01)? B :

(sel == 'b10)? C : D;

endmodule

Z
n

sel

0A
n

1B
n

2C
n

3D
n

2

Uploaded By: anonymousSTUDENTS-HUB.com

Dataflow and Behavioral Modeling

❖Behavioral Modeling using Procedural Blocks and

Statements

Describes what the circuit does at a functional and

algorithmic level

 Encourages designers to rapidly create a prototype

Can be verified easily with a simulator

 Some procedural statements are synthesizable (Others are

NOT)

Uploaded By: anonymousSTUDENTS-HUB.com

Behavioral Modeling

❖ Uses procedural blocks and procedural statements

❖ There are two types of procedural blocks in Verilog

1. The initial block

 Executes the enclosed statement(s) one time only

2. The always block

 Executes the enclosed statement(s) repeatedly until simulation terminates

❖ The body of the initial and always blocks is procedural

 Can enclose one or more procedural statements

 Procedural statements are surrounded by begin … end

❖ Multiple procedural blocks can appear in any order inside a

module and run in parallel inside the simulator

Uploaded By: anonymousSTUDENTS-HUB.com

Example of Initial and Always Blocks

module behave;
reg clk; // 1-bit variable
reg [15:0] A; // 16-bit variable
initial begin // executed once

clk = 0; // initialize clk
a = 16'h1234; // initialize a
#200 $finish

end
always begin // executed always

#10 clk = ~clk; // invert clk every 10 ns
end
always begin // executed always

#20 A = A + 1; // increment A every 20 ns
end

endmodule
Uploaded By: anonymousSTUDENTS-HUB.com

The initial Statement

❖ The initial statement is a procedural block of statements

❖ The body of the initial statement surrounded by begin-end is

sequential, like a sequential block in a programming language

❖ Procedural assignments are used inside the initial block

❖ Procedural assignment statements are executed in sequence

Syntax: variable = expression;

Uploaded By: anonymousSTUDENTS-HUB.com

Always Block with Sensitivity List

❖ Syntax:

always @(sensitivity list) begin

procedural statements

end

❖ An always block can have a sensitivity list

❖ Sensitivity list is a list of signals: @(signal1, signal2, …)

The sensitivity list triggers the execution of the always block

When there is a change of value in any listed signal

Otherwise, the always block does nothing until another

change occurs on a signal in the sensitivity list

Uploaded By: anonymousSTUDENTS-HUB.com

Sensitivity List for Combinational Logic

❖ For combinational logic, the sensitivity list must include:

ALL the signals that are read inside the always block

Example: A, B, and sel must be in the sensitivity list below:

always @(A, B, sel) begin

if (sel == 0) Z = A;

else Z = B;

end

❖ Combinational logic can also use: @(*) or @*

@(*) is automatically sensitive to all the signals that are read

inside the always block

A, B, and sel are

read inside the

always block

Uploaded By: anonymousSTUDENTS-HUB.com

If Statement

❖ The if statement is procedural

❖ Can only be used inside a procedural block

❖ Syntax:

if (expression) statement

[else statement]

❖ The else part is optional

A statement can be simple or compound

A compound statement is surrounded by begin ... end

❖ if statements can be nested

❖ Can be nested under if or under else part

Uploaded By: anonymousSTUDENTS-HUB.com

Modeling a 2-Input Multiplexer

// Behavioral Modeling of a Parametric 2-input Mux

module Mux2 (input [1:0] A, B, input sel,

output reg [1:0] Z);

// Output Z must be of type reg

// Sensitivity list = @(A, B, sel)

always @(A, B, sel) begin

if (sel == 0) Z = A;

else Z = B;

end

endmodule

Z
n

sel

0A
n

1B
n

Uploaded By: anonymousSTUDENTS-HUB.com

Modeling a 3x8 Decoder

module Decoder3x8 (input [2:0] A, output reg [7:0] D);

// Sensitivity list = @(A)

always @(A) begin

if (A == 0) D = 8'b00000001;

else if (A == 1) D = 8'b00000010;

else if (A == 2) D = 8'b00000100;

else if (A == 3) D = 8'b00001000;

else if (A == 4) D = 8'b00010000;

else if (A == 5) D = 8'b00100000;

else if (A == 6) D = 8'b01000000;

else D = 8'b10000000;

end

endmodule
Uploaded By: anonymousSTUDENTS-HUB.com

Modeling a 4x2 Priority Encoder

module Priority_Encoder4x2

(input [3:0] D, output reg V, output reg [1:0] A);

// sensitivity list = @(D)

always @(D) begin

if (D[3]) {V, A} = 3'b111;

else if (D[2]) {V, A} = 3'b110;

else if (D[1]) {V, A} = 3'b101;

else if (D[0]) {V, A} = 3'b100;

else {V, A} = 3'b000;

end

endmodule

Uploaded By: anonymousSTUDENTS-HUB.com

Modeling a Magnitude Comparator

// Behavioral Modeling of a Magnitude Comparator

module Comparator #(parameter n = 1)

(input [n-1:0] A, B, output reg GT, EQ, LT);

// Sensitivity list = @(A, B)

always @(A, B) begin

if (A > B)

{GT,EQ,LT}='b100;

else if (A == B)

{GT,EQ,LT}='b010;

else

{GT,EQ,LT}='b001;

end

endmodule

n-bit

Magnitude

Comparator

A[n–1:0]
n

B[n–1:0]
n

GT

EQ

LT

Uploaded By: anonymousSTUDENTS-HUB.com

Modeling a 4-Input Multiplexer

// Behavioral Modeling of a 4-input Mux

module Mux4 #(parameter n = 1)

(input [n-1:0] A, B, C, D, input [1:0] sel,

output reg [n-1:0] Z);

// @(*) is @(A, B, C, D, sel)

always @(*) begin

if (sel == 'b00) Z = A;

else if (sel == 'b01) Z = B;

else if (sel == 'b10) Z = C;

else Z = D;

end

endmodule

Z
n

sel

0A
n

1B
n

2C
n

3D
n

2

Uploaded By: anonymousSTUDENTS-HUB.com

Case Statement

❖ The case statement is procedural (used inside always block)

❖ Syntax:

case (expression)

case_item1: statement

case_item2: statement

. . .

default: statement

endcase

The default case is optional

A statement can be simple or compound

A compound statement is surrounded by begin ... end

Uploaded By: anonymousSTUDENTS-HUB.com

Modeling a Mux with a Case Statement

module Mux4(input [1:0] A, B, C, D, input [1:0]
sel, output reg [1:0] Z);

// @(*) is @(A, B, C, D, sel)

always @(*) begin

case (sel)

2'b00: Z = A;

2'b01: Z = B;

2'b10: Z = C;

default: Z = D;

endcase

end

endmodule

Z
n

sel

0A
n

1B
n

2C
n

3D
n

2

Uploaded By: anonymousSTUDENTS-HUB.com

Modeling a Multifunction ALU

// Behavioral Modeling of an ALU

module ALU #(parameter n = 16)

(input [n-1:0] A, B, input [1:0] F,

output reg [n-1:0] Z, output reg Cout);

// @(*) is @(A, B, F)

always @(*) begin

case (F)

2'b00: {Cout,Z} = A+B;

2'b01: {Cout,Z} = A-B;

2'b10: {Cout,Z} = A&B;

default: {Cout,Z} = A|B;

endcase

end

endmodule

ALUF [1:0]
2

n

A [n-1:0]
n

B [n-1:0]

Z [n-1:0]

n
Cout

ALU Symbol

Uploaded By: anonymousSTUDENTS-HUB.com

Modeling a BCD to 7-Segment Decoder

module BCD_to_7Seg_Decoder

(input [3:0] BCD, output reg [6:0] Seg)

always @(BCD) begin

case (BCD)

0: Seg = 7'b1111110; 1: Seg = 7'b0110000;

2: Seg = 7'b1101101; 3: Seg = 7'b1111001;

4: Seg = 7'b0110011; 5: Seg = 7'b1011011;

6: Seg = 7'b1011111; 7: Seg = 7'b1110000;

8: Seg = 7'b1111111; 9: Seg = 7'b1111011;

default: Seg = 7'b0000000;

endcase

end

endmodule
Uploaded By: anonymousSTUDENTS-HUB.com

