Chapter 19: Normalization

Refining database design

- Main idea: Informally, each tuple in a relation should represent one entity or relationship instance.
- The main objective is to create an accurate representation of data, relationship between the data, and constraints on the data that is relevant.
- identify suitable set of relations (table) by creating good table structure/process of assigning attributes to entities. The process is known as <u>Normalization</u>.
- Process for evaluating and correcting table structures to minimize/control data redundancies {reduces data anomalies}.
- •Works through a series of stages called normal forms.

Normalization Overview

- Each relationship can be normalized into a specific form to avoid *anomalies*.
 - •Anomalies?
 - •Anomaly = abnormality
 - •Ideally a field value change, should be made only in a single place.
 - •Data redundancy, promotes an abnormal condition by forcing field value changes in many different locations.

Redundancy

Information is stored redundantly

- Wastes storage
- Causes problems with update anomalies
 - Insertion anomalies
 - Deletion anomalies
 - Modification anomalies

ssn	name	lot	rating	$hourly_wages$	$hours_worked$
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Solutions?

Decomposition

- Do we need to decompose the relation?
 - Several normal forms have been found

• What problems are associated with decomposition?

Design

- GUIDELINE:
 - Design a schema that does not suffer from the insertion, deletion and update anomalies.
 - If there are any anomalies present, then note them so that applications can be made to take them into account.
- GUIDELINE:
 - Relations should be designed such that their tuples will have as few NULL values as possible
 - Attributes that are NULL frequently could be placed in separate relations (with the primary key)
- Reasons for nulls:
 - Attribute not applicable or invalid
 - Attribute value unknown (may exist)
 - Value known to exist, but unavailable

Functional Dependencies

•A functional dependency (FD) is a constraint that

generalizes the concept of a *key*

 Let R be a relation schema and let > 612-nonempty sets of attributes in R. We
 say that an instance r of R satisfies the
 FD X [] Y if the following holds for

Every pair of tuples t1 and t2 in r: If t1:X = t2:X, then t1:Y = t2:Y.

ssn	name	lot	rating	hourly
123-22-366	3 Attishoo	48	8	10
231-31-536	8 Smiley	22	8	10
131-24-365	0 Smethurst	35	5	7
434-26-375	1 Guldu	35	5	7
612-67-413	4 Madayan	35	8	10

Every pair of tuples t1 and t2 in r: If t1:X = t2:X, then t1:Y = t2:Y.

Example

• In the following relation: Do we have any FDs?

A	B	C	D
a1	b1	c1	d1
a1	b1	c1	d2
a1	b2	c2	d1
a2	b1	c3	d1

Uploaded By: anonymous

Keys and FDs

- A primary key constraint is a special case of an FD.
 - Note, however, that the definition of an FD does not require that the set X be minimal;
 - The additional minimality condition must be met for *X* to be a key
- Super Key
 - If X \Box Y holds, where Y is the set of all attributes, and there is some subset V of X such that V \Box Y holds, then X is a *superkey*;

•Keys

Consider the relation schema EMP_PROJ in from the semantics of the attributes, we know that the following functional dependencies should hold: SSN ENAME PNUMBER {PNAME, PLOCATION} {SSN, PNUMBER} HOURS

EMP_PROJ

Inference Rules for Functional Dependencies

- We denote by *F* the set of functional dependencies that are specified on relation schema *R*
- We usually specify the FDs that are semantically obvious
- But there are other FDs that can be detucted

Armstrong's Axioms

Sound & Complete

•Reflexivity:

•Y is a subset of X If $X \supseteq Y$, then $X \rightarrow Y$.

•Augmentation:

• if $X \square Y$, then $XZ \square YZ$ for any Z

•Transitivity :

• if $X \square Y$ and $Y \square Z$ then $X \square Z$

Additional Useful Rules

- •Union: If $X \square Y$ and $X \square Z$, then $X \square YZ$
- •**Decomposition**: if $X \square YZ$ then $X \square Y$ and $X \square Z$

Examples on Armstrong Axioms: Union

- Prove Union:
 - $\begin{array}{c} X \to Y \\ \bullet \frac{X \to Z}{X \to YZ} \end{array}$

- Step 1: Augmentation X $\frac{X \rightarrow Y}{\overline{X \rightarrow YX}}$
- Step 2: Augmentation Y $\frac{X \rightarrow Z}{\overline{XY} \rightarrow YZ}$
- Step 3: Transitivity of 1 and 2 $X \rightarrow YX$

$$\frac{XY \to YZ}{X \to YZ}$$

Examples on Armstrong Axioms

• Prove decomposition: $\frac{X \to YZ}{X \to Z}$

- Step 1: Reflexivity, $Z \subseteq YZ$ $YZ \rightarrow Z$
- Step 2: Transitivity $X \rightarrow YZ$

$$\frac{YZ \to Z}{X \to Z}$$

Examples on Armstrong Axioms

- Relation: ABCDEFGHIJ
- 1. AB 🗆 E
- 2. AG 🗆 J
- 3. BE 🗆 I
- •4. E 🗆 G
- •5. GI 🗆 H
- Prove AB GH
- AB 🗌 G
- AB 🗆 H
- Using union rule, AB-->GH

• Hint:

- Start with the solution
- Trace back
- GH goes back to G and H
- G goes back to E
- E goes back AB
- H goes back to GI
- GI goes back to G and I
- G goes back to E
- E goes back to AB
- I goes back to BE
- BE goes back to AB

may make a stanton and the stanton and totanton modelol.

Exercise 19.2 Consider a relation R with five attributes ABCDE. You are given the following dependencies: $A \rightarrow B$, $BC \rightarrow E$, and $ED \rightarrow A$.

1. List all keys for R.

mapy moves and requiring and an require mouth,

Exercise 19.2 Consider a relation R with five attributes ABCDE. You are given the following dependencies: $A \rightarrow B$, $BC \rightarrow E$, and $ED \rightarrow A$.

1. List all keys for R.

Normalization

- Takes a relation schema through a series of tests to "certify" whether it satisfies a certain **normal form**
- We have 4 normal forms
- All these normal forms are based on the functional dependencies among the attributes of a relation
- Unsatisfactory relation schemas that do not meet certain conditions—the normal form <u>tests</u>—are decomposed into smaller relation schemas that meet the tests and hence possess the desirable properties

First Normal Form (1NF)

- Historically, it was defined to disallow multivalued attributes, composite attributes, and their combinations
- It states that the domain of an attribute must include only *atomic* (simple, indivisible) *values* and that the value of any attribute in a tuple must be a *single value* from the domain of that attribute.
- Already... all ours designs fulfil first normal form

Consider the DEPARTMENT relation schema shown

(b)

DEPARTMENT

DNAME	DNUMBER	DMGRSSN	DLOCATIONS
Research	5	333445555	{Bellaire, Sugarland, Houston}
Administration	4	987654321	{Stafford}
Headquarters	1	888665555	{Houston}

(C)

DEPARTMENT

DNAME	DNUMBER	DMGRSSN	DLOCATION
Research	5	333445555	Bellaire
Research	5	333445555	Sugarland
Research	5	333445555	Houston
Administration	4	987654321	Stafford
Headquarters	1	888665555	Houston

Solutions?

 Remove the attribute DLOCATIONS that violates 1NF and place it in a separate relation DEPT_LOCATIONS along with the primary key DNUMBER of DEPARTMENT

--The primary key of this relation is the combination {DNUMBER, DLOCATION}

- Expand the key , In this case, the primary key becomes the combination {DNUMBER, DLOCATION}. This solution has the disadvantage of introducing *redundancy* in the relation. As in the prevous diagram (c)
- If a *maximum number of values* is known for the attribute—for example, if it is known that *at most three locations* can exist for a department—replace the DLOCATIONS attribute by three atomic attributes: DLOCATION1, DLOCATION2, and DLOCATION3. This solution has the disadvantage of introducing *null values* if most departments have fewer than three locations.

1NF

- The first normal form also disallows multivalued attributes that are themselves composite.
- These are called **nested relations** because each tuple can have a relation *within it.*
- Take a look at the following diagram:

(a) EMP_PROJ

		PROJS		
SSN	ENAME	PNUMBER	HOURS	

(b) EMP_PROJ

SSN	ENAME	PNUMBER	HOURS
123456789	Smith, John B.	1	32.5
		2	7.5
666884444	Narayan,Ramesh	К. З	40.0
453453453	English, Joyce A.	1	20.0
		2	20.0
333445555	Wong, Franklin T.	2	10.0
	03320	3	10.0
		10	10.0
		20	10.0
999887777	Zelaya,Alicia J.	30	30.0
		10	10.0
987987987	Jabbar, Ahmad V.	10	35.0
		30	5.0
987654321	Wallace, Jennifer S	6. 30	20.0
	11	20	15.0
888665555	Borg,James E.	20	null

2NF

• Second normal form (2NF) is based on the concept of *full functional dependency.*

• A functional dependency $X \square Y$ is a **full functional dependency** if removal of any attribute *A* from *X* means that the dependency does not hold any more;

Hours, fully FD on the key Fname?? NO **SSN FNAMF** PNAME, Plocaiton NO

24

•A functional dependency $X \square Y$ is a **partial dependency** if some attribute A X can be removed from X and the dependency still holds

EMP_PROJ (b)

For this to be in 2nd Normal Form, Hours, ename and pname and plocation .. Individually have to be fully dependent _{STI} θη the key (ssn, pnumber) Uploaded By: anonymous

STUDENTS-HUB.com

Uploaded By: anonymous

Full Dependencies

- {SSN, PNUMBER} HOURS is a full dependency (neither SSN HOURS nor PNUMBER HOURS holds).
- However, the dependency {SSN, PNUMBER}

 ENAME is partial because SSN

 ENAME holds.

- The test for 2NF involves testing for functional dependencies whose left-hand side attributes are part of the primary key.
- If the primary key contains a single attribute, the test need not be applied at all.

non-key

- A relation schema *R* is in **2NF** if every nonprime attribute *A* in *R* is *fully functionally dependent* on the all keys of *R*
- All attributes (other than key attributes) have to be fully dependent on the key

3NF: Two equivalent Definitions

- According to Codd's original definition, a relation schema R is in **3NF** if it satisfies 2NF and no nonprime attribute of R is transitively dependent on all keys.
- A functional dependency X → Y in a relation schema R is a transitive dependency if there is a set of attributes Z that is neither a candidate key nor a subset of any key of R, and both X → Z and Z → Y hold.
- Alternatively A relation is in 3NF if for all FDs X→A one of the following conditions must hold
 - $A \in X$ i.e. trivial FD or
 - X is a superkey (or key) or
 - A is part of some key

- •The EMP_PROJ relation is in 1NF but is not in 2NF.
- The nonprime attribute ENAME violates 2NF
 because of FD2, as do the nonprime.
 attributes PNAME and PLOCATION because of FD3

Uploaded By: anon

2NF Normalization

- If a relation schema is not in 2NF, it can be "second normalized" or "2NF normalized" into a number of 2NF relations in which nonprime attributes are associated only with the part of the primary key on which they are fully functionally dependent.
- The functional dependencies FD1, FD2, and FD3 in hence lead to the decomposition of EMP_PROJ into the three relation schemas EP1, EP2, and EP3 shown in

- As a general definition of **prime attribute**, an attribute that is part of *any candidate key* will be considered as prime.
- Partial and full functional dependencies and transitive dependencies will now be *with respect to all candidate keys* of a relation.

- According to Codd's original definition, a relation schema R is in **3NF** if it satisfies 2NF and no nonprime attribute of R is transitively dependent on all keys.
- Alternatively A relation is in 3NF if for all FDs X→A one of the following conditions must hold
 - $A \in X$ i.e. trivial FD or
 - X is a superkey (or key) or
 - A is part of some key
- The relation schema EMP_DEPT in is in 2NF, since no partial dependencies on a key exist.
- However, EMP_DEPT is not in 3NF
 - For FD Dnumber \rightarrow Dname Dnumber is not a superkey

(because of the transitive dependency of DMGRSSN (and also DNAME) on SSN via DNUMBER.)

Example

3NF: for all FDs X \rightarrow A one of the following conditions must hold $A \in X$ i.e. trivial FD or X is a superkey (or key) or A is part of some key

EMP_DEPT

- Boyce-Codd normal form (BCNF) was proposed as a simpler form of 3NF,
- but it was found to be stricter than 3NF,
- because every relation in BCNF is also in 3NF; however, a relation in 3NF is not necessarily in BCNF

BCNF

BCNF for all FDs X \rightarrow A one of the following conditions must hold $A \in X$ i.e. trivial FD or X is a superkey (or key)

3NF

for all FDs X \rightarrow A one of the following conditions must hold $A \in X$ i.e. trivial FD or X is a superkey (or key) or A is part of some key

- In our example, AREA
 County_name violates BCNF in LOTS1A because AREA is not a superkey of LOTS1A
- Note that FD5 satisfies 3NF in LOTS1A because COUNTY_NAME is a prime attribute

for all FDs X \rightarrow A one of the following conditions must hold $A \in X$ i.e. trivial FD or X is a superkey (or key) or A is part of some key

Consider the universal relation $R = \{A, B, C, D, E, F, G, H, I, J\}$ and the set of functional dependencies $F = A, B \square C,$ $A \square D, E,$ $B \square F,$ $F \square G, H,$ $D \square I, J.$ What is the key for R Consider a relation R(A, B, C, D, E) with the following dependencies: AB \Box C, CD \Box E, DE \Box B **Exercise 19.7** Suppose you are given a relation R with four attributes *ABCD*. For each of the following sets of FDs, assuming those are the only dependencies that hold for R, do the following: (a) Identify the candidate key(s) for R. (b) Identify the best normal form that R satisfies (1NF, 2NF, 3NF, or BCNF). (c) If R is not in BCNF, decompose it into a set of BCNF relations that preserve the dependencies.

1. $C \rightarrow D, C \rightarrow A, B \rightarrow C$ 2. $B \rightarrow C, D \rightarrow A$ 3. $ABC \rightarrow D, D \rightarrow A$ 4. $A \rightarrow B, BC \rightarrow D, A \rightarrow C$ 5. $AB \rightarrow C, AB \rightarrow D, C \rightarrow A, D \rightarrow B$

> > Uploaded By: anonymous

• The LOTS relation schema violates the general definition of 2NF

• because TAX_RATE is partially dependent on the candidate key {COUNTY_NAME, LOT#}, due to FD3

- •To normalize LOTS into 2NF, we decompose it into the two relations LOTS1 and LOTS2,
 - (b) LOTS1

Uploaded By: anonymous

45

- LOTS2 is in 3NF. However, FD4 in LOTS1 violates 3NF because AREA is not a candidate key and PRICE is not a prime attribute in LOTS1
- To normalize LOTS1 into 3NF, we decompose it into the relation schemas LOTS1A and LOTS1B

- Boyce-Codd normal form (BCNF) was proposed as a simpler form of 3NF,
- but it was found to be stricter than 3NF,
- because every relation in BCNF is also in 3NF; however, a relation in 3NF is not necessarily in BCNF

- •Lets go back to this schema
- •the relation schema LOTS1A still is in 3NF because COUNTY_NAME is a prime attribute.

And let us add this FD AREA
County_Name

STUDENTS-HUB.com

Uploaded By: anonymous

- In our example, AREA
 County_name violates BCNF in LOTS1A because AREA is not a superkey of LOTS1A
- Note that FD5 satisfies 3NF in LOTS1A because COUNTY_NAME is a prime attribute

BCNF for all FDs X \rightarrow A one of the following conditions must hold $A \in X$ i.e. trivial FD or X is a superkey (or key) 3NF

for all FDs X \rightarrow A one of the following conditions must hold $A \in X$ i.e. trivial FD or X is a superkey (or key) or A is part of some key

•We can decompose LOTS1A into two BCNF relations LOTS1AX and LOTS1AY,

