
I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 1

Chapter 5

Graph Algorithm

Definitions

• A graph G = (V, E) consists of a set of vertices, V, and a set of

edges, E.

• Each edge is a pair (v,w), where v, w ϵ V. E edges are sometimes

referred to as arcs.

• If the pair is ordered, then the graph is directed. Directed graphs

are sometimes referred to as diagraphs.

• Vertex w is adjacent to v, if and only if (v, w) ϵ E.

• In an undirected graph with edge (v, w), and hence (w, v), w is

adjacent to v and v is adjacent to w.

V3

v1

V4

V6 V7

V2

V5

v2 Adjacent v1

v5 Not Adjacent v7

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 2

• Sometimes an edge has a third components kwon as either a

weight or a cost.

• A path in a graph is a sequence of vertices w1, w2, w3,…, wn such

that (wi, wi+1) ϵ E for 1 <= i <= n.

• The length of such a path is the number of edged on the path,

which is equal to n-1.

• If the graph contains an edge (v, v) from a vertex to itself, then

the path v, v is sometimes referred to as a loop.

V3 V4

V6 V7

V2

V5

v1
50

30 10 15

10

30

45 10

28

70

13
55

V3

v1

V4

V6 V7

V2

V5

1

2

3

V3

v1

V4

V6 V7

V2

V5

Path(v1,v6):

v1, v4, v7, v6

Length = 3

OR: v1, v4, v6

OR: v1, v4, v3, v6

. . .

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 3

• A simple path is a path such that all vertices are distinct, except

that the first and last could be the same.

• A cycle in a directed graph is a path of length at least 1, such

that w1 = wn, this cycle is simple if the path is simple.

• A directed graph is acyclic if it has no cycles. A directed acyclic

graph is sometimes referred to by its abbreviation, DAG.

V3

v1

V4

V6 V7

V2

V5

V3

v1

V4

V6 V7

V2

V5

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 4

• An undirected graph is connected if there is a path from every

vertex to every other vertex.

• A directed graph with this property is called strongly connected.

V3

v1

V4

V6 V7

V2

V5

V3

v1

V4

V6 V7

V2

V5

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 5

• If the directed graph is not strongly connected, but the underlying

graph (without direction to the arcs) is connected, then the graph

is said to be weakly connected.

• A complete graph is a graph in which there is an edge between

every pair of vertices.

V3

v1

V4

V6 V7

V2

V5

Not strongly connected

V3

v1

V4

V6 V7

V2

V5

connected

weakly connected

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 6

Examples:

• Airport system can be modeled by a graph.

• Traffic flow can be modeled by a graph.

Representation of graphs

1. Adjacency matrix representation

1. One simple way to represent a graph is to use a two

dimensional array.

2. For each edge (u, v), we set a[u][v] = 1; otherwise the entry

in the array is 0.

3. If the edge has a weight associated with it, then we can set

a[u][v] = to the weight and use either a very large or a very

small weight as a sentinel to indicate non exit tent edge.

V3

v1

V4

V6 V7

V2

V5

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 7

4. The space requirement is O(|V|2), which can be prohibitive

if the graph does not have very many edges.

5. An adjacency matrix is an appropriate representation if the

graph is dense ➔ |E| = O(|V|2).

6. In most of the applications that we shell see, this is not true.

For instance, suppose the graph represents a street map.

Where almost all the streets run either north-south or east-

west. Therefore, any intersection is attached to roughly

four streets, so if the graph is directed and all streets are

two-way, then |E| ≈ 4|V|. If there are 3,000 intersections,

then we have a 3,000 vertex graph with 12,000 edges

entries, which would require an array of size 9,000,000.

 v1 v2 v3 v4 v5 v6 v7

v1 0 1 1 1 0 0 0

v2 0 0 0 1 1 0 0

v3 0 0 0 0 0 1 0

v4 0 0 1 0 0 1 1

v5 0 0 0 1 0 0 1

v6 0 0 0 0 0 0 0

v7 0 0 0 0 0 1 0

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 8

2. Adjacency list representation

• If the graph is not dense, in other words, if the graph is

sparse.

• For each vertex, we keep a list of all adjacent vertices.

• The space requirement is then (|E| + |V|).

• If the edges have weights, then this additional information

is also stored in the cells.

• Adjacency lists are the standard way to represent graphs.

• In most real life applications, the vertices have names,

which are unknown at compile time. Since we cannot index

an array by a unknown names, we must provide a mapping

of names to numbers. The easiest way to do this is to use

hash table.

v1

v2

v3

v4

v5

v6

v7

2 3 4

4 5

6

3 6 7

4 7

6

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 9

Topological Sort

A topological sort is an ordering of vertices in a directed acyclic graph,

such that if there is a path from vi to v j, then vj appears after vi in the

ordering.

Example:

Represents the course prerequisite structure at the Birzeit university:

• It is clear that a topological ordering is not possible if the graph

has a cycle, since for two vertices v and w on the cycle, v

precedes w and w precedes v.

• The ordering is not necessarily unique; any legal ordering will do.

C231 C242 C336

C3321
431

C439

C233

C333

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 10

An acyclic graph

Order: v1 -> v2 -> v5 -> v4 -> v3 -> v7 -> v6

And

 V1 -> v2 -> v5 -> v4 -> v7 -> v3 -> v6

Are both topological orderings

• A simple algorithm to find a topological ordering is first to find any

vertex with no incoming edges. We can then print this vertex, and

remove it, along with its edges, from the graph. Then we apply

this same strategy to the rest of the graph.

• To formalize this, we define the indegree of a vertex v as the

number of edges (u, v). We compute the indegrees of all vertices

in the graph. Assume that the indegree array is initialized and

that the graph is read into an adjacency list.

V3

v1

V4

V6 V7

V2

V5

V1

V2

V3

V4

V5

V6

V7

Indegree Known

0

1

2

3

1

3

2

F

F

F

F

F

F

F

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 11

Algorithm

void topSort (Graph G)

 int counter;

 Vertex v, w;

 for (counter = 1; counter <= numOfVertex; counter++)

 v = findMinVertexOfIndegreeZero();

 if (v == notAVertex)

 error (“ Graph has a cycle “);

 break;

 end if

 topNum [v] = counter;

 for each w adjacent to v

 indegree[w] --;

 end for

 end for

end.

• Because findMinVertexOfIndegreeZero() is a simple sequential

scan of the indegree array, each call to it takes O(|V|) time. Since

there are |V| such calls, the running time of the algorithm is O(|V|2).

Algorithm 2

• The time to perform this algorithm is O(|E| + |V|) if adjacency lists

are used. This is apparent where one realizes that the body of the

for loop is executed at most once per edge. The queue operations

are done at most once per vertex, and the initialization steps also

take time proportional to the size of the graph

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 12

void topSort (Graph G)

 Queue Q;

 Int counter;

 Vertex v, w;

 Q = createQueue(numVertex);

 makeNull(Q);

 counter = 0;

 for each vertex v

 if (indegree[v] == 0)

 enqueue(v, Q);

 end if

 end for

 while (Not isEmpty(Q))

 v = dequeue(Q);

 topNum[v] = ++counter;

 for each w adjacent to v

 if (--indegree[w] == 0)

 enqueue(w,Q);

 end if

 end for

 end while

 if (counter != numVertex)

 error(“ Graph has a cycle”);

 end if

 diposeQueue(Q);

end.

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 13

Example

Vertex 1 2 3 4 5 6 7

v1 0 0 0 0 0 0 0

v2 1 0 0 0 0 0 0

v3 2 1 1 1 0 0 0

v4 3 2 1 0 0 0 0

v5 1 1 0 0 0 0 0

v6 3 3 3 3 2 1 0

v7 2 2 2 1 0 0 0

enqueue v1 v2 v5 v4 v3, v7 v6

dequeue v1 v2 v5 v4 v3 v7 v6

V3

v1

V4

V6 V7

V2

V5

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 14

Shortest Path Algorithm

• The cost of a path v1, v2, … , vn is ∑ ci, ci+1. This is referred to as

the weighted path length.

• The unweighted path length is merely the number of edges on the

path, (n-1).

For example, the shortest weighted path from v1 to v6 has a cost of 6

and goes from v1 to v4 to v7 to v6. The shortest unweighted path

between these vertices is 2.

• The graph below shoes the problems that negative edges can

cause. The path from v5 to v4 has cost 1, but a shorter path exists

by following the loop v5, v4, v2, v5, v4, which has cost -5. This

path is still not the shortest, because we could stay in the loop

arbitrarily long. Thus, the shortest path between these two points

is undefined.

i= 1

n-1

V3

v1

V4

V6 V7

V2

V5

4

2

2

5

1

8

1

6

2

3
10

4

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 15

• This loop is known as a negative cost cycle; When one is present

in the graph, the shortest path are not defined.

• We will examine algorithms to solve four versions of this problem.

o First, we will consider the unweighted shortest path problem

and show how to it in O (|E| + |V|).

o Next, we will show how to solve the weighted shortest path

problem if we assume that there are no negative edges. The

running time for this algorithm is O (|E| log|V|) when

implemented with reasonable data structures.

o If the graph has negative edges, we will provide a simple

solution, which unfortunately has a poor time bound of O (|E|.

|V|).

o Finally, we will solve the weighted problem for the special

case of acyclic graphs in the linear time.

V3

v1

V4

V6 V7

V2

V5

4

2

5

2

1

6

1

6

1

3
-10

2

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 16

1) Unweighted shortest paths

We would like to find the shortest path from s to all other vertices.

We are only interested in the number of edges contained on the

path. So there are no weights on the edges. This is clearly a special

case of the weighted shortest path problem, since we could assign

all edges a weight of 1.

Initial configuration of table used in unweighted shortest path

computation

V Known dv pv

v1 0 Ꝏ 0

v2 0 Ꝏ 0

v3 0 0 0

v4 0 Ꝏ 0

v5 0 Ꝏ 0

v6 0 Ꝏ 0

v7 0 Ꝏ 0

Suppose we choose s to be v3

V3

v1

V4

V6 V7

V2

V5

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 17

Algorithm #1

void unweighted (Table T)

int currentDist;

Vertex V, W;

for (currentDist = 0; currentDist < numVertex; currentDist++)

 for each vertex v

 if ((!T[v].known) And (T[v].dist == currentDist)

 T[v].known = true;

 for each w adjacent to v

 if (T[w].dist == IntMax)

 T[w].dist = currentDist + 1;

 T[w].path = v;

 end if

 end for

 end if

 end for

end for

end

• The running time of the algorithm is O(V2), because of the doubly

nested for loop.

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 18

Algorithm #2

void unweighted (Table T)

 Queue Q;

 Vertex v, w;

 Q = createQueue (numVertex);

 makeNull (Q);

 // enqueue the start vertex s,

 enqueue(Q, s);

 while (! isEmpty (Q))

 v = dequeue (Q);

 T[v].known = true;

 for each w adjacent to v

 if (T[w].dist == IntMax)

 T[w].dist = T[v].dist +1;

 T [w].path = v;

 enqueue (Q, w);

 end if

 end for

 end while

 dispaoseQueue (Q);

end.

• The running time of the algorithm is O (|E| + |V|)

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 19

2) Dijkstra’s Algorithm

• If the graph is weighted, the problem becomes harder, but we can

still use the ideas from the unweighted case.

• This solution is an example of a greedy algorithms generally solve

a problem in stages by doing what appears to be the best thing at

each stage.

V

k
n

o
w

n

dv pv

k
n

o
w

n

dv pv

k
n

o
w

n

dv pv

k
n

o
w

n

dv pv

k
n

o
w

n

dv pv

k
n

o
w

n

dv pv

k
n

o
w

n

dv pv

v1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

v2 0 Ꝏ 0 0 2 v1 0 2 v1 1 2 v1 1 2 v1 1 2 v1 1 2 v1

v3 0 Ꝏ 0 0 Ꝏ 0 0 3 v4 0 3 v4 1 3 v4 1 3 v4 1 3 v4

v4 0 Ꝏ 0 0 1 v1 1 1 v1 1 1 v1 1 1 v1 1 1 v1 1 1 v1

v5 0 Ꝏ 0 0 Ꝏ 0 0 3 v4 0 3 v4 1 3 v4 1 3 v4 1 3 v4

v6 0 Ꝏ 0 0 Ꝏ 0 0 9 v4 0 9 v4 0 8 v3 0 6 v7 1 6 v7

v7 0 Ꝏ 0 0 Ꝏ 0 0 5 v4 0 5 v4 0 5 v4 1 5 v4 1 5 v4

V3

v1

V4

V6 V7

V2

V5

4

2

2

5

1

8

1

6

2

3
10

4

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 20

Declarations for Dijkstra’s Algorithm

int vertex;

tableEntry

{

 List header;

 boolean known;

 distType dist;

 vertex path;

}

tableEntry Table[numberOfVertex + 1];

void intializeTable (vertex start, Graph g, Table T)

begin

 int i;

 readGraph(G, T);

 for (i = numberOfVertex; i > 0; i--)

 T[i].known = false;

 T[i].dist = INT_MAX;

 T[i].path = notVertex;

 end for

 T[start].dist = 0;

end.

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 21

void Dijkstra (Table T)

begin

 vertex v, w;

 for (; ;)

 v = smallest_Unknown_Distance_Vertex;

 if (v == notVertex)

 break;

 end if

 T[v].known = true;

 for each w adjacent to v

 if (! T[w].known)

 if (T[v].dist + cv,w < T[w].dist)

 T[w].dist = T[v].dist + cv,w ;

 T[w].path = v;

 end if

 end if

 end for

 end for

end.

Time = O(V2)

void printPath(vertex v, Table T)

 if (T[v].path != notVertex)

 printPath(T[v].path, T);

 print(“ to “);

 end if

 print(v);

end.

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 22

3) Graphs with Negative Edge costs

• If the graph has negative edge costs. Then Dijkstra’s Algorithm

does not work.

• The problem is that once a vertex u is declared known, it is

possible that from some other unknown vertex v there is a path

back to u that is very negative. In such a case, taking a path from

s to v back to u is better than going from s to u without using v.

• A combination of the weighted and unweighted algorithms will

solve the problem, but at the cost of a drastic increase in running

time.

• We forget about the concept of known vertices, since our

algorithm needs to be able to change its mind.

• The running time is O(E.V) if adjacency lists are used.

V3

v1

V4

V6 V7

V2

V5

4

2

2

5

1

8

1

6

2

3
-10

4

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 23

void weightesNegative(Table T)

 Queue Q;

 veretex v, w;

 Q = createQueue(numOfVertex);

 enqueue(Q, s);

 while (! isEmpty(Q))

 v = dequeue(Q);

 for each w adjacent to v

 if(T[v].dist + cv,w < T[w].dist)

 T[w].dist = T[v].dist + cv,w ;

 T[w].path = v;

 if (w is not already in Q)

 enqueue(Q, w);

 end if

 end if

 end for

 end while

 disposeQueue(Q);

end.

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 24

4) Acyclic Graphs

• If the graph is known to be acyclic, we can improve Dijkstra’s

Algorithm by changing the order in which vertices are declared

known, otherwise known as vertex selection rule.

• The new rule is to select vertices in topological order.

• The selection rule works because when a vertex v is selected, its

distance, dv, can no longer be lowered, since by the topological

ordering rule it has no incoming edge emarating from unknown

nodes.

• A more important use of acyclic graphs is critical path analysis.

Start

• This graph is thus known as an activity node graph.

• The edges represent procedure relationship.

• An edge (v, w) means that activity v must be completed before

activity w may begin.

B(2)

A(3)

D(2) H(1)

G(2)

C(3)

F(3)

E(1) K(4)

Finish

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 25

• There is several important questions which would be of interest to

answer

1. What is the earliest completion time for the project?

We can see from the graph that 10 time units are required

along the path A, C, F, H.

2. Determine which activities can be delayed, and by how

long without affecting the minimum completion time.

• To find the earliest completion time of the project, we merely need

to find the length of the longest path from the first event to the last

event.

• We can also compute the latest time, that each event can finish

without affecting the final completion time.

• The slack time for each edge in the event node graph represents

the amount of time that the completion of the corresponding

activity can be delayed without delaying the overall completion.

• To perform these calculations, we convert the activity node graph

to an event node graph.

3

2

6 10

7

6

4

5 9

1

8

7

10

8

A/3

B/2

0

0

C/3

E/1

D/2

0

0

0

0
K/4

G/2

F/3
H/1 0

0

0

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 26

Activity node graph

Start

Event node graph.

B(2)

A(3)

D(2) H(1)

G(2)

C(3)

F(3)

E(1) K(4)

Finish

3

2

6 10

7

6

4

5 9

1

8

7

10

8

A/3

B/2

0

0

C/3

E/1

D/2

0

0

0

0
K/4

G/2

F/3
H/1 0

0

0

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 27

• Earliest completion times

 Max

• Latest completion times

 Min

3

2

6 10

7

6

4

5 9

1

8

7

10

8

A/3

B/2

0

0

C/3

E/1

D/2

0

0

0

0
K/4

G/2

F/3
H/1 0

0

0

0

3

2

3

3

5

6

6

5

9

7

7

9 10

3

2

6 10

7

6

4

5 9

1

8

7

10

8

A/3

B/2

0

0

C/3

E/1

D/2

0

0

0

0
K/4

G/2

F/3
H/1 0

0

0

6 9

10

0

3

4

4

5

6

6

7

9

9 10

9

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 28

• Earliest completion times, Latest completion times and slack

• Some activities have zero slack. These are critical activities,

which must finish on schedule. There is at least one path

considering entirely of zero slack edges, such a path is a critical

path.

3

2

6 10

7

6

4

5 9

1

8

7

10

8

A/3/0

B/2/2

0

0

C/3/0

E/1/2

D/2/1

0

0

0

0
K/4/2

G/2/2

F/3/0
H/1/0 0

0

0

0

3

2

3

3

5

6

6

5

9

7

7

9 10

0

3

4

4

5

6

6

6

7

9

9 10

9

9

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 29

Minimum Spanning Tree

• A minimum spanning tree of an undirected graph G is a tree

formed from graph edges that connects all the vertices of G at

lowest total cost.

• A minimum spanning tree exist if and only if G is connected.

Result:

V3

v1

V4

V6 V7

V2

V5

4

2

2

5

1

8

1

6

7

3
10

4

V3

v1

V4

V6 V7

V2

V5

2

2

1

1

6 4

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 30

• The minimum spanning tree is a tree because it is acyclic. It is

spanning because it covers every edge, and it is minimum for the

obvious reason.

Example:

If we need to wire a house with minimum of cable, then a

minimum spanning tree problem needs to be solved.

• There are two basic algorithms to solve this problem, both are

greedy.

1) Prim’s Algorithm

• One way to compute a minimum spanning tree it so grow

the tree in successive stages. In each stage, one node is

picked as the root, and we add an edge, and thus an

associated vertex to the tree.

• We can see that prim’s algorithm is essentially identical to

Dijkstra’s algorithm for shortest paths. As before, for each

vertex we keep values dv and pv and an indication of

whether it is known or unknown. dv is the weight of the

shortest arc connecting v to a known vertex, and pv, as

before, is the last vertex to cause a change in dv. The rest

of the algorithm is exactly the same, with the exception that

since the definition of dv is different, so is the update rule.

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 31

• For this problem, the update rule is even simpler than

before; After a vertex v is selected, for each unknown w

adjacent to v

dv = min (dw, cwv)

• The running time is O(V2) without heaps, which is optional

for dense graphs, and O(E logv) using binary heaps,

which is good for sparse graphs.

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 32

V3

v1

V4

V6 V7

V2

V5

4

2

2

5

1

8

1

6

7

3
10

4

V3

v1

V4

V6 V7

V2

V5 V3

v1

V4

V6 V7

V2

V5

V3

v1

V4

V6 V7

V2

V5 V3

v1

V4

V6 V7

V2

V5

V3

v1

V4

V6 V7

V2

V5
V3

v1

V4

V6 V7

V2

V5

1

2

1

2

1

2

1

2

1

2

2

4

2

4

1

6

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 33

V

k
n

o
w

n

dv pv

k
n

o
w

n

dv pv

k
n

o
w

n

dv pv
k
n

o
w

n

dv pv

k
n

o
w

n

dv pv

k
n

o
w

n

dv pv

k
n

o
w

n

dv pv

v1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

v2 0 Ꝏ 0 0 2 v1 0 2 v1 1 2 v1 1 2 v1 1 2 v1 1 2 v1

v3 0 Ꝏ 0 0 4 v1 0 2 v4 1 2 v4 1 2 v4 1 2 v4 1 2 v4

v4 0 Ꝏ 0 0 1 v1 1 1 v1 1 1 v1 1 1 v1 1 1 v1 1 1 v1

v5 0 Ꝏ 0 0 Ꝏ 0 0 7 v4 0 7 v4 0 6 v7 0 6 v7 1 6 v7

v6 0 Ꝏ 0 0 Ꝏ 0 0 8 v4 0 5 v3 0 1 v7 1 1 v7 1 1 v7

v7 0 Ꝏ 0 0 Ꝏ 0 0 4 v4 0 4 v4 1 4 v4 1 4 v4 1 4 v4

V3

v1

V4

V6 V7

V2

V5

4

2

2

5

1

8

1

6

7

3
10

4

Initial V1 is declared V4 is declared V2 is declared

V3 is declared

V7 is declared V6 is declared V5 is declared

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 34

2) Kruskal’s Algorithm

• A second greedy strategy is continually to select the edge in

order of smallest weight and accept an edge if it does not

cause a cycle.

• Formally, kruskal’s algorithm maintain a forest (a collection of

tree). Initially, there are v single node trees. Adding an edge

merges two trees into one, when the algorithm terminates,

there is only one tree, and this is the minimum spanning tree.

• The invariant we will use is that at any point in the process, two

vertices belong to the same set of and only if they one

connected in the current spanning forest.

• Thus, each vertex is initially in its own set. If u and v are in the

same set, the edge is rejected, because since they are already

connected, adding (u,v) would form a cycle. Otherwise, the

edge is accepted, and a union is performed on the two sets

containing u and v.

• The edges could be sorted to facilitate the selection, but

building a heap in linear time is a much better idea. Then delete

minimum give the edges to be tested in order.

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 35

Edge Weight Action

(v1, v4) 1 Accepted

(v6, v7) 1 Accepted

(v1, v2) 2 Accepted

(v3, v4) 2 Accepted

(v2, v4) 3 Rejected

(v1, v3) 4 Rejected

(v4, v7) 4 Accepted

(v3, v6) 5 Rejected

(v5, v7) 6 Accepted

… .. …

V3

v1

V6

4

2

5

V4

V7

V2

V5

2

8

1

6

7

10

4

1 3

V3

v1

V4

V6 V7

V2

V5 V3

v1

V4

V6 V7

V2

V5

V3

v1

V4

V6 V7

V2

V5 V3

v1

V4

V6 V7

V2

V5

V3

v1

V4

V6 V7

V2

V5
V3

v1

V4

V6 V7

V2

V5

1

1

1

2

1

2

1

2

1

1

2

1

2

4

1

6

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 36

Algorithm

void Kruskal (Graph G)

 int edgesAccepted = 0;

 disjoinedSet s;

 Heap h;

 vertex u, v;

 setType uSet, vSet;

 edge e;

 initialize (s);

 read_Graph_into_Heap_Array(G, h);

 while (edgesAccepted < numOfVertex)

 e = deleteMin(h);

 uSet = find(u, s);

 vSet = find(v ,s);

 if (uSet != vSet)

 edgesAccepted ++;

 setUnion(s, uSet, vSet);

 end if

 end while

end.

Uploaded By: anonymousSTUDENTS-HUB.com

I y a d J a b e r - A l g o r i t h m A n a l y s i s P a g e | 37

Ideas

disjointSet s

edge ➔ (v1, v4)

find (u, s); // 1

find (v, s); // 4

union (s, u, v)

1 2 3 4 5 6 7

1 2 3 4 5 6 7

V1 V2 V3 V4 V5 V6 V7

V1 V2 V3

V4

V5 V6 V7

Uploaded By: anonymousSTUDENTS-HUB.com

