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Chapter 5 

Graph Algorithm 

 

Definitions 

• A graph G = ( V, E ) consists of a set of vertices, V, and a set of 

edges, E. 

 

 

 

 

  

 

 

 

 

 

• Each edge is a pair (v,w), where v, w ϵ V. E edges are sometimes 

referred to as arcs. 

• If the pair is ordered, then the graph is directed. Directed graphs 

are sometimes referred to as diagraphs. 

 

• Vertex w is adjacent to v, if and only if (v, w) ϵ E. 

• In an undirected graph with edge (v, w), and hence (w, v), w is 

adjacent to v and v is adjacent to w. 
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• Sometimes an edge has a third components kwon as either a 

weight or a cost.  

 

 

 

  

 

 

 

 

 

• A path in a graph is a sequence of vertices w1, w2, w3,…, wn such 

that (wi, wi+1) ϵ E for  1 <= i <= n. 

• The length of such a path is the number of edged on the path, 

which is equal to n-1. 

 

 

 

  

 

 

 

 

• If the graph contains an edge ( v, v ) from  a vertex to itself, then 

the path v, v is sometimes referred to as a loop. 

 

 

 

  

 

 

 

V3 V4 

V6 V7 

V2 

V5 

v1 
50 

30 10 15

 

10 

30 

45 10 

28 

70 

13 
55 

V3 

v1 

V4 

V6 V7 

V2 

V5 

1 

2 

3 

V3 

v1 

V4 

V6 V7 

V2 

V5 

Path(v1,v6):  

v1, v4, v7, v6 

Length = 3 

OR: v1, v4, v6 

OR: v1, v4, v3, v6 

. . . 

Uploaded By: anonymousSTUDENTS-HUB.com



I y a d  J a b e r  -  A l g o r i t h m  A n a l y s i s  P a g e  | 3 

 

 

• A simple path is a path such that all vertices are distinct, except 

that the first and last could be the same. 

 

•  A cycle in a directed graph is a path of length at least 1, such 

that w1 = wn, this cycle is simple if the path is simple. 

 

 

 

 

  

 

 

 

 

 

• A directed graph is acyclic if it has no cycles. A directed acyclic 

graph is sometimes referred to by its abbreviation, DAG. 
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• An undirected graph is connected if there is a path from every 

vertex to every other vertex. 

 

 

 

 

  

 

 

 

 

 

• A directed graph with this property is called strongly connected. 
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• If the directed graph is not strongly connected, but the underlying 

graph (without direction to the arcs) is connected, then the graph 

is said to be weakly connected. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

• A complete graph is a graph in which there is an edge between 

every pair of vertices. 
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Examples: 

• Airport system can be modeled by a graph. 

• Traffic flow can be modeled by a graph. 

 

 

Representation of graphs 

 

 

  

 

 

 

 

1. Adjacency matrix representation 

1. One simple way to represent a graph is to use a two 

dimensional array. 

 

2. For each edge (u, v), we set a[u][v] = 1; otherwise the entry 

in the array is 0. 

 

3. If the edge has a weight associated with it, then we can set 

a[u][v] = to the weight and use either a very large or a very 

small weight as a sentinel to indicate non exit tent edge. 
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4. The space requirement is O(|V|2), which can be prohibitive 

if the graph does not have very many edges. 

 

5. An adjacency matrix is an appropriate representation if the 

graph is dense ➔ |E| = O(|V|2). 

 

 

6. In most of the applications that we shell see, this is not true. 

For instance, suppose the graph represents a street map. 

Where almost all the streets run either north-south or east-

west. Therefore, any intersection is attached to roughly 

four streets, so if the graph is directed and all streets are 

two-way, then |E| ≈ 4|V|. If there are 3,000 intersections, 

then we have a 3,000 vertex graph with 12,000 edges 

entries, which would require an array of size 9,000,000. 

 

 v1 v2 v3 v4 v5 v6 v7 

v1 0 1 1 1 0 0 0 

v2 0 0 0 1 1 0 0 

v3 0 0 0 0 0 1 0 

v4 0 0 1 0 0 1 1 

v5 0 0 0 1 0 0 1 

v6 0 0 0 0 0 0 0 

v7 0 0 0 0 0 1 0 
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2. Adjacency list representation 

• If the graph is not dense, in other words, if the graph is 

sparse. 

• For each vertex, we keep a list of all adjacent vertices. 

 

• The space requirement is then (|E| + |V|). 

 

• If the edges have weights, then this additional information 

is also stored in the cells. 

 

• Adjacency lists are the standard way to represent graphs. 

 

• In most real life applications, the vertices have names, 

which are unknown at compile time. Since we cannot index 

an array by a unknown names, we must provide a mapping 

of names to numbers. The easiest way to do this is to use 

hash table. 
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Topological Sort 

A topological sort is an ordering of vertices in a directed acyclic graph, 

such that if there is a path from vi to v j, then vj appears after vi in the 

ordering. 

 

Example: 

Represents the course prerequisite structure at the Birzeit university: 

 

 

 

 

 

 

 

 

 

 

• It is clear that a topological ordering is not possible if the graph 

has a cycle, since for two vertices v and w on the cycle, v 

precedes w and w precedes v. 

 

• The ordering is not necessarily unique; any legal ordering will do. 
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An acyclic graph 

 

 

  

 

 

 

 

Order:  v1 -> v2 -> v5 -> v4 -> v3 -> v7 -> v6 

And 

  V1 -> v2 -> v5 -> v4 -> v7 -> v3 -> v6 

Are both topological orderings 

 

• A simple algorithm to find a topological ordering is first to find any 

vertex with no incoming edges. We can then print this vertex, and 

remove it, along with its edges, from the graph. Then we apply 

this same strategy to the rest of the graph. 

 

• To formalize this, we define the indegree of a vertex v as the 

number of edges (u, v). We compute the indegrees of all vertices 

in the graph. Assume that the indegree array is initialized and 

that the graph is read into an adjacency list. 
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Algorithm 

void topSort (Graph G) 

 int counter; 

 Vertex v, w; 

 for ( counter = 1; counter <= numOfVertex; counter++) 

  v = findMinVertexOfIndegreeZero(); 

  if ( v == notAVertex ) 

   error (“ Graph has a cycle “); 

   break; 

  end if 

  topNum [v] = counter; 

  for each w adjacent to v 

   indegree[ w ] --; 

  end for 

 end for 

end. 

 

• Because findMinVertexOfIndegreeZero() is a simple sequential 

scan of the indegree array, each call to it takes O(|V|) time. Since 

there are |V| such calls, the running time of the algorithm is O(|V|2). 

 

Algorithm 2 

• The time to perform this algorithm is O(|E| + |V|) if adjacency lists 

are used. This is apparent where one realizes that the body of the 

for loop is executed at most once per edge. The queue operations 

are done at most once per vertex, and the initialization steps also 

take time proportional to the size of the graph 
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void topSort ( Graph G) 

 Queue Q; 

 Int counter; 

 Vertex v, w; 

 Q = createQueue( numVertex); 

 makeNull(Q); 

 counter = 0; 

 for each vertex v 

  if ( indegree[ v ] == 0 ) 

   enqueue(v, Q); 

  end if 

 end for 

 while ( Not isEmpty( Q )) 

  v = dequeue( Q ); 

  topNum[ v ] = ++counter; 

  for each w adjacent to v 

   if ( --indegree[ w ] == 0) 

    enqueue(w,Q); 

   end if 

  end for 

 end while 

 if ( counter != numVertex ) 

  error( “ Graph has a cycle”); 

 end if 

 diposeQueue( Q ); 

end. 
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Example 

 

 

  

 

 

 

 

Vertex 1 2 3 4 5 6 7 

v1 0 0 0 0 0 0 0 

v2 1 0 0 0 0 0 0 

v3 2 1 1 1 0 0 0 

v4 3 2 1 0 0 0 0 

v5 1 1 0 0 0 0 0 

v6 3 3 3 3 2 1 0 

v7 2 2 2 1 0 0 0 

enqueue v1 v2 v5 v4 v3, v7  v6 

dequeue v1 v2 v5 v4 v3 v7 v6 
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Shortest Path Algorithm 

• The cost of a path v1, v2, … , vn is  ∑ ci, ci+1. This is referred to as 

the weighted path length. 

• The unweighted path length is merely the number of edges on the 

path, ( n-1 ). 

 

For example, the shortest weighted path from v1 to v6 has a cost of 6 

and goes from v1 to v4 to v7 to v6. The shortest unweighted path 

between these vertices is 2. 

 

 

 

 

  

 

 

 

 

 

• The graph below shoes the problems that negative edges can 

cause. The path from v5 to v4 has cost 1, but a shorter path exists 

by following the loop v5, v4, v2, v5, v4, which has cost -5. This 

path is still not the shortest, because we could stay in the loop 

arbitrarily long. Thus, the shortest path between these two points 

is undefined. 
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• This loop is known as a negative cost cycle; When one is present 

in the graph, the shortest path are not defined. 

 

 

 

  

 

 

 

 

 

• We will examine algorithms to solve four versions of this problem.  

o First, we will consider the unweighted shortest path problem 

and show how to it in O (|E| + |V|). 

o Next, we will show how to solve the weighted shortest path 

problem if we assume that there are no negative edges. The 

running time for this algorithm is O (|E| log|V|) when 

implemented with reasonable data structures. 

o If the graph has negative edges, we will provide a simple 

solution, which unfortunately has a poor time bound of O (|E|.  

|V|). 

o Finally, we will solve the weighted problem for the special 

case of acyclic graphs in the linear time. 
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1) Unweighted shortest paths 

We would like to find the shortest path from s to all other vertices. 

We are only interested in the number of edges contained on the 

path. So there are no weights on the edges. This is clearly a special 

case of the weighted shortest path problem, since we could assign 

all edges a weight of 1. 

 

 

 

  

 

 

 

 

Initial configuration of table used in unweighted shortest path 

computation 

V Known dv pv 

v1 0 Ꝏ 0 

v2 0 Ꝏ 0 

v3 0 0 0 

v4 0 Ꝏ 0 

v5 0 Ꝏ 0 

v6 0 Ꝏ 0 

v7 0 Ꝏ 0 
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Algorithm #1 

void unweighted ( Table T) 

int currentDist; 

Vertex V, W; 

for ( currentDist = 0; currentDist < numVertex; currentDist++) 

   for each vertex v 

  if ( ( !T[ v ].known ) And ( T[ v ].dist == currentDist ) 

   T[ v ].known = true; 

   for each w adjacent to v 

    if ( T[ w ].dist == IntMax ) 

     T[ w ].dist = currentDist + 1; 

     T[ w ].path = v; 

    end if 

   end for 

  end if 

   end for 

end for 

end 

 

• The running time of the algorithm is O(V2), because of the doubly 

nested for loop. 
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Algorithm #2 

void unweighted ( Table T) 

 Queue Q; 

 Vertex v, w; 

 Q = createQueue ( numVertex); 

 makeNull (Q); 

 // enqueue the start vertex s,  

 enqueue(Q, s); 

 while ( ! isEmpty (Q)) 

  v = dequeue (Q); 

  T[ v ].known = true; 

  for each w adjacent to v 

   if ( T[ w ].dist == IntMax ) 

    T[ w ].dist = T[ v ].dist +1; 

    T [w ].path = v; 

    enqueue (Q, w); 

   end if 

  end for 

 end while 

 dispaoseQueue (Q); 

end. 

 

• The running time of the algorithm is O ( |E| + |V| ) 
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2) Dijkstra’s Algorithm 

• If the graph is weighted, the problem becomes harder, but we can 

still use the ideas from the unweighted case. 

• This solution is an example of a greedy algorithms generally solve 

a problem in stages by doing what appears to be the best thing at 

each stage. 
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v1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 

v2 0 Ꝏ 0 0 2 v1 0 2 v1 1 2 v1 1 2 v1 1 2 v1 1 2 v1 

v3 0 Ꝏ 0 0 Ꝏ 0 0 3 v4 0 3 v4 1 3 v4 1 3 v4 1 3 v4 

v4 0 Ꝏ 0 0 1 v1 1 1 v1 1 1 v1 1 1 v1 1 1 v1 1 1 v1 

v5 0 Ꝏ 0 0 Ꝏ 0 0 3 v4 0 3 v4 1 3 v4 1 3 v4 1 3 v4 

v6 0 Ꝏ 0 0 Ꝏ 0 0 9 v4 0 9 v4 0 8 v3 0 6 v7 1 6 v7 

v7 0 Ꝏ 0 0 Ꝏ 0 0 5 v4 0 5 v4 0 5 v4 1 5 v4 1 5 v4 
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Declarations for Dijkstra’s Algorithm 

int vertex; 

tableEntry 

{ 

 List header; 

 boolean known; 

 distType dist; 

 vertex path; 

} 

tableEntry Table[ numberOfVertex + 1]; 

 

void intializeTable ( vertex start, Graph g, Table T) 

begin 

 int i; 

 readGraph(G, T); 

 for ( i = numberOfVertex; i > 0; i--) 

  T[ i ].known = false; 

  T[ i ].dist = INT_MAX; 

  T[ i ].path = notVertex; 

 end for 

 T[ start ].dist = 0; 

end. 
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void Dijkstra ( Table T ) 

begin 

 vertex v, w; 

 for ( ; ; ) 

  v = smallest_Unknown_Distance_Vertex; 

  if ( v == notVertex ) 

   break; 

  end if 

  T[ v ].known = true; 

  for each w adjacent to v 

   if ( ! T[ w ].known ) 

    if ( T[ v ].dist + cv,w < T[ w ].dist ) 

     T[ w ].dist = T[ v ].dist + cv,w ; 

     T[ w ].path = v; 

    end if 

   end if 

  end for 

 end for 

end. 

Time = O(V2) 

void printPath( vertex v, Table T ) 

 if ( T[ v ].path != notVertex ) 

  printPath( T[ v ].path, T); 

  print( “ to “); 

 end if 

 print( v ); 

end. 
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3) Graphs with Negative Edge costs 

• If the graph has negative edge costs. Then Dijkstra’s Algorithm 

does not work. 

• The problem is that once a vertex u is declared known, it is 

possible that from some other unknown vertex v there is a path 

back to u that is very negative. In such a case, taking a path from 

s to v back to u is better than going from s to u without using v. 

• A combination of the weighted and unweighted algorithms will 

solve the problem, but at the cost of a drastic increase in running 

time. 

• We forget about the concept of known vertices, since our 

algorithm needs to be able to change its mind. 

• The running time is O( E.V ) if adjacency  lists are used. 
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void weightesNegative( Table T) 

 Queue Q; 

 veretex v, w; 

 Q = createQueue( numOfVertex ); 

 enqueue( Q, s); 

 while ( ! isEmpty( Q )) 

  v = dequeue( Q ); 

  for each w adjacent to v 

   if( T[ v ].dist + cv,w < T[ w ].dist ) 

    T[ w ].dist = T[ v ].dist + cv,w ; 

    T[ w ].path = v; 

    if ( w is not already in Q ) 

     enqueue( Q, w); 

    end if 

   end if 

  end for 

 end while 

 disposeQueue( Q ); 

end. 
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4) Acyclic Graphs 

• If the graph is known to be acyclic, we can improve Dijkstra’s 

Algorithm by changing the order in which vertices are declared 

known, otherwise known as vertex selection rule. 

• The new rule is to select vertices in topological order. 

• The selection rule works because when a vertex v is selected, its 

distance, dv, can no longer be lowered, since by the topological 

ordering rule it has no incoming edge emarating from unknown 

nodes. 

• A more important use of acyclic graphs is critical path analysis. 

 

 

 

Start 

  

 

 

 

  

• This graph is thus known as an activity node graph. 

• The edges represent procedure relationship. 

• An edge (v, w) means that activity v must be completed before 

activity w may begin. 
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• There is several important questions which would be of interest to 

answer 

 

1. What is the earliest completion time for the project? 

We can see from the graph that 10 time units are required 

along the path A, C, F, H. 

2. Determine which activities can be delayed, and by how 

long without affecting the minimum completion time. 

 

• To find the earliest completion time of the project, we merely need 

to find the length of the longest path from the first event to the last 

event. 

• We can also compute the latest time, that each event can finish 

without affecting the final completion time. 

• The slack time for each edge in the event node graph represents 

the amount of time that the completion of the corresponding 

activity can be delayed without delaying the overall completion. 

• To perform these calculations, we convert the activity node graph 

to an event node graph. 
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Activity node graph 
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Event node graph. 
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• Earliest completion times 
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• Latest completion times 
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• Earliest completion times, Latest completion times and slack 

 

 

 

 

  

 

 

 

 

• Some activities have zero slack. These are critical activities, 

which must finish on schedule. There is at least one path 

considering entirely of zero slack edges, such a path is a critical 

path. 
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Minimum Spanning Tree 

• A minimum spanning tree of an undirected graph G is a tree 

formed from graph edges that connects all the vertices of G at 

lowest total cost. 

• A minimum spanning tree exist if and only if G is connected. 
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• The minimum spanning tree is a tree because it is acyclic. It is 

spanning because it covers every edge, and it is minimum for the 

obvious reason. 

 

Example: 

If we need to wire a house with minimum of cable, then a 

minimum spanning tree problem needs to be solved. 

 

• There are two basic algorithms to solve this problem, both are 

greedy. 

 

1) Prim’s Algorithm 

• One way to compute a minimum spanning tree it so grow 

the tree in successive stages. In each stage, one node is 

picked as  the root, and we add an edge, and thus an 

associated vertex to the tree. 

• We can see that prim’s algorithm is essentially identical to 

Dijkstra’s algorithm for shortest paths. As before, for each 

vertex we keep values dv and pv and an indication of 

whether it is known or unknown. dv is the weight of the 

shortest arc connecting v to a known vertex, and pv, as 

before, is the last vertex to cause a change in dv. The rest 

of the algorithm is exactly the same, with the exception that 

since the definition of dv is different, so is the update rule. 
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• For this problem, the update rule is even simpler than 

before; After a vertex v is selected, for each unknown w 

adjacent to v  

dv = min (dw, cwv) 

• The running time is O(V2) without heaps, which is optional 

for dense graphs, and O( E logv ) using binary heaps, 

which is good for sparse graphs. 
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v1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 

v2 0 Ꝏ 0 0 2 v1 0 2 v1 1 2 v1 1 2 v1 1 2 v1 1 2 v1 

v3 0 Ꝏ 0 0 4 v1 0 2 v4 1 2 v4 1 2 v4 1 2 v4 1 2 v4 

v4 0 Ꝏ 0 0 1 v1 1 1 v1 1 1 v1 1 1 v1 1 1 v1 1 1 v1 

v5 0 Ꝏ 0 0 Ꝏ 0 0 7 v4 0 7 v4 0 6 v7 0 6 v7 1 6 v7 

v6 0 Ꝏ 0 0 Ꝏ 0 0 8 v4 0 5 v3 0 1 v7 1 1 v7 1 1 v7 

v7 0 Ꝏ 0 0 Ꝏ 0 0 4 v4 0 4 v4 1 4 v4 1 4 v4 1 4 v4 
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2) Kruskal’s Algorithm 

• A second greedy strategy is continually to select the edge in 

order of smallest weight and accept an edge if it does not 

cause a cycle. 

• Formally, kruskal’s algorithm maintain a forest (a collection of 

tree). Initially, there are v single node trees. Adding an edge 

merges two trees into one, when the algorithm terminates, 

there is only one tree, and this is the minimum spanning tree. 

• The invariant we will use is that at any point in the process, two 

vertices belong to the same set of and only if they one 

connected in the current spanning forest. 

• Thus, each vertex is initially in its own set. If u and v are in the 

same set, the edge is rejected, because since they are already 

connected, adding (u,v) would form a cycle. Otherwise, the 

edge is accepted, and a union is performed on the two sets 

containing u and v. 

•  The edges could be sorted to facilitate the selection, but 

building a heap in linear time is a much better idea. Then delete 

minimum give the edges to be tested in order. 
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Edge Weight Action 

(v1, v4) 1 Accepted 

(v6, v7) 1 Accepted 

(v1, v2) 2 Accepted 

(v3, v4) 2 Accepted 

(v2, v4) 3 Rejected 

(v1, v3) 4 Rejected 

(v4, v7) 4 Accepted 

(v3, v6) 5 Rejected 

(v5, v7) 6 Accepted 

… .. … 
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Algorithm 

void Kruskal ( Graph G ) 

 int  edgesAccepted = 0; 

 disjoinedSet s; 

  Heap h; 

 vertex u, v; 

 setType uSet, vSet; 

 edge e; 

 initialize ( s); 

 read_Graph_into_Heap_Array( G, h); 

 while ( edgesAccepted < numOfVertex ) 

  e = deleteMin( h ); 

  uSet = find( u, s); 

  vSet = find( v ,s); 

  if ( uSet != vSet ) 

   edgesAccepted ++; 

   setUnion( s, uSet, vSet ); 

  end if 

 end while 

end. 
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Ideas 

 

disjointSet s  

 

 

   

 

edge ➔ (v1, v4) 

find ( u, s);  // 1 

find ( v, s);  // 4 

 

union ( s, u, v ) 

  

 

 

 

 

1 2 3 4 5 6 7 

1 2 3 4 5 6 7 

V1 V2 V3 V4 V5 V6 V7 

V1 V2 V3 

V4 

V5 V6 V7 

Uploaded By: anonymousSTUDENTS-HUB.com


