Birzeit University Mathematics Department Math234 Short Exam (KEY)

Instructor: Dr. Ala Talahmeh Name:..... Section: 2 First Semester 2021/2022 Number:..... Date: 10/11/2021

Exercise#1 [15 marks]. True or False?

- 1. (True) If det(A) = 1, then $A^{-1} = adj(A)$.
- 2. (False) If AB is equal to the identity matrix, then A must be invertible matrix.
- 3. (True) If $B = A^T A$, then 3B is symmetric.
- 4. (False) Three elementary row operations do not change the determinant of a square matrix.
- 5. (True) If A is row equivalent to B, then |A| and |B| are either both zero or both nonzero.
- 6. (False) Let A be a square matrix without zero rows and columns. Then A must be row equivalent to the identity matrix of the same size.
- 7. (True) Let A be an $n \times n$ matrix. If the system Ax = b has a unique solution for a given nonzero $b \in \mathbb{R}^n$, then $|A| \neq 0$.
- 8. (False) Let A be a square and nonsingular $n \times n$ matrix. If $|\operatorname{adj}(A)| = |A|$, then A is 2×2 matrix.
- 9. (True) If A is an $m \times n$ matrix, then the diagonal entries of AA^T are nonnegative.
- 10. (True) If A is a 3×3 nonsingular matrix with det(A) = 3, then det $(3A^{-1}) = 9$.
- 11. (True) If A and B are $n \times n$ symmetric matrices, then the matrix AB + BA is symmetric.
- 12. (False) If E_1 and E_2 are elementary $n \times n$ matrices, then E_1E_2 is elementary.
- 13. (False) Cramer's Rule can be used to solve any system of linear equations.
- 14. (False)) If A is a nonsingular skew-symmetric matrix, then A^{-1} is symmetric.
- 15. (True) If A and B are $n \times n$ invertible matrices, then $\operatorname{adj}(AB) = \operatorname{adj}(B)\operatorname{adj}(A)$.

Exercise 2 [12 marks]. Circle the correct answer.

(1) If the system of linear equations whose augmented matrix is $[A|b] = \begin{bmatrix} 2 & 3 & | 1 \\ 3 & 4 & | 3 \\ 1 & -k & | 2 \end{bmatrix}$ is consistent, then the value of the constant k is

- (a) $\frac{1}{3}$
- (b) $\frac{2}{3}$
- (c) 1
- **(d)** −2
- **(e)** −1

(2) If the matrix $A = \begin{bmatrix} 1 & 0 & 0 & 1 & | & 1 \\ 0 & 1 & -1 & 0 & | & 1 \\ 0 & 0 & 2 & 1 & | & 1 \\ 0 & 0 & 0 & -2 & | & 2 \end{bmatrix}$ is the augmented matrix of a linear system whose solution is (a, b, c, d), then a + b + c + d =**(a)** 0 **(b)** −4 (c) 4 (d) 3

(e) −3

- (3) If A is a 3×3 square matrix with |A| = 4, and the matrix B is obtained from the matrix A by interchanging the first and the last rows, then the value of $|2A| + 8|B^{-1}|$ is equal to
 - **(a)** 30
 - **(b)** 10
 - (c) 34
 - (**d**) 6
 - **(e)** 68

(4) If $a_{ij} = i + j$, then $A = (a_{ij})_{3 \times 4}$ is:

(a)	$\begin{bmatrix} 1\\ 4\\ 8 \end{bmatrix}$	2 5 9	$\begin{array}{c} 3 \\ 6 \\ 10 \end{array}$	$\begin{array}{c} 4 \\ 7 \\ 11 \end{array}$	
(b)	$\left[\begin{array}{c}2\\4\\6\end{array}\right]$	${3 \atop 5}$	4 6 8	$\begin{bmatrix} 5 \\ 7 \\ 9 \end{bmatrix}$	
(c)	$\begin{bmatrix} 2\\ 4\\ 8 \end{bmatrix}$	${3 \atop {5} \atop {9}}$	4 6 10	5 7 11]
(d)	$\begin{bmatrix} 2\\ 3\\ 4 \end{bmatrix}$	${3 \\ 4 \\ 5}$	$4 \\ 5 \\ 6$	$\begin{bmatrix} 5\\6\\7 \end{bmatrix}$	
(e) 1	Vone)			

(5) If A = (a_{ij})_{m×n}, B = (b_{ij})_{p×q} and AB = BA, then
(a) n = p
(b) n = p, m = q
(c) m = n = p = q
(d) m = q
(e) None

(6) If
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
, then the value of A^5 is
(a) $5A$
(b) $16A$
(c) $10A$
(d) $32A$
(e) None

Good Luck

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Birzeit University Mathematics Department Math234 Short Exam Form A (KEY)

Instructor: Dr. Ala Talahmeh Name:..... Section: 5 First Semester 2021/2022 Number:..... Date: 11/11/2021

Exercise#1 [15 marks]. True or False?

- 1. (False) The product of two triangular matrices is triangular.
- 2. (False) The system x = y, y = z, x = z is inconsistent.
- 3. (True) If a system of linear equations has two solutions, then it has infinitely many solutions.
- 4. (False) A row reduced matrix always has a 1 in the second column of the second row.
- 5. (False) If $A^2 \neq O$, then A is invertible.
- 6. (True) If A is a square matrix and $A^2 + 8A I = O$, then A is invertible and $A^{-1} = A + 8I$.

7. (False) If
$$A = \begin{bmatrix} 1 & 2 & 4 \\ 5 & 0 & 3 \\ 4 & 0 & 2 \end{bmatrix}$$
, then the entry (3, 2) of $\operatorname{adj}(A)$ equals -8

- 8. (True) If $A^T A = A$, then $A^2 = A$.
- 9. (True) Let A be an $m \times n$ matrix such that $n \ge 3$. Suppose that $b = a_2 a_3 = a_1 + 2a_2$. Then the system Ax = b has infinitely many solutions.
- 10. (True) If u and v are both solutions to Ax = 0, then w = (2021)u + (1443)v is a solution to Ax = 0.
- 11. (True) Let A and B be 3×3 matrices with det(A) = x and det(B) = y. Let E be a 3×3 elementary matrix of type I. Then $det(EAB^T) = -xy$.
- 12. (True) Every diagonal matrix with nonzero diagonal entries is invertible.
- 13. (True) If A and B are square matrices. If AB = I, then BA = I. Hence, A is nonsingular.
- 14. (False) If A is row equivalent to B, then A = B.
- 15. (True) If A is a 3×3 skew-symmetric matrix, then A is singular.

Exercise 2 [12 marks]. Circle the correct answer.

(1) The value of α for which the system with augmented matrix $\begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}$

$$\begin{bmatrix} 1 & 2 & 3 & | & 0 \\ 0 & 1 & 2 & | & 1 \\ 0 & 0 & \alpha + 1 & | & \alpha^2 + 3\alpha - 4 \end{bmatrix}$$
 has in-

finitely many solution is:

- (a) $\alpha = -4$
- **(b)** $\alpha = -1$
- (c) $\alpha = 1$
- (d) $\alpha = 0$
- (e) does not exist

(2) The sum of all elements of the inverse matrix of $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 3 \end{bmatrix}$

(a) $\frac{4}{3}$ (b) $\frac{2}{3}$ (c) $\frac{5}{3}$ (d) $-\frac{2}{3}$ (e) $-\frac{1}{3}$

(3) If
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & k \end{vmatrix} = 3$$
, then $\begin{vmatrix} 2d & 2e & 2f \\ -2a & -2b & -2c \\ 2g+2a & 2h+2b & 2k+2c \end{vmatrix} =$
(a) 24
(b) 48
(c) -6
(d) 12
(e) -12

(4) If
$$\begin{bmatrix} a+b & 2\\ 5 & ab \end{bmatrix} = \begin{bmatrix} 6 & 2\\ 5 & 8 \end{bmatrix}$$
, then $(a,b) =$
(a) $(2,2), (1,1)$
(b) $(2,4), (4,2)$
(c) $(3,3), (3,4)$
(d) $(2,3), (1,4)$
(e) None

(5) If
$$A = \begin{bmatrix} \alpha \beta & \beta^2 \\ -\alpha^2 & -\alpha \beta \end{bmatrix}$$
, then the value of A^{2021} is
(a) $-I$
(b) I
(c) O
(d) $(2021)I$
(e) None

(6) If the system of linear equations whose augmented matrix is $[A|b] = \begin{bmatrix} 1 & h & | & 3 \\ 5 & -10 & | & k \end{bmatrix}$ is inconsistent, then the value of the constants h and k must be

- (a) h = -2, k = 15
 (b) h ≠ -2, k ≠ 15
- (c) $h \neq -2, k = 15$
- (d) $h = -2, k \neq 15$
- (e) h = 2, k = 15

Good Luck

Birzeit University Mathematics Department Math234 Short Exam Form B (KEY)

Instructor: Dr. Ala Talahmeh Name:..... Section: 5 First Semester 2021/2022 Number:..... Date: 11/11/2021

Exercise#1[15 marks]. True or False?

- 1. (True) If a system of linear equations has two solutions, then it has infinitely many solutions.
- 2. (True) The system x = y, y = z, x = z is consistent.
- 3. (False) The product of two triangular matrices is triangular.
- 4. (False) A row reduced matrix always has a 1 in the second column of the second row.
- 5. (False) If $A^T A = A$, then $A^2 = I$.
- 6. (True) If u and v are both solutions to Ax = b, then $w = \frac{1}{4}u + \frac{3}{4}v$ is a solution to Ax = b.

7. (True) If
$$A = \begin{bmatrix} 1 & 2 & 4 \\ 5 & 0 & 3 \\ 4 & 0 & 2 \end{bmatrix}$$
, then the entry (3, 2) of $\operatorname{adj}(A)$ equals 8.

- 8. (False) If $A^2 \neq O$, then A is invertible.
- 9. (True)) Let A be an $m \times n$ matrix such that $n \ge 3$. Suppose that $b = a_2 a_3 = a_1 + 2a_2$. Then the system Ax = b has infinitely many solutions.
- 10. (False) If A is row equivalent to B, then A = B.
- 11. (False) Let A and B be 3×3 matrices with $\det(A) = x$ and $\det(B) = y$. Let E be a 3×3 elementary matrix of type III. Then $\det(EAB^T) = -xy$.
- 12. (False) Every diagonal matrix with nonzero diagonal entries is singular.
- 13. (True) If A and B are square matrices. If AB = I, then BA = I. Hence, A is nonsingular.
- 14. (True) If A is a square matrix and $A^2 + 8A I = O$, then A is invertible and $A^{-1} = A + 8I$.
- 15. (False) If A is a 3×3 skew-symmetric matrix, then A is nonsingular.

Exercise 2[12 marks]. Circle the correct answer.

(1) If
$$\begin{bmatrix} a+b & 2\\ 5 & ab \end{bmatrix} = \begin{bmatrix} 6 & 2\\ 5 & 8 \end{bmatrix}$$
, then $(a,b) =$
(a) $(2,2), (1,1)$
(b) $(2,3), (1,4)$
(c) $(3,3), (3,4)$
(d) $(2,4), (4,2)$
(e) None

(2) If
$$A = \begin{bmatrix} \alpha \beta & \beta^2 \\ -\alpha^2 & -\alpha \beta \end{bmatrix}$$
, then the value of $A^{2021} + I$ is
(a) $-I$
(b) I
(c) O
(d) $(2021)I$

(3) If
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & k \end{vmatrix} = 6$$
, then $\begin{vmatrix} 2d & 2e & 2f \\ -2a & -2b & -2c \\ 2g+2a & 2h+2b & 2k+2c \end{vmatrix} =$
(a) 24
(b) 48
(c) -6
(d) 12
(e) -12

(4) The value of α for which the system with augmented matrix solution is:

1	2	3	0	
0	1	2	1	has no
0	0	$\alpha + 1$	$\alpha^2 + 3\alpha - 4$	

- (a) $\alpha = -4$
- **(b)** $\alpha = 0$
- (c) $\alpha = 1$
- (d) $\alpha = -1$
- (e) does not exist

- (5) The sum of all elements of the inverse matrix of $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 3 \end{bmatrix}$
 - (a) $\frac{4}{3}$ (b) $\frac{2}{3}$ (c) $\frac{5}{3}$ (d) $-\frac{2}{3}$
 - (e) $-\frac{1}{3}$

- (6) If the system of linear equations whose augmented matrix is $[A|b] = \begin{bmatrix} 1 & h & | & 3 \\ 5 & -10 & | & k \end{bmatrix}$ has infinitely many solutions, then the value of the constants h and k must be
 - (a) h = -2, k = 15(b) $h \neq -2, k \neq 15$ (c) $h \neq -2, k = 15$ (d) $h = -2, k \neq 15$ (e) h = 2, k = 15

Good Luck

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat