Chief Parts
Q: How can we draw the rational function

$$f(x) = \frac{g(x)}{h(x)}$$
? 9, h poly
A: If we understand Asymptotes, then it helps
to draw $f(x)$
 $f(x) = \frac{g(x)}{h(x)}$? 9, h poly
Asymptotes, then it helps
to draw $f(x)$
 $f(x) = \frac{g(x)}{h(x)}$? 9, h poly
 $f(x) = \frac{g(x)}{h(x)}$? 0, h

$$\lim_{k \to -\infty} f(x) = \lim_{k \to -\infty} \frac{1}{x} = 0$$

$$\lim_{k \to -\infty} f(x) = \lim_{k \to -\infty} f(x) \quad \text{if}$$

$$\lim_{k \to -\infty} f(x) = \lim_{k \to -\infty} ox \quad -\infty$$

$$\lim_{k \to -\infty} f(x) = \lim_{k \to -\infty} ox \quad -\infty$$

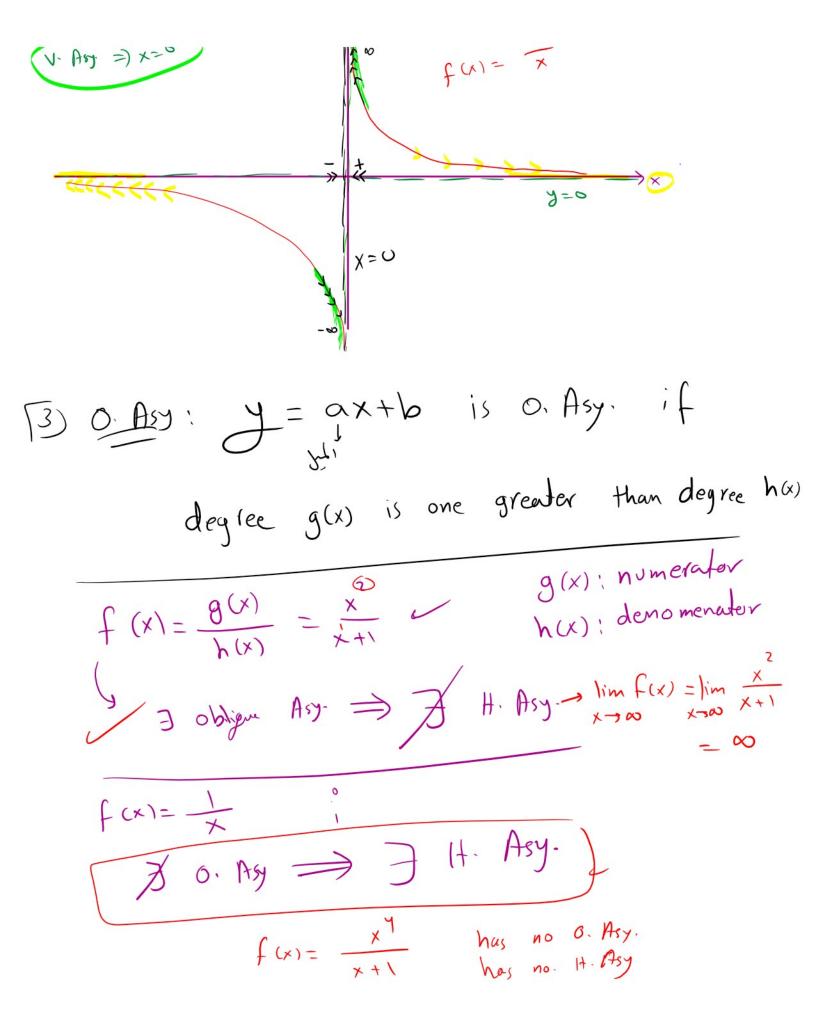
$$\lim_{k \to -\infty} f(x) = \lim_{k \to -\infty} f(x) \quad \text{Asy}$$

$$\lim_{k \to -\infty} f(x) = \lim_{k \to -\infty} \frac{1}{x} = \frac{1}{2} + \frac{1}{2}$$

$$\lim_{k \to 0^+} f(x) = \lim_{k \to 0^+} \frac{1}{x} = \frac{1}{2} + \frac{1}{2}$$

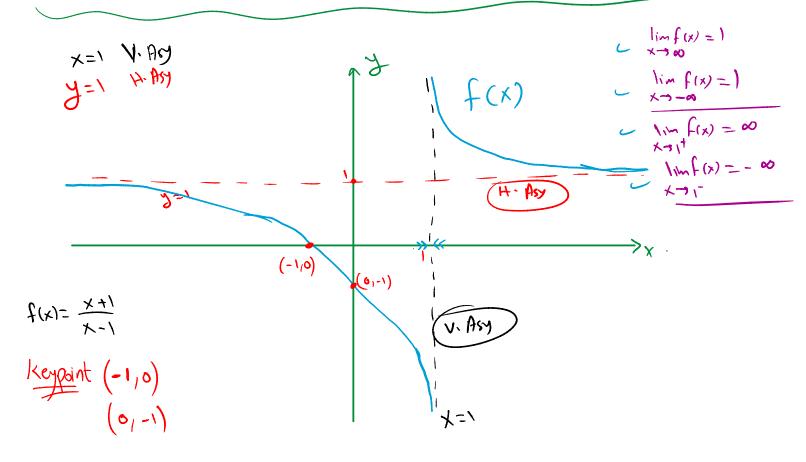
$$\lim_{k \to 0^+} f(x) = \lim_{k \to 0^+} \frac{1}{x} = -\infty$$

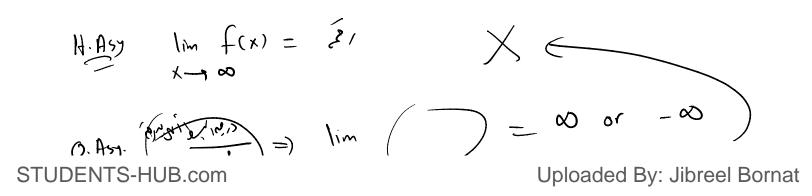
$$\lim_{k \to 0^+} f(x) = \lim_{k \to 0^+} \frac{1}{x} = -\infty$$

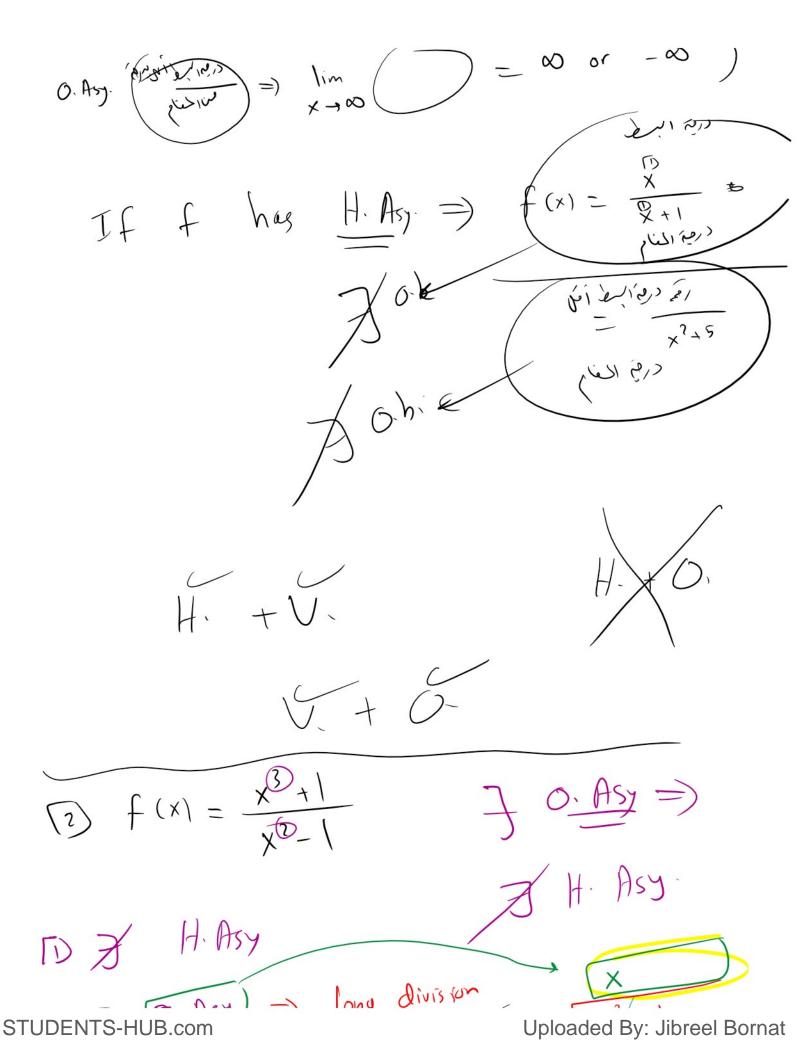


$$\lim_{x \to T} f(x) = \lim_{x \to T} \frac{x+1}{x-1} = \frac{2}{small-1} - \frac{1}{small-1}$$

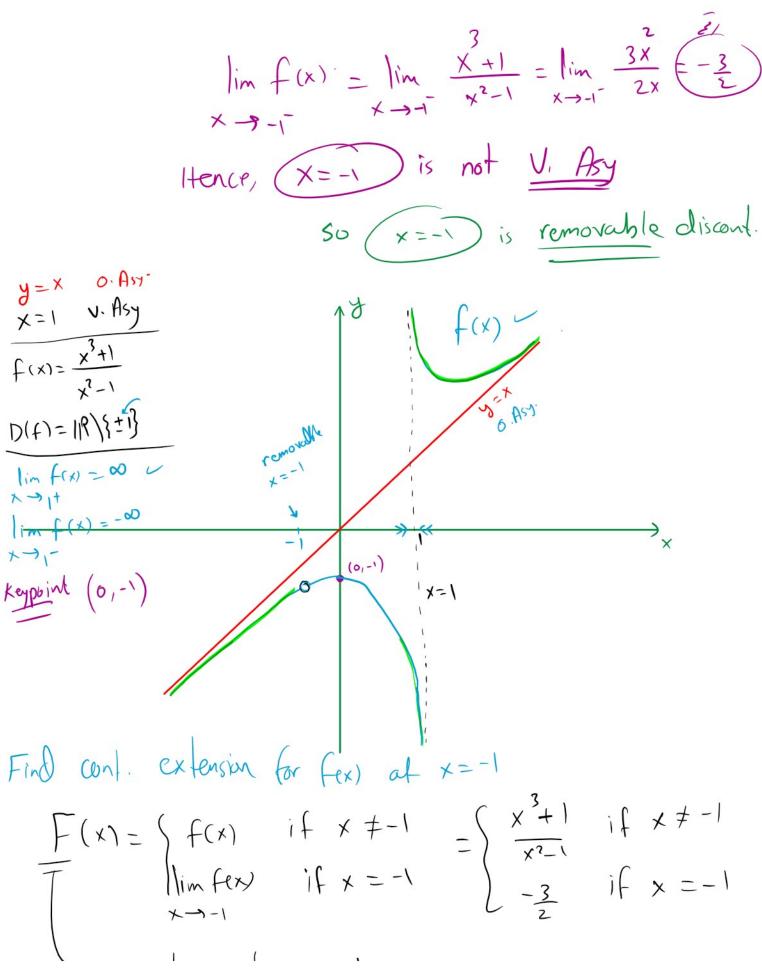
$$(3) f has no o.Asy. since f has H. Asy. f(x) = \frac{x+1}{x-1} - x = \frac{3}{s} o.Asy.$$



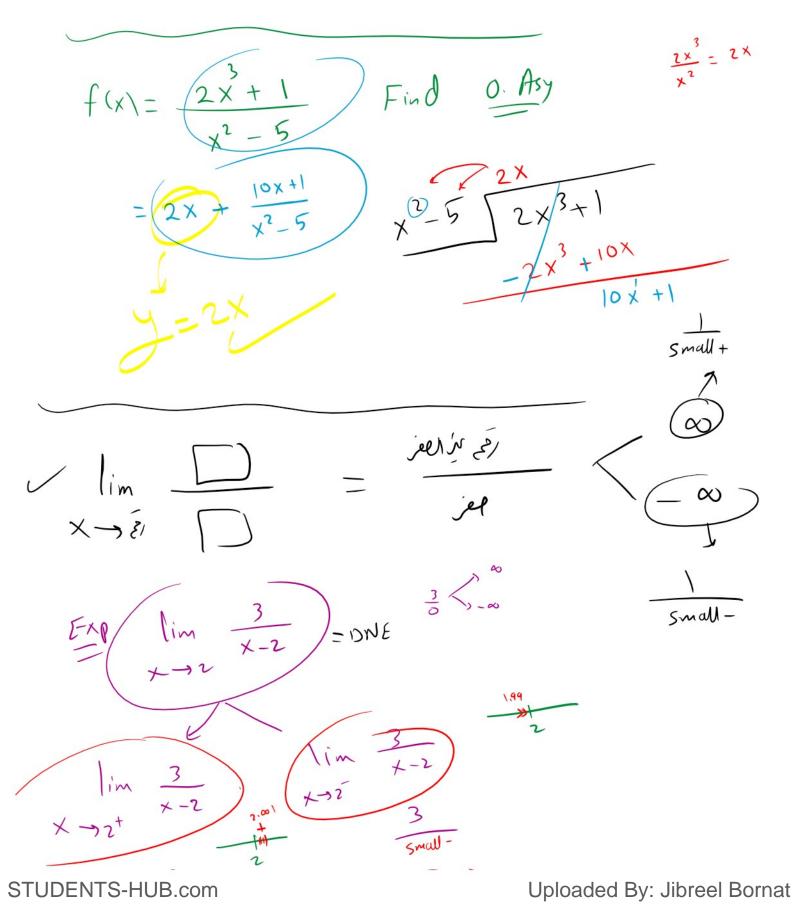


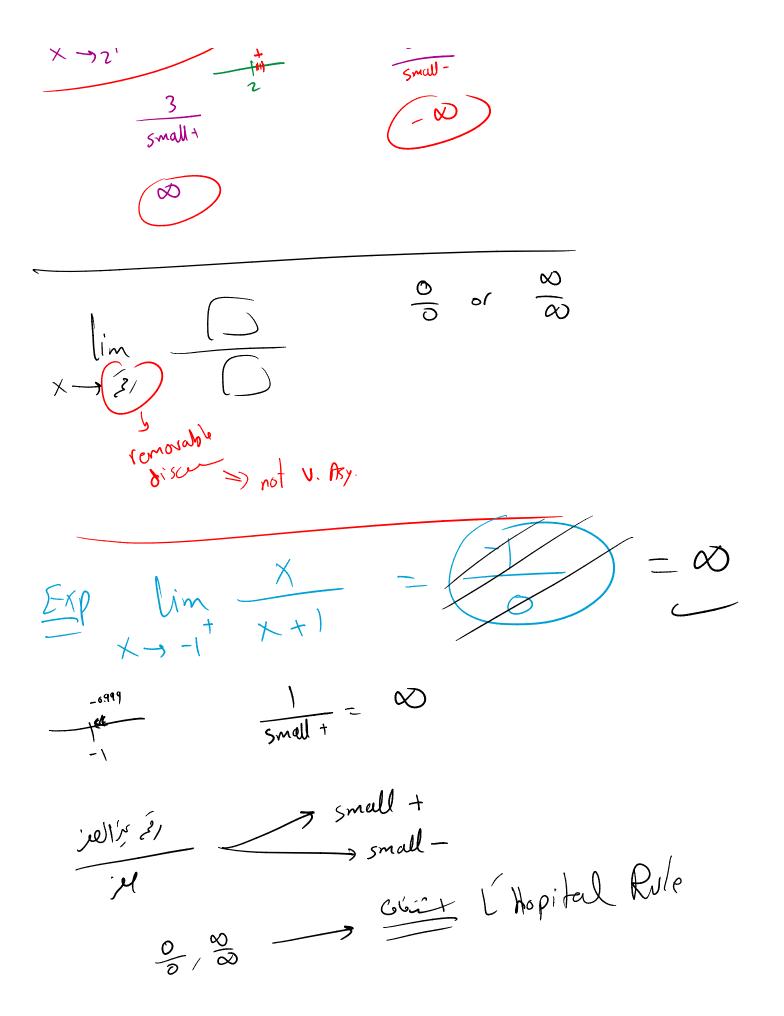


$$B = O(A_{57}) = \log divis lon
(x) = (x) = (x) + 1 + (x) + (x) + 1 + (x) + (x)$$



$$(6nt)$$
 at $x=-1$





Remarks: The graph of
$$f(x)$$
 might
Cross the Asy.
En $f(x) = \frac{\sin x}{x}$ Find Asy.
Skelch f
D H. Any.
 $\frac{1}{x} \leq \frac{\sin x}{x} \leq \frac{1}{x}$
 $\frac{-1}{x} \leq \frac{\sin x}{x} \leq \frac{1}{x}$
 $\frac{-1}{x} \leq \frac{\sin x}{x} \leq \frac{1}{x}$
 $\frac{1}{x - 300} = \frac{1}{x - 300}$
 $\frac{1}{x - 300} = \frac{1}{x$

