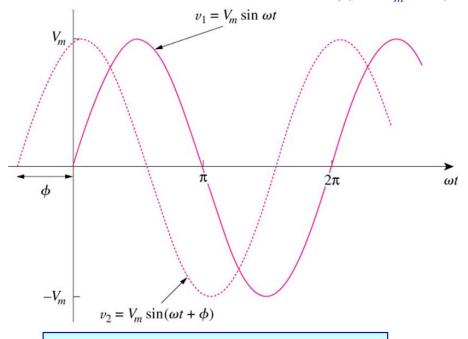
Sinusoidal Steady - State Analysis The Sinuspidal Source Vm Sinwt Vm = Amplitude of the Sinusoid W = Angular frequency in radian/s = frequency in Hertz = Period in seconds 47(4)

Phase of Sinusoids

 \triangleright Consider the sinusoidal voltage having phase φ , $v(t) = V_m \sin(\omega t + \phi)$



- v_2 LEADS v_1 by phase φ .
- v_1 LAGS v_2 by phase φ .
- v_1 and v_2 are out of phase.

Phase of Sinusoids
The terms Lead and Lag are used
to indicate the relationship between
two sinusoidal wave forms of the same
frequency plotted on the same set of
axes.
VI(+) = Vm Sin wt
V2 (+) = Vm Sin (w++6)
.: N2 (+) Leads V. (+) by B
V1(+) Lags V2(+) by B

Trigonometric Identities

Where

$$C = \int A^2 + B^2$$
 and $G = tan \frac{B}{A}$

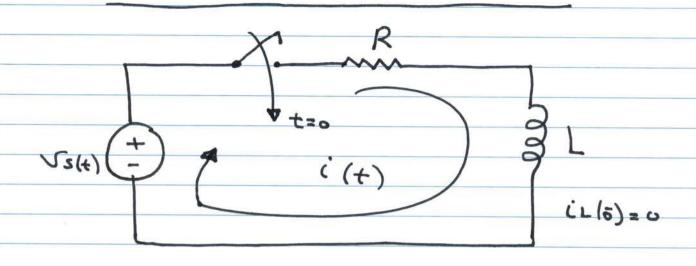
Let
$$S_1(t) = 10 \sin (5t - 30^\circ)$$

 $S_2(t) = 15 \sin (5t + 10^\circ)$

Let
$$i_1(t) = 2 \sin(377t + 45^\circ)$$

 $i_2(t) = 0.5 \cos(377t + 10^\circ)$

The Sinuspidal Response



Find i(+) for t > 0 given Vs(+) = Vm Coswt Y

KVL :

$$V_{S}(t) = R_{i}(t) + L \frac{d_{i}(t)}{dt}$$

$$V_{m} Cos w t = R_{i}(t) + L \frac{d_{i}(t)}{dt}$$

First order non homogenouse differential equation

$$c(+) = cn(+) + if(+)$$

Collect the Cosine and sine terms

$$: if(t) = \frac{RV_m}{R^2 + \omega^2 L^2} Cos \omega t + \frac{\omega L V_m}{R^2 + \omega^2 L^2} sin \omega t$$

.7.

$$if(t) = C Cos (wt - \Phi)$$

$$\Rightarrow = \tan \frac{T_2}{T_1} = \tan \frac{WL}{R}$$

$$T_1^2 + T_2^2 = C^2$$

$$\therefore C = \int \mathcal{I}_1^2 + \mathcal{I}_2^2$$

$$C = \frac{\sqrt{m}}{\sqrt{R^2 + \omega^2 L^2}}$$

$$:: Cf(t) = \frac{\sqrt{m}}{\sqrt{R^2 + \omega^2 L^2}} \cos\left(\omega t - \tan^2 \frac{\omega L}{R}\right)$$

$$\frac{-t}{r}$$

$$\frac{i(t) = Ae + \frac{Vm}{R^2 + \omega^2 L^2}}{\sqrt{R^2 + \omega^2 L^2}} \frac{Cos(\omega t - tan' \frac{\omega L}{R})}{R}$$

$$A = \frac{\sqrt{m}}{\sqrt{R^2 + \omega^2 L^2}} \cos\left(-\frac{1}{4\pi n} \frac{\omega L}{R}\right)$$

$$i(4) = in(4) + if(4)$$

Steady - State Component

The steady. State Solution is a Sinusoidal function with the Same frequency

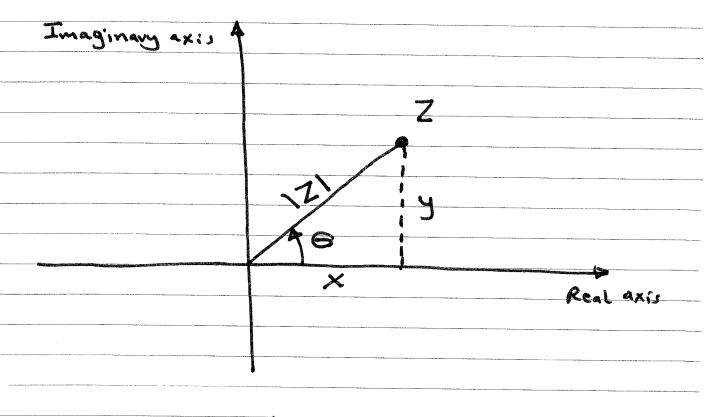
an the source signal.

Complex Numbers

A complex number may be written in three forms

$$Z = |Z|e$$

$$Z = X + j y$$



Mathematical Operations of Complex numbers
Addition: Z1+Z2 = (x1+x2)+j(y1+y2)
Subtraction: $Z_1 - Z_2 = (X_1 - X_2) + j(y_1 - y_2)$
Multiplication: Z, Z, = Z1/1221 G+62
Division: $\frac{Z_1}{Z_2} = \frac{1Z_11}{1Z_21} \left[G_1 - G_2 \right]$
Complex Conjugate: Z* = x - jy
= \Z\ -6

$$Z_1 = 4+j3 = 5 \lfloor 36.9^{\circ}$$

$$Z_{1} + Z_{2} = 7 + 7$$

$$Z_1 Z_2 = 5 | 36.9^{\circ} . 5 | 51.1^{\circ} = 25 | 90^{\circ}$$

$$\frac{Z_1}{Z_2} = \frac{5136.9^{\circ}}{5153.1^{\circ}} = 1 - 16.2^{\circ}$$

OV

$$Z_1 Z_2 = (4+j3)(3+j4)$$

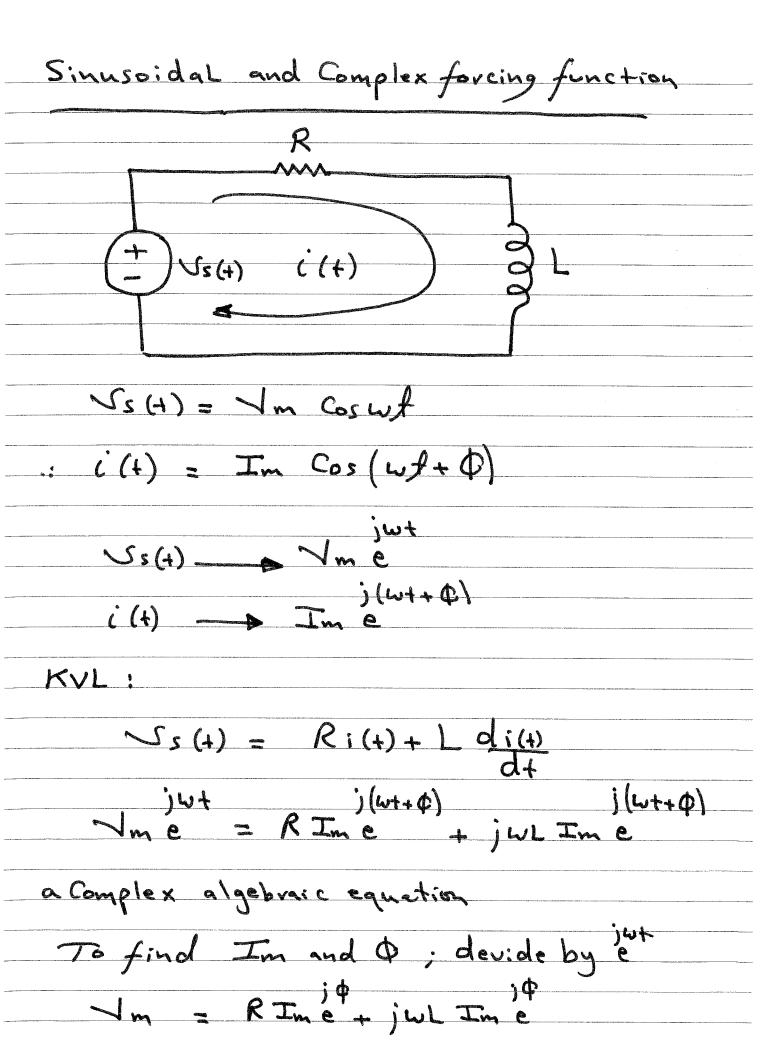
$$\frac{Z_1}{Z_2} = \frac{4+j3}{3+j4} = \frac{3-j4}{3-j4} = \frac{12-j16+j9+12}{25}$$

The graphical Representation Zz

 $Z_4 = 5 \left[-36.9^{\circ} \right]$

The phasor Concept output ELectric Vm Cos(w++0) Im Cos(w++0) Vm Sin (w++ B) Im Sin (w++ P) j Vm Sin (ω++ G) ____ j Im Sin (ω++ Φ) Vm cos (w++ 0) Im Cos (w++ 4) j Im Sin (w++ Φ) j Vm sin (w++G) j(ω++6) Vm e Im e _16_

Instead of Applying a real forcing
function to obtain the desired real
vesponse, we apply a Complex forcing
function whose real part is the given
real forcing function.
We obtain a Complex response whose
real Part is the desired real response.



$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L\right)$$

$$\frac{1}{\sqrt{m}} = \frac{1}{\sqrt{m}} e \left(R + j \omega L$$

Phasovs

$$i(t) = Im Cos(wt + \Phi_i)$$
, then $\overrightarrow{I} = Im L\Phi_i$

20

Phasor Relationships for Circuit Element Resistor: i(+) Noltage and Current of a resistor ave in phase. -21_

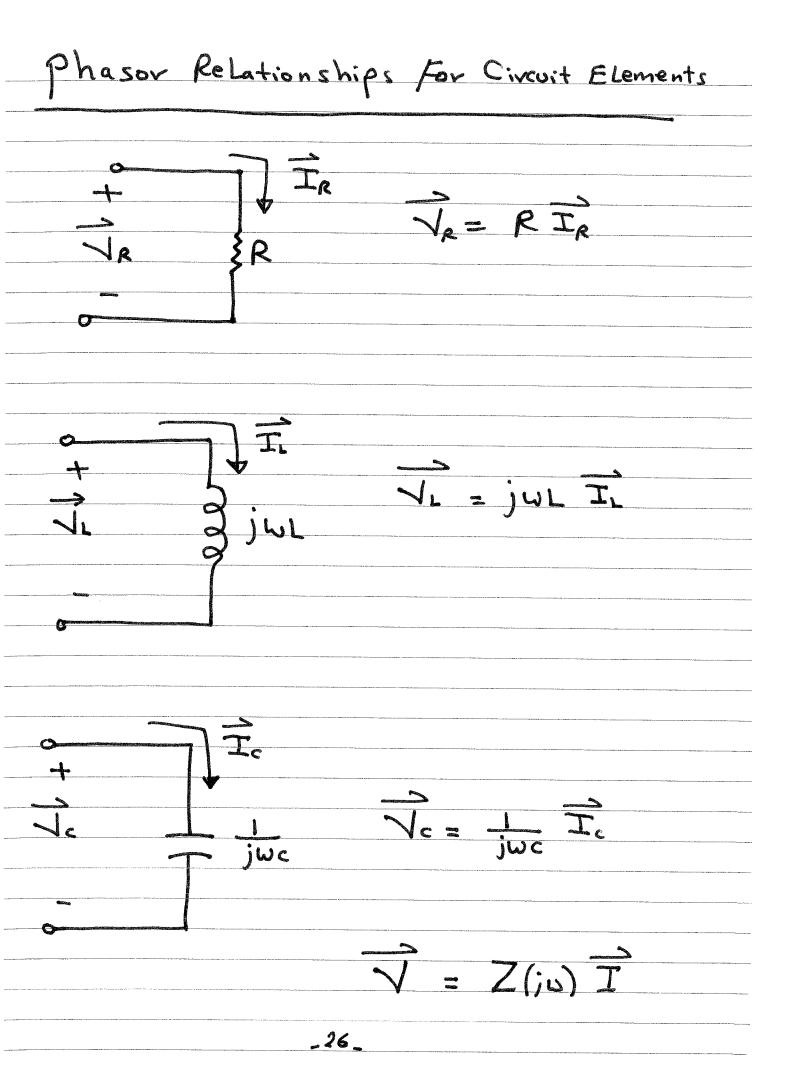
(L(t) **少(4)** * 1900 10:+900

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Vm LBr = WL Im L4:490°
Vm = WL Im
Gr = 9i+90
The Voltage Leads the Current
by 90°
23

: Im = wcvm
Фi = Gr+90°
The Current Leads the Voltage by 90°.
_25

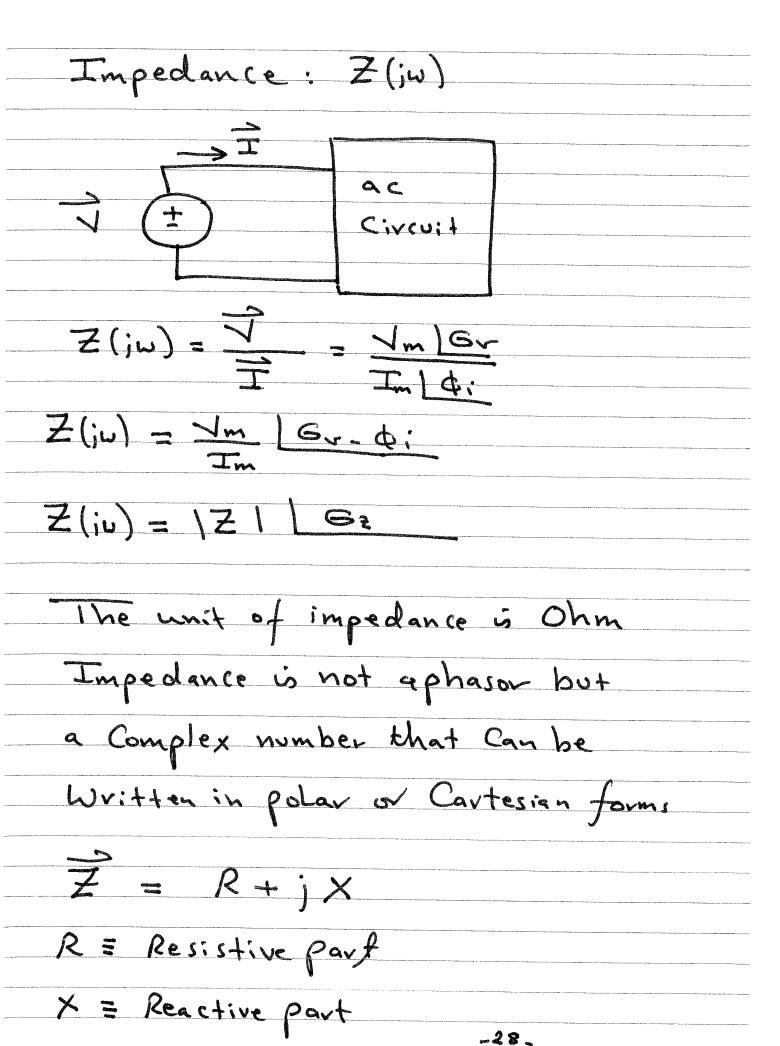


$$Z(iw) = \frac{1}{I}$$
 Impedance, so

ov
$$\sqrt{z} = Z(iv) \overline{I}$$

$$\therefore \quad Z(iv) = \frac{1}{Y(iw)}$$

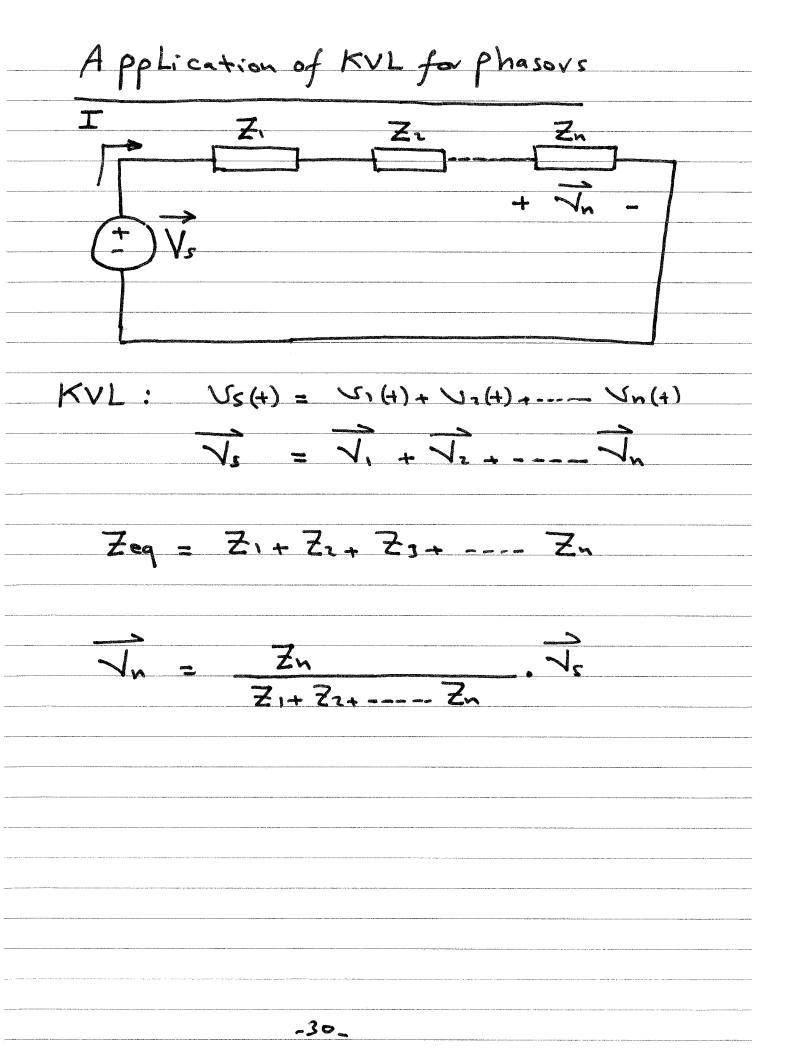
27



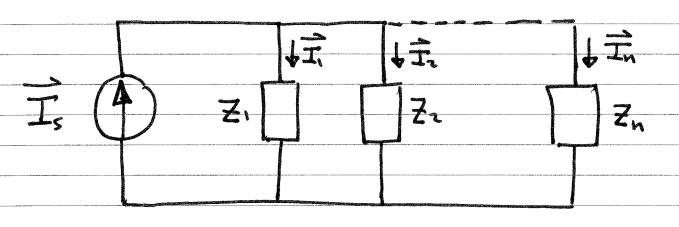
STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

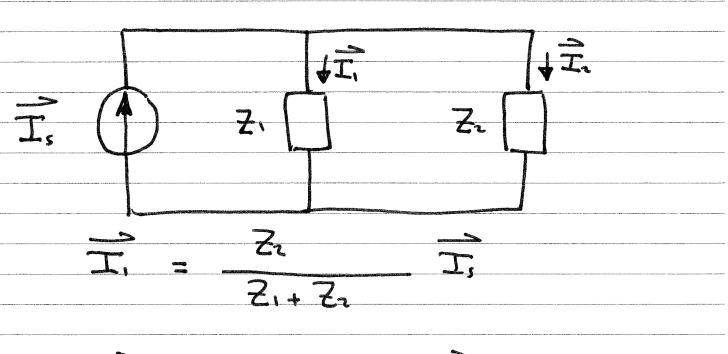
Z = \Z\\GZ
$Z = R + j \times$
1Z1 = \R2+x2
$Gz = tan \frac{x}{R}$
X = 1715in G2
R = 121 Cos Gz



Application of KCL for phasous

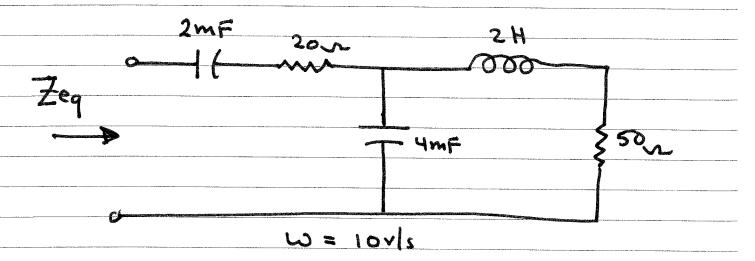


$$KCL: \overrightarrow{T}_{S} = \overrightarrow{T}_{1} + \overrightarrow{T}_{2} + \cdots \overrightarrow{T}_{n}$$



-31-

Find Zeg



$$Z_1 = 20 + \frac{1}{j(10)(1)(10)} = 20 - j50$$

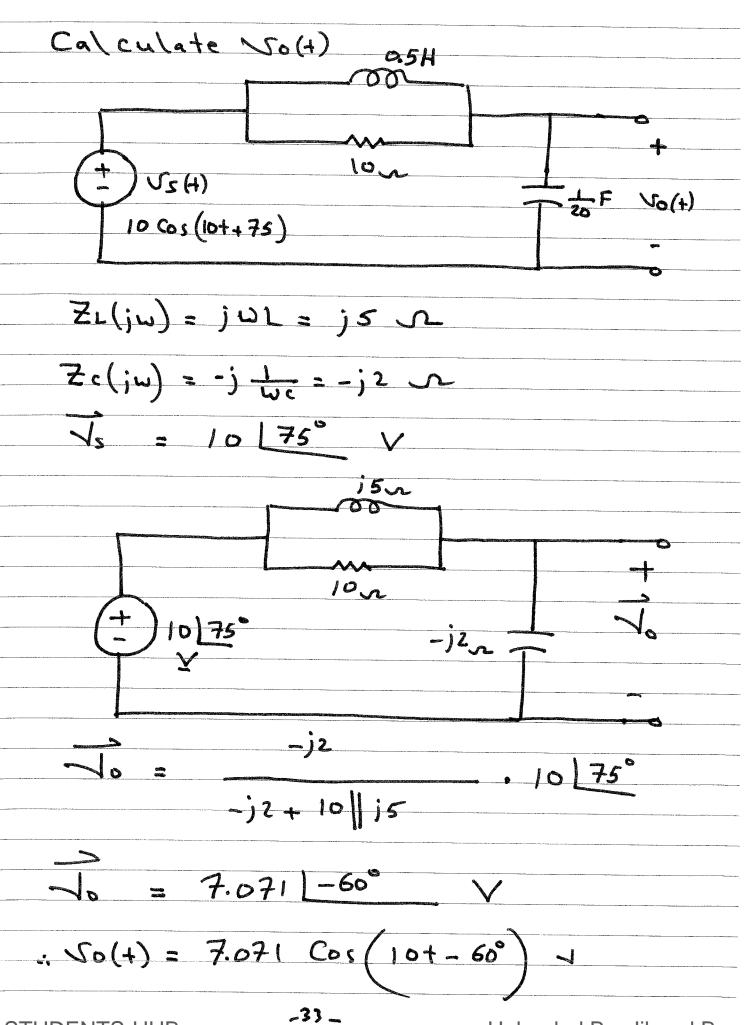
$$Z_2 = 50 + i(10)(2) = 50 + i20$$

$$Z_3 = (50 + j20) \frac{1}{j(10)(4)(16^2)}$$

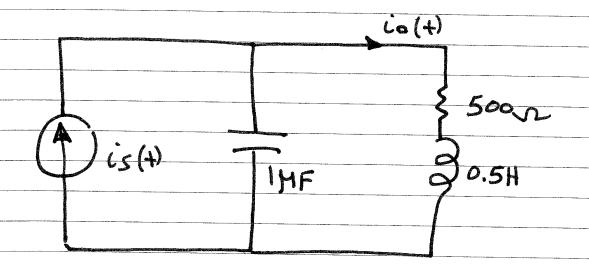
$$Z_{7} = (50+j20) | -j25$$

$$Z_{j} = \frac{(50+j20)(-j25)}{50+j20-j25} = 12.38-j23.76$$

-32-

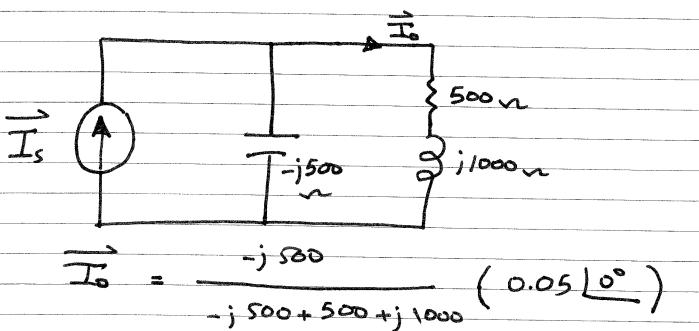


Calculate io (+)

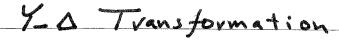


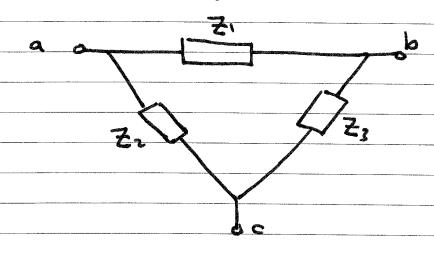
$$Z_c(jw) = -j \frac{1}{wc} = -j 500 \Omega$$

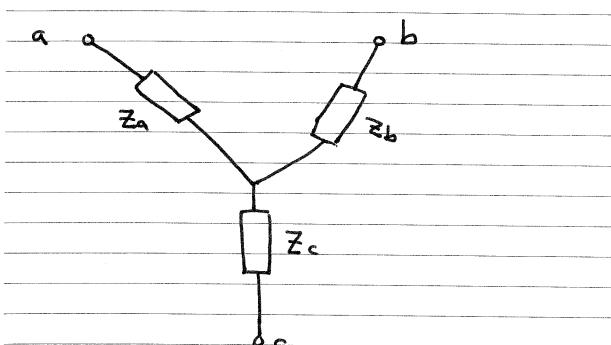
 $Z_c(jw) = jwc = j1000 \Omega$

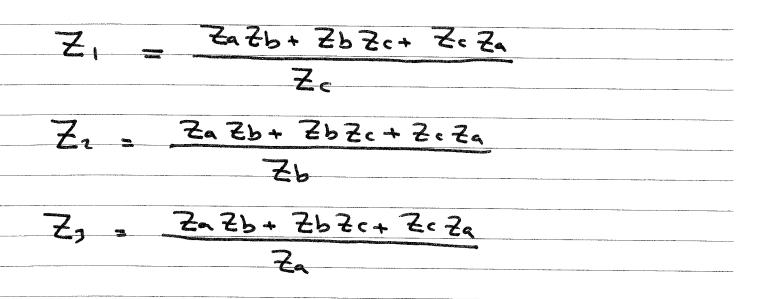


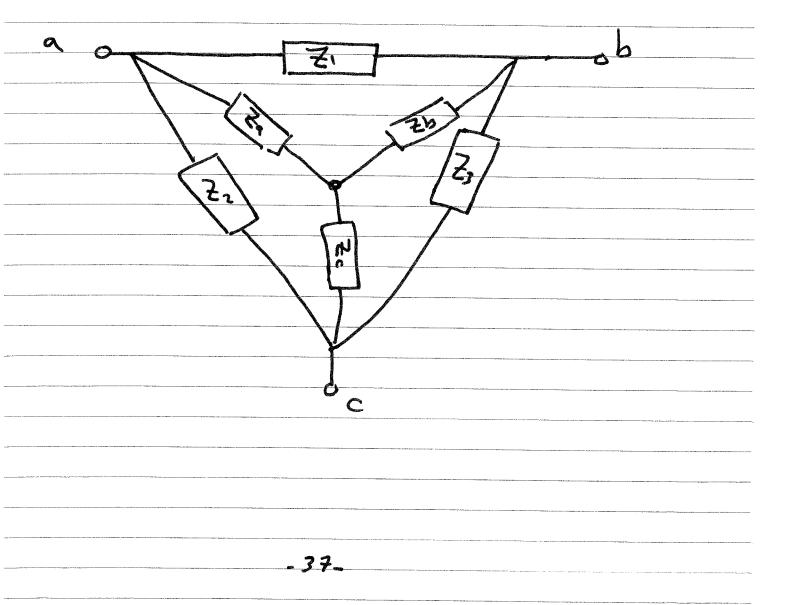
To = 0.03535 [-45° A
: (o(+) = 0.03535 Cos (2000t-45°) A
.35



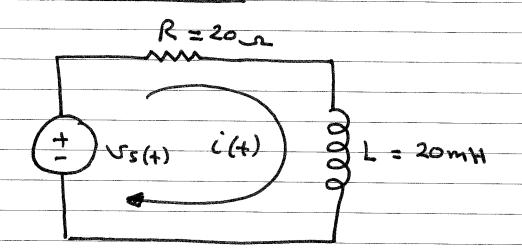


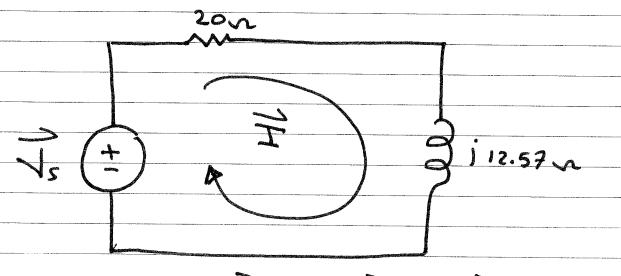




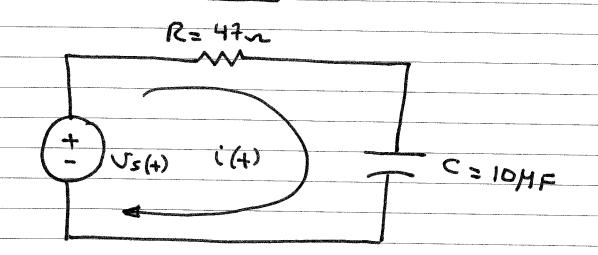


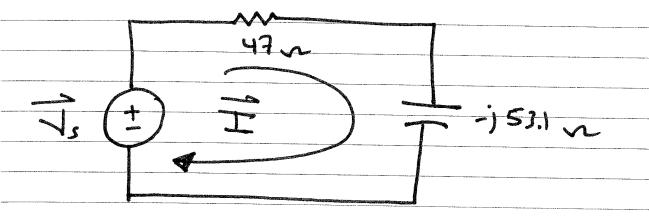
Sevies RL Circuit





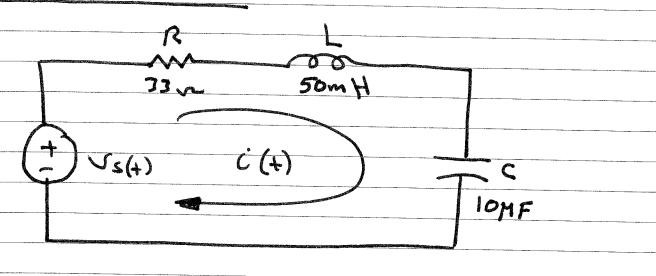
Sevier RC Circuit

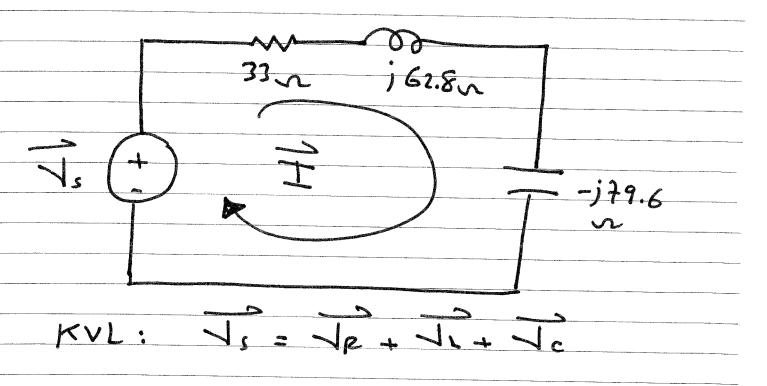


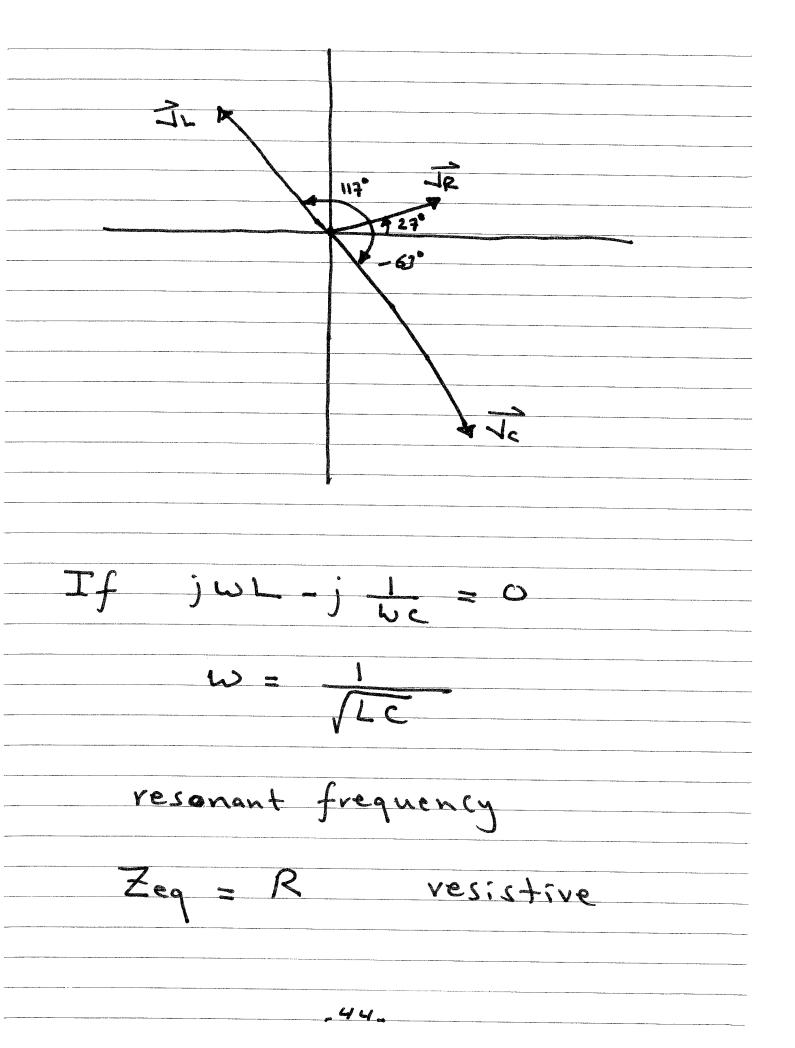


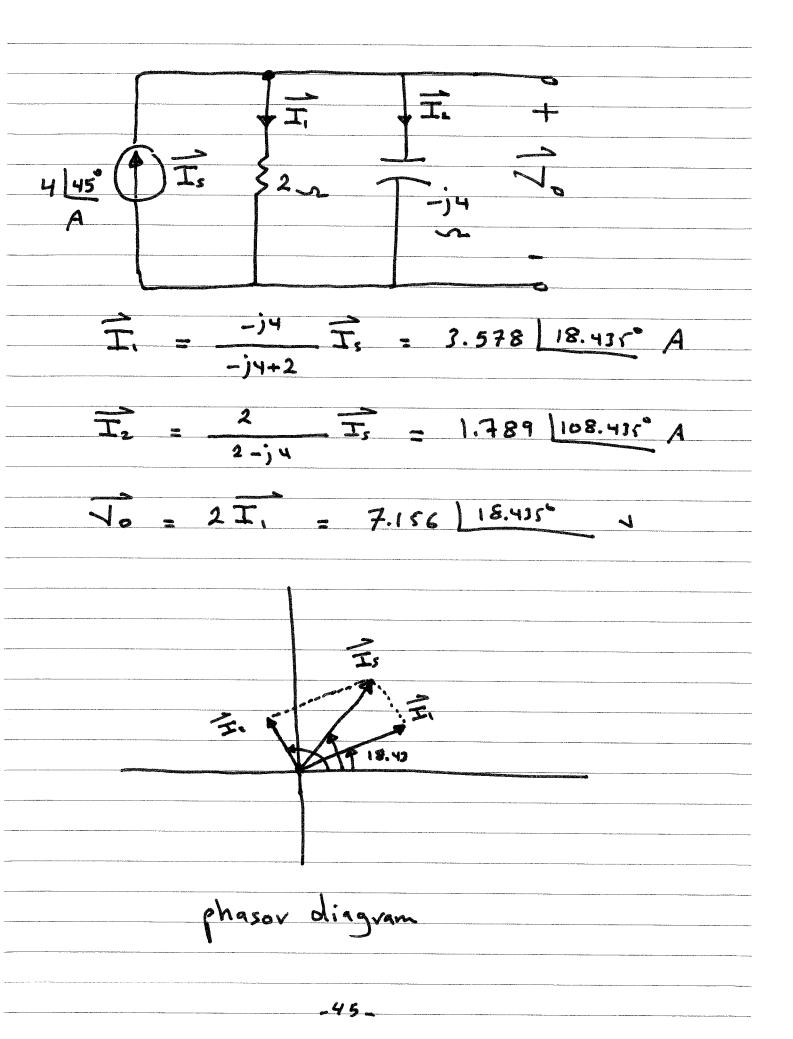
$$T = \frac{\sqrt{3}}{47 - j 53.1} = \frac{100 L0^{\circ}}{47 - j 53.1}$$

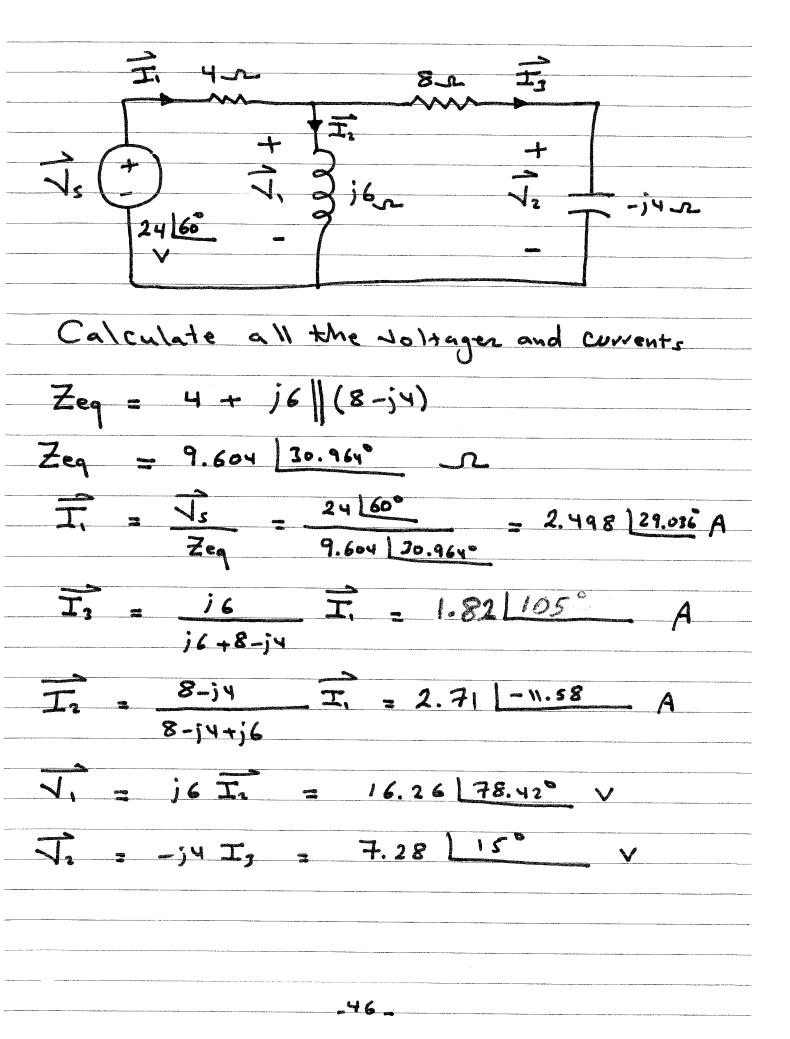
Sevier RLC

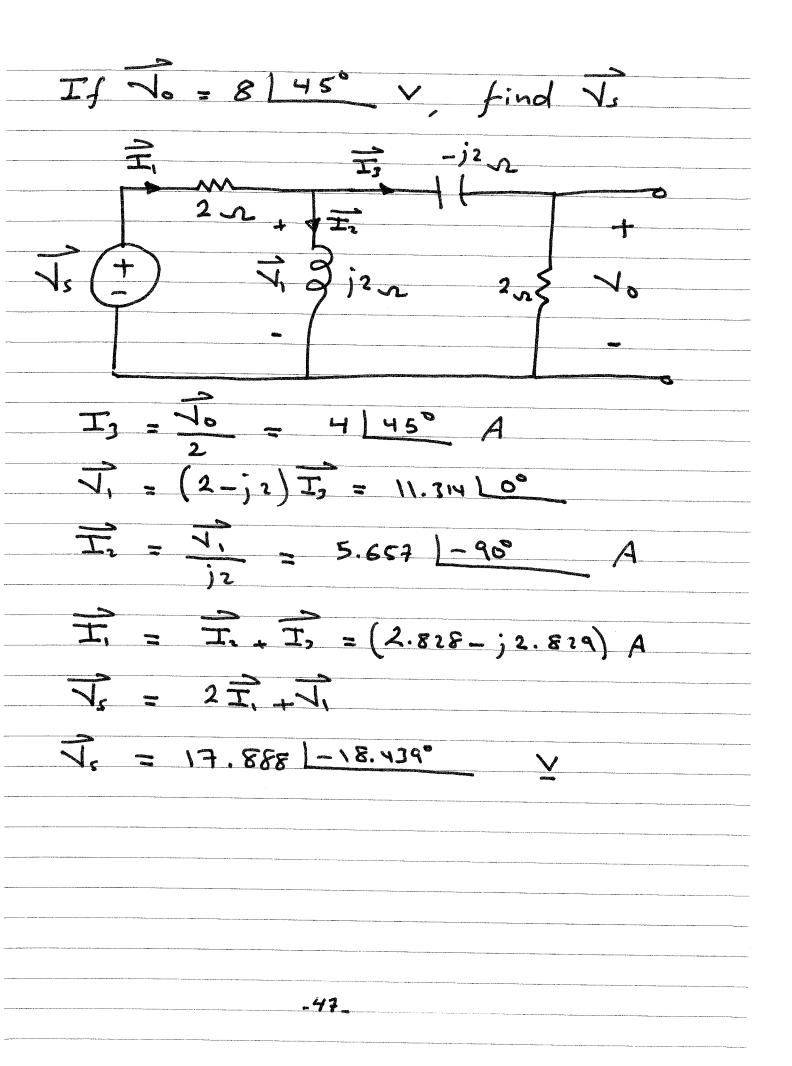






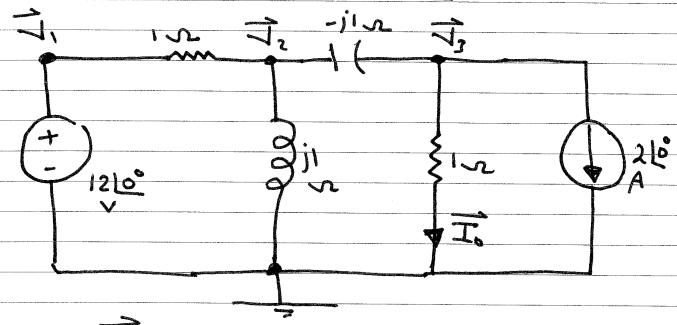






Steps to Analyze Ac Civcuits * Transform the Circuit to the phasor or frequency domain. * Solve the Problem using Civcuit techniques (nodal analysis, mesh analysis, Superposition, etc....) * Transform the resulting phasor to the time domain. Solve domain .48_

Nodal Analysis



Find Io using Nodal Analysis

KCL at node 2:

$$\frac{1}{1} \frac{1}{1} \frac{1}$$

$$-V_1+V_2-jV_2=0$$

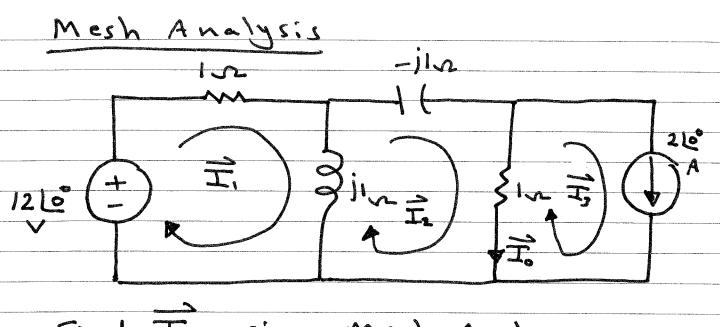
49

KCL at node 3:

$$-210^{\circ} = -\frac{1}{-11}\sqrt{2} + \left(\frac{1}{-11} + 1\right)\sqrt{3}$$

$$\overrightarrow{7}_{3} = \left(\frac{8}{5} + \frac{26}{5}\right)$$

$$: \overline{I_0} = \frac{\overline{J_3}}{1} = \left(\frac{8}{5} + \frac{26}{5}\right) A$$



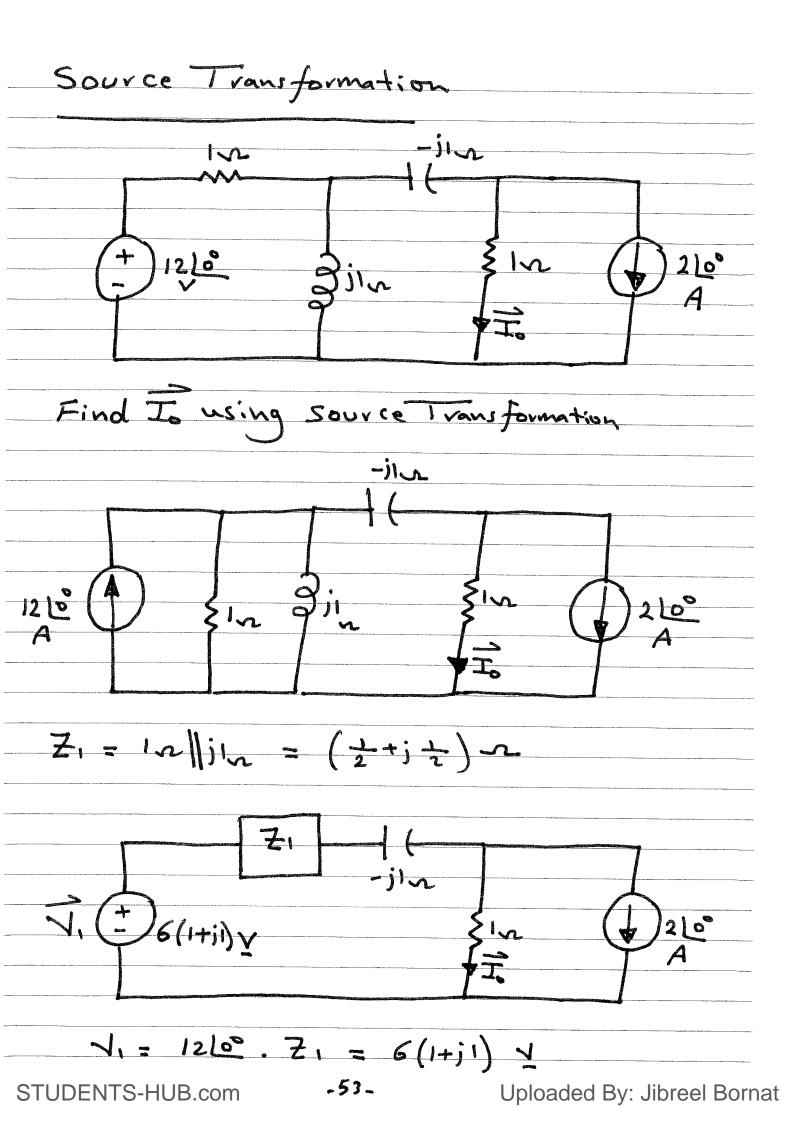
$$12 Lo^{\circ} = (1+ji) \overline{I}_{i} - j_{i} \overline{I}_{i}$$

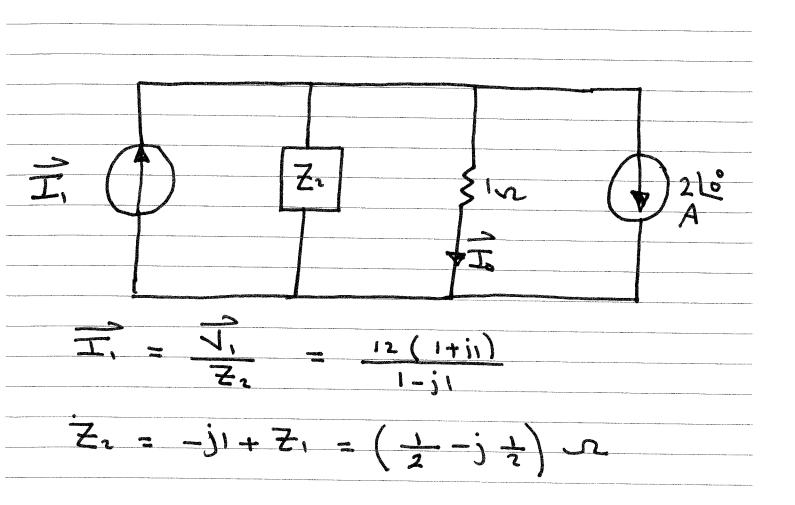
$$0 = -j_1 \overline{I}_1 + (1+j_1-j_1) \overline{I}_2 - \overline{I}_3$$

$$0 = -j_1 \, \overline{\Gamma}_1 + \overline{\Gamma}_2 - \overline{\Gamma}_3$$

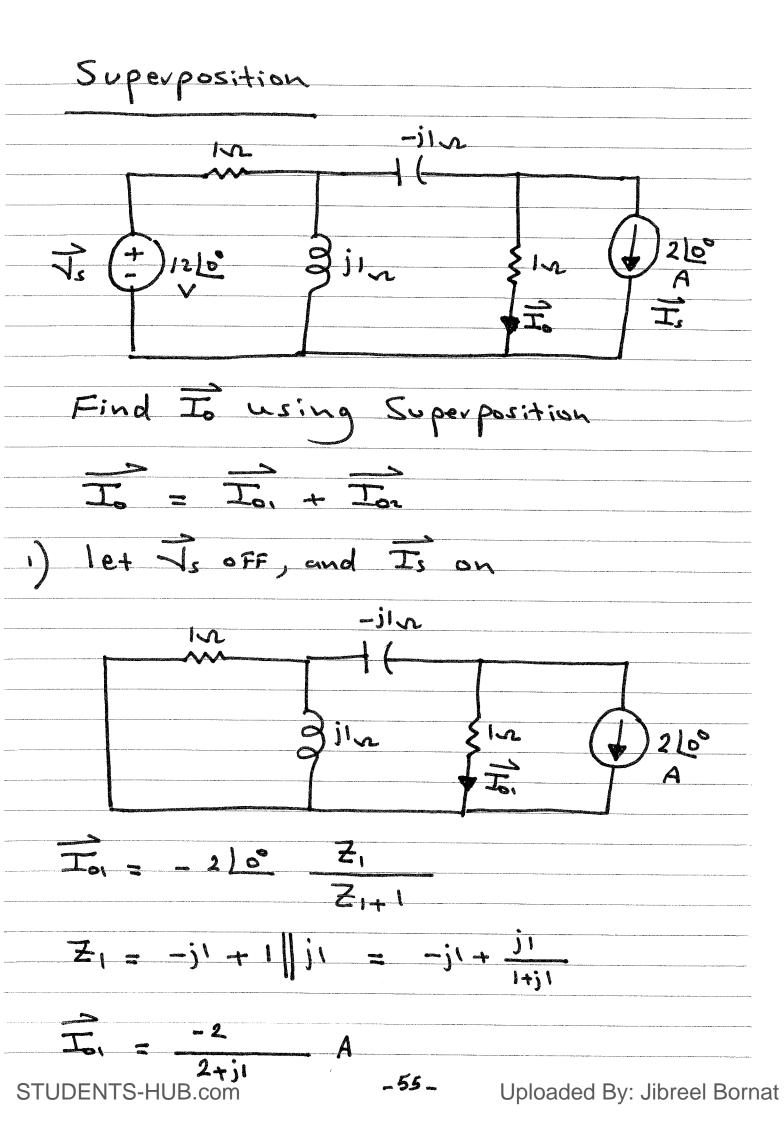
$$\overline{T}_2 = \left(\frac{18}{5} + j \frac{26}{5}\right) A$$

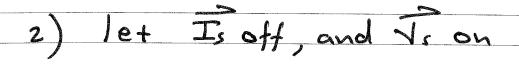
$\overline{T}_{3} = 2 L^{\circ} A$
$:: \overline{T_0} = \left(\frac{8}{5} + j\frac{26}{5}\right)A$
_ 52 _











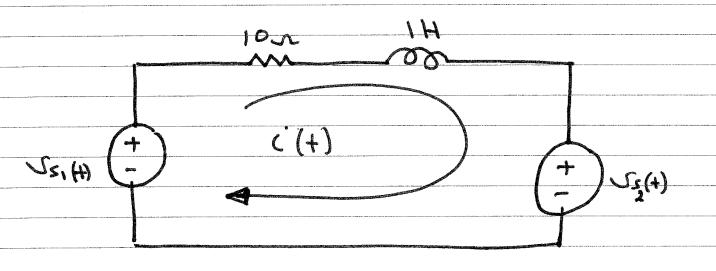
$$: I_s = \frac{12 \log A}{2+j!}$$

$$\overline{L_{02}} = \overline{L_{i}} \frac{1}{j(+1-j)}$$

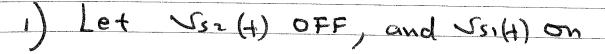
$$T_{o_2} = T_{s.j1} = \frac{12}{1-j2}$$

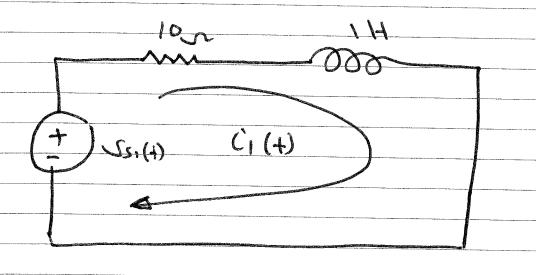
$$\overline{\mathcal{I}} = \left(\frac{8}{5} + j \frac{26}{5}\right) A$$

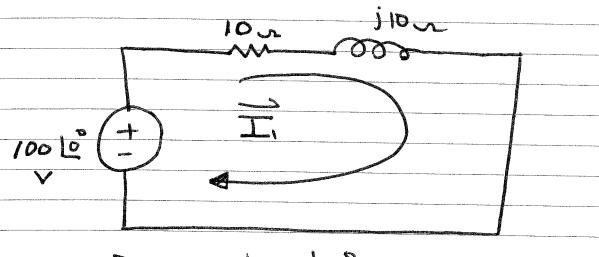
The Power of Superposition



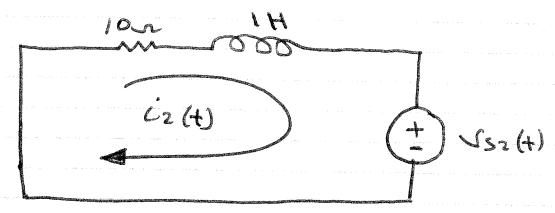
.: Superposition is the Only method of analysis.

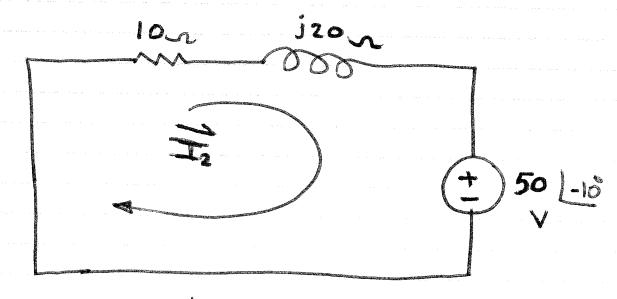






$$T_i = \frac{100 L^{\circ}}{10+j10} = 7.07 L^{-45^{\circ}} A$$



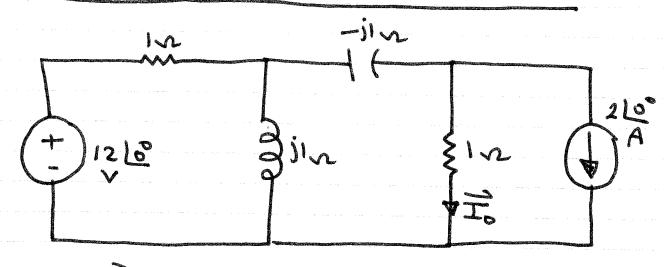


$$\vec{T}_{2} = \frac{-50 \left[-10^{\circ}\right]}{10 + j20} = \frac{50 \left[170^{\circ}\right]}{10 + j20}$$

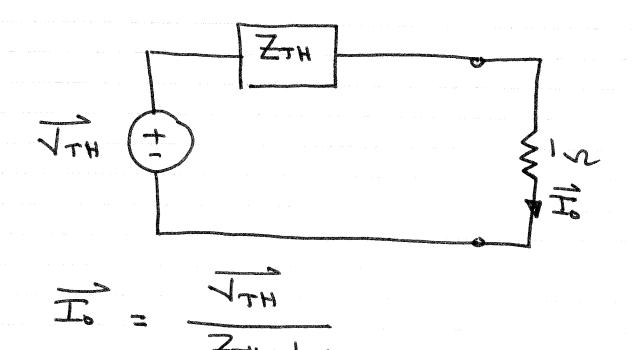
$$\vec{T}_{2} = 2.24 \left[106.57^{\circ}\right] A$$

$$i(t) = i(t) + (z(t))$$

Therenin's and Norton's Theorems



Find To using Therenin's theorem

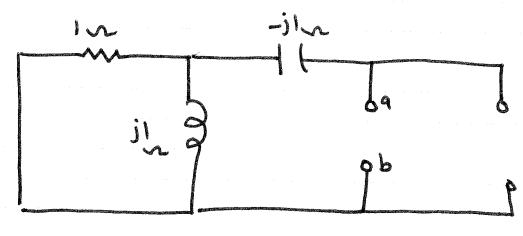


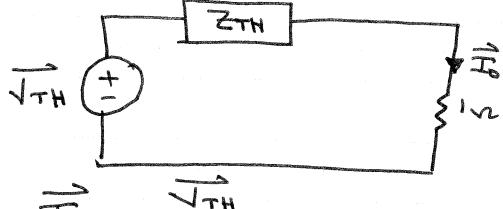
KVL for mesh 1:

$$\therefore \vec{T}_1 = \left(\frac{12+j2}{1+j1}\right) A$$

$$: \overline{\sqrt{7}H} = \left(\frac{-2+j}{1+j}\right) V$$

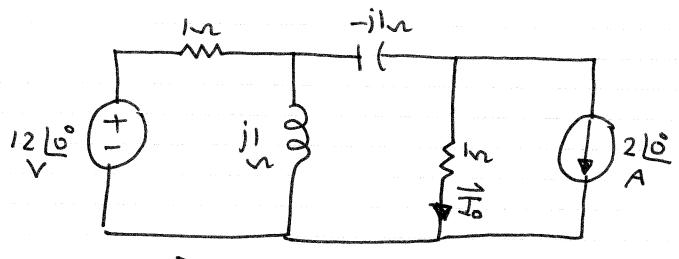
2) To find ZTH, Set all the independent Sources to Bero



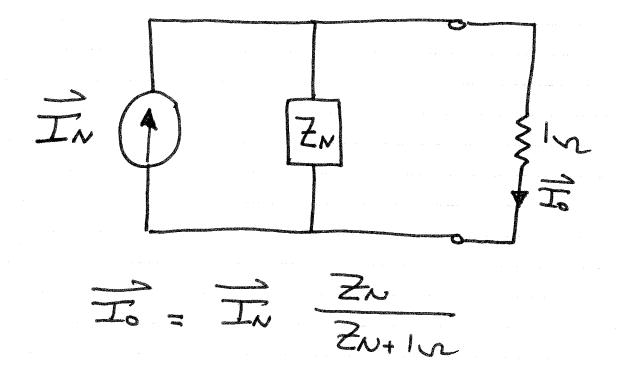


$$T_0 = \left(\frac{8}{5} + j \frac{26}{5}\right) A$$

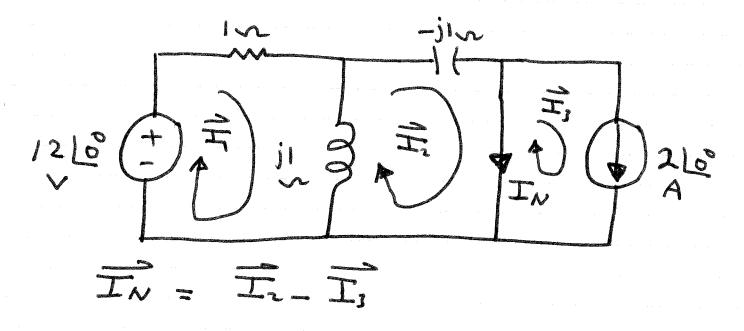
Novton's Theorem



Find To using Novton's theorem



-64_



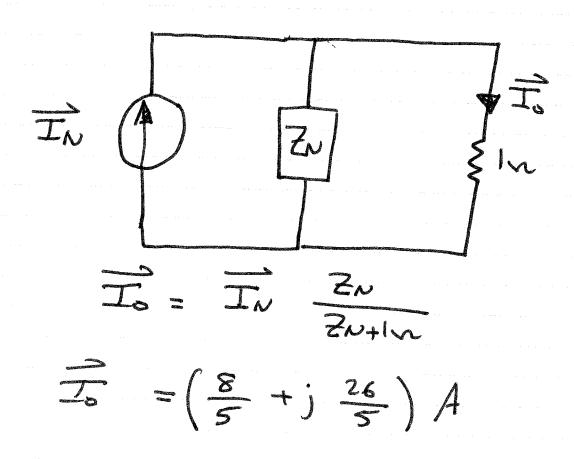
Constrain equation

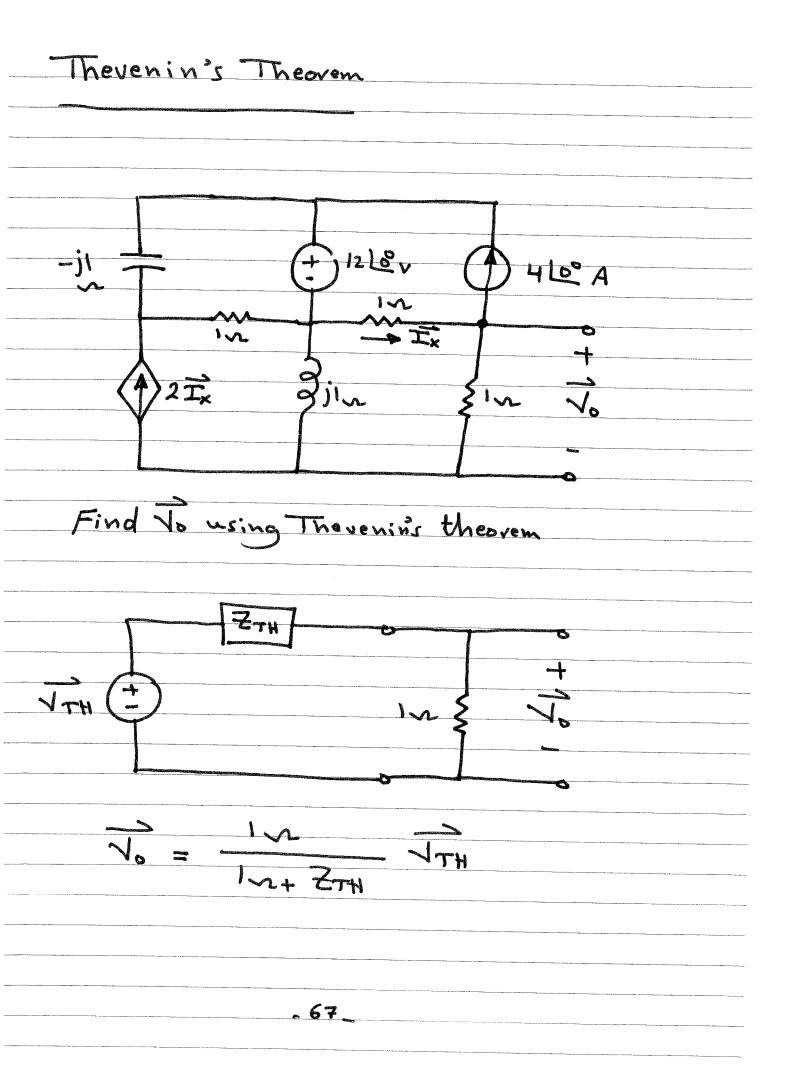
KVL for mesh 1:

$$12 Lo^{\circ} = (1+j1) \overline{I_1} - j1 \overline{I_2}$$

KUL for mesh 2:

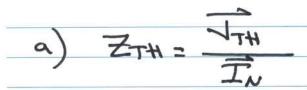
$$O = -ji \overline{I}_i + (ji-ji) \overline{I}_2$$

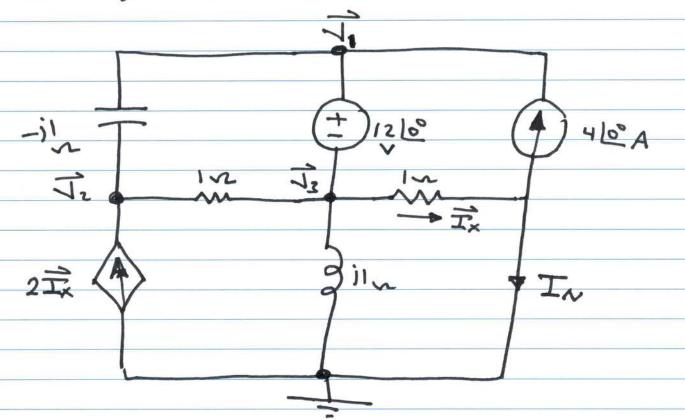




sources are set to 3ero

.68_





$$T_{\times} = \overline{J_{1}} = \overline{J_{1}}$$

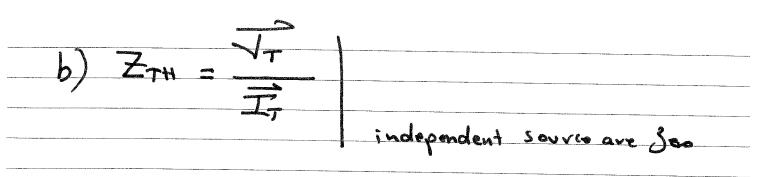
Nodal Analysis

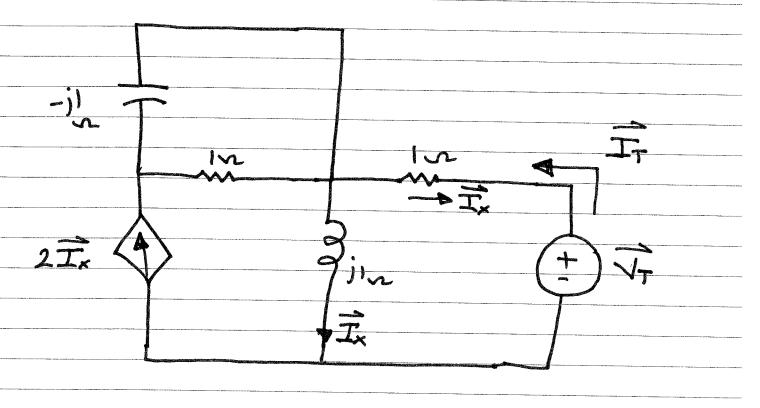
Constrain equation

KCL at node 1:

$$\sqrt{3} = \frac{4i}{1-ji}$$

$$: I_N = -\left(\frac{8+j\gamma}{1+j\gamma}\right)$$





$$\frac{1}{\sqrt{7}} = -1(\underline{T}_{x}) + j_{1}(\underline{T}_{x})$$

$$\frac{1}{\sqrt{7}} = (-1+j_{1})\underline{T}_{x}$$

$$\frac{1}{\sqrt{7}} = (-1+j_{1})\underline{T}_{y}$$

$$\frac{1}{\sqrt{7}} = (-1+j_{1})\underline{T}_{y}$$

$$\frac{1}{\sqrt{7}} = (1-j_{1})\underline{T}_{y}$$

$$\frac{1}{\sqrt{7}} = (1-j_{1})\underline{T}_{y}$$