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Boolean Function Minimization

s Complexity of a Boolean function is directly related to the

complexity of the algebraic expression
¢ The truth table of a function is unique
*»» However, the algebraic expression is not unique
*» Boolean function can be simplified by algebraic manipulation
*»» However, algebraic manipulation depends on experience

¢ Algebraic manipulation does not guarantee that the simplified

Boolean expression is minimal
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Example: Sum of Minterms

Truth Table
Xyz £ Minterm _
000 o Focus on the ‘1’ entries
@ @ 1 1 ml = x’y’Z

f:m1+m2+m3+m5+m7

@ 1 @ 1 m2 = x’yzl
S 2(12357)
1 @ @ @ f - ) ) ) )
1 @ 1 1 m5 = xy'Z
11 o f=x'y'z+x'yz +
111 1 m, = xyz x’yz + xy’z + XyZ

“ Sum-of-Minterms has 15 literals = Can be simplified
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Algebraic Manipulation
 Simplity: f =x'y'z+x'yz' + x'yz+ xy'z+ xyz (15 literals)
f=xy'z+x'yz' + x'yz+xy'z+ xyz (Sum-of-Minterms)

—
f=x'y'z+x'yz+x'yz' + xy'z + xyz Reorder

f=xzQ" +y)+x'yz' +xz(y' +y) Distributive - over +
f=x'z+x"yz' + xz Simplify (7 literals)
—

f=x'z4+xz+x"yz' Reorder
f=&"+x)z+x'yz Distributive - over +
f=z+x'yz Simplify (4 literals)
f=+x'y)(z+2z) Distributive + over -
f=z+x'y Simplify (3 literals)
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Drawback of Algebraic Manipulation

** No clear steps in the manipulation process

< Not clear which terms should be grouped together

< Not clear which property of Boolean algebra should be used next
“* Does not always guarantee a minimal expression

< Simplified expression may or may not be minimal

< Different steps might lead to different non-minimal expressions

“* However, the goal is to minimize a Boolean function

** Minimize the number of literals in the Boolean expression
< The literal count is a good measure of the cost of logic implementation

< Proportional to the number of transistors in the circuit implementation
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Karnaugh Map

¢ Called also K-map for short

“* The Karnaugh map is a diagram made up of squares

¢ It Is a reorganized version of the truth table

“ Each square in the Karnaugh map represents a minterm
*» Adjacent squares differ in the value of one variable

“ Simplified expressions can be derived from the Karnaugh map
<> By recognizing patterns of squares
» Simplified sum-of-products expression (AND-OR circuits)

> Simplified product-of-sums expression (OR-AND circuits)
Ga%IQe%MI&&?ﬁUB'Com ENCS2340 — Digital Systems Uploaded By: %Qﬂ&?&ﬂf%mmﬁo%
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Two-Variable Karnaugh Map

% Minterms m, and m, are adjacent (also, m, and m,)

< They differ in the value of variable y

% Minterms m, and m, are adjacent (also, m, and m,)

< They differ in the value of variable x

Two-variable K-map

Yy o 1 Y o 1
X X
0 | m, m, 0| Xy | Xy
1( m, m, 1| xy | Xy

Note: adjacent squares horizontally and vertically NOT diagonally
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From a Truth Table to Karnaugh Map

*» Given a truth table, construct the corresponding K-map
*» Copy the function values from the truth table into the K-map

*» Make sure to copy each value into the proper K-map square

Truth Table K-map
XYy f » Y o 1
0 0 1

0 1 0
0 1 %)
10 1 1 1 1
11 1
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K-Map Function Minimization

*+ Two adjacent cells containing 1's can be combined

K-ma
f=my,+m,+m, P
Yy o 1
X

ff=xy +xy' +x 6 literals )
f=xy +xy +xy ( ) o |1 0
Cmy+m,=xy +xy =0"+x)y =y 1 1M1 ]
/
/

Cm+my=xy +xy=x(y'+y)=x

% Therefore, f can be simplified as: f =x+7y" (2 literals)
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Example - Two-Variable Karnaugh Map

* Given the truth table of the Boolean function f, express f In
the minimal sum-of-products form.

Truth Table K-map

XYy f » Y o 1

0 0 0 —
%] (%] 1

0 1 1

10 1 e 1)

11 1

Therefore, f can be simplifiedas: f =x+y (2 literals)
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Three-Variable Karnaugh Map

*+ Have eight squares (for the 8 minterms), numbered O to 7
¢+ The last two columns are not in numeric order: 11, 10

< Remember the numbering of the squares in the K-map

*» Each square is adjacent to three other squares

“* Minterms in adjacent squares can always be combined

< This is the key idea that makes the K-map work
¢ Labeling of rows and columns is also useful

VZ
x o0 01 11 10
Ol mg | my | mg | m,
1l my | mg | m, | mq

car L v ikt 1UB-COM

!

yz y y
X 00 01 11 10
x' 0| x'y'Z | x'y'z | x'yz | x'yz
x 1| xy'z | xy'z | xyz | xyz
z' z z

ENCS2340 — Digital Systems
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Simplifying a Three-Variable Function

Simplify the Boolean function: f(x,y,z) = }.(3,4,5,7)

f=x'yz+xy'z +xy'z+ xyz (12 literals)

1. Mark ‘1’ all the K-map squares that represent function f

!

2. Find possible adjacent squares Yz y y
X OO0 01 |11 10
x'yz +xyz ="+ x)yz =yz ~_ x'0] O o [[1]| o
xy'z' +xy'z=xy'(Z'+z)=xy'— x1[| 1 1]](1)] O
z' Z z'

Therefore, f = xy'+yz (4 literals)
Ge%TQe%MIa§6ﬁ UB.com ENCS2340 — Digital Systems
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Simplifying a Three-Variable Function (2)

Here is a second example: f(x,y,z) = X.(3,4,6,7)
f=xyz+xy'z' +xyz' + xyz (12 literals)

Learn the locations of the 8 indices based on the variable order

!

x'yz+xyz=(x +x)yz =1yz yz y y
yatxyz=(+x)yz=y NC 000 o1 | 117 10
Corner squares can be combined x' 0| 0 o [[1]| o
xy'z' + xyz' = xz'(y' + y) = xZ’ x 1| 1 O [l1)]]12
z' Z z'

Therefore, f = xz' + yz (4 literals)
Ga%IQe%MIa§6ﬁUB'C0m ENCS2340 — Digital Systems Uploaded By: g%%@ﬁ’a@ﬁ@@&%



Combining Squares on a 3-Variable K-Map

*¢* By combining squares, we reduce number of literals

In a product term, thereby reducing the cost
** On a 3-variable K-Map:
< One square represents a minterm with 3 variables
< Two adjacent squares represent a term with 2 variables

<> Four adjacent squares represent a term with 1 variable

< Eight adjacent square is the constant ‘1’ (no variables)
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Minimal Sum-of-Products Expression

Consider the function: f(x,y,z) = ).(2,3,4,5)

Find a minimal sum-of-products (SOP) expression

Solution: yZ y y
X 00 01 11 10
Green block: term = x'y Yol o 0 [1 1 ]
Blue block: term = xy’ x 1!l 11 1 0 0
z' Z z'

Minimal sum-of-products: f = x'y + xy' (4 literals)
Ga%IQe%MIa§6ﬁUB'C0m ENCS2340 — Digital Systems Uploaded By: é%@%ﬁa@ﬁm@iﬁﬁ%



Example of Combining Squares

s Consider the Boolean function: f(x,y,z) = }.(2,3,5,6,7)

S f=xyz' +x'yz+xy'z+xyz' + xyz

!

vz y y
“* The four minterms that form X 06 01 11 10
the 2x2 red square are x0 0 | O |[1 | 1
reduced to the term y
x1l o [l1 [|[1]] 1
“ The two minterms that form 5/ , / 5/

the blue rectangle are , . )
x'yz+x'yz' + xyz + xyz

=xy(z+2z)+xy(z+2)
% Therefore: f =y + xz =xy+xy=x+x)y=y
Ga%IQe%MIa§6ﬁUB'C0m ENCS2340 — Digital Systems Uploaded By: é%%ﬁ'amm—mﬁqs
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Minimal Sum-of-Products Expression

Consider the function: f(x,y,z) = ).(0,1,2,4,6,7)

Find a minimal sum-of-products (SOP) expression

Solution: yZ y y

X 00 01 11 10
Red block: term =z’ x' 0 [_1 1] 0 T
Green block: term = x'y’ x 1| 1 0 1 1
Blue block: term = xy z Z z

Minimal sum-of-products: f = z"' + x'y' + xy (5 literals)
GQIQ%MIQJMUB'COI’T] ENCS2340 — Digital Systems Uploaded By: é%%ﬁ'amm—mﬁqg



Example

¢ For the Boolean function
f(A,B,C) =A'C+A'B+ AB'C + BC

a) Express the function as a sum-of-minters

b) Find the minimal sum-of-products expression

Solution:
i3
BC - A'B

=AB+BYC+AB(C+C)+AB'C AN 0011110 .

+(A + A)BC o 1 17y |7 A
= ABC+AB'C+AHC +ABC +AB'C

+ABC + ABT a1 |
=ABC+AB'C+ABC' +AB'C + ABC | N

&\

= Z[“I,E,H,S,T) ¢

f(A,B,C)=AB+C
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Four-Variable Karnaugh Map

4 variables =» 16 squares

Remember the numbering of

the squares in the K-map

Each square is adjacent to
four other squares

r..1~,/,.7

my, =wx'y'z
m, =wx'yz
m, =wxyz
mg =wxyz
mg =wx'y'z
My =wx'yz'
my, =wxy'z
My =wWxyz

car L v ikt 1UB-COM

m;, =wx'y'z
ms; =wx'yz
mes =wxyz
m, =wxyz
mg =wx'y'z
my;=wx'yz
Mz =WXxyz

Mys =WXYZ

Notice the order of Rows 11 and 10
and the order of columns 11 and 10

!

yz y y

peN_ 00 01 | 11 7 10

!/
00 mo | m{ | mg | my | X

0l my | ms | my; | mg

11| Mmqp | Mmyz| Mys| Myy

10| mg | mg | Myq| Mmyo | X’

ENCS2340 — Digital Systems U ploaded By: é %Q@ﬁ’a@ﬁmm&ql



Combining Squares on a 4-Variable K-Map

** On a 4-variable K-Map:
< One square represents a minterm with 4 variables
< Two adjacent squares represent a term with 3 variables
< Four adjacent squares represent a term with 2 variables
< Eight adjacent squares represent a term with 1 variable

<> Combining all 16 squares is the constant ‘1’ (no variables)
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Combining Eight Squares

yz y’ y Term=y
weN\ 00 01 |11 10 7
- - Z ,
Term =w' (—00]|mg || mq || m3 | [my ||| X
WI
Ol|my || ms || m; ||me
X
11| Mmqzf[ Mqy3 || Mys5 | [ M4
w
10| mg || Mo || Mqq | [Myo]f X’
\_
/ z' Z z'
Term = Z’

Ga%[éx)%’i}qﬁ&ﬁ UB.com ENCS2340 — Digital Systems

Uploaded By: gandos.nammad,



Term = xy'

car L v ikt 1UB-COM

Combining Four Squares

!

ENCS2340 — Digital Systems

yz y y
W o0 O01 | 11 10
00 mg || my | ms ||m, [ X
w' -
— Ol)lmy | ms | m; | mg
4 ) x
11 || Mq2 m13J Mis| Migl 1 Term = wy
w
10| mg || mo || Mqq || Mo X’
N o Y,
z' \z z'
Term =x'Z
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Combining Two Squares

yz y' Term=w'yz
W 00 01 | 11
00| mg | my || ms || my | X
WI
1
Term = w'xy’ 95| ms | ms ||| m7 || me
X
11| My || My3)| My | Myg
w
10| mg ||| mo || Mi1|| Mo | X’

/z’

Term = wx'Z’

Term =wy'z

car L v ikt 1UB-COM

ENCS2340 — Digital Systems
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Simplifying a 4-Variable Function

Given f(w,x,y,z) = >.(0,2,4,5,6,7,8,12)

Draw the K-map for function f

Minimize f as sum-of-products

Solution:

f=wx+yzZ +wz

Term = w'x

Term =y'Z’

car L v ikt 1UB-COM

Term=w'Z
yz Yy y /
W o0 01 | 11 10:
00|l 1 0 0 1 | x
WI
O1llH 1 1 1 1
/ X
1111 1 0 0 0
w -
/10 1 0 0 0 |
V4 Z z'

ENCS2340 — Digital Systems
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Example

¢ For the Boolean function
F=WXY +X'YZ + WXYZ +WwWX'Y'

a) Express the function as a sum-of-minters

b) Find the minimal sum-of-products expression

Solution:
a F=W'XY +X'YZ' + WXYZ' + WX'Y'
=W'X'Y(Z+Z)V+ W +WHX'YZ + W'XYZ +WX'Y'(Z +Z")
=W'X'YZ+WX'YZ +WX'YZ +W'X'YZ'+ W'XYZ +
WX'Y'Z+WX'Y'Z'
=Y(0,1,2,6,8,9,10)

Ge%j[ge%m;[té&ﬁ UB.com ENCS2340 — Digital Systems U ploaded By: é %Q@?aﬂﬁm@&%



Example (Cont.)

Solution:
YZ Y’ Y

00| [1 1 0 1 || X

Wl
Red block: term = X'Y’ 01} © 0 0 1

Blue block: term = X'Z’ y 111 0 0 0 0

Green block: term = W'y Z’ 10] |1 1 0 1 [X

Z' YA VA
Minimal sum-of-products: F = X'Y' + X'Z"+ W'YZ" (7 literals)
GéIQ%MI&%?ﬁUBLOI’n ENCS2340 — Digital Systems Uploaded By: é%@%ﬁaﬂﬁ@mﬁ%
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Prime Implicants

“* Prime Implicant: a product term obtained by combining the

maximum number of adjacent squares in the K-map
¢ The number of combined squares must be a power of 2

“ Essential Prime Implicant: is a prime implicant that covers at

least one minterm not covered by the other prime implicants

¢ The prime implicants and essential prime implicants can be

determined by inspecting the K-map
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Example of Prime Implicants
Find all the prime implicants and essential prime implicants for:
f(a,b,c,d)=)>(0,23,8,910,11,12,13,14,15)

K-Map
cd
ab\ 00 01 11 10
® ’
pa 001 || |Taakb'e

Three Prime Implicants

b'd, b'c, a
01
[
111 1 111 . .
All Prime Implicants are
10]11 11 :
essential

Q \~H -
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Example of Prime Implicants

Find all the prime implicants and essential prime implicants for:

f(a,b,c,d) =Y(0,2,3,5,7,8,9,10,11,13,15)

Six Prime Implicants

bd, b'd’, cad, cd, b'c

K-Map
cd
ap\_00_ 01 11 10
o /
bldl\oo 1 1 1 b'c
0 .
bd 01 1]f1 cd
11 1 1
101 1’ 1
ab’ /
ad

car L v ikt 1UB-COM

Only Two Prime
Implicants are essential

bd and b'd’

ENCS2340 — Digital Systems

Uploaded By: gandos.hammad,



Simplification Procedure Using the K-Map

1. Find all the essential prime implicants
< Covering maximum number (power of 2) of 1's in the K-map
< Mark the minterm(s) that make the prime implicants essential

2. Add prime implicants to cover the function
<> Choose a minimal subset of prime implicants that cover all remaining 1's
<> Make sure to cover all 1's not covered by the essential prime implicants
< Minimize the overlap among the additional prime implicants

% Sometimes, a function has multiple simplified expressions

< You may be asked to list all the simplified sum-of-product expressions

Ge%j[ge%m;[eﬁ)—ﬁ UB.com ENCS2340 — Digital Systems U ploaded By: Cg’ %Q@?aﬁﬁmm&%



Obtaining All Minimal SOP Expressions

Consider again: f(a,b,c,d) = },(0,2,3,5,7,8,9,10,11,13,15)

Obtain all minimal sum-of-products (SOP) expressions

cd K-Map Two essential Prime
ab\_00, 01 11 10 _ o
® b Implicants: bd and b'd
b'a’' —00[ 1 11 ¢
® ‘
bd = 11 cd Four possible solutions:
11 1][1 f=bd+b'd +cd+ad
10(11 (| la 1 f=bd+b'd +cd+
ab' [ f=bd+b'd +b'c+
ad f=bd+b'd +bc+ad

G%IQ%MI&&JM UB.com ENCS2340 — Digital Systems U ploaded By: é %Qu‘%ﬁ'a\ﬂﬁmmi@e%



Product-of-Sums (POS) Simplification

“» All previous examples were expressed in Sum-of-Products form

«» With a minor modification, the Product-of-Sums can be obtained

% Example: f(a,b,c,d) = ¥(1,2,3,9,10,11,13, 14, 15)

K-Map of f
cd
ab\_00 01 11 10
00 1 (/1 1{
01
11 1 (11
10 1 Uiy 1!

f=ad+ac+b'd+b'c

All prime
Implicants
are essential

Minimal Sum-of-Products = 8 literals

car L v ikt 1UB-COM

ENCS2340 — Digital Systems
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K-Map of f’ E

NG <
ab\_00 01 11 10 .
00| 1 =
>

oiff1 1|11 s
?

11 1 S
L®]

=

10| 1 o
©

fl=cd +ab =
f=(C+d)(a+b) > =
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Simplification Procedure

1. Draw the K-map for the function f
< Obtain a minimal Sum-of-Products (SOP) expression for f
2. Draw the K-map for f’, replacing the 0's of f with 1's in f’
3. Obtain a minimal Sum-of-Products (SOP) expression for f'
4. Use DeMorgan's theorem to obtain f = (f")’
< The result is a minimal Product-of-Sums (POS) expression for f
5. Compare the cost of the minimal SOP and POS expressions

< Count the number of literals to find which expression is minimal

Ga%j[ge%m;[eé)—ﬁ UB.com ENCS2340 — Digital Systems U ploaded By: Cg’ %%?amﬁm—miQeQ6



Example

“+ Express the Boolean function f in standard form using the
minimal number of literals

F(A,B,C,D) = 1_[(3, 4,6,7,11,12,13,14,15)

imoli P K-Map of F
a) Simplify the function in sum-of- cD
products form ABN_00. 01 11 10
1 I
B —e
D' 01 bl

11

:D7F ol 1T 1

F=BD' +B'C'+AC'D
Minimal Sum-of-Products = 7 literals
GéIQ%MI&%?ﬁUB'Com ENCS2340 — Digital Systems Uploaded By: é%%?aﬂﬁm—mﬁQ7
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Example (Cont.)

“+ Express the Boolean function f in standard form using the
minimal number of literals

F(A,B,C,D) = 1_[(3, 4,6,7,11,12,13,14,15)

b) Simplify the function in product-of-sums form

K-Map of F’
| CD
"*.:D_ ABN\_00 01 11 10
’ 00 ?1
b, ) of*T]| |la||[]
@
11 Il 1 ][1 :1l__
D 10 1
F=(C"+D)B' +D)A +B"

I __ !
Minimal Product-of-Sums = 6 literals F =CD+BD + AB
GéIQ%MI&%?ﬁUB'Com ENCS2340 — Digital Systems Uploaded By: é%%ﬁ'amm—m&QB
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Don't Cares

* Sometimes, a function table may contain entries for which:
< The input values of the variables will never occur, or

<> The output value of the function is never used
¢ In this case, the output value of the function is not defined
¢ The output value of the function is called a don't care
“+ A don't care is an X value that appears in the function table

+» The X value can be later chosento be O or 1

< To minimize the function implementation

Ge%j[ge%m;[eﬁ)—ﬁ UB.com ENCS2340 — Digital Systems U ploaded By: Cg’ %Q@?aﬁﬁmm&%



Example of a Function with Don't Cares

Truth Table

* Consider a function f defined over BCD inputs abcd f
000 O

“* The function input is a BCD digit from0to 9 o001 0
010 O

. . o . . 011 O
** The function output is O if the BCD inputisOto4 . - . o
9101 1

¢+ The function outputis 1 ifthe BCD inputis5t09 e11e 1
9111 1

< The function output is X (don't care) if the input is 1 g g g i
10 to 15 (not BCD) Toilien ik
1011 X

1100 X

*f=Y,.,05,678"9)+>,(10,11,12,13,14,15) 1101 X
h Y 7 Y g 1110 X
Minterms Don't Cares 1111 X

Ge%j[ge%m;[eﬁ)—ﬁ UB.com ENCS2340 — Digital Systems U ploaded By: Cg’ %Q@?aﬂﬁg'm&%



Minimizing Functions with Don't Cares
Consider: f = ¥,n(5,6,7,8,9) + ¥4 (10,11, 12,13, 14, 15)

If the don't cares were treated as 0's we get:
f =a'bd+ a'bc+ ab’c’ (9 literals)
If the don't cares were treated as 1's we get:

f=a+bd+ bc (5 literals) o K-Map of f

ab\_00 01 11 10

| ocofo|o0f0foO
The don't care values can be
[ 2

. 01| 0 |[|1
selected to be either 0 or 1, to
produce a minimal expression

1| X |IX (X X
oI0L | 1) X | X

Ge%j[elée%m;[a§&l—| UB.com ENCS2340 — Digital Systems U ploaded By: é %Q@ﬁ'a@ﬁmmﬁ%



Simplification Procedure with Don't Cares

1. Find all the essential prime implicants
<> Covering maximum number (power of 2) of 1's and X's (don't cares)
< Mark the 1's that make the prime implicants essential

2. Add prime implicants to cover the function

<> Choose a minimal subset of prime implicants that cover all remaining 1's
<> Make sure to cover all 1's not covered by the essential prime implicants
< Minimize the overlap among the additional prime implicants

<> You need not cover all the don't cares (some can remain uncovered)
% Sometimes, a function has multiple simplified expressions

Ge%j[ge%m;[eﬁ)—ﬁ UB.com ENCS2340 — Digital Systems U ploaded By: Cg’ %Q@?aﬁﬁﬂ“m&%



Minimizing Functions with Don't Cares (2)

Simplify the function g(a, b,c,d) = }.,,(1,3,7,11,15) which
has the don'’t care conditions d(a, b,c,d) = >.;(0,2,5)

Solution 1: g =cd + a’'b’ (4 literals)

Solution 2: g =cd +a'd (4 literals)

K-Map of g
cd
ab\_00 01 11 10
0] X[ 1 1] X
011 O [ X ||1{| O
11101 0 ([{2)l O
10001 0 ({3Jl O

s RN TRsHUB.com

cd

ab
00

01
11

10

K-Map of g
00 01 11 10

X

1

X

0

B

0

0

0

0

14
1
1

0
0
0

ENCS2340 — Digital Systems

Prime
Implicant cd
IS essential

Not all don't
cares need
be covered
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Minimal Product-of-Sums with Don't Cares
Simplify: g = ».,,(1,3,7,11,15) + >., (0, 2,5)
Obtain a minimal product-of-sums expression

Solution: g' = ¥,,(4,6,8,9,10,12,13,14) + ¥, (0, 2, 5)

Minimal g’ = d" + ac’ (3 literals)

K-Map of g’

Minimal product-of-sums: ade 00 01 11 10
g =d(a +c) (3 literals) PLXP 010X
o1l 1{[ X |0 |1

The minimal sum-of-products 1 (1 ﬂ o ll1
expression for g had 4 literals 10L1=_1J o1

Ge%j[elée%m;[a§&l—| UB.com ENCS2340 — Digital Systems U ploaded By: é %Q@?a@ﬁmmﬁ%



Next . ..

Boolean Function Minimization

The Karnaugh Map (K-Map)

Two, Three, and Four-Variable K-Maps

Prime and Essential Prime Implicants

Minimal Sum-of-Products and Product-of-Sums
Don't Cares

Five and Six-Variable K-Maps

Multiple Outputs

Universality of NAND and NOR gates
NAND-NAND and NOR-NOR implementations
Odd and Even functions

Parity Generators and Checkers
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Five-Variable Karnaugh Map

% Consists of 2° = 32 squares, numbered 0 to 31

< Remember the numbering of squares in the K-map

* Can be visualized as two layers of 16 squares each

“ Top layer contains the squares of the first 16 minterms (a = 0)

*» Bottom layer contains the squares of the last 16 minterms (a = 1)
a=20

de

be 00 01

11

10

00 moy | M

01l m, |ms

11 | myp| My3

10 mg | Mg

car L v ikt 1UB-COM

de

bc

00

01

11

10

a=1
00 01 11

10

ENCS2340 — Digital Systems

Each square is adjacent
to 5 other squares:

4 in the same layer and
1 in the other layer:

m, IS adjacent to m,,
m, IS adjacent to m,
m, IS adjacent to m,, ...
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Example of a Five-Variable K-Map

Given: f(a,b,c,d,e) = >,(0,1,8,9,16,17,22,23, 24, 25)
Draw the 5-Variable K-Map

Obtain a minimal Sum-of-Products expression for f

Solution: f = c'd" + ab’cd (6 literals)

5-Variable K-Map

a=1

10

1 ab’cd

a=0

de de

be OO0 01 11 10 be O0 01 11

001l 1 1 00111 1

c'd

01 01

11 11

10| 1 1 10| 1 1
GéTQ%MIa%&ﬁ UB.com ENCS2340 — Digital Systems
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Five-Variable K-Map with Don't Cares

g(a,b,c,d,e) =3..(3,6,7,11,24,25,27,28,29) + ¥,(2,8,9,12,13,26)
Draw the 5-Variable K-Map
Obtain a minimal Sum-of-Products expression for g
Solution: g = bd"+ a'b’'d + bc'e (8 literals)
5-Variable K-Map

de a=20 de a=1 :
b\ 00 01 11 10  ,N\_ 00 01 11 10 Al IF_’”me
implicants
00 1| x | 00 P o
2b'd are essentia
01 1 _1) 01
bd' —
T ~ 7 N p
11 Tx X IR E | be'e
=
10 LX X ) 1 10 ¥1 1 ) 1 X Not covered
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Six-Variable Karnaugh Map

% Consists of 2° = 64 squares, numbered 0 to 63

¢ Can be visualized as four layers of 16 squares each
< Four layers: ab = 00,01,11,10 (Notice that layer 11 comes before 10)

* Each square is adjacent to 6 other squares:

< 4 squares in the same layer and 2 squares in the above and below layers

ab = 00 ab = 01 ab =11 ab = 10
ef

cd co 01 11 10 OO O1 11 10 OO O1 11 10 OO0 O1 11 10

00 mgy |my |m3 | my || Myg| My7| Myg| Myg|| Myg| Myg| M| Msg || M32 | M33| M35| M3y

01 my |Mg |M7 | Mg || Moo | Mpq|Mo3| M2 || M52 | Ms3| Mo | Moy || M3e | M37| M39 | M3g

11 | Myl Mq3| Mys| Myg|| Mag| Mg | M31| M3 || Meo| Me1| Me3| Me2 || Maa | Mas| My7| Mye

10| mg | mg | myq| Myg|| Moga| Mo | My | Mag || Mse| Mgy | Mg | Mg || My | Maq| Mayz | Myy
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Example of a Six-Variable K-Map

h(a,b,c,d,e, f) =>,(2,10,11,18,21,23,29,31,34,41,50,53,55,61,63)
Draw the 6-Variable K-Map
Obtain a minimal Sum-of-Products expression for h

Solution: h = c'd'ef'"+bdf+a'b'cd'e+ab cde'f (18 literals)

ef ab = 00 ab = 01 ab =11 ab = 10
cd o0 01 11 10 OO0 01 11 10 OO0 01 11 10 OO O0O1 112 10
00 c'd'ef’ 1 1 1 1

01 bdf (H1 | 1] (1] 1]
1 as ap
10 111 a'b'cd'e ab cd'e'fI1
GQIQ%M%%J" UB.com ENCS2340 — Digital Systems U ploaded By: é %%ﬁ'amm—mﬁqd
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Boolean Function Minimization

The Karnaugh Map (K-Map)

Two, Three, and Four-Variable K-Maps

Prime and Essential Prime Implicants

Minimal Sum-of-Products and Product-of-Sums
Don't Cares

Five and Six-Variable K-Maps

Multiple Outputs

Universality of NAND and NOR gates
NAND-NAND and NOR-NOR implementations
Odd and Even functions

Parity Generators and Checkers
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Multiple Outputs

“ Suppose we have two functions: f(a, b,c) and g(a, b, c)
¢ Same inputs: a, b, ¢, but two outputs: f and g

*» We can minimize each function separately, or

** Minimize f and g as one circuit with two outputs

¢ The idea Is to share terms (gates) among f and g

a —
b — —> f
b —>
b — —> g
c — One circuit with
Two separate circuits Two Outputs

Ge%j[ge%m;[eﬁ)—ﬁ UB.com ENCS2340 — Digital Systems U ploaded By: Cg’ %%?aﬁﬁ@—mi‘a}eq@



Multiple Outputs: Example 1

Given: f(a,b,c) = X.(0,2,6,7) and g(a,b,c) = >,(1,3,6,7)

Minimize each function separately

Minimize both functions as one circuit

be K-Map of f
o\ 00 01 11 10
O] 1{| O | O |]|1

1l o | o |[z] 1

K-Map of g
N 00 01 11 10
o o |[1 | 1]| o

o o]

car L v ikt 1UB-COM

f=a'c +ab
Common
Term = ab
g=a'c+ab

ENCS2340 — Digital Systems

One circuit
per function

One circuit with
two Outputs
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Multiple Outputs: Example 2

f(a,b,c,d) =>(@3,5,7,10,11,14,15), g(a,b,c,d) = 3.(1,3,5,7,10,14)
Draw the K-map and write minimal SOP expressions of f and g
f=abd+ac+cd g=ad+acd

Extract the common terms of f and g

K-Map of f K-Map of g

cd cd Common Terms
N\ 00 01 11 10 N\ 00 01 11 10

00 1 00 (]-_ﬂ T1 = a'd and TZ = ac
oL o | or| || Minimal f and g

=
11 1| 1) u 1 f=Tb+T,+cd
10 L1 1J 10 1 g=T,+T,d
GéIQ%MI&%?ﬁUBLOI’n ENCS2340 — Digital Systems Uploaded By: é%@%ﬁaﬂﬁ@mﬁ%




Common Terms = Shared Gates

Minimal f = a'bd + ac + cd Minimal g = a'd + acd’
Let T, = a'd and T, = ac (shared by f and g)
Minimal f =T,b + T, + cd, Minimal g =T, + T,,d'
C —
d —
a' —
b — f
d —

wﬂéu
y

d —

a — g

C,—

d — One Circuit
NO Shared Gates Two Shared Gates
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Boolean Function Minimization

» The Karnaugh Map (K-Map)

Two, Three, and Four-Variable K-Maps

Prime and Essential Prime Implicants

Minimal Sum-of-Products and Product-of-Sums
Don't Cares
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NAND-NAND and NOR-NOR implementations
Odd and Even functions
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NAND Gate

*» The NAND gate has the following symbol and truth table
“* NAND represents NOT AND

s The small bubble circle represents the invert function

x—} X y NAND
. I: I+ !/
y— (x-y)' =x"+y 00
01
NAND gate x:D_x,+y,
y 10

Another symbol for NAND 1 1

O R

* NAND gate is implemented efficiently in CMOS technology

< In terms of chip area and speed
Ga%IQe%MI&&?ﬁUB'Com ENCS2340 — Digital Systems Uploaded By: é%%?a@ﬁ@—mié‘QB



The NAND Gate is Universal

“* NAND gates can implement any Boolean function
“* NAND gates can be used as inverters, or to implement AND/OR
¢ A single-input NAND gate is an inverter

x NAND x = (x - x)' = x’ X — :)O—x

» AND is equivalent to NAND with inverted output

X

(xNAND y)' = (G- )Y =x-y (AND) 3] p—] P~

** OR is equivalent to NAND with inverted inputs

X

(x NAND y)=(x" -y =x+y (OR) —1 Doi ‘ty
=

Ge%j[ge%m;[té&ﬁ UB.com ENCS2340 — Digital Systems U ploaded By: é %%?aﬁﬁ@—mﬁqﬁ




NAND - NAND Implementation

¢ Consider the following sum-of-products expression:

f=bd+adcd

*» A 2-level AND-OR circuit can be converted easily to a 2-level

NAND-NAND implementation

2-Level AND-OR

b —
d —

a’ —
C —

) -1

d' —

D,

AND gate

Inserting Bubbles

bh —
d —

a’ —
C —

bh —

SO

2-Level NAND-NAND

-t

>
Bl

d' —

B
D =

3-input

NAND gate

Two successive bubbles on same line cancel each other

car L v ikt 1UB-COM

ENCS2340 — Digital Systems
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Boolean Function with NAND Gates

s Example: Implement the Boolean function
f(x,y,z) =>(1,2,3,4,5,7) using only NAND gates

)
yZ ) x

X 00 01 11 10
,,,,, ", . 1,
. SR o] o —— X
» Solution: : : :
1 n. - 1,
g 1 1 1 F=xy' +x'y+z
\\
y Y
xy' % -

X — %
W —] y'
x' — x'
F F
"" }J‘
(c)

{>c -

(b)
G%IQ%MI&&JM UB.com ENCS2340 — Digital Systems U ploaded By: é %gjgﬁ'amm—m@e%l



Multilevel Circuits using NAND Gates

*» General Procedure for converting a multilevel AND-OR
diagram into an all-NAND diagram using mixed notation is as
follows:

< Convert all AND gates to NAND gates with AND-invert graphic
symbols.

< Convert all OR gates to NAND gates with invert-OR graphic
symbols.

<> Check all the bubbles in the diagram. For every bubble that is
not compensated by another small circle along the same line,
Insert an inverter (a one-input NAND gate) or complement the
iInput literal.

Ge%j[ge%m;[eﬁ)—ﬁ UB.com ENCS2340 — Digital Systems U ploaded By: Cg’ %Q@?aﬂﬁmm&%



Multilevel Circuits using NAND Gates
s Example: Implement the given circuit using only NAND gates

+» Solution:

HJ

A’
B

A )

B’

Al ——— : :D

B

.
o4 D

Start from output toward inputs converting gate by gate

G%IQ%MIa%&ﬁUB'Com ENCS2340 — Digital Systems Uploaded By: é%gjgﬁ'amm—m@e%S
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Multilevel Circuits using NAND Gates

s Example: Implement the given circuit using only NAND gates

/
:

+» Solution:
A jom
O—

GOt o)

Start from output toward inputs converting gate by gate
GQIQ%MIQJMUB'COI’T] ENCS2340 — Digital Systems Uploaded By: é%%ﬁ'amm—mﬁ%4




NOR Gate

* The NOR gate has the following symbol and truth table
** NOR represents NOT OR

s The small bubble circle represents the invert function

x , o X Yy NOR
yD_(”y)‘x'y 00 1

NOR gate x_o:>_x,. , 01 O
y —a g 10 O
0

Another symbol for NOR 11

* NOR gate is implemented efficiently in CMOS technology

< In terms of chip area and speed

Ge%j[ge%m;[eﬁ)—ﬁ UB.com ENCS2340 — Digital Systems U ploaded By: Cg’ %%?aﬁﬁ@—mﬁ%S



The NOR Gate is also Universal

** NOR gates can implement any Boolean function
“+* NOR gates can be used as inverters, or to implement AND/OR
¢ A single-input NOR gate is an inverter

x NOR x = (x + x) =« x Do—x

** OR is equivalent to NOR with inverted output

X

(xNORY) = (x +3)) =x+y (OR) ) Jo— 2

“+ AND is equivalent to NOR with inverted inputs

X X

(x NORy)=(x"+vy) =x-y (AND) —1

X.y
y y' :

Ge%j[ge%m;[té&ﬁ UB.com ENCS2340 — Digital Systems U ploaded By: é %%?aﬁﬁ@—mi‘a}g6




NOR - NOR Implementation

¢ Consider the following product-of-sums expression:

g=(a+d)y(b+c+d)

*» A 2-level OR-AND circuit can be converted easily to a 2-level

NOR-NOR implementation

2-Level OR-AND Inserting Bubbles 2-Level NOR-NOR

d d 5 d
g 0 g g
Z,& 3-input 3@“ Z,& 3-input
NOR gate

OR gate

S
S
S

Two successive bubbles on same line cancel each other
GéIQ%MI&%?ﬁUBLOI’n ENCS2340 — Digital Systems Uploaded By: é%%?a@ﬁ@—@i@%?




Boolean Function with NOR Gates

s Example: Implement the Boolean function
f(x,y,z) =2(1,2,3,5,7) using only NOR gates

s+ Solution:

.
. 4 F
I =
/L

N o< N K

— -
= -

G%IQ%ML%&# UB.com ENCS2340 — Digital Systems U ploaded By: é %Qa%ﬁ'a\ﬂﬁmmﬁ%



Multilevel Circuits using NOR Gates

*» General Procedure for converting a multilevel OR-AND
diagram into an all-NOR diagram using mixed notation is as
follows:

< Convert all OR gates to NOR gates with OR-invert graphic
symbols.

< Convert all AND gates to NOR gates with invert-AND graphic
symbols.

<> Check all the bubbles in the diagram. For every bubble that is
not compensated by another small circle along the same line,
Insert an inverter (a one-input NOR gate) or complement the
iInput literal.

Ge%j[ge%m;[eﬁ)—ﬁ UB.com ENCS2340 — Digital Systems U ploaded By: Cg’ %%?aﬁﬁ@—mﬁ%g



Multilevel Circuits using NOR Gates

s Example: Implement the Boolean function
f(A,B,C,D,E) = (AB' + A'B)E(C + D") using only NOR gates

‘=
T
— T T
>

¢ Solution:

@

[
A
B’

L

— )EDQE}F

Start from output toward inputs converting gate by gate
G%IQ%MIa%&ﬁUB'Com ENCS2340 — Digital Systems Uploaded By: é%gj‘%ﬁ'a\ﬂﬁmmiﬁ‘e%
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Multilevel Circuits using NOR Gates

s Example: Implement the given circuit using only NOR gates

s+ Solution:

Start from output toward inputs converting gate by gate
GQIQ%MIQJMUB'COI’T] ENCS2340 — Digital Systems Uploaded By: é%%?amﬁm—mﬁql




Multilevel Circuits using NAND/NOR Gates

s Example: Find the complement of the following expression
and implement it using (1) NAND gates, and (2) NOR gates:

G(A,B,C)=(A+B +C)(AB'+ C)(A+BC)
«» Solution:
G =((A+B +C)AB +C)A+BC)y=ABC +C(A+B)+A(B+C)

STYRENTS;HUB.com Uploaded By: Sanges.iammad,
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» The Karnaugh Map (K-Map)

Two, Three, and Four-Variable K-Maps

Prime and Essential Prime Implicants

Minimal Sum-of-Products and Product-of-Sums
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Exclusive OR / Exclusive NOR

*» Exclusive OR (XOR) is an important Boolean operation used

extensively in logic circuits

¢ Exclusive NOR (XNOR) is the complement of XOR

X y XOR X Yy XNOR
00 0 OO0 1
01 1 01 0 XNOR is also known
10 1 10 O as equivalence
11 0 11 1
X X /
@ @
y XDy y (xDy)
XOR gate XNOR gate
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Odd Function

¢ Output is 1 if the number of 1's is odd in the inputs

> Output is the XOR operation on all input variables

fodd
I fodd =Z(1, 2,4,7)
0 0 0 0 %]
é 001 1 fodd =x'y'z+x'yz' + xy'z' + xyz
™ 010 1 4d By @
= oad = x Z
B 011 %) f Y
S 100 1 X )
o
= 101 (%] y ded
-~ 110 o z
©
O
O 111 1

Implementation using two XOR gates
GQIQ%MIQJMUB'COI’T] ENCS2340 — Digital Systems Uploaded By: é%%ﬁ'amm—mﬁqS




WXYy Z
9000
9001
(7))
g@@l@
2 eo011
Z @100
c 06101
S 0110
c 9111
@)
= 1000
(@)
c 1001
L 1010
S 1011
I 1100
1101
1110
1111
s L RNl HUB.com

feven

=

P OCOCPRLROCFRLRRFRPOCORLRPFRPRORLROO

Even Function

¢ Outputis 1 if the number of 1's is even in
the inputs (complement of odd function)

 Output is the XNOR operation on all inputs
feven = Z(O, 3,5,6,9,10,12,15)

feven= WO xDy®d z)

w
> D_ \Do— feven
=D

Implementation using two XOR gates and one XNOR

ENCS2340 — Digital Systems U ploaded By: é %Q@?a@ﬁmm&%



Parity Generators and Checkers

n-bit code Parity (n+1)-bit code Parity
> > —> Error

Generator Checker .
Sender Receiver

“* A parity bit is added to the n-bit code

< Produces (n+1)-bit code with an odd (or even) count of 1's

\/

“ 0Odd parity: count of 1's in the (n+1)-bit code is odd
< Use an even function to generate the odd parity bit

<> Use an even function to check the (n+1)-bit code

\/

“ Even parity: count of 1's in the (n+1)-bit code is even
< Use an odd function to generate the even parity bit

<> Use an odd function to check the (n+1)-bit code
GéIQ%MI&%?ﬁUBLOI’n ENCS2340 — Digital Systems Uploaded By: é%%?amm—mﬁq7



Example of Parity Generator and Checker

¢ Design even parity generator & checker for 3-bit codes

Parity Generator

|
< Use 3-bit odd function to generate X — D_|_\ :
- - —|—} :
even parity bit P. y— D_:_ p
1

< Use 4-bit odd function to check if .
there is an error E in even parity.

s+ Solution:

< Giventhat: xyz=001thenP=1. _ _ _ _ __ _ _ _ ______

The sender transmits Pxyz = 1001. P —HD_

< If y changes from O to 1 between

|
|
|
\ [
. I D E
generator and checker, the parity y —HD 7 !

checker receives Pxyz = 1011 and 7 =
produces E = 1, indicating an error.
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