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Presentation Outline

❖ Boolean Function Minimization

❖ The Karnaugh Map (K-Map)

❖ Two, Three, and Four-Variable K-Maps

❖ Prime and Essential Prime Implicants

❖ Minimal Sum-of-Products and Product-of-Sums

❖ Don't Cares

❖ Five and Six-Variable K-Maps

❖ Multiple Outputs

❖ Universality of NAND and NOR gates

❖ NAND-NAND and NOR-NOR implementations

❖ Odd and Even functions

❖ Parity Generators and Checkers
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Boolean Function Minimization

❖ Complexity of a Boolean function is directly related to the 

complexity of the algebraic expression

❖ The truth table of a function is unique

❖ However, the algebraic expression is not unique

❖ Boolean function can be simplified by algebraic manipulation

❖ However, algebraic manipulation depends on experience

❖ Algebraic manipulation does not guarantee that the simplified 

Boolean expression is minimal
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Example: Sum of Minterms

❖ Sum-of-Minterms has 15 literals ➔ Can be simplified

Truth Table

x y z f Minterm

0 0 0 0

0 0 1 1 𝑚1 = 𝑥′𝑦′𝑧

0 1 0 1 𝑚2 = 𝑥′𝑦𝑧′

0 1 1 1 𝑚3 = 𝑥′𝑦𝑧

1 0 0 0

1 0 1 1 𝑚5 = 𝑥𝑦′𝑧

1 1 0 0

1 1 1 1 𝑚7 = 𝑥𝑦𝑧

Focus on the ‘1’ entries 

𝑓 = 𝑚1 + 𝑚2 + 𝑚3 + 𝑚5 + 𝑚7

𝑓 = ෍ 1, 2, 3, 5, 7

𝑓 = 𝑥′𝑦′𝑧 + 𝑥′𝑦𝑧′ +
𝑥′𝑦𝑧 + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧
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Algebraic Manipulation

❖ Simplify: 𝑓 = 𝑥′𝑦′𝑧 + 𝑥′𝑦𝑧′ + 𝑥′𝑦𝑧 + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧 (15 literals)

𝑓 = 𝑥′𝑦′𝑧 + 𝑥′𝑦𝑧′ + 𝑥′𝑦𝑧 + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧 (Sum-of-Minterms)

𝑓 = 𝑥′𝑦′𝑧 + 𝑥′𝑦𝑧 + 𝑥′𝑦𝑧′ + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧 Reorder

𝑓 = 𝑥′𝑧 𝑦′ + 𝑦 + 𝑥′𝑦𝑧′ + 𝑥𝑧(𝑦′ + 𝑦) Distributive · over +

𝑓 = 𝑥′𝑧 + 𝑥′𝑦𝑧′ + 𝑥𝑧 Simplify (7 literals)

𝑓 = 𝑥′𝑧 + 𝑥𝑧 + 𝑥′𝑦𝑧′ Reorder

𝑓 = (𝑥′ + 𝑥)𝑧 + 𝑥′𝑦𝑧′ Distributive · over +

𝑓 = 𝑧 + 𝑥′𝑦𝑧′ Simplify (4 literals)

𝑓 = (𝑧 + 𝑥′𝑦)(𝑧 + 𝑧′) Distributive + over ·

𝑓 = 𝑧 + 𝑥′𝑦 Simplify (3 literals)
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Drawback of Algebraic Manipulation

❖ No clear steps in the manipulation process

 Not clear which terms should be grouped together

 Not clear which property of Boolean algebra should be used next

❖ Does not always guarantee a minimal expression

 Simplified expression may or may not be minimal

 Different steps might lead to different non-minimal expressions

❖ However, the goal is to minimize a Boolean function

❖Minimize the number of literals in the Boolean expression

 The literal count is a good measure of the cost of logic implementation

 Proportional to the number of transistors in the circuit implementation
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Karnaugh Map

❖ Called also K-map for short

❖ The Karnaugh map is a diagram made up of squares

❖ It is a reorganized version of the truth table

❖ Each square in the Karnaugh map represents a minterm

❖ Adjacent squares differ in the value of one variable

❖ Simplified expressions can be derived from the Karnaugh map

 By recognizing patterns of squares

❖ Simplified sum-of-products expression (AND-OR circuits)

❖ Simplified product-of-sums expression (OR-AND circuits)
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Next . . .

❖ Boolean Function Minimization

❖ The Karnaugh Map (K-Map)

❖ Two, Three, and Four-Variable K-Maps

❖ Prime and Essential Prime Implicants

❖ Minimal Sum-of-Products and Product-of-Sums

❖ Don't Cares

❖ Five and Six-Variable K-Maps

❖ Multiple Outputs

❖ Universality of NAND and NOR gates

❖ NAND-NAND and NOR-NOR implementations

❖ Odd and Even functions

❖ Parity Generators and Checkers
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Two-Variable Karnaugh Map

❖ Minterms 𝑚0 and 𝑚1 are adjacent (also, 𝑚2 and 𝑚3)

 They differ in the value of variable 𝑦

❖ Minterms 𝑚0 and 𝑚2 are adjacent (also, 𝑚1 and 𝑚3)

 They differ in the value of variable 𝑥

Note: adjacent squares horizontally and vertically NOT diagonally

m3m21

m1m00

10
x

y

x yx y'1

x' yx' y'0

10
x

y
Two-variable K-map
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From a Truth Table to Karnaugh Map

❖ Given a truth table, construct the corresponding K-map

❖ Copy the function values from the truth table into the K-map

❖ Make sure to copy each value into the proper K-map square

x y f

0 0 1

0 1 0

1 0 1

1 1 1

Truth Table

111

010

10
x

y

K-map
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K-Map Function Minimization

❖ Two adjacent cells containing 1's can be combined

❖ 𝑓 = 𝑚0 + 𝑚2 + 𝑚3

❖ 𝑓 = 𝑥′𝑦′ + 𝑥𝑦′ + 𝑥𝑦 (6 literals)

❖𝑚0 + 𝑚2 = 𝑥′𝑦′ + 𝑥𝑦′ = (𝑥′ + 𝑥)𝑦′ = 𝑦′

❖𝑚2 + 𝑚3 = 𝑥𝑦′ + 𝑥𝑦 = 𝑥(𝑦′ + 𝑦) = 𝑥

❖ Therefore, 𝑓 can be simplified as: 𝑓 = 𝑥 + 𝑦′ (2 literals)

111

010

10
x

y

K-map
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Example - Two-Variable Karnaugh Map 

❖ Given the truth table of the Boolean function 𝑓, express 𝑓 in 

the minimal sum-of-products form.

Therefore, 𝑓 can be simplified as: 𝑓 = 𝑥 + 𝑦 (2 literals)

x y f

0 0 0

0 1 1

1 0 1

1 1 1

Truth Table

111

100

10
x

y

K-map
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Three-Variable Karnaugh Map
❖ Have eight squares (for the 8 minterms), numbered 0 to 7

❖ The last two columns are not in numeric order: 11, 10

 Remember the numbering of the squares in the K-map

❖ Each square is adjacent to three other squares

❖ Minterms in adjacent squares can always be combined

 This is the key idea that makes the K-map work

❖ Labeling of rows and columns is also useful

00 01 11 10

0 𝑚0 𝑚1 𝑚3 𝑚2

1 𝑚4 𝑚5 𝑚7 𝑚6

𝑥

𝑦𝑧
00 01 11 10

0 𝑥′𝑦′𝑧′ 𝑥′𝑦′𝑧 𝑥′𝑦𝑧 𝑥′𝑦𝑧′

1 𝑥𝑦′𝑧′ 𝑥𝑦′𝑧 𝑥𝑦𝑧 𝑥𝑦𝑧′

𝑥
𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒙′

𝒙
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Simplifying a Three-Variable Function

Simplify the Boolean function: 𝑓(𝑥, 𝑦, 𝑧) = σ(3, 4, 5, 7)

𝑓 = 𝑥′𝑦𝑧 + 𝑥𝑦′𝑧′ + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧 (12 literals)

1. Mark ‘1’ all the K-map squares that represent function 𝑓

2. Find possible adjacent squares

𝑥′𝑦𝑧 + 𝑥𝑦𝑧 = (𝑥′ + 𝑥)𝑦𝑧 = 𝑦𝑧

𝑥𝑦′𝑧′ + 𝑥𝑦′𝑧 = 𝑥𝑦′(𝑧′ + 𝑧) = 𝑥𝑦′

Therefore, 𝑓 = 𝑥𝑦′ + 𝑦𝑧 (4 literals)

00 01 11 10

0

1

𝑥
𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒙′

𝒙

0 0 1 0

1 1 1 0
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Simplifying a Three-Variable Function (2)

Here is a second example: 𝑓(𝑥, 𝑦, 𝑧) = σ(3, 4, 6, 7)

𝑓 = 𝑥′𝑦𝑧 + 𝑥𝑦′𝑧′ + 𝑥𝑦𝑧′ + 𝑥𝑦𝑧 (12 literals)

Learn the locations of the 8 indices based on the variable order

𝑥′𝑦𝑧 + 𝑥𝑦𝑧 = (𝑥′ + 𝑥)𝑦𝑧 = 𝑦𝑧

Corner squares can be combined

𝑥𝑦′𝑧′ + 𝑥𝑦𝑧′ = 𝑥𝑧′(𝑦′ + 𝑦) = 𝑥𝑧′

Therefore, 𝑓 = 𝑥𝑧′ + 𝑦𝑧 (4 literals)

00 01 11 10

0

1

𝑥
𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒙′

𝒙

0 0 1 0

1 0 1 1
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Combining Squares on a 3-Variable K-Map

❖ By combining squares, we reduce number of literals 

in a product term, thereby reducing the cost

❖ On a 3-variable K-Map:

One square represents a minterm with 3 variables

 Two adjacent squares represent a term with 2 variables

 Four adjacent squares represent a term with 1 variable

 Eight adjacent square is the constant ‘1’ (no variables)
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Minimal Sum-of-Products Expression

Consider the function: 𝑓(𝑥, 𝑦, 𝑧) = σ(2, 3, 4, 5)

Find a minimal sum-of-products (SOP) expression

Solution:

Green block: term = 𝑥′𝑦

Blue block: term = 𝑥𝑦′

Minimal sum-of-products: 𝑓 = 𝑥′𝑦 + 𝑥𝑦′ (4 literals)

00 01 11 10

0

1

𝑥
𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒙′

𝒙

0 0 1 1

1 1 0 0
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Example of Combining Squares

❖ Consider the Boolean function: 𝑓(𝑥, 𝑦, 𝑧) = σ(2, 3, 5, 6, 7)

❖ 𝑓 = 𝑥′𝑦𝑧′ + 𝑥′𝑦𝑧 + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧′ + 𝑥𝑦𝑧

00 01 11 10

0

1

𝑥
𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒙′

𝒙

0 0 1 1

0 1 1 1

❖ The four minterms that form 

the 2×2 red square are 

reduced to the term 𝑦 

❖ The two minterms that form 

the blue rectangle are 

reduced to the term 𝑥𝑧

❖ Therefore: 𝑓 = 𝑦 + 𝑥𝑧

𝑥′𝑦𝑧 + 𝑥′𝑦𝑧′ + 𝑥𝑦𝑧 + 𝑥𝑦𝑧′

= 𝑥′𝑦(𝑧 + 𝑧′) + 𝑥𝑦(𝑧 + 𝑧′)

= 𝑥′𝑦 + 𝑥𝑦 = (𝑥′ + 𝑥)𝑦 = 𝑦
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Minimal Sum-of-Products Expression

Consider the function: 𝑓(𝑥, 𝑦, 𝑧) = σ(0, 1, 2, 4, 6, 7)

Find a minimal sum-of-products (SOP) expression

Solution:

Red block: term = 𝑧′

Green block: term = 𝑥′𝑦′

Blue block: term = 𝑥𝑦

Minimal sum-of-products: 𝑓 = 𝑧′ + 𝑥′𝑦′ + 𝑥𝑦 (5 literals)

00 01 11 10

0

1

𝑥
𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒙′

𝒙

1 1 0 1

1 0 1 1
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Example

❖ For the Boolean function

𝒇 𝑨, 𝑩, 𝑪 = 𝑨′𝑪 + 𝑨′𝑩 + 𝑨𝑩′𝑪 + 𝑩𝑪

a) Express the function as a sum-of-minters

b) Find the minimal sum-of-products expression

Solution:

𝑓 𝐴, 𝐵, 𝐶 = 𝐴′𝐵 + 𝐶
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Four-Variable Karnaugh Map

4 variables ➔ 16 squares

Remember the numbering of 

the squares in the K-map

Each square is adjacent to  

four other squares

𝑚00 = 𝑤′𝑥′𝑦′𝑧′ 𝑚10 = 𝑤′𝑥′𝑦′𝑧

𝑚20 = 𝑤′𝑥′𝑦 𝑧′ 𝑚30 = 𝑤′𝑥′𝑦 𝑧

𝑚40 = 𝑤′𝑥 𝑦′𝑧′ 𝑚50 = 𝑤′𝑥 𝑦′𝑧

𝑚60 = 𝑤′𝑥 𝑦 𝑧′ 𝑚70 = 𝑤′𝑥 𝑦 𝑧

𝑚80 = 𝑤 𝑥′𝑦′𝑧′ 𝑚90 = 𝑤 𝑥′𝑦′𝑧

𝑚10 = 𝑤 𝑥′𝑦𝑧′ 𝑚11 = 𝑤 𝑥′𝑦 𝑧

𝑚12 = 𝑤 𝑥 𝑦′𝑧′ 𝑚13 = 𝑤 𝑥 𝑦′𝑧

𝑚14 = 𝑤 𝑥 𝑦 𝑧′ 𝑚15 = 𝑤 𝑥 𝑦 𝑧

00 01 11 10

00

𝑤𝑥

𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒘′

𝒘

𝑚0 𝑚1 𝑚3 𝑚2

𝑚4 𝑚5 𝑚7 𝑚6

𝒙′

𝒙

𝒙′

01

11

10

𝑚12 𝑚13 𝑚15 𝑚14

𝑚8 𝑚9 𝑚11 𝑚10

Notice the order of Rows 11 and 10

and the order of columns 11 and 10
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Combining Squares on a 4-Variable K-Map

❖ On a 4-variable K-Map:

One square represents a minterm with 4 variables

 Two adjacent squares represent a term with 3 variables

 Four adjacent squares represent a term with 2 variables

 Eight adjacent squares represent a term with 1 variable

Combining all 16 squares is the constant ‘1’ (no variables)
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Combining Eight Squares

00 01 11 10

00

𝑤𝑥

𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒘′

𝒘

𝑚0 𝑚1 𝑚3 𝑚2

𝑚4 𝑚5 𝑚7 𝑚6

𝒙′

𝒙

𝒙′

01

11

10

𝑚12 𝑚13 𝑚15 𝑚14

𝑚8 𝑚9 𝑚11 𝑚10

Term = 𝑤′

Term = 𝑦

Term = 𝑧′
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Combining Four Squares

00 01 11 10

00

𝑤𝑥

𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒘′

𝒘

𝑚0 𝑚1 𝑚3 𝑚2

𝑚4 𝑚5 𝑚7 𝑚6

𝒙′

𝒙

𝒙′

01

11

10

𝑚12 𝑚13 𝑚15 𝑚14

𝑚8 𝑚9 𝑚11 𝑚10

Term = 𝑥𝑦′

Term = 𝑤𝑦

Term = 𝑥′𝑧′
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Combining Two Squares

00 01 11 10

00

𝑤𝑥

𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒘′

𝒘

𝑚0 𝑚1 𝑚3 𝑚2

𝑚4 𝑚5 𝑚7 𝑚6

𝒙′

𝒙

𝒙′

01

11

10

𝑚12 𝑚13 𝑚15 𝑚14

𝑚8 𝑚9 𝑚11 𝑚10

Term = 𝑤′𝑥𝑦′

Term = 𝑤′𝑦𝑧

Term = 𝑤𝑦′𝑧
Term = 𝑤𝑥′𝑧′
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Simplifying a 4-Variable Function

Given 𝑓(𝑤, 𝑥, 𝑦, 𝑧) = σ(0, 2, 4, 5, 6, 7, 8, 12)

Draw the K-map for function 𝑓

Minimize 𝑓 as sum-of-products

Solution:

𝑓 = 𝑤′𝑥 + 𝑦′𝑧′ + 𝑤′𝑧′

00 01 11 10

00

𝑤𝑥

𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒘′

𝒘

1 0 0 1

1 1 1 1

𝒙′

𝒙

𝒙′

01

11

10

1 0 0 0

1 0 0 0Term = 𝑦′𝑧′

Term = 𝑤′𝑥

Term = 𝑤′𝑧′
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Example

❖ For the Boolean function

𝑭 = 𝑾′𝑿′𝒀′ + 𝑿′𝒀𝒁′ + 𝑾′𝑿𝒀𝒁′ + 𝑾𝑿′𝒀′

a) Express the function as a sum-of-minters

b) Find the minimal sum-of-products expression

Solution:

a) 𝐹 = 𝑊′𝑋′𝑌′ + 𝑋′𝑌𝑍′ + 𝑊′𝑋𝑌𝑍′ + 𝑊𝑋′𝑌′

= 𝑊′𝑋′𝑌′(𝑍 + 𝑍′) + (𝑊 + 𝑊′)𝑋′𝑌𝑍′ + 𝑊′𝑋𝑌𝑍′ + 𝑊𝑋′𝑌′(𝑍 + 𝑍′)

= 𝑊′𝑋′𝑌′𝑍 + 𝑊′𝑋′𝑌′𝑍′ + 𝑊𝑋′𝑌𝑍′ + 𝑊′𝑋′𝑌𝑍′ + 𝑊′𝑋𝑌𝑍′ +

𝑊𝑋′𝑌′𝑍 + 𝑊𝑋′𝑌′𝑍′

= σ(0, 1, 2, 6, 8, 9, 10)
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Example (Cont.)

Solution:

b) 𝐹 = σ(0, 1, 2, 6, 8, 9, 10)

Red block: term = 𝑋′𝑌′

Blue block: term = 𝑋′𝑍′

Green block: term = 𝑊′𝑌𝑍′

Minimal sum-of-products: 𝐹 = 𝑋′𝑌′ + 𝑋′𝑍′ + 𝑊′𝑌𝑍′ (7 literals)

00 01 11 10

00

𝑊𝑋

𝑌𝑍 𝒀𝒀′

𝒁 𝒁′𝒁′

𝑾′

𝑾

1 1 0 1

0 0 0 1

𝑿′

𝑿

𝑿′

01

11

10

0 0 0 0

1 1 0 1
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Next . . .

❖ Boolean Function Minimization

❖ The Karnaugh Map (K-Map)

❖ Two, Three, and Four-Variable K-Maps

❖ Prime and Essential Prime Implicants

❖ Minimal Sum-of-Products and Product-of-Sums

❖ Don't Cares

❖ Five and Six-Variable K-Maps

❖ Multiple Outputs

❖ Universality of NAND and NOR gates

❖ NAND-NAND and NOR-NOR implementations

❖ Odd and Even functions

❖ Parity Generators and Checkers
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Prime Implicants

❖ Prime Implicant: a product term obtained by combining the 

maximum number of adjacent squares in the K-map

❖ The number of combined squares must be a power of 2

❖ Essential Prime Implicant: is a prime implicant that covers at 

least one minterm not covered by the other prime implicants

❖ The prime implicants and essential prime implicants can be 

determined by inspecting the K-map
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Example of Prime Implicants

Find all the prime implicants and essential prime implicants for:

𝑓(𝑎, 𝑏, 𝑐, 𝑑) = σ(0, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15)

𝑏′𝑑′

𝑎

𝑏′𝑐
Three Prime Implicants

𝑏′𝑑′, 𝑏′𝑐, 𝑎

All Prime Implicants are 

essential

00 01 11 10

00

𝑎𝑏
𝑐𝑑

1 1 1

01

11

10

1 1

1 1 1 1

K-Map

1 1
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Example of Prime Implicants

Find all the prime implicants and essential prime implicants for:

𝑓(𝑎, 𝑏, 𝑐, 𝑑) = σ(0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)

𝑏𝑑

𝑏′𝑑′

𝑎𝑏′

𝑎𝑑

𝑐𝑑

𝑏′𝑐
Six Prime Implicants

𝑏𝑑, 𝑏′𝑑′, 𝑎𝑏′, 𝑎𝑑, 𝑐𝑑, 𝑏′𝑐

Only Two Prime 

Implicants are essential

𝑏𝑑 and 𝑏′𝑑′

00 01 11 10

00

𝑎𝑏
𝑐𝑑

1 1 1

1 101

11

10

1 1

1 1 1 1

K-Map
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Simplification Procedure Using the K-Map

1. Find all the essential prime implicants

 Covering maximum number (power of 2) of 1's in the K-map

 Mark the minterm(s) that make the prime implicants essential

2. Add prime implicants to cover the function

 Choose a minimal subset of prime implicants that cover all remaining 1's

 Make sure to cover all 1's not covered by the essential prime implicants

 Minimize the overlap among the additional prime implicants

❖ Sometimes, a function has multiple simplified expressions

 You may be asked to list all the simplified sum-of-product expressions
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Obtaining All Minimal SOP Expressions

Consider again: 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = σ(0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)

Obtain all minimal sum-of-products (SOP) expressions

𝑎𝑏′

𝑎𝑑

𝑐𝑑

𝑏′𝑐

𝑏𝑑

𝑏′𝑑′

Two essential Prime 

Implicants: 𝑏𝑑 and 𝑏′𝑑′
00 01 11 10

00

𝑎𝑏
𝑐𝑑

1 1 1

1 101

11

10

1 1

1 1 1 1

K-Map

Four possible solutions:

𝑓 = 𝑏𝑑 + 𝑏′𝑑′ + 𝑐𝑑 + 𝑎𝑑 

𝑓 = 𝑏𝑑 + 𝑏′𝑑′ + 𝑐𝑑 + 𝑎𝑏′ 

𝑓 = 𝑏𝑑 + 𝑏′𝑑′ + 𝑏′𝑐 + 𝑎𝑏′

𝑓 = 𝑏𝑑 + 𝑏′𝑑′ + 𝑏′𝑐 + 𝑎𝑑  
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Product-of-Sums (POS) Simplification

❖ All previous examples were expressed in Sum-of-Products form

❖With a minor modification, the Product-of-Sums can be obtained

❖ Example: 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = σ(1, 2, 3, 9, 10, 11, 13, 14, 15)

00 01 11 10

00

𝑎𝑏
𝑐𝑑

1 1 1

01

11

10

1 1

1 1

1

1

K-Map of 𝒇

00 01 11 10

00

𝑎𝑏
𝑐𝑑

1

01

11

10

1

1

1

1 1 1

K-Map of 𝒇′

𝑓 = 𝑎𝑑 + 𝑎𝑐 + 𝑏′𝑑 + 𝑏′𝑐 

Minimal Sum-of-Products = 8 literals

𝑓′ = 𝑐′𝑑′ + 𝑎′𝑏

𝑓 = (𝑐 + 𝑑)(𝑎 + 𝑏′)

All prime 

implicants 

are essential

M
in

im
a

l 
P

ro
d

u
c
t-

o
f-

S
u

m
s
 =

 4
 l
it
e

ra
ls
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Simplification Procedure

1. Draw the K-map for the function 𝑓

 Obtain a minimal Sum-of-Products (SOP) expression for 𝑓

2. Draw the K-map for 𝑓′, replacing the 0's of 𝑓 with 1's in 𝑓′

3. Obtain a minimal Sum-of-Products (SOP) expression for 𝑓′

4. Use DeMorgan's theorem to obtain 𝑓 = (𝑓′)′

 The result is a minimal Product-of-Sums (POS) expression for 𝑓

5. Compare the cost of the minimal SOP and POS expressions

 Count the number of literals to find which expression is minimal
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Example

❖ Express the Boolean function 𝑓 in standard form using the 

minimal number of literals

𝐹(𝐴, 𝐵, 𝐶, 𝐷) = ෑ 3, 4, 6, 7, 11, 12, 13, 14, 15

00 01 11 10

00

𝐴𝐵
𝐶𝐷

1

1

1

01

11

10 11

1

1

K-Map of 𝑭

𝐹 = 𝐵′𝐷′ + 𝐵′𝐶′ + 𝐴′𝐶′𝐷

Minimal Sum-of-Products = 7 literals

a) Simplify the function in sum-of-

products form
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Example (Cont.)

❖ Express the Boolean function 𝑓 in standard form using the 

minimal number of literals

𝐹(𝐴, 𝐵, 𝐶, 𝐷) = ෑ 3, 4, 6, 7, 11, 12, 13, 14, 15

𝐹′ = 𝐶𝐷 + 𝐵𝐷′ + 𝐴𝐵

00 01 11 10

00

𝐴𝐵
𝐶𝐷

1

1

1

01

11

10 1

1

1

1

K-Map of 𝑭′

1

1

𝐹 = (𝐶′ + 𝐷′)(𝐵′ + 𝐷)(𝐴′ + 𝐵′)

Minimal Product-of-Sums = 6 literals

b) Simplify the function in product-of-sums form
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Next . . .

❖ Boolean Function Minimization

❖ The Karnaugh Map (K-Map)

❖ Two, Three, and Four-Variable K-Maps

❖ Prime and Essential Prime Implicants

❖ Minimal Sum-of-Products and Product-of-Sums

❖ Don't Cares

❖ Five and Six-Variable K-Maps

❖ Multiple Outputs

❖ Universality of NAND and NOR gates

❖ NAND-NAND and NOR-NOR implementations

❖ Odd and Even functions

❖ Parity Generators and Checkers
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Don't Cares

❖Sometimes, a function table may contain entries for which:

 The input values of the variables will never occur, or

 The output value of the function is never used

❖ In this case, the output value of the function is not defined

❖The output value of the function is called a don't care

❖A don't care is an X value that appears in the function table

❖The X value can be later chosen to be 0 or 1

 To minimize the function implementation
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Example of a Function with Don't Cares

❖ Consider a function 𝑓 defined over BCD inputs

❖ The function input is a BCD digit from 0 to 9

❖ The function output is 0 if the BCD input is 0 to 4

❖ The function output is 1 if the BCD input is 5 to 9

❖ The function output is X (don't care) if the input is 

10 to 15 (not BCD)

❖ 𝑓 = σ𝑚 5, 6, 7, 8, 9 + σ𝑑 (10, 11, 12, 13, 14, 15)

a b c d f

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 X

1 0 1 1 X

1 1 0 0 X

1 1 0 1 X

1 1 1 0 X

1 1 1 1 X

Truth Table

Minterms Don't Cares
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Minimizing Functions with Don't Cares

Consider: 𝑓 = σ𝑚 5, 6, 7, 8, 9 + σ𝑑 (10, 11, 12, 13, 14, 15)

If the don't cares were treated as 0's we get:

𝑓 = 𝑎′𝑏𝑑 + 𝑎′𝑏𝑐 + 𝑎𝑏′𝑐′ (9 literals)

If the don't cares were treated as 1's we get:

𝑓 = 𝑎 + 𝑏𝑑 + 𝑏𝑐 (5 literals)
00 01 11 10

00

𝑎𝑏
𝑐𝑑

01

11

10

K-Map of 𝒇

0 0 00

1 1 10

X X XX

1 X X1

The don't care values can be 

selected to be either 0 or 1, to 

produce a minimal expression
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Simplification Procedure with Don't Cares

1. Find all the essential prime implicants

 Covering maximum number (power of 2) of 1's and X's (don't cares)

 Mark the 1's that make the prime implicants essential

2. Add prime implicants to cover the function

 Choose a minimal subset of prime implicants that cover all remaining 1's

 Make sure to cover all 1's not covered by the essential prime implicants

 Minimize the overlap among the additional prime implicants

 You need not cover all the don't cares (some can remain uncovered)

❖ Sometimes, a function has multiple simplified expressions
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Minimizing Functions with Don't Cares (2)

Simplify the function 𝑔(𝑎, 𝑏, 𝑐, 𝑑) = σ𝑚 1, 3, 7, 11, 15 which 

has the don’t care conditions 𝑑 𝑎, 𝑏, 𝑐, 𝑑 = σ𝑑 (0, 2, 5)

Solution 1: 𝑔 = 𝑐𝑑 + 𝑎′𝑏′ (4 literals)

Solution 2: 𝑔 = 𝑐𝑑 + 𝑎′𝑑 (4 literals)

00 01 11 10

00

𝑎𝑏
𝑐𝑑

01

11

10

K-Map of 𝒈

1 1 XX

X 1 00

0 1 00

0 1 00

00 01 11 10

00

𝑎𝑏
𝑐𝑑

01

11

10

K-Map of 𝒈

1 1 XX

X 1 00

0 1 00

0 1 00

Not all don't 

cares need 

be covered

Prime 

Implicant 𝑐𝑑 

is essential
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Minimal Product-of-Sums with Don't Cares

Simplify: 𝑔 = σ𝑚 1, 3, 7, 11, 15 + σ𝑑 (0, 2, 5)

Obtain a minimal product-of-sums expression

Solution: 𝑔′ = σ𝑚 4, 6, 8, 9, 10, 12, 13, 14 + σ𝑑 (0, 2, 5)

Minimal 𝑔′ = 𝑑′ + 𝑎𝑐′ (3 literals)

Minimal product-of-sums:

𝑔 = 𝑑(𝑎′ + 𝑐) (3 literals)

00 01 11 10

00

𝑎𝑏
𝑐𝑑

01

11

10

K-Map of 𝒈′

0 0 XX

X 0 11

1 0 11

1 0 11

The minimal sum-of-products 

expression for 𝑔 had 4 literals
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Next . . .

❖ Boolean Function Minimization

❖ The Karnaugh Map (K-Map)

❖ Two, Three, and Four-Variable K-Maps

❖ Prime and Essential Prime Implicants

❖ Minimal Sum-of-Products and Product-of-Sums

❖ Don't Cares

❖ Five and Six-Variable K-Maps

❖ Multiple Outputs

❖ Universality of NAND and NOR gates

❖ NAND-NAND and NOR-NOR implementations

❖ Odd and Even functions

❖ Parity Generators and Checkers
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Five-Variable Karnaugh Map

❖ Consists of 25 = 32 squares, numbered 0 to 31

 Remember the numbering of squares in the K-map

❖ Can be visualized as two layers of 16 squares each

❖ Top layer contains the squares of the first 16 minterms (𝑎 = 0)

❖ Bottom layer contains the squares of the last 16 minterms (𝑎 = 1)

00 01 11 10

00

𝑏𝑐

𝑑𝑒
𝑎 = 0

𝑚0 𝑚1 𝑚3 𝑚2

𝑚4 𝑚5 𝑚7 𝑚601

11

10

𝑚12 𝑚13 𝑚15 𝑚14

𝑚8 𝑚9 𝑚11 𝑚10

00 01 11 10

00

𝑏𝑐

𝑑𝑒
𝑎 = 1

𝑚16 𝑚17 𝑚19 𝑚18

𝑚20 𝑚21 𝑚23 𝑚2201

11

10

𝑚28 𝑚29 𝑚31 𝑚30

𝑚24 𝑚25 𝑚27 𝑚26

Each square is adjacent 

to 5 other squares:

4 in the same layer and

1 in the other layer:

𝑚0 is adjacent to 𝑚16

𝑚1 is adjacent to 𝑚17

𝑚4 is adjacent to 𝑚20 …
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Example of a Five-Variable K-Map

Given: 𝑓(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) = σ(0, 1, 8, 9, 16, 17, 22, 23, 24, 25)

Draw the 5-Variable K-Map

Obtain a minimal Sum-of-Products expression for 𝑓

Solution: 𝑓 = 𝑐′𝑑′ + 𝑎𝑏′𝑐𝑑 (6 literals)

00 01 11 10

00

𝑏𝑐

𝑑𝑒
𝑎 = 0

01

11

10

00 01 11 10

00

𝑏𝑐

𝑑𝑒
𝑎 = 1

01

11

10

5-Variable K-Map

1 1 1 1

1 1 1 1

1 1
𝑐′𝑑′

𝑎𝑏′𝑐𝑑
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Five-Variable K-Map with Don't Cares

𝑔(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) = σ𝑚(3, 6, 7, 11, 24, 25, 27, 28, 29) + σ𝑑 (2, 8, 9, 12, 13, 26)

Draw the 5-Variable K-Map

Obtain a minimal Sum-of-Products expression for 𝑔

Solution: 𝑔 = 𝑏𝑑′ + 𝑎′𝑏′𝑑 + 𝑏𝑐′𝑒 (8 literals)

𝑏𝑑′

00 01 11 10

00

𝑏𝑐

𝑑𝑒
𝑎 = 0

01

11

10

00 01 11 10

00

𝑏𝑐

𝑑𝑒
𝑎 = 1

01

11

10

5-Variable K-Map

1

X X 1 1

X X 1 1

1 1 X

X

1 1

𝑎′𝑏′𝑑

𝑏𝑐′𝑒

All prime 

implicants 

are essential

Not covered
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Six-Variable Karnaugh Map

❖ Consists of 26 = 64 squares, numbered 0 to 63

❖ Can be visualized as four layers of 16 squares each

 Four layers: 𝑎𝑏 = 00, 01, 11, 10 (Notice that layer 11 comes before 10)

❖ Each square is adjacent to 6 other squares:

 4 squares in the same layer and 2 squares in the above and below layers

00 01 11 10

00

𝑐𝑑

𝑒𝑓
𝑎𝑏 = 00

𝑚0 𝑚1 𝑚3 𝑚2

𝑚4 𝑚5 𝑚7 𝑚601

11

10

𝑚12 𝑚13 𝑚15 𝑚14

𝑚8 𝑚9 𝑚11 𝑚10

00 01 11 10

𝑎𝑏 = 01

𝑚16 𝑚17 𝑚19 𝑚18

𝑚20 𝑚21 𝑚23 𝑚22

𝑚28 𝑚29 𝑚31 𝑚30

𝑚24 𝑚25 𝑚27 𝑚26

00 01 11 10

𝑎𝑏 = 11

𝑚48 𝑚49 𝑚51 𝑚50

𝑚52 𝑚53 𝑚55 𝑚54

𝑚60 𝑚61 𝑚63 𝑚62

𝑚56 𝑚57 𝑚59 𝑚58

00 01 11 10

𝑎𝑏 = 10

𝑚32 𝑚33 𝑚35 𝑚34

𝑚36 𝑚37 𝑚39 𝑚38

𝑚44 𝑚45 𝑚47 𝑚46

𝑚40 𝑚41 𝑚43 𝑚42
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Example of a Six-Variable K-Map

ℎ(𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓) = σ(2, 10, 11, 18, 21, 23, 29, 31, 34, 41, 50, 53, 55, 61, 63)

Draw the 6-Variable K-Map

Obtain a minimal Sum-of-Products expression for ℎ

Solution: ℎ = 𝑐′𝑑′𝑒𝑓′ + 𝑏 𝑑 𝑓 + 𝑎′𝑏′𝑐 𝑑′𝑒 + 𝑎 𝑏′ 𝑐 𝑑′𝑒′𝑓 (18 literals)

00 01 11 10

00

𝑐𝑑

𝑒𝑓
𝑎𝑏 = 00

01

11

10

00 01 11 10

𝑎𝑏 = 01

00 01 11 10

𝑎𝑏 = 11

00 01 11 10

𝑎𝑏 = 10

1 1 1

1

1

1

1

1

1

1

1

111

1𝑐′𝑑′𝑒𝑓′

𝑏𝑑𝑓

𝑎′𝑏′𝑐 𝑑′𝑒 𝑎 𝑏′ 𝑐 𝑑′𝑒′𝑓
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Next . . .

❖ Boolean Function Minimization

❖ The Karnaugh Map (K-Map)

❖ Two, Three, and Four-Variable K-Maps

❖ Prime and Essential Prime Implicants

❖ Minimal Sum-of-Products and Product-of-Sums

❖ Don't Cares

❖ Five and Six-Variable K-Maps

❖ Multiple Outputs

❖ Universality of NAND and NOR gates

❖ NAND-NAND and NOR-NOR implementations

❖ Odd and Even functions

❖ Parity Generators and Checkers
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Multiple Outputs

❖ Suppose we have two functions: 𝑓(𝑎, 𝑏, 𝑐) and 𝑔(𝑎, 𝑏, 𝑐)

❖ Same inputs: 𝑎, 𝑏, 𝑐, but two outputs: 𝑓 and 𝑔

❖We can minimize each function separately, or

❖ Minimize 𝑓 and 𝑔 as one circuit with two outputs

❖ The idea is to share terms (gates) among 𝑓 and 𝑔

𝑎
𝑏
𝑐

𝑓

𝑎
𝑏
𝑐

𝑔

𝑎
𝑏
𝑐 𝑔

𝑓

One circuit with

Two OutputsTwo separate circuits
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Multiple Outputs: Example 1

Given: 𝑓 𝑎, 𝑏, 𝑐 = σ(0, 2, 6, 7) and 𝑔 𝑎, 𝑏, 𝑐 = σ(1, 3, 6, 7)

Minimize each function separately

Minimize both functions as one circuit

00 01 11 10

0

1

𝑎
𝑏𝑐

1 0 0 1

0 0 1 1

K-Map of 𝒇

00 01 11 10

0

1

𝑎
𝑏𝑐

0 1 1 0

0 0 1 1

K-Map of 𝒈

𝑓 = 𝑎′𝑐′ + 𝑎𝑏

𝑔 = 𝑎′𝑐 + 𝑎𝑏

Common

Term = 𝑎𝑏

O
n

e
 c

ir
c
u

it
 w

it
h

tw
o

 O
u

tp
u

ts

𝑔

𝑎′
𝑐′

𝑓
𝑎
𝑏

𝑎′
𝑐

𝑎′
𝑐′

𝑓
𝑎
𝑏

𝑎′
𝑐

𝑔
𝑎
𝑏

O
n

e
 c

ir
c
u

it
 

p
e

r 
fu

n
c
ti
o

n
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Multiple Outputs: Example 2

𝑓 𝑎, 𝑏, 𝑐, 𝑑 = σ(3, 5, 7, 10, 11, 14, 15), 𝑔 𝑎, 𝑏, 𝑐, 𝑑 = σ(1, 3, 5, 7, 10, 14)

Draw the K-map and write minimal SOP expressions of 𝑓 and 𝑔

𝑓 = 𝑎′𝑏𝑑 + 𝑎𝑐 + 𝑐𝑑 𝑔 = 𝑎′𝑑 + 𝑎𝑐𝑑′

Extract the common terms of 𝑓 and 𝑔

1 1

00 01 11 10

00

𝑎𝑏

𝑐𝑑

01

11

10

K-Map of 𝒇

1

1

1

1

1

00 01 11 10

00

𝑎𝑏

𝑐𝑑

01

11

10

K-Map of 𝒈

1 1

1

1

1 1

Common Terms

𝑇1 = 𝑎′𝑑 and 𝑇2 = 𝑎𝑐

Minimal 𝑓 and 𝑔

𝑓 = 𝑇1𝑏 + 𝑇2 + 𝑐𝑑

𝑔 = 𝑇1 + 𝑇2𝑑′
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Common Terms ➔ Shared Gates

Minimal 𝑓 = 𝑎′𝑏𝑑 + 𝑎𝑐 + 𝑐𝑑 Minimal 𝑔 = 𝑎′𝑑 + 𝑎𝑐𝑑′

Let 𝑇1 = 𝑎′𝑑 and 𝑇2 = 𝑎𝑐 (shared by 𝑓 and 𝑔)

Minimal 𝑓 = 𝑇1𝑏 + 𝑇2 + 𝑐𝑑, Minimal 𝑔 = 𝑇1 + 𝑇2𝑑′

One Circuit

Two Shared Gates

𝑐
𝑑
𝑎′
𝑏
𝑑

𝑓

𝑎
𝑐

𝑎
𝑐
𝑑′

𝑔

𝑎′
𝑑

NO Shared Gates

𝑓𝑎′
𝑑

𝑎
𝑐

𝑏

𝑑′

𝑐
𝑑

𝑔

𝑇1

𝑇2
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Next . . .

❖ Boolean Function Minimization

❖ The Karnaugh Map (K-Map)

❖ Two, Three, and Four-Variable K-Maps

❖ Prime and Essential Prime Implicants

❖ Minimal Sum-of-Products and Product-of-Sums

❖ Don't Cares

❖ Five and Six-Variable K-Maps

❖ Multiple Outputs

❖ Universality of NAND and NOR gates

❖ NAND-NAND and NOR-NOR implementations

❖ Odd and Even functions

❖ Parity Generators and Checkers
Uploaded By: Sondos hammadSTUDENTS-HUB.com



Gate-Level Minimization ENCS2340 – Digital Systems © Ahmed Shawahna – slide 58

NAND Gate

❖ The NAND gate has the following symbol and truth table

❖ NAND represents NOT AND

❖ The small bubble circle represents the invert function

❖ NAND gate is implemented efficiently in CMOS technology

 In terms of chip area and speed

x y NAND

0  0 1

0  1 1

1  0 1

1  1 0

𝑥
𝑦

𝑥 · 𝑦 ′ = 𝑥′ + 𝑦′

NAND gate 𝑥
𝑦

𝑥′ + 𝑦′

Another symbol for NAND
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The NAND Gate is Universal

❖ NAND gates can implement any Boolean function

❖ NAND gates can be used as inverters, or to implement AND/OR

❖ A single-input NAND gate is an inverter

𝑥 NAND 𝑥 = (𝑥 · 𝑥)′ = 𝑥′

❖ AND is equivalent to NAND with inverted output

(𝑥 NAND 𝑦)′ = ((𝑥 · 𝑦)′)′ = 𝑥 · 𝑦 (AND)

❖ OR is equivalent to NAND with inverted inputs

(𝑥′ NAND 𝑦′) = (𝑥′ · 𝑦′)′ = 𝑥 + 𝑦 (OR)

𝑥 𝑥′

𝑥 · 𝑦
𝑥

𝑦

𝑥 + 𝑦

𝑥 𝑥′

𝑦 𝑦′
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NAND – NAND Implementation

❖ Consider the following sum-of-products expression:

𝑓 = 𝑏𝑑 + 𝑎′𝑐𝑑′

❖ A 2-level AND-OR circuit can be converted easily to a 2-level 

NAND-NAND implementation

𝑏

𝑑
𝑓

𝑎′
𝑐
𝑑′

2-Level AND-OR

𝑏

𝑑
𝑓

𝑎′
𝑐
𝑑′

Inserting Bubbles

Two successive bubbles on same line cancel each other

𝑏

𝑑
𝑓

𝑎′
𝑐
𝑑′

2-Level NAND-NAND

3-input

NAND gate

3-input

AND gate
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Boolean Function with NAND Gates

❖ Example: Implement the Boolean function                    

𝑓 𝑥, 𝑦, 𝑧 = σ(1, 2, 3, 4, 5, 7) using only NAND gates

❖ Solution:
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Multilevel Circuits using NAND Gates

❖ General Procedure for converting a multilevel AND–OR 

diagram into an all-NAND diagram using mixed notation is as 

follows:

 Convert all AND gates to NAND gates with AND-invert graphic 

symbols.

 Convert all OR gates to NAND gates with invert-OR graphic 

symbols.

 Check all the bubbles in the diagram. For every bubble that is 

not compensated by another small circle along the same line, 

insert an inverter (a one-input NAND gate) or complement the 

input literal.
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Multilevel Circuits using NAND Gates

❖ Example: Implement the given circuit using only NAND gates

❖ Solution:

Start from output toward inputs converting gate by gate
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Multilevel Circuits using NAND Gates

❖ Example: Implement the given circuit using only NAND gates

❖ Solution:

Start from output toward inputs converting gate by gate
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NOR Gate

❖ The NOR gate has the following symbol and truth table

❖ NOR represents NOT OR

❖ The small bubble circle represents the invert function

❖ NOR gate is implemented efficiently in CMOS technology

 In terms of chip area and speed

x y NOR

0  0 1

0  1 0

1  0 0

1  1 0

𝑥
𝑦

𝑥 + 𝑦 ′ = 𝑥′ · 𝑦′

NOR gate 𝑥
𝑦

𝑥′ · 𝑦′

Another symbol for NOR
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The NOR Gate is also Universal

❖ NOR gates can implement any Boolean function

❖ NOR gates can be used as inverters, or to implement AND/OR

❖ A single-input NOR gate is an inverter

𝑥 NOR 𝑥 = (𝑥 + 𝑥)′ = 𝑥′

❖ OR is equivalent to NOR with inverted output

(𝑥 NOR 𝑦)′ = ((𝑥 + 𝑦)′)′ = 𝑥 + 𝑦 (OR)

❖ AND is equivalent to NOR with inverted inputs

(𝑥′ NOR 𝑦′) = (𝑥′ + 𝑦′)′ = 𝑥 · 𝑦 (AND)

𝑥 𝑥′

𝑥 + 𝑦
𝑥

𝑦

𝑥. 𝑦

𝑥 𝑥′

𝑦 𝑦′
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NOR – NOR Implementation

❖ Consider the following product-of-sums expression:

𝑔 = (𝑎 + 𝑑)(𝑏 + 𝑐 + 𝑑′)

❖ A 2-level OR-AND circuit can be converted easily to a 2-level 

NOR-NOR implementation

Two successive bubbles on same line cancel each other

2-Level OR-AND

𝑎

𝑑
𝑔

𝑏
𝑐
𝑑′

Inserting Bubbles

𝑎

𝑑
𝑔

𝑏
𝑐
𝑑′

2-Level NOR-NOR

𝑎

𝑑
𝑔

𝑏
𝑐
𝑑′ 3-input

NOR gate

3-input

OR gate
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Boolean Function with NOR Gates

❖ Example: Implement the Boolean function                    

𝑓 𝑥, 𝑦, 𝑧 = σ(1, 2, 3, 5, 7) using only NOR gates

❖ Solution:
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Multilevel Circuits using NOR Gates

❖ General Procedure for converting a multilevel OR–AND 

diagram into an all-NOR diagram using mixed notation is as 

follows:

 Convert all OR gates to NOR gates with OR-invert graphic 

symbols.

 Convert all AND gates to NOR gates with invert-AND graphic 

symbols.

 Check all the bubbles in the diagram. For every bubble that is 

not compensated by another small circle along the same line, 

insert an inverter (a one-input NOR gate) or complement the 

input literal.
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Multilevel Circuits using NOR Gates

❖ Example: Implement the Boolean function             

𝑓 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝐴𝐵′ + 𝐴′𝐵 𝐸(𝐶 + 𝐷′) using only NOR gates

❖ Solution:

Start from output toward inputs converting gate by gate
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Multilevel Circuits using NOR Gates

❖ Example: Implement the given circuit using only NOR gates

❖ Solution:

Start from output toward inputs converting gate by gate
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Multilevel Circuits using NAND/NOR Gates

❖ Example: Find the complement of the following expression 

and implement it using (1) NAND gates, and (2) NOR gates:

G(A, B, C) = (A + B’ + C)(A’B’ + C)(A + B’C’)

❖ Solution:

G’ = ((A + B’ + C)(A’B’ + C)(A + B’C’))’ = A’BC’ + C’(A + B) + A’(B + C)
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Next . . .

❖ Boolean Function Minimization

❖ The Karnaugh Map (K-Map)

❖ Two, Three, and Four-Variable K-Maps

❖ Prime and Essential Prime Implicants

❖ Minimal Sum-of-Products and Product-of-Sums

❖ Don't Cares

❖ Five and Six-Variable K-Maps

❖ Multiple Outputs

❖ Universality of NAND and NOR gates

❖ NAND-NAND and NOR-NOR implementations

❖ Odd and Even functions

❖ Parity Generators and Checkers
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Exclusive OR / Exclusive NOR

❖ Exclusive OR (XOR) is an important Boolean operation used 

extensively in logic circuits

❖ Exclusive NOR (XNOR) is the complement of XOR

𝑥
𝑦

𝑥 ⨁ 𝑦

XOR gate

𝑥
𝑦

(𝑥 ⨁ 𝑦)′

XNOR gate

x y XOR

0  0 0

0  1 1

1  0 1

1  1 0

x y XNOR

0  0 1

0  1 0

1  0 0

1  1 1

XNOR is also known 

as equivalence
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Odd Function

❖ Output is 1 if the number of 1's is odd in the inputs

❖ Output is the XOR operation on all input variables

x y z fodd

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1O
d

d
 F

u
n

c
ti

o
n

 w
it

h
 3

 i
n

p
u

ts

𝑓𝑜𝑑𝑑 = ෍(1, 2, 4, 7)

𝑓𝑜𝑑𝑑 = 𝑥′𝑦′𝑧 + 𝑥′𝑦𝑧′ + 𝑥𝑦′𝑧′ + 𝑥𝑦𝑧

𝑓𝑜𝑑𝑑 = 𝑥 ⨁ 𝑦 ⨁ 𝑧

𝑥
𝑦

𝑧
𝑓𝑜𝑑𝑑

Implementation using two XOR gates
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Even Function

❖ Output is 1 if the number of 1's is even in 

the inputs (complement of odd function)

❖ Output is the XNOR operation on all inputs

w x y z feven

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

E
v
e

n
 F

u
n

c
ti

o
n

 w
it

h
 4

 i
n

p
u

ts

𝑓𝑒𝑣𝑒𝑛 = ෍(0, 3, 5, 6, 9, 10, 12, 15)

𝑤

𝑥

𝑦
𝑓𝑒𝑣𝑒𝑛

𝑧

Implementation using two XOR gates and one XNOR

𝑓𝑒𝑣𝑒𝑛 = (𝑤 ⨁ 𝑥 ⨁ 𝑦 ⨁ 𝑧)′
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❖ A parity bit is added to the n-bit code

 Produces (n+1)-bit code with an odd (or even) count of 1's

❖ Odd parity: count of 1's in the (n+1)-bit code is odd

 Use an to generate the odd parity bit

 Use an to check the (n+1)-bit code

❖ Even parity: count of 1's in the (n+1)-bit code is even

 Use an to generate the even parity bit

 Use an to check the (n+1)-bit code

even function 

even function 

odd function 

odd function

Parity Generators and Checkers

Sender Receiver

n-bit code Parity

Generator

(n+1)-bit code Parity

Checker
Error

Uploaded By: Sondos hammadSTUDENTS-HUB.com



Gate-Level Minimization ENCS2340 – Digital Systems © Ahmed Shawahna – slide 78

Example of Parity Generator and Checker

❖ Design even parity generator & checker for 3-bit codes

❖ Solution:

 Use 3-bit odd function to generate 

even parity bit 𝑃.

 Use 4-bit odd function to check if 

there is an error 𝐸 in even parity.

 Given that: 𝑥𝑦𝑧 = 001 then 𝑃 = 1. 

The sender transmits 𝑃𝑥𝑦𝑧 = 1001.

 If 𝑦 changes from 0 to 1 between 

generator and checker, the parity 

checker receives 𝑃𝑥𝑦𝑧 = 1011 and 

produces 𝐸 = 1, indicating an error.

𝑥
𝑦

𝑧
𝑃

Parity Generator

𝑃
𝑥

𝑦
𝐸

𝑧

Parity Checker
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