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Presentation Outline

❖ Boolean Function Minimization

❖ The Karnaugh Map (K-Map)

❖ Two, Three, and Four-Variable K-Maps

❖ Prime and Essential Prime Implicants

❖ Minimal Sum-of-Products and Product-of-Sums

❖ Don't Cares

❖ Five and Six-Variable K-Maps

❖ Multiple Outputs

❖ Universality of NAND and NOR gates

❖ NAND-NAND and NOR-NOR implementations

❖ Odd and Even functions

❖ Parity Generators and Checkers
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Boolean Function Minimization

❖ Complexity of a Boolean function is directly related to the 

complexity of the algebraic expression

❖ The truth table of a function is unique

❖ However, the algebraic expression is not unique

❖ Boolean function can be simplified by algebraic manipulation

❖ However, algebraic manipulation depends on experience

❖ Algebraic manipulation does not guarantee that the simplified 

Boolean expression is minimal
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Example: Sum of Minterms

❖ Sum-of-Minterms has 15 literals ➔ Can be simplified

Truth Table

x y z f Minterm

0 0 0 0

0 0 1 1 𝑚1 = 𝑥′𝑦′𝑧

0 1 0 1 𝑚2 = 𝑥′𝑦𝑧′

0 1 1 1 𝑚3 = 𝑥′𝑦𝑧

1 0 0 0

1 0 1 1 𝑚5 = 𝑥𝑦′𝑧

1 1 0 0

1 1 1 1 𝑚7 = 𝑥𝑦𝑧

Focus on the ‘1’ entries 

𝑓 = 𝑚1 + 𝑚2 + 𝑚3 + 𝑚5 + 𝑚7

𝑓 =  1, 2, 3, 5, 7

𝑓 = 𝑥′𝑦′𝑧 + 𝑥′𝑦𝑧′ +
𝑥′𝑦𝑧 + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧
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Algebraic Manipulation

❖ Simplify: 𝑓 = 𝑥′𝑦′𝑧 + 𝑥′𝑦𝑧′ + 𝑥′𝑦𝑧 + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧 (15 literals)

𝑓 = 𝑥′𝑦′𝑧 + 𝑥′𝑦𝑧′ + 𝑥′𝑦𝑧 + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧 (Sum-of-Minterms)

𝑓 = 𝑥′𝑦′𝑧 + 𝑥′𝑦𝑧 + 𝑥′𝑦𝑧′ + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧 Reorder

𝑓 = 𝑥′𝑧 𝑦′ + 𝑦 + 𝑥′𝑦𝑧′ + 𝑥𝑧(𝑦′ + 𝑦) Distributive · over +

𝑓 = 𝑥′𝑧 + 𝑥′𝑦𝑧′ + 𝑥𝑧 Simplify (7 literals)

𝑓 = 𝑥′𝑧 + 𝑥𝑧 + 𝑥′𝑦𝑧′ Reorder

𝑓 = (𝑥′ + 𝑥)𝑧 + 𝑥′𝑦𝑧′ Distributive · over +

𝑓 = 𝑧 + 𝑥′𝑦𝑧′ Simplify (4 literals)

𝑓 = (𝑧 + 𝑥′𝑦)(𝑧 + 𝑧′) Distributive + over ·

𝑓 = 𝑧 + 𝑥′𝑦 Simplify (3 literals)
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Drawback of Algebraic Manipulation

❖ No clear steps in the manipulation process

 Not clear which terms should be grouped together

 Not clear which property of Boolean algebra should be used next

❖ Does not always guarantee a minimal expression

 Simplified expression may or may not be minimal

 Different steps might lead to different non-minimal expressions

❖ However, the goal is to minimize a Boolean function

❖Minimize the number of literals in the Boolean expression

 The literal count is a good measure of the cost of logic implementation

 Proportional to the number of transistors in the circuit implementation
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Karnaugh Map

❖ Called also K-map for short

❖ The Karnaugh map is a diagram made up of squares

❖ It is a reorganized version of the truth table

❖ Each square in the Karnaugh map represents a minterm

❖ Adjacent squares differ in the value of one variable

❖ Simplified expressions can be derived from the Karnaugh map

 By recognizing patterns of squares

❖ Simplified sum-of-products expression (AND-OR circuits)

❖ Simplified product-of-sums expression (OR-AND circuits)
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Next . . .

❖ Boolean Function Minimization

❖ The Karnaugh Map (K-Map)

❖ Two, Three, and Four-Variable K-Maps

❖ Prime and Essential Prime Implicants

❖ Minimal Sum-of-Products and Product-of-Sums

❖ Don't Cares

❖ Five and Six-Variable K-Maps

❖ Multiple Outputs

❖ Universality of NAND and NOR gates

❖ NAND-NAND and NOR-NOR implementations

❖ Odd and Even functions
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Two-Variable Karnaugh Map

❖ Minterms 𝑚0 and 𝑚1 are adjacent (also, 𝑚2 and 𝑚3)

 They differ in the value of variable 𝑦

❖ Minterms 𝑚0 and 𝑚2 are adjacent (also, 𝑚1 and 𝑚3)

 They differ in the value of variable 𝑥

Note: adjacent squares horizontally and vertically NOT diagonally

m3m21

m1m00

10
x

y

x yx y'1

x' yx' y'0

10
x

y
Two-variable K-map
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From a Truth Table to Karnaugh Map

❖ Given a truth table, construct the corresponding K-map

❖ Copy the function values from the truth table into the K-map

❖ Make sure to copy each value into the proper K-map square

x y f

0 0 1

0 1 0

1 0 1

1 1 1

Truth Table

111

010

10
x

y

K-map
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K-Map Function Minimization

❖ Two adjacent cells containing 1's can be combined

❖ 𝑓 = 𝑚0 + 𝑚2 + 𝑚3

❖ 𝑓 = 𝑥′𝑦′ + 𝑥𝑦′ + 𝑥𝑦 (6 literals)

❖𝑚0 + 𝑚2 = 𝑥′𝑦′ + 𝑥𝑦′ = (𝑥′ + 𝑥)𝑦′ = 𝑦′

❖𝑚2 + 𝑚3 = 𝑥𝑦′ + 𝑥𝑦 = 𝑥(𝑦′ + 𝑦) = 𝑥

❖ Therefore, 𝑓 can be simplified as: 𝑓 = 𝑥 + 𝑦′ (2 literals)

111

010

10
x

y

K-map
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Example - Two-Variable Karnaugh Map 

❖ Given the truth table of the Boolean function 𝑓, express 𝑓 in 

the minimal sum-of-products form.

Therefore, 𝑓 can be simplified as: 𝑓 = 𝑥 + 𝑦 (2 literals)

x y f

0 0 0

0 1 1

1 0 1

1 1 1

Truth Table

111

100

10
x

y

K-map
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Three-Variable Karnaugh Map
❖ Have eight squares (for the 8 minterms), numbered 0 to 7

❖ The last two columns are not in numeric order: 11, 10

 Remember the numbering of the squares in the K-map

❖ Each square is adjacent to three other squares

❖ Minterms in adjacent squares can always be combined

 This is the key idea that makes the K-map work

❖ Labeling of rows and columns is also useful

00 01 11 10

0 𝑚0 𝑚1 𝑚3 𝑚2

1 𝑚4 𝑚5 𝑚7 𝑚6

𝑥

𝑦𝑧
00 01 11 10

0 𝑥′𝑦′𝑧′ 𝑥′𝑦′𝑧 𝑥′𝑦𝑧 𝑥′𝑦𝑧′

1 𝑥𝑦′𝑧′ 𝑥𝑦′𝑧 𝑥𝑦𝑧 𝑥𝑦𝑧′

𝑥
𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒙′

𝒙
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Simplifying a Three-Variable Function

Simplify the Boolean function: 𝑓(𝑥, 𝑦, 𝑧) = σ(3, 4, 5, 7)

𝑓 = 𝑥′𝑦𝑧 + 𝑥𝑦′𝑧′ + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧 (12 literals)

1. Mark ‘1’ all the K-map squares that represent function 𝑓

2. Find possible adjacent squares

𝑥′𝑦𝑧 + 𝑥𝑦𝑧 = (𝑥′ + 𝑥)𝑦𝑧 = 𝑦𝑧

𝑥𝑦′𝑧′ + 𝑥𝑦′𝑧 = 𝑥𝑦′(𝑧′ + 𝑧) = 𝑥𝑦′

Therefore, 𝑓 = 𝑥𝑦′ + 𝑦𝑧 (4 literals)

00 01 11 10

0

1

𝑥
𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒙′

𝒙

0 0 1 0

1 1 1 0
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Simplifying a Three-Variable Function (2)

Here is a second example: 𝑓(𝑥, 𝑦, 𝑧) = σ(3, 4, 6, 7)

𝑓 = 𝑥′𝑦𝑧 + 𝑥𝑦′𝑧′ + 𝑥𝑦𝑧′ + 𝑥𝑦𝑧 (12 literals)

Learn the locations of the 8 indices based on the variable order

𝑥′𝑦𝑧 + 𝑥𝑦𝑧 = (𝑥′ + 𝑥)𝑦𝑧 = 𝑦𝑧

Corner squares can be combined

𝑥𝑦′𝑧′ + 𝑥𝑦𝑧′ = 𝑥𝑧′(𝑦′ + 𝑦) = 𝑥𝑧′

Therefore, 𝑓 = 𝑥𝑧′ + 𝑦𝑧 (4 literals)

00 01 11 10

0

1

𝑥
𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒙′

𝒙

0 0 1 0

1 0 1 1
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Combining Squares on a 3-Variable K-Map

❖ By combining squares, we reduce number of literals 

in a product term, thereby reducing the cost

❖ On a 3-variable K-Map:

One square represents a minterm with 3 variables

 Two adjacent squares represent a term with 2 variables

 Four adjacent squares represent a term with 1 variable

 Eight adjacent square is the constant ‘1’ (no variables)
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Minimal Sum-of-Products Expression

Consider the function: 𝑓(𝑥, 𝑦, 𝑧) = σ(2, 3, 4, 5)

Find a minimal sum-of-products (SOP) expression

Solution:

Green block: term = 𝑥′𝑦

Blue block: term = 𝑥𝑦′

Minimal sum-of-products: 𝑓 = 𝑥′𝑦 + 𝑥𝑦′ (4 literals)

00 01 11 10

0

1

𝑥
𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒙′

𝒙

0 0 1 1

1 1 0 0
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Example of Combining Squares

❖ Consider the Boolean function: 𝑓(𝑥, 𝑦, 𝑧) = σ(2, 3, 5, 6, 7)

❖ 𝑓 = 𝑥′𝑦𝑧′ + 𝑥′𝑦𝑧 + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧′ + 𝑥𝑦𝑧

00 01 11 10

0

1

𝑥
𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒙′

𝒙

0 0 1 1

0 1 1 1

❖ The four minterms that form 

the 2×2 red square are 

reduced to the term 𝑦 

❖ The two minterms that form 

the blue rectangle are 

reduced to the term 𝑥𝑧

❖ Therefore: 𝑓 = 𝑦 + 𝑥𝑧

𝑥′𝑦𝑧 + 𝑥′𝑦𝑧′ + 𝑥𝑦𝑧 + 𝑥𝑦𝑧′

= 𝑥′𝑦(𝑧 + 𝑧′) + 𝑥𝑦(𝑧 + 𝑧′)

= 𝑥′𝑦 + 𝑥𝑦 = (𝑥′ + 𝑥)𝑦 = 𝑦
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Minimal Sum-of-Products Expression

Consider the function: 𝑓(𝑥, 𝑦, 𝑧) = σ(0, 1, 2, 4, 6, 7)

Find a minimal sum-of-products (SOP) expression

Solution:

Red block: term = 𝑧′

Green block: term = 𝑥′𝑦′

Blue block: term = 𝑥𝑦

Minimal sum-of-products: 𝑓 = 𝑧′ + 𝑥′𝑦′ + 𝑥𝑦 (5 literals)

00 01 11 10

0

1

𝑥
𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒙′

𝒙

1 1 0 1

1 0 1 1
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Example

❖ For the Boolean function

𝒇 𝑨, 𝑩, 𝑪 = 𝑨′𝑪 + 𝑨′𝑩 + 𝑨𝑩′𝑪 + 𝑩𝑪

a) Express the function as a sum-of-minters

b) Find the minimal sum-of-products expression

Solution:

𝑓 𝐴, 𝐵, 𝐶 = 𝐴′𝐵 + 𝐶
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Four-Variable Karnaugh Map

4 variables ➔ 16 squares

Remember the numbering of 

the squares in the K-map

Each square is adjacent to  

four other squares

𝑚00 = 𝑤′𝑥′𝑦′𝑧′ 𝑚10 = 𝑤′𝑥′𝑦′𝑧

𝑚20 = 𝑤′𝑥′𝑦 𝑧′ 𝑚30 = 𝑤′𝑥′𝑦 𝑧

𝑚40 = 𝑤′𝑥 𝑦′𝑧′ 𝑚50 = 𝑤′𝑥 𝑦′𝑧

𝑚60 = 𝑤′𝑥 𝑦 𝑧′ 𝑚70 = 𝑤′𝑥 𝑦 𝑧

𝑚80 = 𝑤 𝑥′𝑦′𝑧′ 𝑚90 = 𝑤 𝑥′𝑦′𝑧

𝑚10 = 𝑤 𝑥′𝑦𝑧′ 𝑚11 = 𝑤 𝑥′𝑦 𝑧

𝑚12 = 𝑤 𝑥 𝑦′𝑧′ 𝑚13 = 𝑤 𝑥 𝑦′𝑧

𝑚14 = 𝑤 𝑥 𝑦 𝑧′ 𝑚15 = 𝑤 𝑥 𝑦 𝑧

00 01 11 10

00

𝑤𝑥

𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒘′

𝒘

𝑚0 𝑚1 𝑚3 𝑚2

𝑚4 𝑚5 𝑚7 𝑚6

𝒙′

𝒙

𝒙′

01

11

10

𝑚12 𝑚13 𝑚15 𝑚14

𝑚8 𝑚9 𝑚11 𝑚10

Notice the order of Rows 11 and 10

and the order of columns 11 and 10
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Combining Squares on a 4-Variable K-Map

❖ On a 4-variable K-Map:

One square represents a minterm with 4 variables

 Two adjacent squares represent a term with 3 variables

 Four adjacent squares represent a term with 2 variables

 Eight adjacent squares represent a term with 1 variable

Combining all 16 squares is the constant ‘1’ (no variables)
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Combining Eight Squares

00 01 11 10

00

𝑤𝑥

𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒘′

𝒘

𝑚0 𝑚1 𝑚3 𝑚2

𝑚4 𝑚5 𝑚7 𝑚6

𝒙′

𝒙

𝒙′

01

11

10

𝑚12 𝑚13 𝑚15 𝑚14

𝑚8 𝑚9 𝑚11 𝑚10

Term = 𝑤′

Term = 𝑦

Term = 𝑧′
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Combining Four Squares

00 01 11 10

00

𝑤𝑥

𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒘′

𝒘

𝑚0 𝑚1 𝑚3 𝑚2

𝑚4 𝑚5 𝑚7 𝑚6

𝒙′

𝒙

𝒙′

01

11

10

𝑚12 𝑚13 𝑚15 𝑚14

𝑚8 𝑚9 𝑚11 𝑚10

Term = 𝑥𝑦′

Term = 𝑤𝑦

Term = 𝑥′𝑧′
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Combining Two Squares

00 01 11 10

00

𝑤𝑥

𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒘′

𝒘

𝑚0 𝑚1 𝑚3 𝑚2

𝑚4 𝑚5 𝑚7 𝑚6

𝒙′

𝒙

𝒙′

01

11

10

𝑚12 𝑚13 𝑚15 𝑚14

𝑚8 𝑚9 𝑚11 𝑚10

Term = 𝑤′𝑥𝑦′

Term = 𝑤′𝑦𝑧

Term = 𝑤𝑦′𝑧
Term = 𝑤𝑥′𝑧′
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Simplifying a 4-Variable Function

Given 𝑓(𝑤, 𝑥, 𝑦, 𝑧) = σ(0, 2, 4, 5, 6, 7, 8, 12)

Draw the K-map for function 𝑓

Minimize 𝑓 as sum-of-products

Solution:

𝑓 = 𝑤′𝑥 + 𝑦′𝑧′ + 𝑤′𝑧′

00 01 11 10

00

𝑤𝑥

𝑦𝑧 𝒚𝒚′

𝒛 𝒛′𝒛′

𝒘′

𝒘

1 0 0 1

1 1 1 1

𝒙′

𝒙

𝒙′

01

11

10

1 0 0 0

1 0 0 0Term = 𝑦′𝑧′

Term = 𝑤′𝑥

Term = 𝑤′𝑧′
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Example

❖ For the Boolean function

𝑭 = 𝑾′𝑿′𝒀′ + 𝑿′𝒀𝒁′ + 𝑾′𝑿𝒀𝒁′ + 𝑾𝑿′𝒀′

a) Express the function as a sum-of-minters

b) Find the minimal sum-of-products expression

Solution:

a) 𝐹 = 𝑊′𝑋′𝑌′ + 𝑋′𝑌𝑍′ + 𝑊′𝑋𝑌𝑍′ + 𝑊𝑋′𝑌′

= 𝑊′𝑋′𝑌′(𝑍 + 𝑍′) + (𝑊 + 𝑊′)𝑋′𝑌𝑍′ + 𝑊′𝑋𝑌𝑍′ + 𝑊𝑋′𝑌′(𝑍 + 𝑍′)

= 𝑊′𝑋′𝑌′𝑍 + 𝑊′𝑋′𝑌′𝑍′ + 𝑊𝑋′𝑌𝑍′ + 𝑊′𝑋′𝑌𝑍′ + 𝑊′𝑋𝑌𝑍′ +

𝑊𝑋′𝑌′𝑍 + 𝑊𝑋′𝑌′𝑍′

= σ(0, 1, 2, 6, 8, 9, 10)
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Example (Cont.)

Solution:

b) 𝐹 = σ(0, 1, 2, 6, 8, 9, 10)

Red block: term = 𝑋′𝑌′

Blue block: term = 𝑋′𝑍′

Green block: term = 𝑊′𝑌𝑍′

Minimal sum-of-products: 𝐹 = 𝑋′𝑌′ + 𝑋′𝑍′ + 𝑊′𝑌𝑍′ (7 literals)

00 01 11 10

00

𝑊𝑋

𝑌𝑍 𝒀𝒀′

𝒁 𝒁′𝒁′

𝑾′

𝑾

1 1 0 1

0 0 0 1

𝑿′

𝑿

𝑿′

01

11

10

0 0 0 0

1 1 0 1
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Next . . .

❖ Boolean Function Minimization

❖ The Karnaugh Map (K-Map)

❖ Two, Three, and Four-Variable K-Maps

❖ Prime and Essential Prime Implicants

❖ Minimal Sum-of-Products and Product-of-Sums

❖ Don't Cares

❖ Five and Six-Variable K-Maps

❖ Multiple Outputs

❖ Universality of NAND and NOR gates

❖ NAND-NAND and NOR-NOR implementations

❖ Odd and Even functions

❖ Parity Generators and Checkers
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Prime Implicants

❖ Prime Implicant: a product term obtained by combining the 

maximum number of adjacent squares in the K-map

❖ The number of combined squares must be a power of 2

❖ Essential Prime Implicant: is a prime implicant that covers at 

least one minterm not covered by the other prime implicants

❖ The prime implicants and essential prime implicants can be 

determined by inspecting the K-map
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Example of Prime Implicants

Find all the prime implicants and essential prime implicants for:

𝑓(𝑎, 𝑏, 𝑐, 𝑑) = σ(0, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15)

𝑏′𝑑′

𝑎

𝑏′𝑐
Three Prime Implicants

𝑏′𝑑′, 𝑏′𝑐, 𝑎

All Prime Implicants are 

essential

00 01 11 10

00

𝑎𝑏
𝑐𝑑

1 1 1

01

11

10

1 1

1 1 1 1

K-Map

1 1
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Example of Prime Implicants

Find all the prime implicants and essential prime implicants for:

𝑓(𝑎, 𝑏, 𝑐, 𝑑) = σ(0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)

𝑏𝑑

𝑏′𝑑′

𝑎𝑏′

𝑎𝑑

𝑐𝑑

𝑏′𝑐
Six Prime Implicants

𝑏𝑑, 𝑏′𝑑′, 𝑎𝑏′, 𝑎𝑑, 𝑐𝑑, 𝑏′𝑐

Only Two Prime 

Implicants are essential

𝑏𝑑 and 𝑏′𝑑′

00 01 11 10

00

𝑎𝑏
𝑐𝑑

1 1 1

1 101

11

10

1 1

1 1 1 1

K-Map

Uploaded By: Sondos hammadSTUDENTS-HUB.com



Gate-Level Minimization ENCS2340 – Digital Systems © Ahmed Shawahna – slide 33

Simplification Procedure Using the K-Map

1. Find all the essential prime implicants

 Covering maximum number (power of 2) of 1's in the K-map

 Mark the minterm(s) that make the prime implicants essential

2. Add prime implicants to cover the function

 Choose a minimal subset of prime implicants that cover all remaining 1's

 Make sure to cover all 1's not covered by the essential prime implicants

 Minimize the overlap among the additional prime implicants

❖ Sometimes, a function has multiple simplified expressions

 You may be asked to list all the simplified sum-of-product expressions
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Obtaining All Minimal SOP Expressions

Consider again: 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = σ(0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)

Obtain all minimal sum-of-products (SOP) expressions

𝑎𝑏′

𝑎𝑑

𝑐𝑑

𝑏′𝑐

𝑏𝑑

𝑏′𝑑′

Two essential Prime 

Implicants: 𝑏𝑑 and 𝑏′𝑑′
00 01 11 10

00

𝑎𝑏
𝑐𝑑

1 1 1

1 101

11

10

1 1

1 1 1 1

K-Map

Four possible solutions:

𝑓 = 𝑏𝑑 + 𝑏′𝑑′ + 𝑐𝑑 + 𝑎𝑑 

𝑓 = 𝑏𝑑 + 𝑏′𝑑′ + 𝑐𝑑 + 𝑎𝑏′ 

𝑓 = 𝑏𝑑 + 𝑏′𝑑′ + 𝑏′𝑐 + 𝑎𝑏′

𝑓 = 𝑏𝑑 + 𝑏′𝑑′ + 𝑏′𝑐 + 𝑎𝑑  

Uploaded By: Sondos hammadSTUDENTS-HUB.com



Gate-Level Minimization ENCS2340 – Digital Systems © Ahmed Shawahna – slide 35

Product-of-Sums (POS) Simplification

❖ All previous examples were expressed in Sum-of-Products form

❖With a minor modification, the Product-of-Sums can be obtained

❖ Example: 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = σ(1, 2, 3, 9, 10, 11, 13, 14, 15)

00 01 11 10

00

𝑎𝑏
𝑐𝑑

1 1 1

01

11

10

1 1

1 1

1

1

K-Map of 𝒇

00 01 11 10

00

𝑎𝑏
𝑐𝑑

1

01

11

10

1

1

1

1 1 1

K-Map of 𝒇′

𝑓 = 𝑎𝑑 + 𝑎𝑐 + 𝑏′𝑑 + 𝑏′𝑐 

Minimal Sum-of-Products = 8 literals

𝑓′ = 𝑐′𝑑′ + 𝑎′𝑏

𝑓 = (𝑐 + 𝑑)(𝑎 + 𝑏′)

All prime 

implicants 

are essential

M
in

im
a

l 
P

ro
d

u
c
t-

o
f-

S
u

m
s
 =

 4
 l
it
e

ra
ls
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Simplification Procedure

1. Draw the K-map for the function 𝑓

 Obtain a minimal Sum-of-Products (SOP) expression for 𝑓

2. Draw the K-map for 𝑓′, replacing the 0's of 𝑓 with 1's in 𝑓′

3. Obtain a minimal Sum-of-Products (SOP) expression for 𝑓′

4. Use DeMorgan's theorem to obtain 𝑓 = (𝑓′)′

 The result is a minimal Product-of-Sums (POS) expression for 𝑓

5. Compare the cost of the minimal SOP and POS expressions

 Count the number of literals to find which expression is minimal
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Example

❖ Express the Boolean function 𝑓 in standard form using the 

minimal number of literals

𝐹(𝐴, 𝐵, 𝐶, 𝐷) = ෑ 3, 4, 6, 7, 11, 12, 13, 14, 15

00 01 11 10

00

𝐴𝐵
𝐶𝐷

1

1

1

01

11

10 11

1

1

K-Map of 𝑭

𝐹 = 𝐵′𝐷′ + 𝐵′𝐶′ + 𝐴′𝐶′𝐷

Minimal Sum-of-Products = 7 literals

a) Simplify the function in sum-of-

products form
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Example (Cont.)

❖ Express the Boolean function 𝑓 in standard form using the 

minimal number of literals

𝐹(𝐴, 𝐵, 𝐶, 𝐷) = ෑ 3, 4, 6, 7, 11, 12, 13, 14, 15

𝐹′ = 𝐶𝐷 + 𝐵𝐷′ + 𝐴𝐵

00 01 11 10

00

𝐴𝐵
𝐶𝐷

1

1

1

01

11

10 1

1

1

1

K-Map of 𝑭′

1

1

𝐹 = (𝐶′ + 𝐷′)(𝐵′ + 𝐷)(𝐴′ + 𝐵′)

Minimal Product-of-Sums = 6 literals

b) Simplify the function in product-of-sums form
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Next . . .

❖ Boolean Function Minimization

❖ The Karnaugh Map (K-Map)

❖ Two, Three, and Four-Variable K-Maps

❖ Prime and Essential Prime Implicants

❖ Minimal Sum-of-Products and Product-of-Sums

❖ Don't Cares

❖ Five and Six-Variable K-Maps

❖ Multiple Outputs

❖ Universality of NAND and NOR gates

❖ NAND-NAND and NOR-NOR implementations

❖ Odd and Even functions

❖ Parity Generators and Checkers
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Don't Cares

❖Sometimes, a function table may contain entries for which:

 The input values of the variables will never occur, or

 The output value of the function is never used

❖ In this case, the output value of the function is not defined

❖The output value of the function is called a don't care

❖A don't care is an X value that appears in the function table

❖The X value can be later chosen to be 0 or 1

 To minimize the function implementation
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Example of a Function with Don't Cares

❖ Consider a function 𝑓 defined over BCD inputs

❖ The function input is a BCD digit from 0 to 9

❖ The function output is 0 if the BCD input is 0 to 4

❖ The function output is 1 if the BCD input is 5 to 9

❖ The function output is X (don't care) if the input is 

10 to 15 (not BCD)

❖ 𝑓 = σ𝑚 5, 6, 7, 8, 9 + σ𝑑 (10, 11, 12, 13, 14, 15)

a b c d f

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 X

1 0 1 1 X

1 1 0 0 X

1 1 0 1 X

1 1 1 0 X

1 1 1 1 X

Truth Table

Minterms Don't Cares
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Minimizing Functions with Don't Cares

Consider: 𝑓 = σ𝑚 5, 6, 7, 8, 9 + σ𝑑 (10, 11, 12, 13, 14, 15)

If the don't cares were treated as 0's we get:

𝑓 = 𝑎′𝑏𝑑 + 𝑎′𝑏𝑐 + 𝑎𝑏′𝑐′ (9 literals)

If the don't cares were treated as 1's we get:

𝑓 = 𝑎 + 𝑏𝑑 + 𝑏𝑐 (5 literals)
00 01 11 10

00

𝑎𝑏
𝑐𝑑

01

11

10

K-Map of 𝒇

0 0 00

1 1 10

X X XX

1 X X1

The don't care values can be 

selected to be either 0 or 1, to 

produce a minimal expression
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Simplification Procedure with Don't Cares

1. Find all the essential prime implicants

 Covering maximum number (power of 2) of 1's and X's (don't cares)

 Mark the 1's that make the prime implicants essential

2. Add prime implicants to cover the function

 Choose a minimal subset of prime implicants that cover all remaining 1's

 Make sure to cover all 1's not covered by the essential prime implicants

 Minimize the overlap among the additional prime implicants

 You need not cover all the don't cares (some can remain uncovered)

❖ Sometimes, a function has multiple simplified expressions
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Minimizing Functions with Don't Cares (2)

Simplify the function 𝑔(𝑎, 𝑏, 𝑐, 𝑑) = σ𝑚 1, 3, 7, 11, 15 which 

has the don’t care conditions 𝑑 𝑎, 𝑏, 𝑐, 𝑑 = σ𝑑 (0, 2, 5)

Solution 1: 𝑔 = 𝑐𝑑 + 𝑎′𝑏′ (4 literals)

Solution 2: 𝑔 = 𝑐𝑑 + 𝑎′𝑑 (4 literals)

00 01 11 10

00

𝑎𝑏
𝑐𝑑

01

11

10

K-Map of 𝒈

1 1 XX

X 1 00

0 1 00

0 1 00

00 01 11 10

00

𝑎𝑏
𝑐𝑑

01

11

10

K-Map of 𝒈

1 1 XX

X 1 00

0 1 00

0 1 00

Not all don't 

cares need 

be covered

Prime 

Implicant 𝑐𝑑 

is essential
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Minimal Product-of-Sums with Don't Cares

Simplify: 𝑔 = σ𝑚 1, 3, 7, 11, 15 + σ𝑑 (0, 2, 5)

Obtain a minimal product-of-sums expression

Solution: 𝑔′ = σ𝑚 4, 6, 8, 9, 10, 12, 13, 14 + σ𝑑 (0, 2, 5)

Minimal 𝑔′ = 𝑑′ + 𝑎𝑐′ (3 literals)

Minimal product-of-sums:

𝑔 = 𝑑(𝑎′ + 𝑐) (3 literals)

00 01 11 10

00

𝑎𝑏
𝑐𝑑

01

11

10

K-Map of 𝒈′

0 0 XX

X 0 11

1 0 11

1 0 11

The minimal sum-of-products 

expression for 𝑔 had 4 literals
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Next . . .

❖ Boolean Function Minimization

❖ The Karnaugh Map (K-Map)

❖ Two, Three, and Four-Variable K-Maps

❖ Prime and Essential Prime Implicants

❖ Minimal Sum-of-Products and Product-of-Sums

❖ Don't Cares

❖ Five and Six-Variable K-Maps

❖ Multiple Outputs

❖ Universality of NAND and NOR gates

❖ NAND-NAND and NOR-NOR implementations

❖ Odd and Even functions

❖ Parity Generators and Checkers
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Five-Variable Karnaugh Map

❖ Consists of 25 = 32 squares, numbered 0 to 31

 Remember the numbering of squares in the K-map

❖ Can be visualized as two layers of 16 squares each

❖ Top layer contains the squares of the first 16 minterms (𝑎 = 0)

❖ Bottom layer contains the squares of the last 16 minterms (𝑎 = 1)

00 01 11 10

00

𝑏𝑐

𝑑𝑒
𝑎 = 0

𝑚0 𝑚1 𝑚3 𝑚2

𝑚4 𝑚5 𝑚7 𝑚601

11

10

𝑚12 𝑚13 𝑚15 𝑚14

𝑚8 𝑚9 𝑚11 𝑚10

00 01 11 10

00

𝑏𝑐

𝑑𝑒
𝑎 = 1

𝑚16 𝑚17 𝑚19 𝑚18

𝑚20 𝑚21 𝑚23 𝑚2201

11

10

𝑚28 𝑚29 𝑚31 𝑚30

𝑚24 𝑚25 𝑚27 𝑚26

Each square is adjacent 

to 5 other squares:

4 in the same layer and

1 in the other layer:

𝑚0 is adjacent to 𝑚16

𝑚1 is adjacent to 𝑚17

𝑚4 is adjacent to 𝑚20 …
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Example of a Five-Variable K-Map

Given: 𝑓(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) = σ(0, 1, 8, 9, 16, 17, 22, 23, 24, 25)

Draw the 5-Variable K-Map

Obtain a minimal Sum-of-Products expression for 𝑓

Solution: 𝑓 = 𝑐′𝑑′ + 𝑎𝑏′𝑐𝑑 (6 literals)

00 01 11 10

00

𝑏𝑐

𝑑𝑒
𝑎 = 0

01

11

10

00 01 11 10

00

𝑏𝑐

𝑑𝑒
𝑎 = 1

01

11

10

5-Variable K-Map

1 1 1 1

1 1 1 1

1 1
𝑐′𝑑′

𝑎𝑏′𝑐𝑑
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Five-Variable K-Map with Don't Cares

𝑔(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) = σ𝑚(3, 6, 7, 11, 24, 25, 27, 28, 29) + σ𝑑 (2, 8, 9, 12, 13, 26)

Draw the 5-Variable K-Map

Obtain a minimal Sum-of-Products expression for 𝑔

Solution: 𝑔 = 𝑏𝑑′ + 𝑎′𝑏′𝑑 + 𝑏𝑐′𝑒 (8 literals)

𝑏𝑑′

00 01 11 10

00

𝑏𝑐

𝑑𝑒
𝑎 = 0

01

11

10

00 01 11 10

00

𝑏𝑐

𝑑𝑒
𝑎 = 1

01

11

10

5-Variable K-Map

1

X X 1 1

X X 1 1

1 1 X

X

1 1

𝑎′𝑏′𝑑

𝑏𝑐′𝑒

All prime 

implicants 

are essential

Not covered
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Six-Variable Karnaugh Map

❖ Consists of 26 = 64 squares, numbered 0 to 63

❖ Can be visualized as four layers of 16 squares each

 Four layers: 𝑎𝑏 = 00, 01, 11, 10 (Notice that layer 11 comes before 10)

❖ Each square is adjacent to 6 other squares:

 4 squares in the same layer and 2 squares in the above and below layers

00 01 11 10

00

𝑐𝑑

𝑒𝑓
𝑎𝑏 = 00

𝑚0 𝑚1 𝑚3 𝑚2

𝑚4 𝑚5 𝑚7 𝑚601

11

10

𝑚12 𝑚13 𝑚15 𝑚14

𝑚8 𝑚9 𝑚11 𝑚10

00 01 11 10

𝑎𝑏 = 01

𝑚16 𝑚17 𝑚19 𝑚18

𝑚20 𝑚21 𝑚23 𝑚22

𝑚28 𝑚29 𝑚31 𝑚30

𝑚24 𝑚25 𝑚27 𝑚26

00 01 11 10

𝑎𝑏 = 11

𝑚48 𝑚49 𝑚51 𝑚50

𝑚52 𝑚53 𝑚55 𝑚54

𝑚60 𝑚61 𝑚63 𝑚62

𝑚56 𝑚57 𝑚59 𝑚58

00 01 11 10

𝑎𝑏 = 10

𝑚32 𝑚33 𝑚35 𝑚34

𝑚36 𝑚37 𝑚39 𝑚38

𝑚44 𝑚45 𝑚47 𝑚46

𝑚40 𝑚41 𝑚43 𝑚42
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Example of a Six-Variable K-Map

ℎ(𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓) = σ(2, 10, 11, 18, 21, 23, 29, 31, 34, 41, 50, 53, 55, 61, 63)

Draw the 6-Variable K-Map

Obtain a minimal Sum-of-Products expression for ℎ

Solution: ℎ = 𝑐′𝑑′𝑒𝑓′ + 𝑏 𝑑 𝑓 + 𝑎′𝑏′𝑐 𝑑′𝑒 + 𝑎 𝑏′ 𝑐 𝑑′𝑒′𝑓 (18 literals)

00 01 11 10

00

𝑐𝑑

𝑒𝑓
𝑎𝑏 = 00

01

11

10

00 01 11 10

𝑎𝑏 = 01

00 01 11 10

𝑎𝑏 = 11

00 01 11 10

𝑎𝑏 = 10

1 1 1

1

1

1

1

1

1

1

1

111

1𝑐′𝑑′𝑒𝑓′

𝑏𝑑𝑓

𝑎′𝑏′𝑐 𝑑′𝑒 𝑎 𝑏′ 𝑐 𝑑′𝑒′𝑓
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Next . . .

❖ Boolean Function Minimization

❖ The Karnaugh Map (K-Map)

❖ Two, Three, and Four-Variable K-Maps

❖ Prime and Essential Prime Implicants

❖ Minimal Sum-of-Products and Product-of-Sums

❖ Don't Cares

❖ Five and Six-Variable K-Maps

❖ Multiple Outputs

❖ Universality of NAND and NOR gates

❖ NAND-NAND and NOR-NOR implementations
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Multiple Outputs

❖ Suppose we have two functions: 𝑓(𝑎, 𝑏, 𝑐) and 𝑔(𝑎, 𝑏, 𝑐)

❖ Same inputs: 𝑎, 𝑏, 𝑐, but two outputs: 𝑓 and 𝑔

❖We can minimize each function separately, or

❖ Minimize 𝑓 and 𝑔 as one circuit with two outputs

❖ The idea is to share terms (gates) among 𝑓 and 𝑔

𝑎
𝑏
𝑐

𝑓

𝑎
𝑏
𝑐

𝑔

𝑎
𝑏
𝑐 𝑔

𝑓

One circuit with

Two OutputsTwo separate circuits
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Multiple Outputs: Example 1

Given: 𝑓 𝑎, 𝑏, 𝑐 = σ(0, 2, 6, 7) and 𝑔 𝑎, 𝑏, 𝑐 = σ(1, 3, 6, 7)

Minimize each function separately

Minimize both functions as one circuit

00 01 11 10

0

1

𝑎
𝑏𝑐

1 0 0 1

0 0 1 1

K-Map of 𝒇

00 01 11 10

0

1

𝑎
𝑏𝑐

0 1 1 0

0 0 1 1

K-Map of 𝒈

𝑓 = 𝑎′𝑐′ + 𝑎𝑏

𝑔 = 𝑎′𝑐 + 𝑎𝑏

Common

Term = 𝑎𝑏

O
n

e
 c

ir
c
u

it
 w

it
h

tw
o
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u

tp
u

ts

𝑔

𝑎′
𝑐′

𝑓
𝑎
𝑏

𝑎′
𝑐

𝑎′
𝑐′

𝑓
𝑎
𝑏

𝑎′
𝑐

𝑔
𝑎
𝑏

O
n

e
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c
u
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p
e

r 
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n
c
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o
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Multiple Outputs: Example 2

𝑓 𝑎, 𝑏, 𝑐, 𝑑 = σ(3, 5, 7, 10, 11, 14, 15), 𝑔 𝑎, 𝑏, 𝑐, 𝑑 = σ(1, 3, 5, 7, 10, 14)

Draw the K-map and write minimal SOP expressions of 𝑓 and 𝑔

𝑓 = 𝑎′𝑏𝑑 + 𝑎𝑐 + 𝑐𝑑 𝑔 = 𝑎′𝑑 + 𝑎𝑐𝑑′

Extract the common terms of 𝑓 and 𝑔

1 1

00 01 11 10

00

𝑎𝑏

𝑐𝑑

01

11

10

K-Map of 𝒇

1

1

1

1

1

00 01 11 10

00

𝑎𝑏

𝑐𝑑

01

11

10

K-Map of 𝒈

1 1

1

1

1 1

Common Terms

𝑇1 = 𝑎′𝑑 and 𝑇2 = 𝑎𝑐

Minimal 𝑓 and 𝑔

𝑓 = 𝑇1𝑏 + 𝑇2 + 𝑐𝑑

𝑔 = 𝑇1 + 𝑇2𝑑′
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Common Terms ➔ Shared Gates

Minimal 𝑓 = 𝑎′𝑏𝑑 + 𝑎𝑐 + 𝑐𝑑 Minimal 𝑔 = 𝑎′𝑑 + 𝑎𝑐𝑑′

Let 𝑇1 = 𝑎′𝑑 and 𝑇2 = 𝑎𝑐 (shared by 𝑓 and 𝑔)

Minimal 𝑓 = 𝑇1𝑏 + 𝑇2 + 𝑐𝑑, Minimal 𝑔 = 𝑇1 + 𝑇2𝑑′

One Circuit

Two Shared Gates

𝑐
𝑑
𝑎′
𝑏
𝑑

𝑓

𝑎
𝑐

𝑎
𝑐
𝑑′

𝑔

𝑎′
𝑑

NO Shared Gates

𝑓𝑎′
𝑑

𝑎
𝑐

𝑏

𝑑′

𝑐
𝑑

𝑔

𝑇1

𝑇2
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Next . . .

❖ Boolean Function Minimization

❖ The Karnaugh Map (K-Map)

❖ Two, Three, and Four-Variable K-Maps

❖ Prime and Essential Prime Implicants

❖ Minimal Sum-of-Products and Product-of-Sums

❖ Don't Cares

❖ Five and Six-Variable K-Maps

❖ Multiple Outputs

❖ Universality of NAND and NOR gates

❖ NAND-NAND and NOR-NOR implementations

❖ Odd and Even functions

❖ Parity Generators and Checkers
Uploaded By: Sondos hammadSTUDENTS-HUB.com



Gate-Level Minimization ENCS2340 – Digital Systems © Ahmed Shawahna – slide 58

NAND Gate

❖ The NAND gate has the following symbol and truth table

❖ NAND represents NOT AND

❖ The small bubble circle represents the invert function

❖ NAND gate is implemented efficiently in CMOS technology

 In terms of chip area and speed

x y NAND

0  0 1

0  1 1

1  0 1

1  1 0

𝑥
𝑦

𝑥 · 𝑦 ′ = 𝑥′ + 𝑦′

NAND gate 𝑥
𝑦

𝑥′ + 𝑦′

Another symbol for NAND
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The NAND Gate is Universal

❖ NAND gates can implement any Boolean function

❖ NAND gates can be used as inverters, or to implement AND/OR

❖ A single-input NAND gate is an inverter

𝑥 NAND 𝑥 = (𝑥 · 𝑥)′ = 𝑥′

❖ AND is equivalent to NAND with inverted output

(𝑥 NAND 𝑦)′ = ((𝑥 · 𝑦)′)′ = 𝑥 · 𝑦 (AND)

❖ OR is equivalent to NAND with inverted inputs

(𝑥′ NAND 𝑦′) = (𝑥′ · 𝑦′)′ = 𝑥 + 𝑦 (OR)

𝑥 𝑥′

𝑥 · 𝑦
𝑥

𝑦

𝑥 + 𝑦

𝑥 𝑥′

𝑦 𝑦′
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NAND – NAND Implementation

❖ Consider the following sum-of-products expression:

𝑓 = 𝑏𝑑 + 𝑎′𝑐𝑑′

❖ A 2-level AND-OR circuit can be converted easily to a 2-level 

NAND-NAND implementation

𝑏

𝑑
𝑓

𝑎′
𝑐
𝑑′

2-Level AND-OR

𝑏

𝑑
𝑓

𝑎′
𝑐
𝑑′

Inserting Bubbles

Two successive bubbles on same line cancel each other

𝑏

𝑑
𝑓

𝑎′
𝑐
𝑑′

2-Level NAND-NAND

3-input

NAND gate

3-input

AND gate
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Boolean Function with NAND Gates

❖ Example: Implement the Boolean function                    

𝑓 𝑥, 𝑦, 𝑧 = σ(1, 2, 3, 4, 5, 7) using only NAND gates

❖ Solution:
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Multilevel Circuits using NAND Gates

❖ General Procedure for converting a multilevel AND–OR 

diagram into an all-NAND diagram using mixed notation is as 

follows:

 Convert all AND gates to NAND gates with AND-invert graphic 

symbols.

 Convert all OR gates to NAND gates with invert-OR graphic 

symbols.

 Check all the bubbles in the diagram. For every bubble that is 

not compensated by another small circle along the same line, 

insert an inverter (a one-input NAND gate) or complement the 

input literal.
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Multilevel Circuits using NAND Gates

❖ Example: Implement the given circuit using only NAND gates

❖ Solution:

Start from output toward inputs converting gate by gate
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Multilevel Circuits using NAND Gates

❖ Example: Implement the given circuit using only NAND gates

❖ Solution:

Start from output toward inputs converting gate by gate
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NOR Gate

❖ The NOR gate has the following symbol and truth table

❖ NOR represents NOT OR

❖ The small bubble circle represents the invert function

❖ NOR gate is implemented efficiently in CMOS technology

 In terms of chip area and speed

x y NOR

0  0 1

0  1 0

1  0 0

1  1 0

𝑥
𝑦

𝑥 + 𝑦 ′ = 𝑥′ · 𝑦′

NOR gate 𝑥
𝑦

𝑥′ · 𝑦′

Another symbol for NOR
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The NOR Gate is also Universal

❖ NOR gates can implement any Boolean function

❖ NOR gates can be used as inverters, or to implement AND/OR

❖ A single-input NOR gate is an inverter

𝑥 NOR 𝑥 = (𝑥 + 𝑥)′ = 𝑥′

❖ OR is equivalent to NOR with inverted output

(𝑥 NOR 𝑦)′ = ((𝑥 + 𝑦)′)′ = 𝑥 + 𝑦 (OR)

❖ AND is equivalent to NOR with inverted inputs

(𝑥′ NOR 𝑦′) = (𝑥′ + 𝑦′)′ = 𝑥 · 𝑦 (AND)

𝑥 𝑥′

𝑥 + 𝑦
𝑥

𝑦

𝑥. 𝑦

𝑥 𝑥′

𝑦 𝑦′
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NOR – NOR Implementation

❖ Consider the following product-of-sums expression:

𝑔 = (𝑎 + 𝑑)(𝑏 + 𝑐 + 𝑑′)

❖ A 2-level OR-AND circuit can be converted easily to a 2-level 

NOR-NOR implementation

Two successive bubbles on same line cancel each other

2-Level OR-AND

𝑎

𝑑
𝑔

𝑏
𝑐
𝑑′

Inserting Bubbles

𝑎

𝑑
𝑔

𝑏
𝑐
𝑑′

2-Level NOR-NOR

𝑎

𝑑
𝑔

𝑏
𝑐
𝑑′ 3-input

NOR gate

3-input

OR gate
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Boolean Function with NOR Gates

❖ Example: Implement the Boolean function                    

𝑓 𝑥, 𝑦, 𝑧 = σ(1, 2, 3, 5, 7) using only NOR gates

❖ Solution:
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Multilevel Circuits using NOR Gates

❖ General Procedure for converting a multilevel OR–AND 

diagram into an all-NOR diagram using mixed notation is as 

follows:

 Convert all OR gates to NOR gates with OR-invert graphic 

symbols.

 Convert all AND gates to NOR gates with invert-AND graphic 

symbols.

 Check all the bubbles in the diagram. For every bubble that is 

not compensated by another small circle along the same line, 

insert an inverter (a one-input NOR gate) or complement the 

input literal.
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Multilevel Circuits using NOR Gates

❖ Example: Implement the Boolean function             

𝑓 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝐴𝐵′ + 𝐴′𝐵 𝐸(𝐶 + 𝐷′) using only NOR gates

❖ Solution:

Start from output toward inputs converting gate by gate
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Multilevel Circuits using NOR Gates

❖ Example: Implement the given circuit using only NOR gates

❖ Solution:

Start from output toward inputs converting gate by gate
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Multilevel Circuits using NAND/NOR Gates

❖ Example: Find the complement of the following expression 

and implement it using (1) NAND gates, and (2) NOR gates:

G(A, B, C) = (A + B’ + C)(A’B’ + C)(A + B’C’)

❖ Solution:

G’ = ((A + B’ + C)(A’B’ + C)(A + B’C’))’ = A’BC’ + C’(A + B) + A’(B + C)
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Next . . .

❖ Boolean Function Minimization

❖ The Karnaugh Map (K-Map)

❖ Two, Three, and Four-Variable K-Maps

❖ Prime and Essential Prime Implicants

❖ Minimal Sum-of-Products and Product-of-Sums

❖ Don't Cares

❖ Five and Six-Variable K-Maps

❖ Multiple Outputs

❖ Universality of NAND and NOR gates

❖ NAND-NAND and NOR-NOR implementations

❖ Odd and Even functions

❖ Parity Generators and Checkers
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Exclusive OR / Exclusive NOR

❖ Exclusive OR (XOR) is an important Boolean operation used 

extensively in logic circuits

❖ Exclusive NOR (XNOR) is the complement of XOR

𝑥
𝑦

𝑥 ⨁ 𝑦

XOR gate

𝑥
𝑦

(𝑥 ⨁ 𝑦)′

XNOR gate

x y XOR

0  0 0

0  1 1

1  0 1

1  1 0

x y XNOR

0  0 1

0  1 0

1  0 0

1  1 1

XNOR is also known 

as equivalence
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Odd Function

❖ Output is 1 if the number of 1's is odd in the inputs

❖ Output is the XOR operation on all input variables

x y z fodd

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1O
d

d
 F

u
n

c
ti

o
n

 w
it

h
 3

 i
n

p
u

ts

𝑓𝑜𝑑𝑑 = (1, 2, 4, 7)

𝑓𝑜𝑑𝑑 = 𝑥′𝑦′𝑧 + 𝑥′𝑦𝑧′ + 𝑥𝑦′𝑧′ + 𝑥𝑦𝑧

𝑓𝑜𝑑𝑑 = 𝑥 ⨁ 𝑦 ⨁ 𝑧

𝑥
𝑦

𝑧
𝑓𝑜𝑑𝑑

Implementation using two XOR gates
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Even Function

❖ Output is 1 if the number of 1's is even in 

the inputs (complement of odd function)

❖ Output is the XNOR operation on all inputs

w x y z feven

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

E
v
e

n
 F

u
n

c
ti

o
n

 w
it

h
 4

 i
n

p
u

ts

𝑓𝑒𝑣𝑒𝑛 = (0, 3, 5, 6, 9, 10, 12, 15)

𝑤

𝑥

𝑦
𝑓𝑒𝑣𝑒𝑛

𝑧

Implementation using two XOR gates and one XNOR

𝑓𝑒𝑣𝑒𝑛 = (𝑤 ⨁ 𝑥 ⨁ 𝑦 ⨁ 𝑧)′
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❖ A parity bit is added to the n-bit code

 Produces (n+1)-bit code with an odd (or even) count of 1's

❖ Odd parity: count of 1's in the (n+1)-bit code is odd

 Use an to generate the odd parity bit

 Use an to check the (n+1)-bit code

❖ Even parity: count of 1's in the (n+1)-bit code is even

 Use an to generate the even parity bit

 Use an to check the (n+1)-bit code

even function 

even function 

odd function 

odd function

Parity Generators and Checkers

Sender Receiver

n-bit code Parity

Generator

(n+1)-bit code Parity

Checker
Error
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Example of Parity Generator and Checker

❖ Design even parity generator & checker for 3-bit codes

❖ Solution:

 Use 3-bit odd function to generate 

even parity bit 𝑃.

 Use 4-bit odd function to check if 

there is an error 𝐸 in even parity.

 Given that: 𝑥𝑦𝑧 = 001 then 𝑃 = 1. 

The sender transmits 𝑃𝑥𝑦𝑧 = 1001.

 If 𝑦 changes from 0 to 1 between 

generator and checker, the parity 

checker receives 𝑃𝑥𝑦𝑧 = 1011 and 

produces 𝐸 = 1, indicating an error.

𝑥
𝑦

𝑧
𝑃

Parity Generator

𝑃
𝑥

𝑦
𝐸

𝑧

Parity Checker
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