Gate-Level Minimization

ENCS2340 - Digital Systems

Dr. Ahmed I. A. Shawahna Electrical and Computer Engineering Department Birzeit University

STUDENTS-HUB.com

Presentation Outline

- Boolean Function Minimization
- The Karnaugh Map (K-Map)
- Two, Three, and Four-Variable K-Maps
- Prime and Essential Prime Implicants
- Minimal Sum-of-Products and Product-of-Sums
- Don't Cares
- Five and Six-Variable K-Maps
- Multiple Outputs
- Universality of NAND and NOR gates
- NAND-NAND and NOR-NOR implementations
- Odd and Even functions
- Parity Generators and Checkers

STUDENTS-HUB.com Gate-Level Minimization

ENCS2340 – Digital Systems

Boolean Function Minimization

- Complexity of a Boolean function is directly related to the complexity of the algebraic expression
- The truth table of a function is unique
- However, the algebraic expression is not unique
- Boolean function can be simplified by algebraic manipulation
- However, algebraic manipulation depends on experience
- Algebraic manipulation does not guarantee that the simplified Boolean expression is minimal

Example: Sum of Minterms

Truth Table

хуz	f	Minterm	
000	0		Focus on the '1' entries
001	1	$m_1 = x'y'z$	$f = m_1 + m_2 + m_3 + m_5 + m_7$
010	1	$m_2 = x'yz'$	$J = m_1 + m_2 + m_3 + m_5 + m_7$
011	1	$m_3 = x'yz$	$f = \sum (1, 2, 3, 5, 7)$
100	0		
101	1	$m_5 = xy'z$	
1 1 0	0		f = x'y'z + x'yz' +
1 1 1	1	$m_7 = xyz$	x'yz + xy'z + xyz

✤ Sum-of-Minterms has 15 literals → Can be simplified

Gate-Level Minimization

ENCS2340 – Digital Systems

Algebraic Manipulation

Simplify: f = x'y'z + x'yz' + x'yz + xy'z + xyz (15 literals) (Sum-of-Minterms) f = x'y'z + x'yz' + x'yz + xy'z + xyzf = x'y'z + x'yz + x'yz' + xy'z + xyzReorder f = x'z(y' + y) + x'yz' + xz(y' + y)Distributive \cdot over + f = x'z + x'yz' + xzSimplify (7 literals) $f = x'z + x\overline{z + x'vz'}$ Reorder f = (x' + x)z + x'yz'Distributive \cdot over + f = z + x'yz'Simplify (4 literals) f = (z + x'y)(z + z')Distributive + over · f = z + x'ySimplify (3 literals) Uploaded By: Sondos hammad STUDENTS-HUB.com

Drawback of Algebraic Manipulation

- No clear steps in the manipulation process
 - $\diamond\,$ Not clear which terms should be grouped together
 - ♦ Not clear which property of Boolean algebra should be used next
- Does not always guarantee a minimal expression
 - ♦ Simplified expression may or may not be minimal
 - ♦ Different steps might lead to different non-minimal expressions
- However, the goal is to minimize a Boolean function
- Minimize the number of literals in the Boolean expression
 - ♦ The literal count is a good measure of the cost of logic implementation
 - \diamond Proportional to the number of transistors in the circuit implementation

Karnaugh Map

- Called also K-map for short
- The Karnaugh map is a diagram made up of squares
- It is a reorganized version of the truth table
- Each square in the Karnaugh map represents a minterm
- Adjacent squares differ in the value of one variable
- Simplified expressions can be derived from the Karnaugh map
 - \diamond By recognizing patterns of squares
- Simplified sum-of-products expression (AND-OR circuits)
- Simplified product-of-sums expression (OR-AND circuits)

Gate-Level Minimization

ENCS2340 – Digital Systems

Next...

- Boolean Function Minimization
- The Karnaugh Map (K-Map)
- Two, Three, and Four-Variable K-Maps
- Prime and Essential Prime Implicants
- Minimal Sum-of-Products and Product-of-Sums
- Don't Cares
- Five and Six-Variable K-Maps
- Multiple Outputs
- Universality of NAND and NOR gates
- NAND-NAND and NOR-NOR implementations
- Odd and Even functions
- Parity Generators and Checkers

STUDENTS-HUB.com

ENCS2340 – Digital Systems

Two-Variable Karnaugh Map

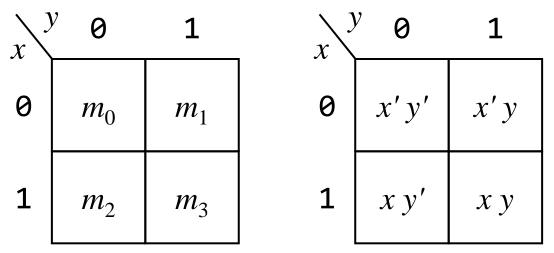
• Minterms m_0 and m_1 are adjacent (also, m_2 and m_3)

 \diamond They differ in the value of variable y

• Minterms m_0 and m_2 are adjacent (also, m_1 and m_3)

 \diamond They differ in the value of variable x

Two-variable K-map



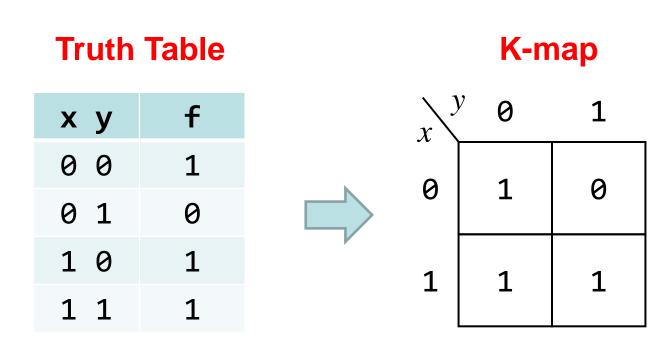
Note: adjacent squares horizontally and vertically NOT diagonally

STUDENTS-HUB.com

ENCS2340 – Digital Systems

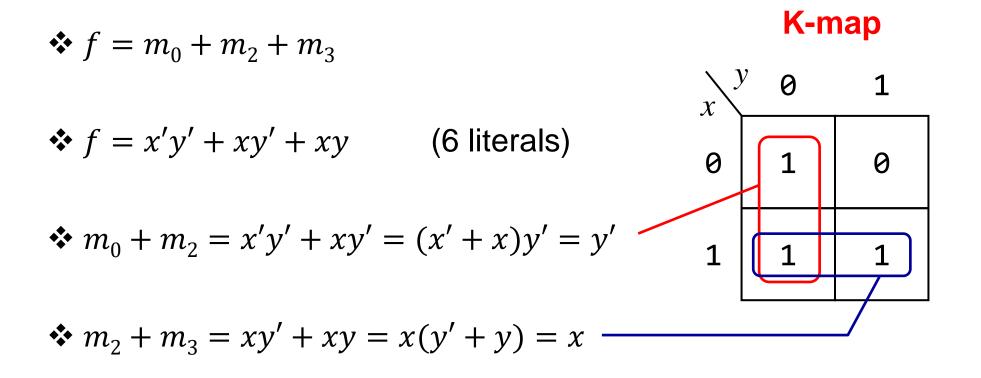
From a Truth Table to Karnaugh Map

- Given a truth table, construct the corresponding K-map
- Copy the function values from the truth table into the K-map
- Make sure to copy each value into the proper K-map square



K-Map Function Minimization

Two adjacent cells containing 1's can be combined



• Therefore, f can be simplified as: f = x + y' (2 literals)

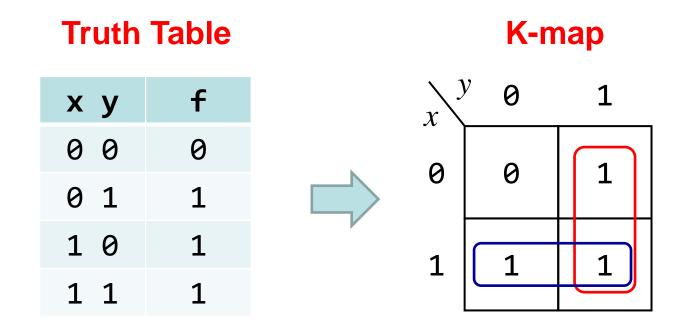
Gate-Level Minimization

Uploaded By: Sondos hammad

ENCS2340 – Digital Systems

Example - Two-Variable Karnaugh Map

Given the truth table of the Boolean function *f*, express *f* in the minimal sum-of-products form.

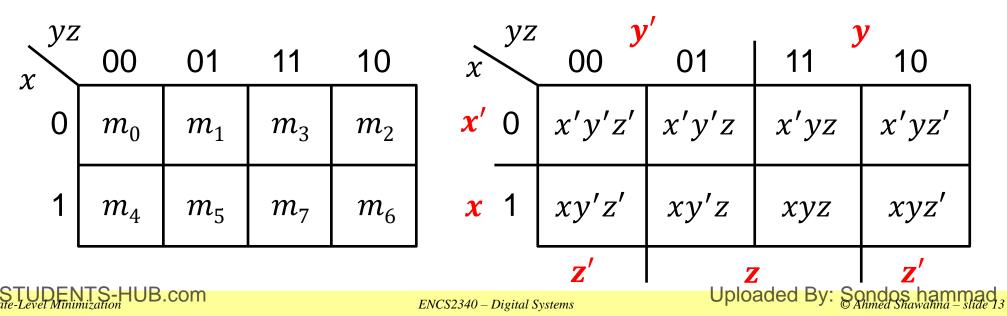


Therefore, f can be simplified as: f = x + y (2 literals)

ENCS2340 – Digital Systems

Three-Variable Karnaugh Map

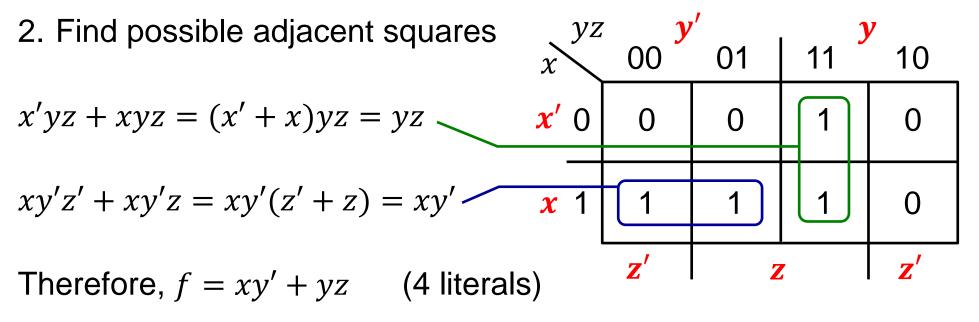
- ✤ Have eight squares (for the 8 minterms), numbered 0 to 7
- The last two columns are not in numeric order: 11, 10
 - $\diamond\,$ Remember the numbering of the squares in the K-map
- Each square is adjacent to three other squares
- Labeling of rows and columns is also useful



Simplifying a Three-Variable Function

Simplify the Boolean function: $f(x, y, z) = \sum (3, 4, 5, 7)$

- f = x'yz + xy'z' + xy'z + xyz (12 literals)
- 1. Mark '1' all the K-map squares that represent function f



STUDENTS-HUB.com

Simplifying a Three-Variable Function (2)

Here is a second example: $f(x, y, z) = \sum (3, 4, 6, 7)$

f = x'yz + xy'z' + xyz' + xyz (12 literals)

Gate-Level Minimization

Learn the locations of the 8 indices based on the variable order

$$x'yz + xyz = (x' + x)yz = yz$$

$$yz \quad y' \quad y$$

$$x' \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 10$$
Corner squares can be combined
$$x' \quad 0 \quad 0 \quad 0 \quad 1 \quad 0$$

$$xy'z' + xyz' = xz'(y' + y) = xz'$$

$$x \quad 1 \quad 1 \quad 0 \quad 1 \quad 1$$
Therefore, $f = xz' + yz$ (4 literals)
$$z' \quad z \quad z'$$

Combining Squares on a 3-Variable K-Map

- By combining squares, we reduce number of literals in a product term, thereby reducing the cost
- On a 3-variable K-Map:
 - ♦ One square represents a minterm with 3 variables
 - ♦ Two adjacent squares represent a term with 2 variables
 - ♦ Four adjacent squares represent a term with 1 variable
 - Eight adjacent square is the constant '1' (no variables)

STUDENTS-HUB.com Gate-Level Minimization

ENCS2340 – Digital Systems

Minimal Sum-of-Products Expression

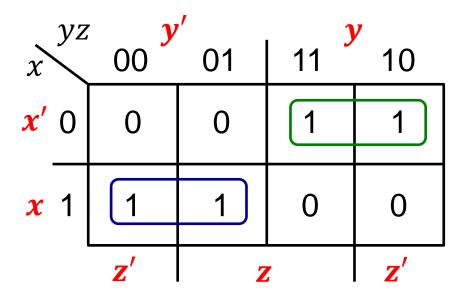
Consider the function: $f(x, y, z) = \sum (2, 3, 4, 5)$

Find a minimal sum-of-products (SOP) expression

Solution:

Green block: term = x'y

Blue block: term = xy'



Minimal sum-of-products: f = x'y + xy' (4 literals)

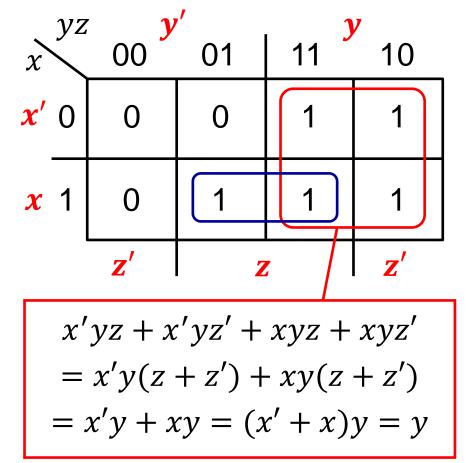
STUDENTS-HUB.com

ENCS2340 – Digital Systems

Example of Combining Squares

- ♦ Consider the Boolean function: $f(x, y, z) = \sum (2, 3, 5, 6, 7)$
- f = x'yz' + x'yz + xy'z + xyz' + xyz
- The four minterms that form the 2×2 red square are reduced to the term y
- The two minterms that form the blue rectangle are reduced to the term xz
- ***** Therefore: f = y + xz

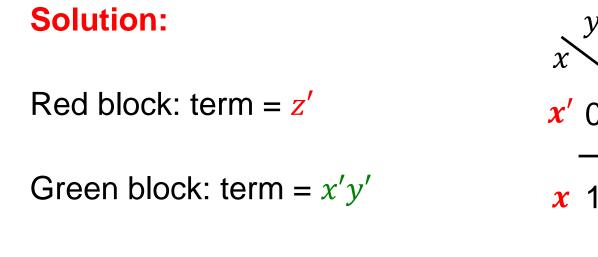
Gate-Level Minimization



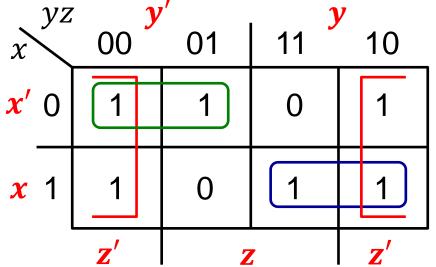
Minimal Sum-of-Products Expression

Consider the function: $f(x, y, z) = \sum (0, 1, 2, 4, 6, 7)$

Find a minimal sum-of-products (SOP) expression



Blue block: term = xy



Minimal sum-of-products: $f = \mathbf{z'} + x'y' + xy$

(5 literals)

STUDENTS-HUB.com

ENCS2340 – Digital Systems

Example

For the Boolean function

f(A, B, C) = A'C + A'B + AB'C + BC

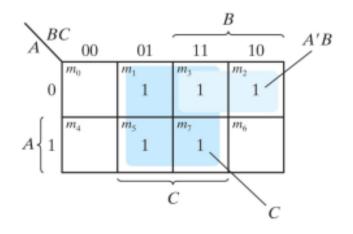
- a) Express the function as a sum-of-minters
- b) Find the minimal sum-of-products expression

Solution:

Gate-Level Minimization

- = A'(B + B')C + A'B(C + C') + AB'C+ (A + A')BC= A'BC + A'B'C + A'BC' + A
- = A'BC + A'B'C + A'BC + A'BC' + AB'C + ABC + A'BC
- = A'BC + A'B'C + A'BC' + AB'C + ABC

$$=\sum(1,2,3,5,7)$$



f(A, B, C) = A'B + C

Four-Variable Karnaugh Map

ENCS2340 – Digital Systems

4 variables \rightarrow 16 squares

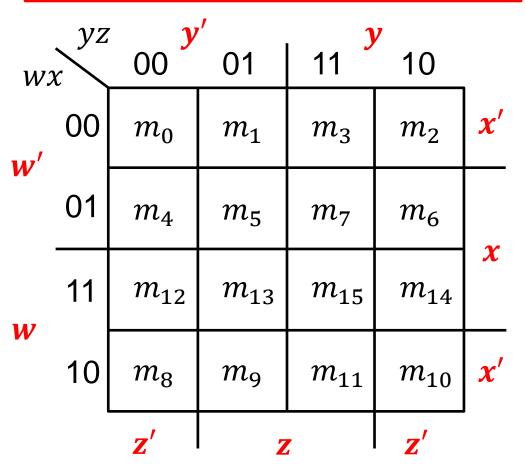
Remember the numbering of the squares in the K-map

Each square is adjacent to four other squares

$$\begin{array}{lll} m_0 &= w'x'y'z' & m_1 &= w'x'y'z \\ m_2 &= w'x'yz' & m_3 &= w'x'yz \\ m_4 &= w'xy'z' & m_5 &= w'xy'z \\ m_6 &= w'xyz' & m_7 &= w'xyz \\ m_8 &= wx'y'z' & m_9 &= wx'y'z \\ m_{10} &= wx'yz' & m_{11} &= wx'yz \\ m_{12} &= wxy'z' & m_{13} &= wxy'z \\ m_{14} &= wxyz' & m_{15} &= wxyz \\ \end{array}$$

UB.com

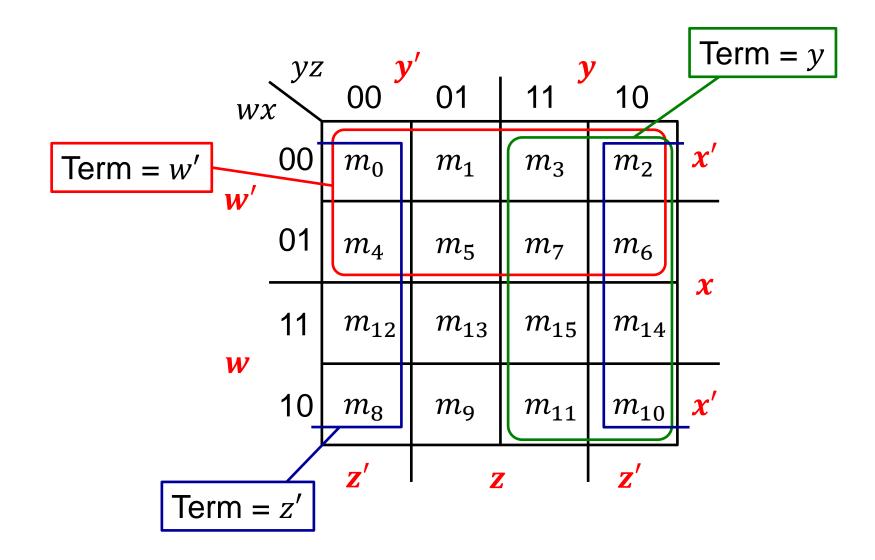
Notice the order of Rows 11 and 10 and the order of columns 11 and 10



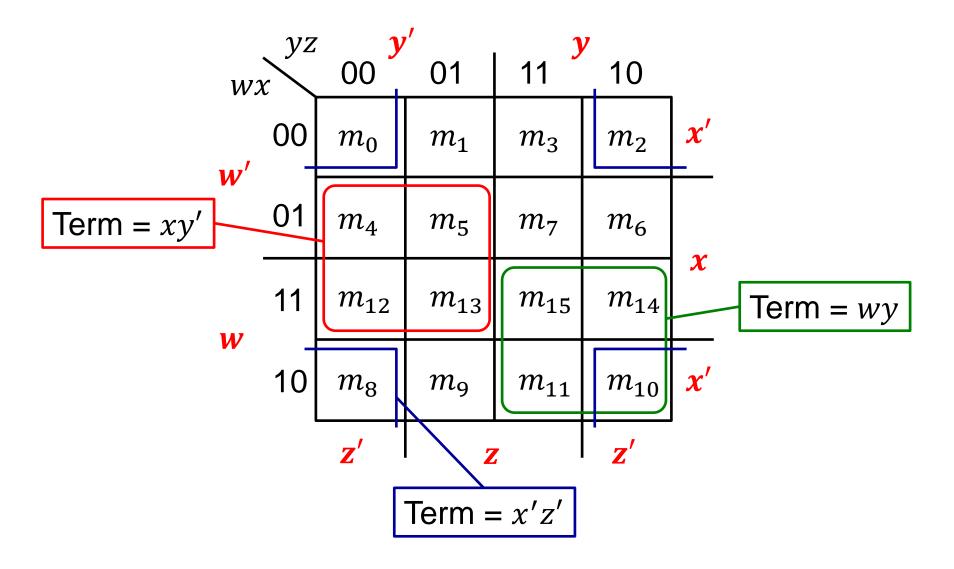
Combining Squares on a 4-Variable K-Map

- On a 4-variable K-Map:
 - ♦ One square represents a minterm with 4 variables
 - ♦ Two adjacent squares represent a term with 3 variables
 - ♦ Four adjacent squares represent a term with 2 variables
 - ♦ Eight adjacent squares represent a term with 1 variable
 - Combining all 16 squares is the constant '1' (no variables)

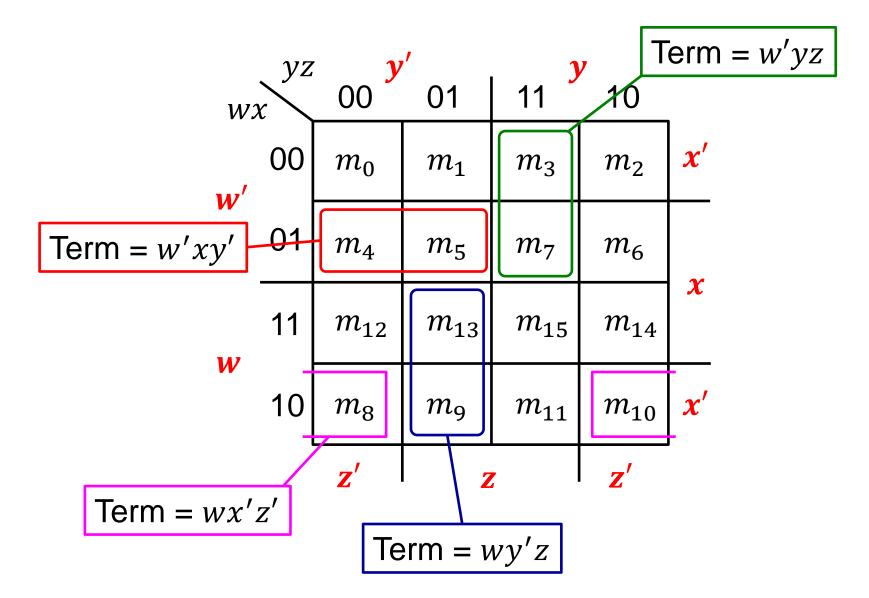
Combining Eight Squares



Combining Four Squares



Combining Two Squares

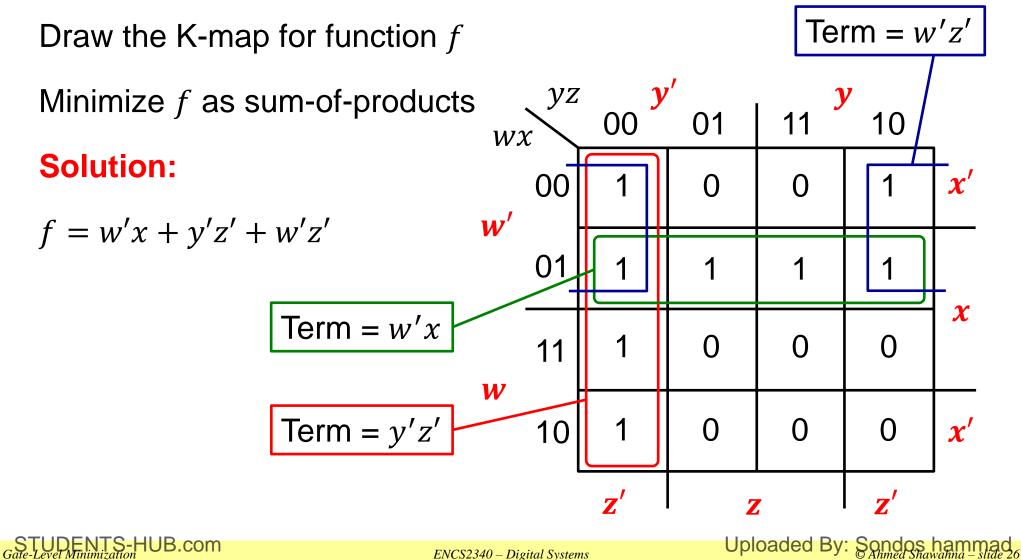


Gate-Level Minimization

ENCS2340 – Digital Systems

Simplifying a 4-Variable Function

Given $f(w, x, y, z) = \sum (0, 2, 4, 5, 6, 7, 8, 12)$



Example

For the Boolean function

F = W'X'Y' + X'YZ' + W'XYZ' + WX'Y'

- a) Express the function as a sum-of-minters
- b) Find the minimal sum-of-products expression

Solution:

a)
$$F = W'X'Y' + X'YZ' + W'XYZ' + WX'Y'$$

= W'X'Y'(Z + Z') + (W + W')X'YZ' + W'XYZ' + WX'Y'(Z + Z')

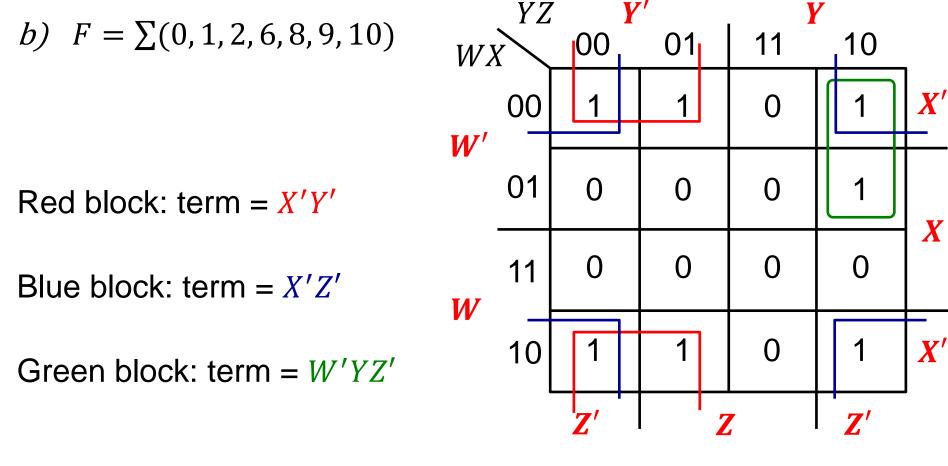
= W'X'Y'Z + W'X'Y'Z' + WX'YZ' + W'X'YZ' + W'XYZ' +

WX'Y'Z + WX'Y'Z'

 $= \sum (0, 1, 2, 6, 8, 9, 10)$

Example (Cont.)

Solution:



Minimal sum-of-products: F = X'Y' + X'Z' + W'YZ' (7 literals)

STUDENTS-HUB.com

Next . . .

- Boolean Function Minimization
- The Karnaugh Map (K-Map)
- Two, Three, and Four-Variable K-Maps
- Prime and Essential Prime Implicants
- Minimal Sum-of-Products and Product-of-Sums
- Don't Cares
- Five and Six-Variable K-Maps
- Multiple Outputs
- Universality of NAND and NOR gates
- NAND-NAND and NOR-NOR implementations
- Odd and Even functions
- Parity Generators and Checkers

STUDENTS-HUB.com

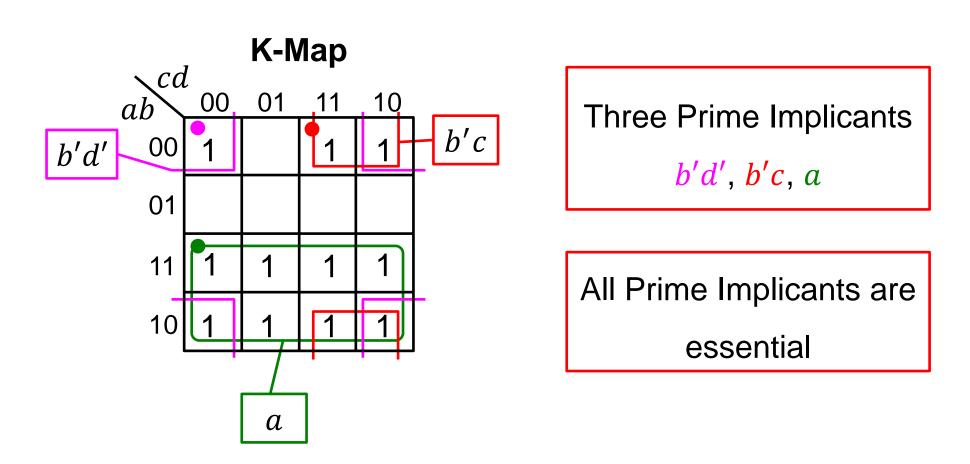
ENCS2340 – Digital Systems

Prime Implicants

- Prime Implicant: a product term obtained by combining the maximum number of adjacent squares in the K-map
- The number of combined squares must be a power of 2
- Essential Prime Implicant: is a prime implicant that covers at least one minterm not covered by the other prime implicants
- The prime implicants and essential prime implicants can be determined by inspecting the K-map

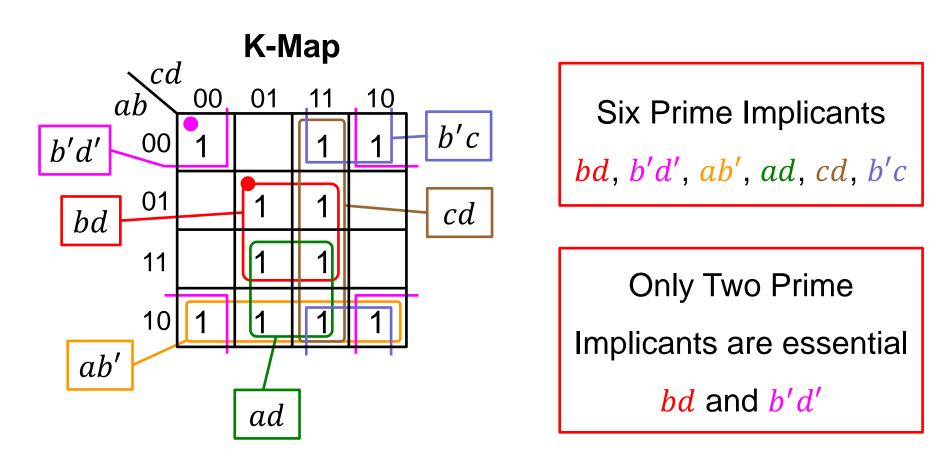
Example of Prime Implicants

Find all the prime implicants and essential prime implicants for: $f(a, b, c, d) = \sum (0, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15)$



Example of Prime Implicants

Find all the prime implicants and essential prime implicants for: $f(a, b, c, d) = \sum (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$



Gate-Level Minimization

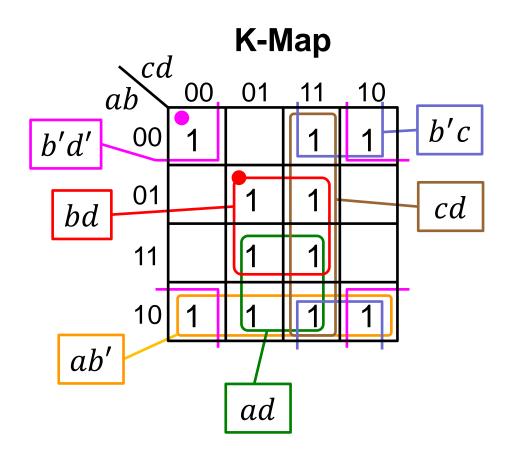
Simplification Procedure Using the K-Map

- 1. Find all the essential prime implicants
 - ♦ Covering maximum number (power of 2) of 1's in the K-map
 - ♦ Mark the minterm(s) that make the prime implicants essential
- 2. Add prime implicants to cover the function
 - \diamond Choose a minimal subset of prime implicants that cover all remaining 1's
 - ♦ Make sure to cover all 1's not covered by the essential prime implicants
 - ♦ Minimize the overlap among the additional prime implicants
- Sometimes, a function has multiple simplified expressions
 - \diamond You may be asked to list all the simplified sum-of-product expressions

Obtaining All Minimal SOP Expressions

Consider again: $f(a, b, c, d) = \sum (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$

Obtain all minimal sum-of-products (SOP) expressions



Gate-Level Minimization

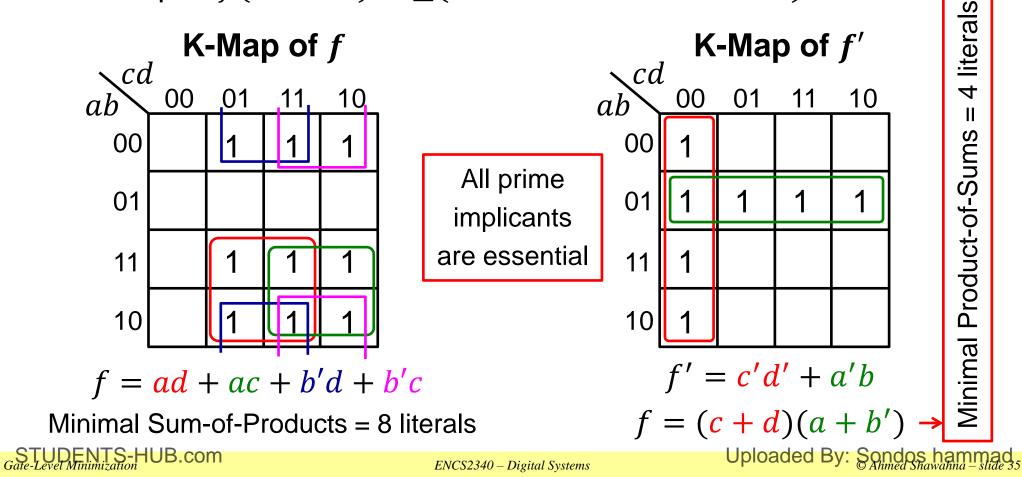
Two essential Prime

Implicants: bd and b'd'

Four possible solutions: f = bd + b'd' + cd + ad f = bd + b'd' + cd + ab' f = bd + b'd' + b'c + ab' f = bd + b'd' + b'c + ad

Product-of-Sums (POS) Simplification

- All previous examples were expressed in Sum-of-Products form
- With a minor modification, the Product-of-Sums can be obtained
- ♦ Example: $f(a, b, c, d) = \sum (1, 2, 3, 9, 10, 11, 13, 14, 15)$



Simplification Procedure

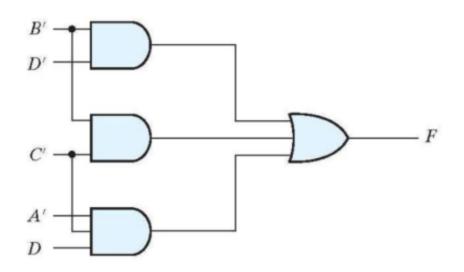
- 1. Draw the K-map for the function f
 - \diamond Obtain a minimal Sum-of-Products (SOP) expression for *f*
- 2. Draw the K-map for f', replacing the 0's of f with 1's in f'
- 3. Obtain a minimal Sum-of-Products (SOP) expression for f'
- 4. Use DeMorgan's theorem to obtain f = (f')'
 - \diamond The result is a minimal Product-of-Sums (POS) expression for *f*
- 5. Compare the cost of the minimal SOP and POS expressions
 - \diamond Count the number of literals to find which expression is minimal

Example

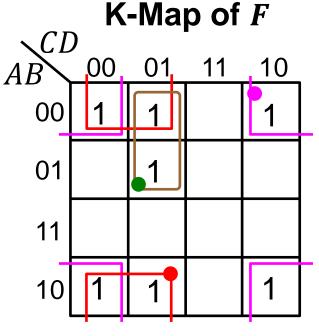
Express the Boolean function *f* in standard form using the minimal number of literals

$$F(A, B, C, D) = \prod (3, 4, 6, 7, 11, 12, 13, 14, 15)$$

a) Simplify the function in sum-ofproducts form



Gate-Level Minimization



F = B'D' + B'C' + A'C'D

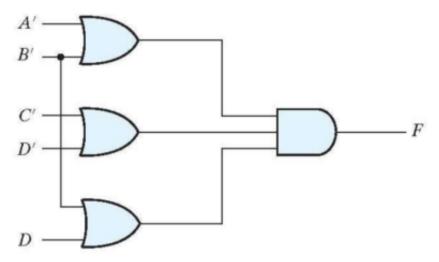
Minimal Sum-of-Products = 7 literals

Example (Cont.)

Express the Boolean function *f* in standard form using the minimal number of literals

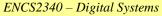
$$F(A, B, C, D) = \prod (3, 4, 6, 7, 11, 12, 13, 14, 15)$$

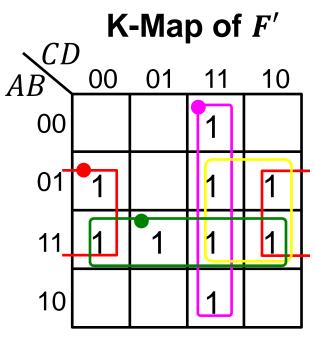
b) Simplify the function in product-of-sums form



F = (C' + D')(B' + D)(A' + B')

Minimal Product-of-Sums = 6 literals





F' = CD + BD' + ABUploaded By: Sondos hammad

Next . . .

- Boolean Function Minimization
- The Karnaugh Map (K-Map)
- Two, Three, and Four-Variable K-Maps
- Prime and Essential Prime Implicants
- Minimal Sum-of-Products and Product-of-Sums

Don't Cares

- Five and Six-Variable K-Maps
- Multiple Outputs
- Universality of NAND and NOR gates
- NAND-NAND and NOR-NOR implementations
- Odd and Even functions
- Parity Generators and Checkers

STUDENTS-HUB.com *Gate-Level Minimization*

ENCS2340 – Digital Systems

Don't Cares

Sometimes, a function table may contain entries for which:

- \diamond The input values of the variables will never occur, or
- \diamond The output value of the function is never used
- In this case, the output value of the function is not defined
- The output value of the function is called a don't care
- A don't care is an X value that appears in the function table
- The X value can be later chosen to be 0 or 1
 - \diamond To minimize the function implementation

Gate-Level Minimization

ENCS2340 – Digital Systems

Example of a Function with Don't Cares

- Consider a function *f* defined over BCD inputs
- The function input is a BCD digit from 0 to 9
- The function output is 0 if the BCD input is 0 to 4
- The function output is 1 if the BCD input is 5 to 9
- The function output is X (don't care) if the input is 10 to 15 (not BCD)

*
$$f = \sum_{m} (5, 6, 7, 8, 9) + \sum_{d} (10, 11, 12, 13, 14, 15)$$

Minterms

Gate-Level Minimization

Don't Cares

Truth Table

а	b	С	d	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	Х
1	0	1	1	Х
1	1	0	0	Х
1	1	0	1	Χ
1	1	1	0	Х
1	1	1	1	Х

Minimizing Functions with Don't Cares

Consider: $f = \sum_{m} (5, 6, 7, 8, 9) + \sum_{d} (10, 11, 12, 13, 14, 15)$

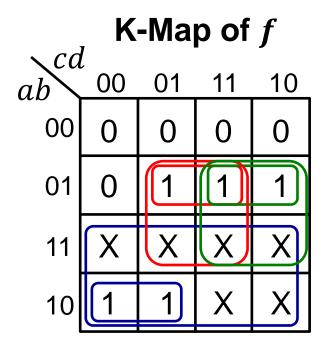
If the don't cares were treated as 0's we get:

f = a'bd + a'bc + ab'c' (9 literals)

If the don't cares were treated as 1's we get:

f = a + bd + bc (5 literals)

The don't care values can be selected to be either 0 or 1, to produce a minimal expression



Simplification Procedure with Don't Cares

- 1. Find all the essential prime implicants
 - ♦ Covering maximum number (power of 2) of 1's and X's (don't cares)
 - \diamond Mark the 1's that make the prime implicants essential
- 2. Add prime implicants to cover the function
 - ♦ Choose a minimal subset of prime implicants that cover all remaining 1's
 - ♦ Make sure to cover all 1's not covered by the essential prime implicants
 - ♦ Minimize the overlap among the additional prime implicants
 - ♦ You need not cover all the don't cares (some can remain uncovered)
- Sometimes, a function has multiple simplified expressions

Minimizing Functions with Don't Cares (2)

Simplify the function $g(a, b, c, d) = \sum_{m} (1, 3, 7, 11, 15)$ which has the don't care conditions $d(a, b, c, d) = \sum_d (0, 2, 5)$

01

Х

0

 $\mathbf{0}$

11

10

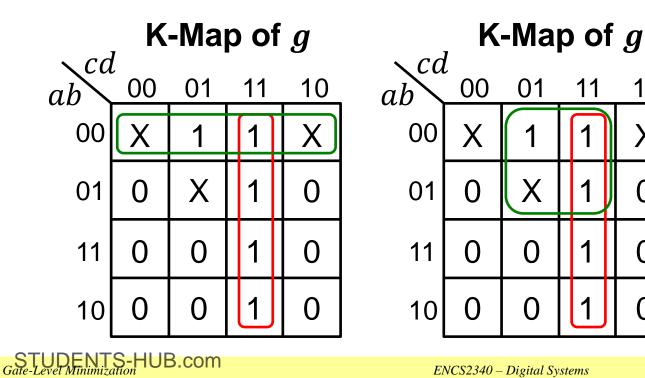
Х

 \mathbf{O}

 $\mathbf{0}$

Solution 1: g = cd + a'b' (4 literals)

Solution 2: g = cd + a'd (4 literals)



Prime Implicant cd is essential

Not all don't cares need be covered

Minimal Product-of-Sums with Don't Cares

Simplify:
$$g = \sum_{m} (1, 3, 7, 11, 15) + \sum_{d} (0, 2, 5)$$

Obtain a minimal product-of-sums expression

Solution: $g' = \sum_{m} (4, 6, 8, 9, 10, 12, 13, 14) + \sum_{d} (0, 2, 5)$

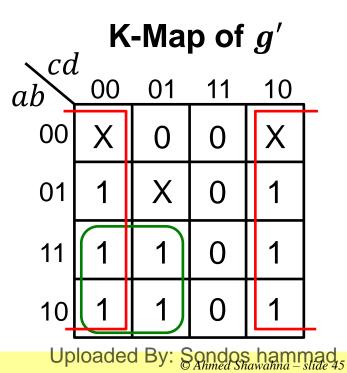
Minimal g' = d' + ac' (3 literals)

Minimal product-of-sums:

Gate-Level Minimization

g = d(a' + c) (3 literals)

The minimal sum-of-products expression for g had 4 literals



Next . . .

- Boolean Function Minimization
- The Karnaugh Map (K-Map)
- Two, Three, and Four-Variable K-Maps
- Prime and Essential Prime Implicants
- Minimal Sum-of-Products and Product-of-Sums
- Don't Cares
- Five and Six-Variable K-Maps
- Multiple Outputs
- Universality of NAND and NOR gates
- NAND-NAND and NOR-NOR implementations
- Odd and Even functions
- Parity Generators and Checkers

Gate-Level Minimization

ENCS2340 – Digital Systems

Five-Variable Karnaugh Map

- Consists of $2^5 = 32$ squares, numbered 0 to 31
 - \diamond Remember the numbering of squares in the K-map
- Can be visualized as two layers of 16 squares each
- ✤ Top layer contains the squares of the first 16 minterms (a = 0)
- ♦ Bottom layer contains the squares of the last 16 minterms (a = 1)

de	,	<i>a</i> =	= 0		de $a = 1$					
bc	00	01	11	10	bc	00	01	11	10	
00	m_0	m_1	m_3	m_2	00	<i>m</i> ₁₆	<i>m</i> ₁₇	<i>m</i> ₁₉	m_{18}	
01	m_4	m_5	m_7	m_6	01	<i>m</i> ₂₀	<i>m</i> ₂₁	<i>m</i> ₂₃	m ₂₂	
11	<i>m</i> ₁₂	<i>m</i> ₁₃	<i>m</i> ₁₅	m_{14}	11	m ₂₈	m ₂₉	<i>m</i> ₃₁	m_{30}	
10	m_8	m_9	m_{11}	m_{10}	10	<i>m</i> ₂₄	m_{25}	<i>m</i> ₂₇	m ₂₆	

Each square is adjacent to **5** other squares: **4** in the same layer and **1** in the other layer: m_0 is adjacent to m_{16} m_1 is adjacent to m_{17} m_4 is adjacent to m_{20} ...

Uploaded By: Sondos hammad, O Ahmed Shawahna - slide 47

STUDENTS-HUB.com

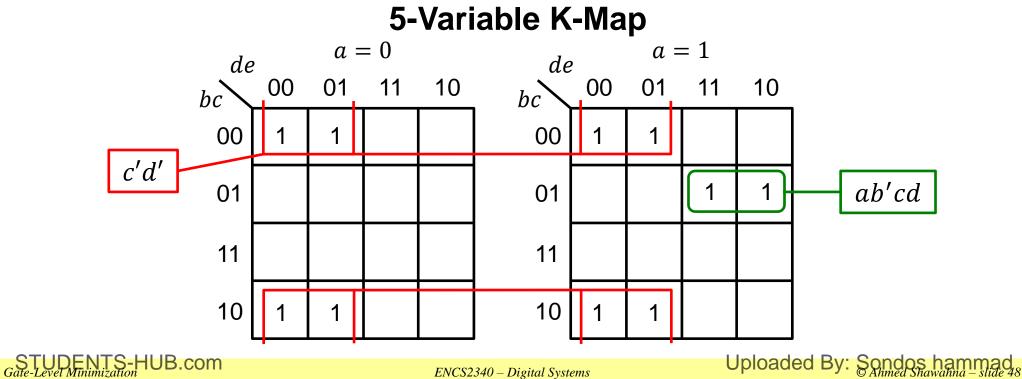
Example of a Five-Variable K-Map

Given: $f(a, b, c, d, e) = \sum (0, 1, 8, 9, 16, 17, 22, 23, 24, 25)$

Draw the 5-Variable K-Map

Obtain a minimal Sum-of-Products expression for f

Solution: f = c'd' + ab'cd (6 literals)



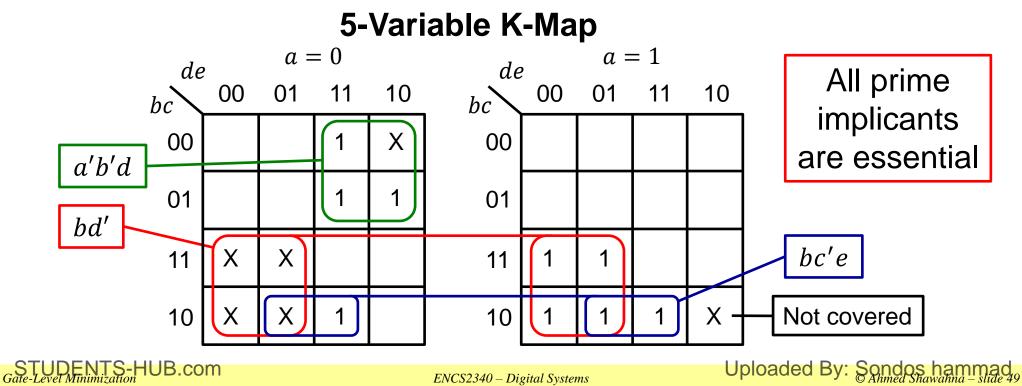
Five-Variable K-Map with Don't Cares

 $g(a, b, c, d, e) = \sum_{m} (3, 6, 7, 11, 24, 25, 27, 28, 29) + \sum_{d} (2, 8, 9, 12, 13, 26)$

Draw the 5-Variable K-Map

Obtain a minimal Sum-of-Products expression for g

Solution: q = bd' + a'b'd + bc'e (8 literals)



Six-Variable Karnaugh Map

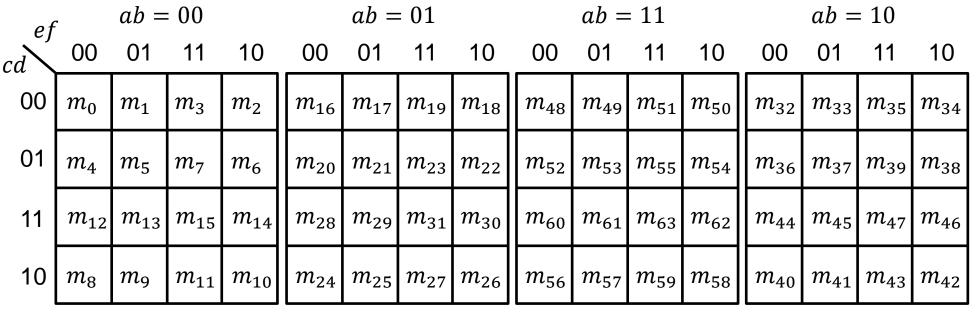
• Consists of $2^6 = 64$ squares, numbered 0 to 63

Can be visualized as four layers of 16 squares each

 \diamond Four layers: ab = 00, 01, 11, 10 (Notice that layer 11 comes before 10)

Each square is adjacent to 6 other squares:

 \diamond 4 squares in the same layer and 2 squares in the above and below layers



STUDENTS-HUB.com

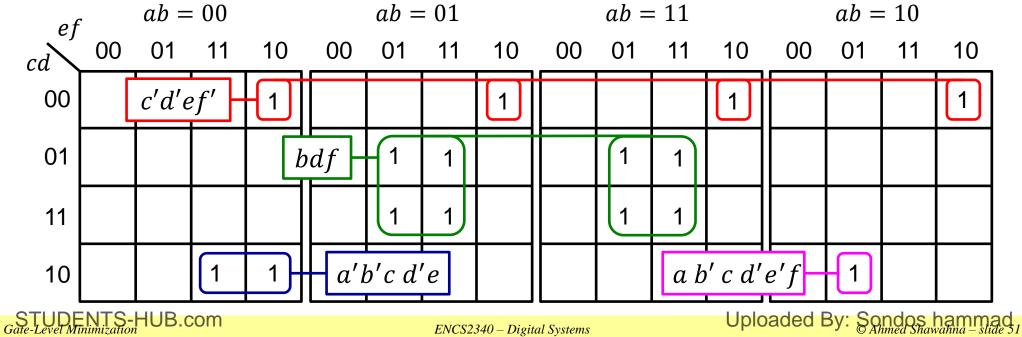
Example of a Six-Variable K-Map

 $h(a, b, c, d, e, f) = \sum (2, 10, 11, 18, 21, 23, 29, 31, 34, 41, 50, 53, 55, 61, 63)$

Draw the 6-Variable K-Map

Obtain a minimal Sum-of-Products expression for h

Solution: h = c'd'ef' + b d f + a'b'c d'e + a b' c d'e' f (18 literals)



Next . . .

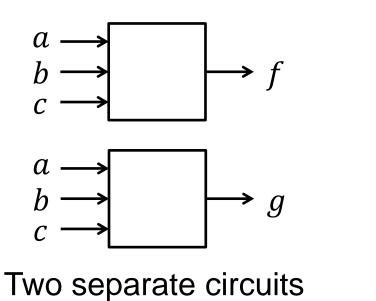
- Boolean Function Minimization
- The Karnaugh Map (K-Map)
- Two, Three, and Four-Variable K-Maps
- Prime and Essential Prime Implicants
- Minimal Sum-of-Products and Product-of-Sums
- Don't Cares
- Five and Six-Variable K-Maps
- Multiple Outputs
- Universality of NAND and NOR gates
- NAND-NAND and NOR-NOR implementations
- Odd and Even functions
- Parity Generators and Checkers

STUDENTS-HUB.com

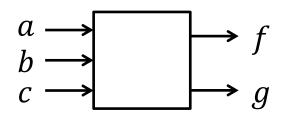
ENCS2340 – Digital Systems

Multiple Outputs

- Suppose we have two functions: f(a, b, c) and g(a, b, c)
- Same inputs: a, b, c, but two outputs: f and g
- We can minimize each function separately, or
- \clubsuit Minimize f and g as one circuit with two outputs
- \clubsuit The idea is to share terms (gates) among f and g



UDENTS-HUB.com



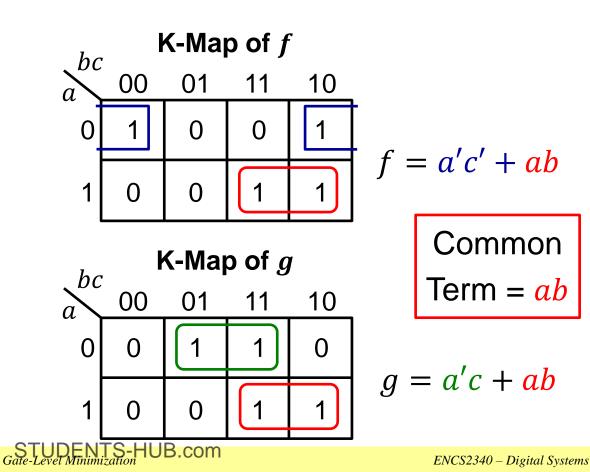
One circuit with Two Outputs

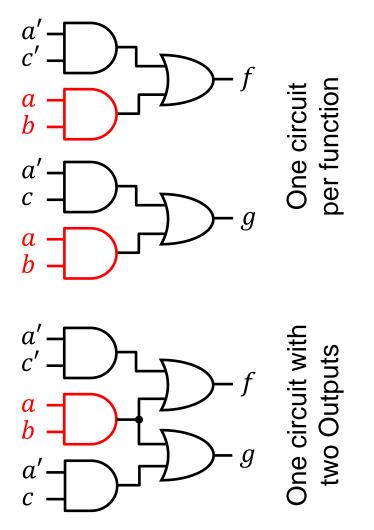
Uploaded By: Sondos hammad

Multiple Outputs: Example 1

Given: $f(a, b, c) = \sum (0, 2, 6, 7)$ and $g(a, b, c) = \sum (1, 3, 6, 7)$

Minimize each function separately Minimize both functions as one circuit





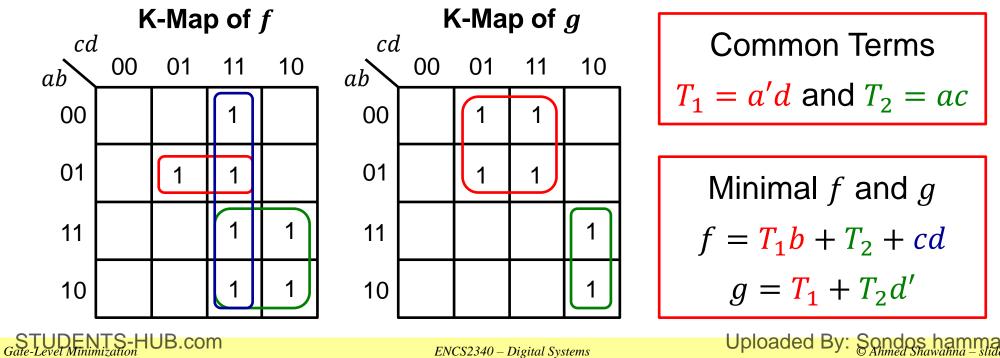
Multiple Outputs: Example 2

 $f(a, b, c, d) = \sum (3, 5, 7, 10, 11, 14, 15), g(a, b, c, d) = \sum (1, 3, 5, 7, 10, 14)$

Draw the K-map and write minimal SOP expressions of f and g

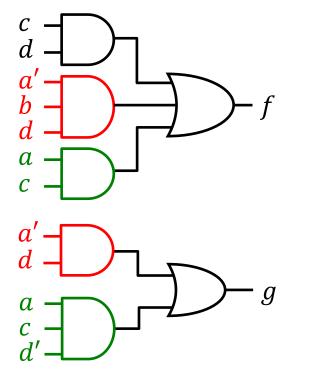
f = a'bd + ac + cd g = a'd + acd'

Extract the common terms of f and g



Common Terms -> Shared Gates

 $\begin{array}{ll} \text{Minimal } f = a'bd + ac + cd & \text{Minimal } g = a'd + acd' \\ \text{Let } T_1 = a'd \text{ and } T_2 = ac & (\text{shared by } f \text{ and } g) \\ \text{Minimal } f = T_1b + T_2 + cd, & \text{Minimal } g = T_1 + T_2d' \end{array}$



NO Shared Gates

UDENTS-HUB.com

One Circuit Two Shared Gates

 T_2

Uploaded By: Sondos hammad

Next . . .

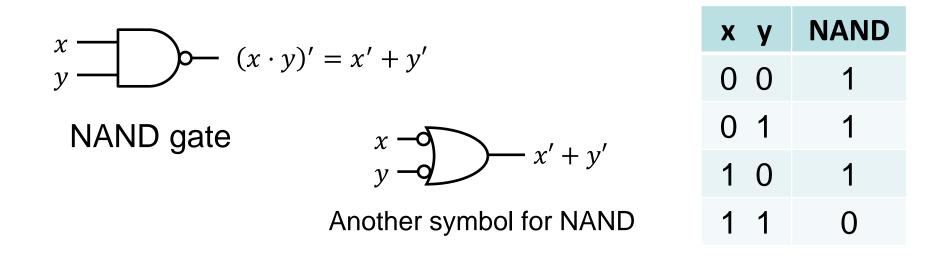
- Boolean Function Minimization
- The Karnaugh Map (K-Map)
- Two, Three, and Four-Variable K-Maps
- Prime and Essential Prime Implicants
- Minimal Sum-of-Products and Product-of-Sums
- Don't Cares
- Five and Six-Variable K-Maps
- Multiple Outputs
- Universality of NAND and NOR gates
- NAND-NAND and NOR-NOR implementations
- Odd and Even functions
- Parity Generators and Checkers

STUDENTS-HUB.com

ENCS2340 – Digital Systems

NAND Gate

- The NAND gate has the following symbol and truth table
- NAND represents NOT AND
- The small bubble circle represents the invert function



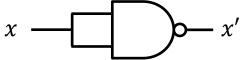
- NAND gate is implemented efficiently in CMOS technology
 - \diamond In terms of chip area and speed

STUDENTS-HUB.com

The NAND Gate is Universal

- NAND gates can implement any Boolean function
- NAND gates can be used as inverters, or to implement AND/OR
- ✤ A single-input NAND gate is an inverter

$$x \text{ NAND } x = (x \cdot x)' = x'$$



AND is equivalent to NAND with inverted output

$$(x \text{ NAND } y)' = ((x \cdot y)')' = x \cdot y \text{ (AND)}$$

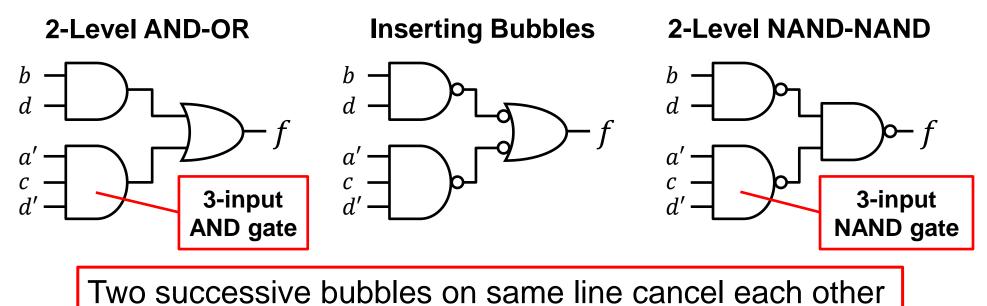
OR is equivalent to NAND with inverted inputs

Uploaded By: Sondos hammad

 $x \cdot y$

NAND - NAND Implementation

- ✤ Consider the following <u>sum-of-products</u> expression: f = bd + a'cd'
- A 2-level AND-OR circuit can be converted easily to a 2-level NAND-NAND implementation

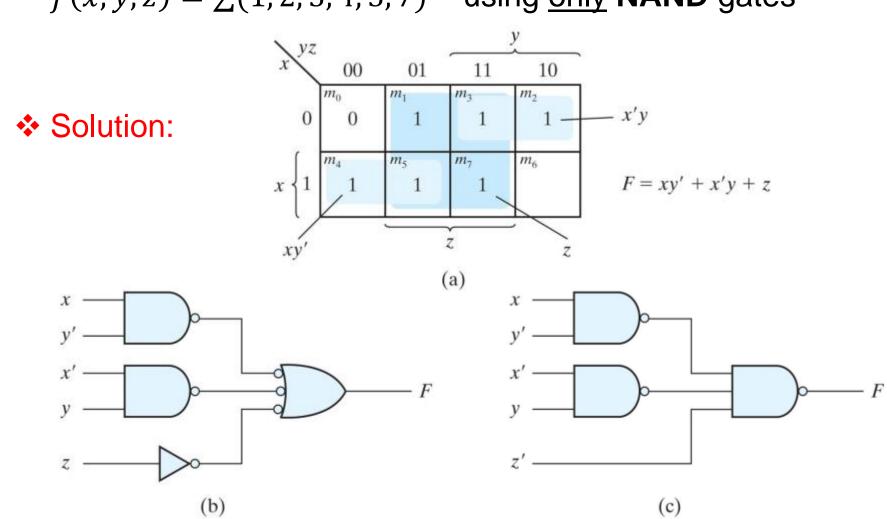


Uploaded By: Ser

Gate-Level Minimization

Boolean Function with NAND Gates

✤ Example: Implement the Boolean function $f(x, y, z) = \sum (1, 2, 3, 4, 5, 7) \quad \text{using <u>only</u>$ **NAND**gates



STUDENTS-HUB.com

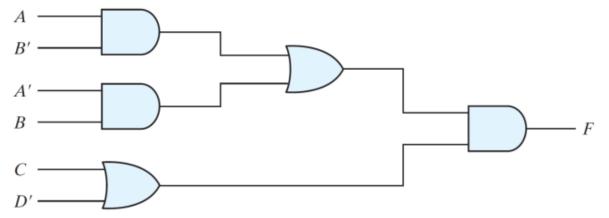
ENCS2340 – Digital Systems

Multilevel Circuits using NAND Gates

- General Procedure for converting a multilevel AND–OR diagram into an all-NAND diagram using mixed notation is as follows:
 - Convert all AND gates to NAND gates with AND-invert graphic symbols.
 - Convert all OR gates to NAND gates with invert-OR graphic symbols.
 - Check all the bubbles in the diagram. For every bubble that is not compensated by another small circle along the same line, insert an inverter (a one-input NAND gate) or complement the input literal.

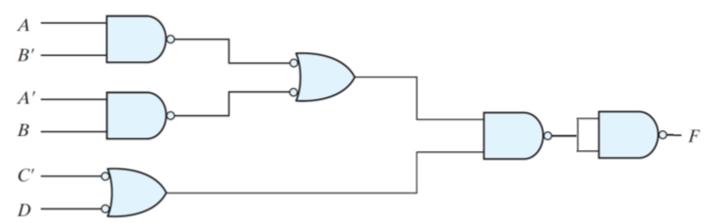
Multilevel Circuits using NAND Gates

Example: Implement the given circuit using <u>only</u> NAND gates



Solution:

Gate-Level Minimization

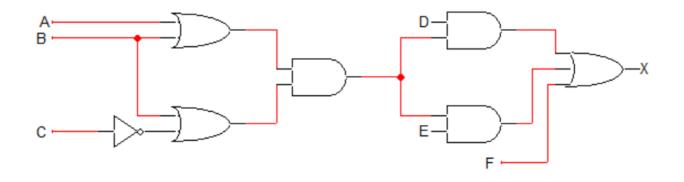


Start from output toward inputs converting gate by gate

Uploaded By: Sondos hammad

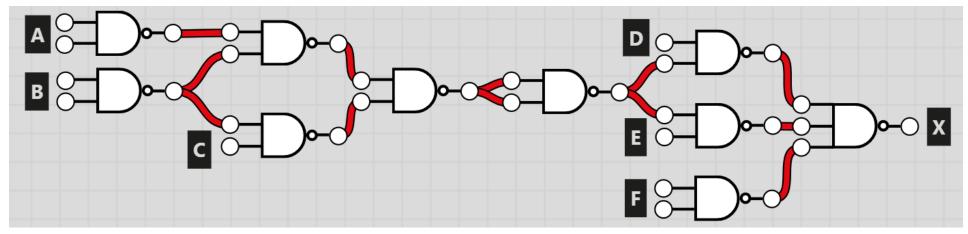
Multilevel Circuits using NAND Gates

Example: Implement the given circuit using <u>only</u> NAND gates



Solution:

Gate-Level Minimization

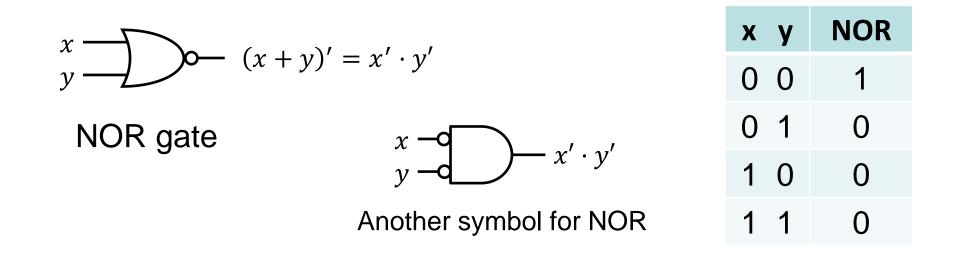


Start from output toward inputs converting gate by gate

Uploaded By: Sondos hammad

NOR Gate

- The NOR gate has the following symbol and truth table
- ✤ NOR represents NOT OR
- The small bubble circle represents the invert function



- NOR gate is implemented efficiently in CMOS technology
 - \diamond In terms of chip area and speed

STUDENTS-HUB.com

ENCS2340 – Digital Systems

The NOR Gate is also Universal

- NOR gates can implement any Boolean function
- NOR gates can be used as inverters, or to implement AND/OR
- ✤ A single-input NOR gate is an inverter

x NOR x = (x + x)' = x'

- OR is equivalent to NOR with inverted output
 - (x NOR y)' = ((x + y)')' = x + y (OR)

$$(x' \text{ NOR } y') = (x' + y')' = x \cdot y \text{ (AND)}$$

x'

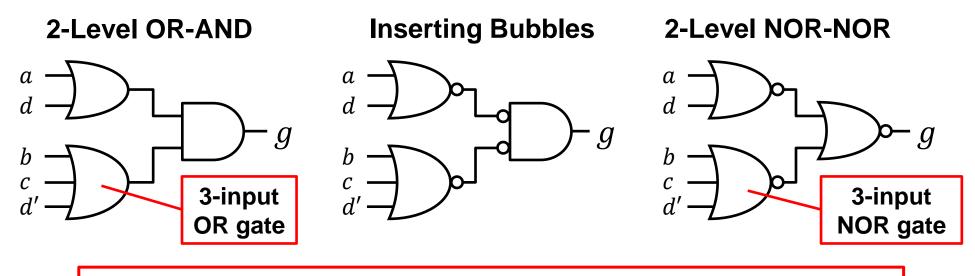
x + y

x.*y*

NOR - NOR Implementation

✤ Consider the following **product-of-sums** expression: g = (a + d)(b + c + d')

A 2-level OR-AND circuit can be converted easily to a 2-level NOR-NOR implementation



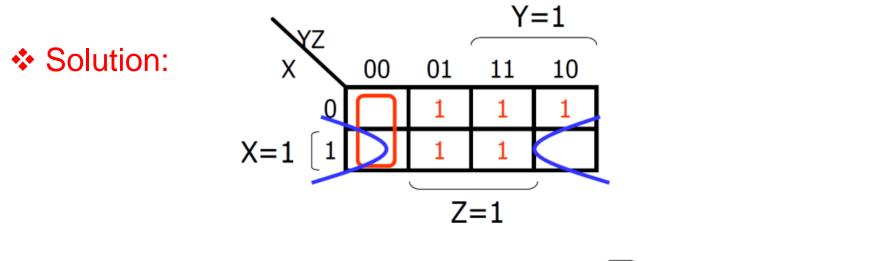
Two successive bubbles on same line cancel each other

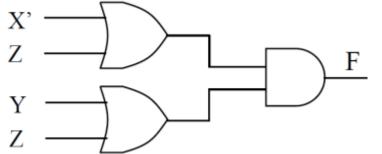
STUDENTS-HUB.com

ENCS2340 – Digital Systems

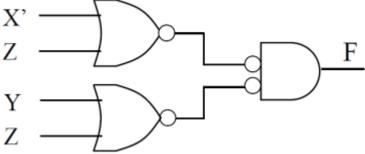
Boolean Function with NOR Gates

✤ Example: Implement the Boolean function $f(x, y, z) = \sum(1, 2, 3, 5, 7) \quad \text{using <u>only</u>$ **NOR**gates





DENTS-HUB.com

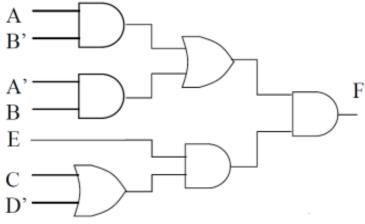


Multilevel Circuits using NOR Gates

- General Procedure for converting a multilevel OR–AND diagram into an all-NOR diagram using mixed notation is as follows:
 - Convert all OR gates to NOR gates with OR-invert graphic symbols.
 - Convert all AND gates to NOR gates with invert-AND graphic symbols.
 - Check all the bubbles in the diagram. For every bubble that is not compensated by another small circle along the same line, insert an inverter (a one-input NOR gate) or complement the input literal.

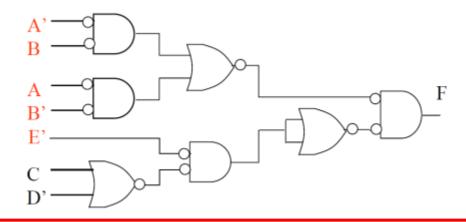
Multilevel Circuits using NOR Gates

- Example: Implement the Boolean function
 - f(A, B, C, D, E) = (AB' + A'B)E(C + D') using <u>only</u> **NOR** gates



Solution:

Gate-Level Minimization

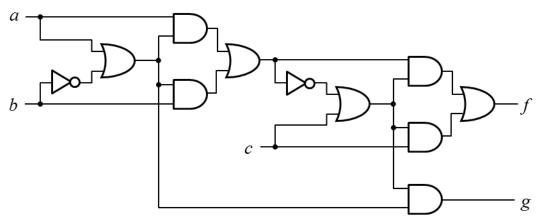


Start from output toward inputs converting gate by gate

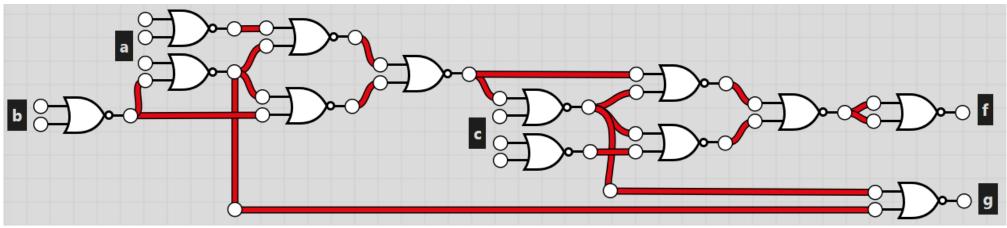
Uploaded By: Sondos hammad

Multilevel Circuits using NOR Gates

Example: Implement the given circuit using <u>only</u> NOR gates



Gate-Level Minimization



Start from output toward inputs converting gate by gate

Uploaded By: Sondos hammad

Multilevel Circuits using NAND/NOR Gates

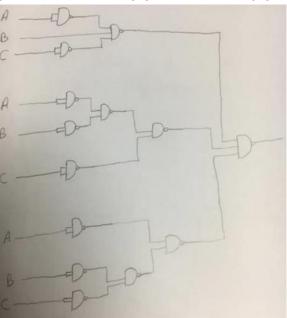
Example: Find the complement of the following expression and implement it using (1) NAND gates, and (2) NOR gates:

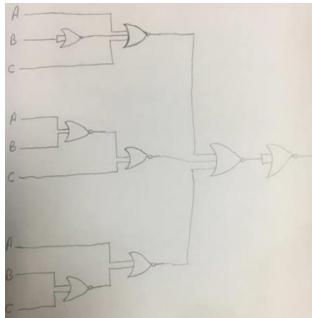
G(A, B, C) = (A + B' + C)(A'B' + C)(A + B'C')

Solution:

Gate-Level Minimization

G' = ((A + B' + C)(A'B' + C)(A + B'C'))' = A'BC' + C'(A + B) + A'(B + C)





Next . . .

- Boolean Function Minimization
- The Karnaugh Map (K-Map)
- Two, Three, and Four-Variable K-Maps
- Prime and Essential Prime Implicants
- Minimal Sum-of-Products and Product-of-Sums
- Don't Cares
- Five and Six-Variable K-Maps
- Multiple Outputs
- Universality of NAND and NOR gates
- NAND-NAND and NOR-NOR implementations
- Odd and Even functions

Parity Generators and Checkers

Gate-Level Minimization

ENCS2340 – Digital Systems

Exclusive OR / Exclusive NOR

- Exclusive OR (XOR) is an important Boolean operation used extensively in logic circuits
- Exclusive NOR (XNOR) is the complement of XOR

	X	у	XOR		X	у	XNOR		
	0	0	0		0	0	1		
	0	1	1		0	1	0		XNOR is also known
	1	0	1		1	0	0		as equivalence
	1	1	0		1	1	1		
	x — y —		$\sum x e$	⊕ y	$\begin{array}{c} x - \\ y - \end{array}$			<i>x</i> ⊕	y)'
		R ga			Х	NO	R gate		
vel Min	IDENTS-HUB.com			ENCS2	2340 – L	Digital Systems		Uploaded By: Sondos hamn	

Odd Function

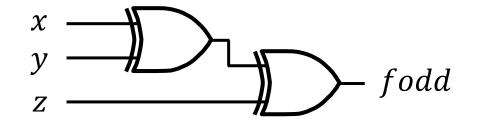
- Output is 1 if the number of 1's is odd in the inputs
- Output is the XOR operation on all input variables

	X	у	z	fodd
1 S	0	0	0	0
ndu	0	0	1	1
רטר	0	1	0	1
	0	1	1	0
Odd Function with 3 inputs	1	0	0	1
nuci	1	0	1	0
	1	1	0	0
D D	1	1	1	1

$$fodd = \sum (1, 2, 4, 7)$$

$$fodd = x'y'z + x'yz' + xy'z' + xyz$$

$$fodd = x \oplus y \oplus z$$



Implementation using two XOR gates

STUDENTS-HUB.com Gate-Level Minimization

ENCS2340 – Digital Systems

Even Function

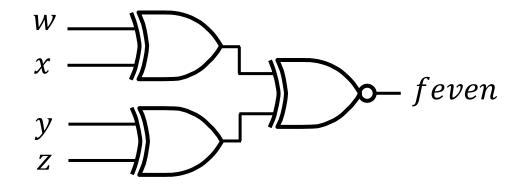
W	X	у	z	feven
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

UB.com

- Output is 1 if the number of 1's is even in the inputs (complement of odd function)
- Output is the XNOR operation on all inputs

$$feven = \sum (0, 3, 5, 6, 9, 10, 12, 15)$$

$$feven = (w \oplus x \oplus y \oplus z)'$$

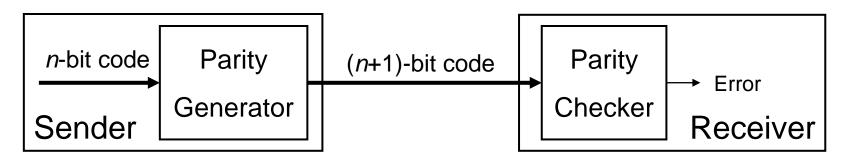


Implementation using two XOR gates and one XNOR

Even Function with 4 inputs

Gate-Level Minimization

Parity Generators and Checkers



- ✤ A parity bit is added to the *n*-bit code
 - \Rightarrow Produces (*n*+1)-bit code with an odd (or even) count of 1's
- Odd parity: count of 1's in the (n+1)-bit code is odd
 - ♦ Use an even function to generate the odd parity bit
 - \diamond Use an even function to check the (*n*+1)-bit code
- Even parity: count of 1's in the (*n*+1)-bit code is even
 - ♦ Use an odd function to generate the even parity bit
 - \diamond Use an **odd function** to check the (*n*+1)-bit code

STUDENTS-HUB.com

ENCS2340 – Digital Systems

Example of Parity Generator and Checker

- Design even parity generator & checker for 3-bit codes
- Solution:

DENTS-HUB.com

- ♦ Use 3-bit odd function to generate even parity bit *P*.
- $\Rightarrow Use$ **4-bit odd function**to check if there is an error*E*in even parity.
- ♦ Given that: xyz = 001 then P = 1. The sender transmits Pxyz = 1001.
- ♦ If y changes from 0 to 1 between generator and checker, the parity checker receives Pxyz = 1011 and produces E = 1, indicating an error.

