
Combinational Logic Design

Uploaded By: anonymousSTUDENTS-HUB.com

Presentation Outline

❖ Combinational Circuits

❖ Analysis Procedure

❖ Design Procedure

❖ Binary Adder-Subtractor

❖ Decimal Adder

❖ Binary Multiplier

❖ Magnitude Comparator

❖ Decoders

❖ Encoders

❖ Multiplexers

Uploaded By: anonymousSTUDENTS-HUB.com

Combinational Circuit

❖ A combinational circuit is a block of logic gates having:

𝑛 inputs: 𝑥1, 𝑥2, … , 𝑥𝑛

𝑚 outputs: 𝑓1, 𝑓2, … , 𝑓𝑚

❖ Each output is a function of the input variables

❖ Each output is determined from present combination of inputs

❖ Combination circuit performs operation specified by logic gates

Combinational

Circuit

𝑛 inputs 𝑚 outputs

Uploaded By: anonymousSTUDENTS-HUB.com

Combinational Circuits

❖ Analysis

 Given a circuit, find out its function

 Function may be expressed as:

▪ Boolean function

▪ Truth table

❖ Design

 Given a desired function, determine its circuit

 Function may be expressed as:

▪ Boolean function

▪ Truth table

C

B
A

C

B
A

B
A

C
A

C
B

F1

F2

?

?

?

Uploaded By: anonymousSTUDENTS-HUB.com

ANALYSIS PROCEDURE

1. Label all gate outputs that are a function of input

variables. Determine the Boolean function for each

gate output

2. Label the gates that are a function of input variables

and previously labeled gates. Find the Boolean

functions for these gates

3. Repeat step 2 until output of circuits are obtained

4. By repeated substitution of previously defined

functions, obtain the output Boolean functions in

terms of input variables

Uploaded By: anonymousSTUDENTS-HUB.com

Analysis Procedure

ABC

A+B+C

AB+AC+BC

(A’+B’)(A’+C’)(B’+C’)

AB'C'+A'BC'+A'B'C

F1=AB'C'+A'BC'+A'B'C+ABC

F2=AB+AC+BC

Uploaded By: anonymousSTUDENTS-HUB.com

Analysis Procedure

1. Determine the number of input variables in the circuit.

For n inputs, form the 2n possible input combinations

and list the binary numbers from 0 to 2n-1 in a table

2. label the outputs of selected gates with arbitrary

symbols

3. Obtain the truth table for the outputs of those gates

which are a function of the input variables only

4. Proceed to obtain the truth table for the outputs of

those gates which are a function of previously defined

values until the columns for all outputs a determined

Uploaded By: anonymousSTUDENTS-HUB.com

Analysis Procedure

F2

B

0 1 0 1

A 1 0 1 0

C

B

0 0 1 0

A 0 1 1 1

C

F1=AB'C'+A'BC'+A'B'C+ABC F2=AB+AC+BC
Uploaded By: anonymousSTUDENTS-HUB.com

How to Design a Combinational Circuit

1. Specification

 Specify the inputs, outputs, and what the circuit should do

2. Formulation

 Convert the specification into truth tables or logic expressions for outputs

3. Logic Minimization

 Minimize the output functions using K-map or Boolean algebra

4. Technology Mapping

 Draw a logic diagram using ANDs, ORs, and inverters

 Map the logic diagram into the selected technology

 Considerations: cost, delays, fan-in, fan-out

5. Verification

 Verify the correctness of the design, either manually or using simulation

Uploaded By: anonymousSTUDENTS-HUB.com

Designing a BCD to Excess-3 Code Converter

1. Specification

 Convert BCD code to Excess-3 code

 Input: BCD code for decimal digits 0 to 9

 Output: Excess-3 code for digits 0 to 9

2. Formulation

 Done easily with a truth table

 BCD input: 𝑎, 𝑏, 𝑐, 𝑑

 Excess-3 output: 𝑤, 𝑥, 𝑦, 𝑧

 Output is don't care for 1010 to 1111

BCD

a b c d

Excess-3

w x y z

0 0 0 0 0 0 1 1

0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1

0 0 1 1 0 1 1 0

0 1 0 0 0 1 1 1

0 1 0 1 1 0 0 0

0 1 1 0 1 0 0 1

0 1 1 1 1 0 1 0

1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 0

1010 to 1111 X X X X

Uploaded By: anonymousSTUDENTS-HUB.com

Designing a BCD to Excess-3 Code Converter

3. Logic Minimization using K-maps

00 01 11 10

00

𝑎𝑏

𝑐𝑑
K-map for 𝑤

01

11

10

K-map for 𝑥 K-map for 𝑦 K-map for 𝑧

00 01 11 10 00 01 11 10 00 01 11 10

1

11

11 1 1

XX XX

XX 1

1

1 1 1

XX XX

XX

1

1

XX XX

XX

1

1

XX XX

XX1

1

1

1

Minimal Sum-of-Product expressions:

𝑤 = 𝑎 + 𝑏𝑐 + 𝑏𝑑 , 𝑥 = 𝑏′𝑐 + 𝑏′𝑑 + 𝑏𝑐′𝑑′ , 𝑦 = 𝑐𝑑 + 𝑐′𝑑′ , 𝑧 = 𝑑′

Additional 3-Level Optimizations: extract common term (𝑐 + 𝑑)

𝑤 = 𝑎 + 𝑏(𝑐 + 𝑑) , 𝑥 = 𝑏′ 𝑐 + 𝑑 + 𝑏 𝑐 + 𝑑 ′ , 𝑦 = 𝑐𝑑 + (𝑐 + 𝑑)′
Uploaded By: anonymousSTUDENTS-HUB.com

Designing a BCD to Excess-3 Code Converter

4. Technology Mapping

Draw a logic diagram using ANDs, ORs, and inverters

Other gates can be used, such as NAND, NOR, and XOR

a

b

c

d

w

x

y

z

Using XOR gates

𝑥 = 𝑏′ 𝑐 + 𝑑 + 𝑏 𝑐 + 𝑑 ′ = 𝑏 𝑐 + 𝑑

𝑦 = 𝑐𝑑 + 𝑐′𝑑′ = 𝑐 𝑑 ′ = 𝑐 𝑑′

a

b

c

d

w

x

y

z

Uploaded By: anonymousSTUDENTS-HUB.com

Designing a BCD to Excess-3 Code Converter

5. Verification

Can be done manually

Extract output functions from circuit diagram

Find the truth table of the circuit diagram

Match it against the specification truth table

Verification process can be automated

Using a simulator for complex designs

a

b

c

d

w = a + b(c + d)

x = b (c + d)

y = c d'

z = d'

BCD
a b c d c+d b(c+d)

Excess-3
w x y z

0 0 0 0 0 0 0 0 1 1

0 0 0 1 1 0 0 1 0 0

0 0 1 0 1 0 0 1 0 1

0 0 1 1 1 0 0 1 1 0

0 1 0 0 0 0 0 1 1 1

0 1 0 1 1 1 1 0 0 0

0 1 1 0 1 1 1 0 0 1

0 1 1 1 1 1 1 0 1 0

1 0 0 0 0 0 1 0 1 1

1 0 0 1 1 0 1 1 0 0

Truth Table of the

Circuit Diagram

Uploaded By: anonymousSTUDENTS-HUB.com

BCD to 7-Segment Decoder

❖ Seven-Segment Display:

 Made of Seven segments: light-emitting diodes (LED)

 Found in electronic devices: such as clocks, calculators, etc.

❖ BCD to 7-Segment Decoder

 Accepts as input a BCD decimal digit (0 to 9)

 Generates output to the seven LED segments to display the BCD digit

 Each segment can be turned on or off separately

BCD to

7-Segment

Decoder

A

B

C

D

a
b
c
d
e
f
g

Uploaded By: anonymousSTUDENTS-HUB.com

Designing a BCD to 7-Segment Decoder

1. Specification:

 Input: 4-bit BCD (A, B, C, D)

 Output: 7-bit (a, b, c, d, e, f, g)

 Display should be OFF for

Non-BCD input codes

2. Formulation

 Done with a truth table

 Output is zero for 1010 to 1111

BCD input

A B C D

7-Segment decoder

a b c d e f g

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 1 1 0 1

0 0 1 1 1 1 1 1 0 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 0 1 1

1010 to 1111 0 0 0 0 0 0 0

Truth Table

Uploaded By: anonymousSTUDENTS-HUB.com

Designing a BCD to 7-Segment Decoder

3. Logic Minimization Using K-Maps

1

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑎

01

11

10 11

1 1

1 1

1

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑏

01

11

10 11

1

11

1 11

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑐

01

11

10 11

1

1 1

11

11

𝑎 = 𝐴′𝐶 + 𝐴′𝐵𝐷 + 𝐴𝐵′𝐶′ + 𝐵′𝐶′𝐷′

𝑏 = 𝐴′𝐵′ + 𝐵′𝐶′ + 𝐴′𝐶′𝐷′ + 𝐴′𝐶𝐷

𝑐 = 𝐴′𝐵 + 𝐵′𝐶′ + 𝐴′𝐷

Extracting common terms

Let 𝑇1 = 𝐴′𝐵, 𝑇2 = 𝐵′𝐶′, 𝑇3 = 𝐴′𝐷

Optimized Logic Expressions

𝑎 = 𝐴′𝐶 + 𝑇1 𝐷 + 𝑇2 𝐴 + 𝑇2 𝐷
′

𝑏 = 𝐴′𝐵′ + 𝑇2 + 𝐴′𝐶′𝐷′ + 𝑇3𝐶

𝑐 = 𝑇1 + 𝑇2 + 𝑇3

𝑇1, 𝑇2, 𝑇3 are shared gates

Uploaded By: anonymousSTUDENTS-HUB.com

Designing a BCD to 7-Segment Decoder

3. Logic Minimization Using K-Maps

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑑

01

11

10 11

1

1

1 1

1

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑒

01

11

10 1

1

1

1

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑓

01

11

10 11

1

1 11

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑔

01

11

10 11

1 1

1 1

1

Optimized Logic Expressions

𝑑 = 𝑇4 + 𝑇5 + 𝑇6 + 𝑇7 + 𝑇8 𝐷

𝑒 = 𝑇5 + 𝑇7

𝑓 = 𝑇4 + 𝑇5 + 𝑇8 + 𝑇9

𝑔 = 𝑇4 + 𝑇6 + 𝑇8 + 𝑇9

Common AND Terms

➔ Shared Gates

𝑇4 = 𝐴𝐵′𝐶′, 𝑇5 = 𝐵′𝐶′𝐷′

𝑇6 = 𝐴′𝐵′𝐶, 𝑇7 = 𝐴′𝐶𝐷′

𝑇8 = 𝐴′𝐵𝐶′, 𝑇9 = 𝐴′𝐵𝐷′

Uploaded By: anonymousSTUDENTS-HUB.com

Designing a BCD to 7-Segment Decoder

4. Technology Mapping

Many Common AND terms: 𝑇0 thru 𝑇9
𝑇0 = 𝐴′𝐶, 𝑇1 = 𝐴′𝐵, 𝑇2 = 𝐵′𝐶′

𝑇3 = 𝐴′𝐷, 𝑇4 = 𝐴𝐵′𝐶′, 𝑇5 = 𝐵′𝐶′𝐷′

𝑇6 = 𝐴′𝐵′𝐶, 𝑇7 = 𝐴′𝐶𝐷′

𝑇8 = 𝐴′𝐵𝐶′, 𝑇9 = 𝐴′𝐵𝐷′

Optimized Logic Expressions

𝑎 = 𝑇0 + 𝑇1 𝐷 + 𝑇4 + 𝑇5
𝑏 = 𝐴′𝐵′ + 𝑇2 + 𝐴′𝐶′𝐷′ + 𝑇3𝐶

𝑐 = 𝑇1 + 𝑇2 + 𝑇3
𝑑 = 𝑇4 + 𝑇5 + 𝑇6 + 𝑇7 + 𝑇8 𝐷

𝑒 = 𝑇5 + 𝑇7
𝑓 = 𝑇4 + 𝑇5 + 𝑇8 + 𝑇9
𝑔 = 𝑇4 + 𝑇6 + 𝑇8 + 𝑇9

Showing only

Outputs e, f, g

T4

T2

T5

A

B'
C'

D'

T0

T6

T7

B'

A'
C

D'

T8

T1

T9

C'

A'
B

D'

e f g
Uploaded By: anonymousSTUDENTS-HUB.com

Hierarchical Design

❖Why Hierarchical Design?

To simplify the implementation of a complex circuit

❖What is Hierarchical Design?

Decompose a complex circuit into smaller pieces called blocks

Decompose each block into even smaller blocks

Repeat as necessary until the blocks are small enough

Any block not decomposed is called a primitive block

The hierarchy is a tree of blocks at different levels

❖ The blocks are verified and well-document

❖ They are placed in a library for future use

Uploaded By: anonymousSTUDENTS-HUB.com

Top-Down versus Bottom-Up Design

❖ A top-down design proceeds from a high-level

specification to a more and more detailed design by

decomposition and successive refinement

❖ A bottom-up design starts with detailed primitive

blocks and combines them into larger and more

complex functional blocks

❖ Design usually proceeds top-down to a known set of

building blocks, ranging from complete processors to

primitive logic gates

Uploaded By: anonymousSTUDENTS-HUB.com

BINARY ADDER–SUBTRACTOR

❖ Half Adder

 Adds 1-bit plus 1-bit

 Produces Sum and Carry

▪ S = x’y +xy’

▪ C = xy

x y C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

HA
x

y

S

C

x

+ y

───

C S

x

y

S

C

Uploaded By: anonymousSTUDENTS-HUB.com

Half Adder

❖ Implementation of half adder

Uploaded By: anonymousSTUDENTS-HUB.com

Full Adder

❖Adds 1-bit plus 1-bit plus 1-bit

❖Produces Sum and Carry

x y z C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

x

+ y

+ z

───

C S

FA
x
y
z

S

C

y

0 1 0 1

x 1 0 1 0

z

y

0 0 1 0

x 0 1 1 1

z

S = xy'z'+x'yz'+x'y'z+xyz = x y z

C = xy + xz + yz

Uploaded By: anonymousSTUDENTS-HUB.com

Full Adder

S = xy'z'+x'yz'+x'y'z+xyz = x y z

C = xy + xz + yz

Uploaded By: anonymousSTUDENTS-HUB.com

Full adder

𝑆 = 𝑧 ⊕ (𝑥 ⊕ 𝑦)
= 𝑧′ 𝑥𝑦′ + 𝑥′𝑦 + 𝑧(𝑥𝑦′ + 𝑥′𝑦)′

= 𝑧′ 𝑥𝑦′ + 𝑥′𝑦 + 𝑧(𝑥𝑦 + 𝑥′𝑦′)

= 𝑥𝑦′𝑧′ + 𝑥′𝑦𝑧′ + 𝑥𝑦𝑧 + 𝑥′𝑦′𝑧

𝐶 = 𝑧 𝑥𝑦′ + 𝑥′𝑦 + 𝑥𝑦 = 𝑥𝑦′𝑧 + 𝑥′𝑦𝑧 + 𝑥𝑦

❖ Implementation of full adder with two half adders and
an OR gate

25

HA
x
y

z

HA
S

C

Uploaded By: anonymousSTUDENTS-HUB.com

Iterative Design: Ripple Carry Adder

❖ Uses identical copies of a full adder to build a large adder

❖ Simple to implement: can be extended to add any number of bits

❖ The cell (iterative block) is a full adder

Adds 3 bits: ai, bi, ci, Computes: Sum si and Carry-out ci+1

❖ Carry-out of cell i becomes carry-in to cell (i +1)

c0Full

Adder

a0 b0

s0

c1Full

Adder

a1 b1

s1

c2Full

Adder

a2 b2

s2

c3Full

Adder

a3 b3

s3

c4ciFull

Adder

ai bi

si

ci+1

Uploaded By: anonymousSTUDENTS-HUB.com

Carry Propagation

❖ Major drawback of ripple-carry adder is the carry propagation

❖ The carries are connected in a chain through the full adders

❖ This is why it is called a ripple-carry adder

❖ The carry ripples (propagates) through all the full adders

a0

c0

s0

b0a1

s1

b1

c1

a2

s2

b2

c2

a3

s3

b3

c3

c4

Uploaded By: anonymousSTUDENTS-HUB.com

Converting Subtraction into Addition
❖When computing A – B, convert B to its 2's complement

A – B = A + (2’s complement of B)

❖ Same adder is used for both addition and subtraction

This is the biggest advantage of 2's complement

❖ Final carry is ignored, because

A + (2's complement of B) = A + (2n – B) = (A – B) + 2n

Final carry = 2n, for n-bit numbers

0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1

– 0 0 1 1 1 0 1 0 + 1 1 0 0 0 1 1 0 (2's complement)

0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 (same result)

borrow: carry:-1-1-1 1111

Uploaded By: anonymousSTUDENTS-HUB.com

Adder/Subtractor for 2's Complement

❖ Same adder is used to compute: (A + B) or (A – B)

❖ Subtraction (A – B) is computed as: A + (2's complement of B)

2's complement of B = (1's complement of B) + 1

❖ Two operations: OP = 0 (ADD), OP = 1 (SUBTRACT)

n-bit Adder

n

A [n-1:0]

S [n-1:0]

n

n

n

B [n-1:0]

c0

OP

cn

n-bit input
vectors

n-bit output
vector

n XOR
gates

OP = 0 (ADD)

B XOR 0 = B

S = A + B + 0 = A + B

OP = 1 (SUBTRACT)

B XOR 1 = 1's complement of B

S = A + (1's complement of B) + 1

S = A + (2's complement of B)

S = A – B
Uploaded By: anonymousSTUDENTS-HUB.com

Carry versus Overflow

❖ Carry is important when …

 Adding unsigned integers

 Indicates that the unsigned sum is out of range

 Sum > maximum unsigned n-bit value

❖ Overflow is important when …

 Adding or subtracting signed integers

 Indicates that the signed sum is out of range

❖ Overflow occurs when …

 Adding two positive numbers and the sum is negative

 Adding two negative numbers and the sum is positive

❖ Simplest way to detect Overflow: V = Cn–1 Cn

 Cn-1 and Cn are the carry-in and carry-out of the most-significant bit

Uploaded By: anonymousSTUDENTS-HUB.com

0 1 0 0 0 0 0 0

0 1 0 0 1 1 1 1
+

1 0 0 0 1 1 1 1

79

64

143 (-113)

Carry = 0 Overflow = 1

1

1 0 0 1 1 1 0 1

1 1 0 1 1 0 1 0
+

0 1 1 1 0 1 1 1

218 (-38)

157 (-99)

119

Carry = 1 Overflow = 1

111

Carry and Overflow Examples

❖We can have carry without overflow and vice-versa

❖ Four cases are possible (Examples on 8-bit numbers)

1 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 0 0 1 1 1

15

248 (-8)

7

Carry = 1 Overflow = 0

11111

0 0 0 0 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 1 0 1 1 1

15

8

23

Carry = 0 Overflow = 0

1

Uploaded By: anonymousSTUDENTS-HUB.com

Four-bit adder–subtractor
❖M: Control Signal (Mode)

▪ M=0 ➔ F = x + y

▪ M=1 ➔ F = x – y

Uploaded By: anonymousSTUDENTS-HUB.com

DECIMAL ADDER (BCD Adder)

❖Consider adding two decimal digits in BCD

❖Operands and Result: 0 to 9

❖Output sum cannot exceed 9+9+1=19 (the last 1 is

the carry from previous digit)

❖4-bits plus 4-bits

+ x3 x2 x1 x0

+ y3 y2 y1 y0

────────

Cy S3 S2 S1 S0

Uploaded By: anonymousSTUDENTS-HUB.com

Derivation of BCD Adder

 Binary Sum BCD Sum Decimal

K Z8 Z4 Z2 Z1 C S8 S4 S2 S1

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 2

0 0 0 1 1 0 0 0 1 1 3

0 0 1 0 0 0 0 1 0 0 4

0 0 1 0 1 0 0 1 0 1 5

0 0 1 1 0 0 0 1 1 0 6

0 0 1 1 1 0 0 1 1 1 7

0 1 0 0 0 0 1 0 0 0 8

0 1 0 0 1 0 1 0 0 1 9

0 1 0 1 0 1 0 0 0 0 10

0 1 0 1 1 1 0 0 0 1 11

0 1 1 0 0 1 0 0 1 0 12

0 1 1 0 1 1 0 0 1 1 13

0 1 1 1 0 1 0 1 0 0 14

0 1 1 1 1 1 0 1 0 1 15

1 0 0 0 0 1 0 1 1 0 16

1 0 0 0 1 1 0 1 1 1 17

1 0 0 1 0 1 1 0 0 0 18

1 0 0 1 1 1 1 0 0 1 19

1'sc Copy

+6

> 9

I
nv

al
id

 C
od

e
s,

ne

e
d

co
rr

e
ct

io
n

N
o

ch
an

ge

is
 n

e
e
d
e
d

Condition for correcting result2848
zzzzkc ++=

Uploaded By: anonymousSTUDENTS-HUB.com

BCD Adder

❖ Correct Binary Adder’s Output (+6)

• If the result is between ‘A’ and ‘F’

• If K= 1

Z8 Z4 Z2 Z1 Err

0 0 0 0 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

Z2

Z4

Z8

1 1 1 1

1 1

Z1

Err = Z8 Z4 + Z8 Z2

Uploaded By: anonymousSTUDENTS-HUB.com

Block diagram of a 1-Digit BCD adder

Binary Sum

BCD Sum

Uploaded By: anonymousSTUDENTS-HUB.com

Block diagram of a 2-Digit BCD adder

Uploaded By: anonymousSTUDENTS-HUB.com

Two-bit by two-bit binary multiplier

Uploaded By: anonymousSTUDENTS-HUB.com

Four-bit by three-bit binary multiplier

Uploaded By: anonymousSTUDENTS-HUB.com

Magnitude Comparator

❖ A combinational circuit that compares two unsigned integers

❖ Two Inputs:

 Unsigned integer A (m-bit number)

 Unsigned integer B (m-bit number)

❖ Three outputs:

 A > B (GT output)

 A = B (EQ output)

 A < B (LT output)

❖ Exactly one of the three outputs must be equal to 1

❖While the remaining two outputs must be equal to 0

m-bit

Magnitude

Comparator

A[m–1:0]
m

B[m–1:0]
m

GT = A > B

EQ = A = B

LT = A > B

Uploaded By: anonymousSTUDENTS-HUB.com

Example: 4-bit Magnitude Comparator

❖ Inputs:

 𝐴 = 𝐴3𝐴2𝐴1𝐴0

 𝐵 = 𝐵3𝐵2𝐵1𝐵0

 8 bits in total ➔ 256 possible combinations

Not simple to design using conventional K-map techniques

❖ The magnitude comparator can be designed at a higher level

❖ Let us implement first the 𝐸𝑄 output (𝐴 is equal to 𝐵)

 𝐸𝑄 = 1↔ 𝐴3 = 𝐵3 , 𝐴2 = 𝐵2 , 𝐴1 = 𝐵1 , and 𝐴0 = 𝐵0

Define: 𝐸𝑖 = 𝐴𝑖𝐵𝑖 + 𝐴𝑖
′𝐵𝑖

′

 Therefore, 𝐸𝑄 = 𝐸3𝐸2𝐸1𝐸0

Uploaded By: anonymousSTUDENTS-HUB.com

The Greater Than Output

❖ Given the 4-bit input numbers: 𝐴 and 𝐵

1. If 𝐴3 > 𝐵3 then 𝐺𝑇 = 1, irrespective of the lower bits of 𝐴 and 𝐵

Define: 𝐺3 = 𝐴3𝐵3
′ (𝐴3 = 1 and 𝐵3 = 0)

2. If 𝐴3 = 𝐵3 (𝐸3 = 1), we compare 𝐴2 with 𝐵2

Define: 𝐺2 = 𝐴2𝐵2
′ (𝐴2 = 1 and 𝐵2 = 0)

3. If 𝐴3 = 𝐵3 and 𝐴2 = 𝐵2, we compare 𝐴1 with 𝐵1

Define: 𝐺1 = 𝐴1𝐵1
′ (𝐴1 = 1 and 𝐵1 = 0)

4. If 𝐴3 = 𝐵3 and 𝐴2 = 𝐵2 and 𝐴1 = 𝐵1, we compare 𝐴0 with 𝐵0

Define: 𝐺0 = 𝐴0𝐵0
′ (𝐴0 = 1 and 𝐵0 = 0)

❖ Therefore, 𝐺𝑇 = 𝐺3 + 𝐸3𝐺2 + 𝐸3𝐸2𝐺1 + 𝐸3𝐸2𝐸1𝐺0

Uploaded By: anonymousSTUDENTS-HUB.com

The Less Than Output

❖We can derive the expression for the 𝐿𝑇 output, similar to 𝐺𝑇

Given the 4-bit input numbers: 𝐴 and 𝐵

1. If 𝐴3 < 𝐵3 then 𝐿𝑇 = 1, irrespective of the lower bits of 𝐴 and 𝐵

Define: 𝐿3 = 𝐴3
′ 𝐵3 (𝐴3 = 0 and 𝐵3 = 1)

2. If 𝐴3 = 𝐵3 (𝐸3 = 1), we compare 𝐴2 with 𝐵2

Define: 𝐿2 = 𝐴2
′ 𝐵2 (𝐴2 = 0 and 𝐵2 = 1)

3. Define: 𝐿1 = 𝐴1
′𝐵1 (𝐴1 = 0 and 𝐵1 = 1)

4. Define: 𝐿0 = 𝐴0
′ 𝐵0 (𝐴0 = 0 and 𝐵0 = 1)

❖ Therefore, 𝐿𝑇 = 𝐿3 + 𝐸3𝐿2 + 𝐸3𝐸2𝐿1 + 𝐸3𝐸2𝐸1𝐿0

Knowing 𝐺𝑇 and 𝐸𝑄, we can also derive 𝐿𝑇 = (𝐺𝑇 + 𝐸𝑄)′

Uploaded By: anonymousSTUDENTS-HUB.com

Magnitude Comparator

Uploaded By: anonymousSTUDENTS-HUB.com

Iterative Magnitude Comparator Design

❖ The Magnitude comparator can also be designed iteratively

4-bit magnitude comparator is implemented using 4 identical cells

Design can be extended to any number of cells

❖ Comparison starts at least-significant bit

❖ Final comparator output: 𝐺𝑇 = 𝐺𝑇4 , 𝐸𝑄 = 𝐸𝑄4 , 𝐿𝑇 = 𝐿𝑇4

𝐺𝑇3

𝐸𝑄3

𝐿𝑇3

Cell 3

𝐺𝑇4

𝐸𝑄4

𝐿𝑇4

𝐴3 𝐵3

𝐺𝑇2

𝐸𝑄2

𝐿𝑇2

Cell 2

𝐴2 𝐵2

𝐺𝑇1

𝐸𝑄1

𝐿𝑇1

Cell 1

𝐴1 𝐵1

0 = 𝐺𝑇0

1 = 𝐸𝑄0

0 = 𝐿𝑇0

Cell 0

𝐴0 𝐵0

Uploaded By: anonymousSTUDENTS-HUB.com

Cell Implementation

❖ Each Cell 𝑖 receives as inputs:

Bit 𝑖 of inputs 𝐴 and 𝐵: 𝐴𝑖 and 𝐵𝑖

𝐺𝑇𝑖, 𝐸𝑄𝑖, and 𝐿𝑇𝑖 from cell (𝑖 − 1)

❖ Each Cell 𝑖 produces three outputs:

𝐺𝑇𝑖+1, 𝐸𝑄𝑖+1, and 𝐿𝑇𝑖+1

Outputs of cell 𝑖 are inputs to cell (𝑖 + 1)

❖ Output Expressions of Cell 𝑖

𝐸𝑄𝑖+1 = 𝐸𝑖 𝐸𝑄𝑖 𝐸𝑖 = 𝐴𝑖
′𝐵𝑖

′ + 𝐴𝑖𝐵𝑖 (𝐴𝑖 equals 𝐵𝑖)

𝐺𝑇𝑖+1 = 𝐴𝑖𝐵𝑖
′ + 𝐸𝑖 𝐺𝑇𝑖 𝐴𝑖𝐵𝑖

′ (𝐴𝑖 > 𝐵𝑖)

𝐿𝑇𝑖+1 = 𝐴𝑖
′𝐵𝑖 + 𝐸𝑖 𝐿𝑇𝑖 𝐴𝑖

′𝐵𝑖 (𝐴𝑖 < 𝐵𝑖)

Third output can be produced for first two: 𝐿𝑇 = (𝐸𝑄 + 𝐺𝑇)′

𝐺𝑇𝑖

𝐸𝑄𝑖

𝐿𝑇𝑖

Cell 𝑖

𝐺𝑇𝑖+1

𝐸𝑄𝑖+1

𝐿𝑇𝑖+1

𝐴𝑖 𝐵𝑖

Uploaded By: anonymousSTUDENTS-HUB.com

Cascading two Comparators

Uploaded By: anonymousSTUDENTS-HUB.com

Cascading two Comparators

Uploaded By: anonymousSTUDENTS-HUB.com

Cascading two Comparators

Uploaded By: anonymousSTUDENTS-HUB.com

Binary Decoders

❖ Given a n-bit binary code, there are 2n possible code values

❖ The decoder has an output for each possible code value

❖ The n-to-2n decoder has n inputs and 2n outputs

❖ Depending on the input code, only one output is set to logic 1

❖ The conversion of input to output is called decoding

n to 2n

Decoder

n
In

p
u

ts

2
n

O
u
tp

u
ts A decoder can have less

than 2n outputs if some

input codes are unused

Uploaded By: anonymousSTUDENTS-HUB.com

Binary Decoders

Binary
Decoder

x1

x0

Only one
lamp will
turn on

0

0

1
0
0
0

Uploaded By: anonymousSTUDENTS-HUB.com

Examples of Binary Decoders

Inputs Outputs

a2 a1 a0 d0 d1 d2 d3 d4 d5 d6 d7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

Inputs Outputs

a1 a0 d0 d1 d2 d3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

Truth

Tables

2-to-4

Decoder2
 I
n

p
u

ts

4
 O

u
tp

u
ts

a1

a0

d0

d1

d2

d3

0

1

2

3

21

20

3-to-8

Decoder

8
 O

u
tp

u
ts

3
 I
n

p
u

ts a2

a1

a0

d0

d1

d2

d3

d4

d5

d6

d7

0

1

2

3

4

5

6

7

21

20

22

Uploaded By: anonymousSTUDENTS-HUB.com

Decoder Implementation

Each decoder output is a minterm

𝑑0 = 𝑎1
′𝑎0

′

𝑑1 = 𝑎1
′𝑎0

𝑎1

𝑎0

𝑑2 = 𝑎1𝑎0
′

𝑑3 = 𝑎1𝑎0

𝑎2

𝑎1

𝑑1 = 𝑎2
′ 𝑎1

′𝑎0

𝑎0
𝑑0 = 𝑎2

′ 𝑎1
′𝑎0

′

𝑑2 = 𝑎2
′ 𝑎1 𝑎0

′

𝑑3 = 𝑎2
′ 𝑎1 𝑎0

𝑑4 = 𝑎2 𝑎1
′𝑎0

′

𝑑5 = 𝑎2 𝑎1
′𝑎0

𝑑6 = 𝑎2 𝑎1 𝑎0
′

𝑑7 = 𝑎2 𝑎1 𝑎0

3-to-8 Decoder

2-to-4

Decoder

Inputs Outputs

a1 a0 d0 d1 d2 d3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

Uploaded By: anonymousSTUDENTS-HUB.com

Using Decoders to Implement Functions
❖ A decoder generates all the minterms

❖ A Boolean function can be expressed as a sum of minterms

❖ Any function can be implemented using a decoder + OR gate

Note: the function must not be minimized

❖ Example: Full Adder sum = ∑(1, 2, 4, 7), cout = ∑(3, 5, 6, 7)

Inputs Outputs

a b c cout sum

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

3-to-8

Decoder

a

b

c

d0

d1

d2

d3

d4

d5

d6

d7

22

21

20

sum

cout

Uploaded By: anonymousSTUDENTS-HUB.com

Using Decoders to Implement Functions

❖ Good if many output functions of the same input variables

❖ If number of minterms is large ➔ Wider OR gate is needed

❖ Use NOR gate if number of maxterms is less than minterms

❖ Example: f = ∑(2, 5, 6), g = ∏(3, 6) ➔ g' = ∑(3, 6), h = ∑(0, 5)

Inputs Outputs

a b c f g h

0 0 0 0 1 1

0 0 1 0 1 0

0 1 0 1 1 0

0 1 1 0 0 0

1 0 0 0 1 0

1 0 1 1 1 1

1 1 0 1 0 0

1 1 1 0 1 0

3-to-8

Decoder

a

b

c

d0

d1

d2

d3

d4

d5

d6

d7

22

21

20

f

g

h

Uploaded By: anonymousSTUDENTS-HUB.com

2-to-4 Decoder with Enable Input

Inputs Outputs

EN a1 a0 d0 d1 d2 d3

0 X X 0 0 0 0

1 0 0 1 0 0 0

1 0 1 0 1 0 0

1 1 0 0 0 1 0

1 1 1 0 0 0 1

If EN input is zero then

all outputs are zeros,

regardless of a1 and a0

𝑑0 = 𝐸𝑁 𝑎1
′𝑎0

′

𝑑1 = 𝐸𝑁 𝑎1
′𝑎0

𝑑2 = 𝐸𝑁 𝑎1𝑎0
′

𝑑3 = 𝐸𝑁 𝑎1𝑎0

𝑎1

𝑎0

𝐸𝑁

Truth Table

2-to-4

Decoder

d0

d1

d2

d3

a1

a0

EN

21

20

0

1

2

3

Uploaded By: anonymousSTUDENTS-HUB.com

Decoders

❖ Active-High / Active-Low

I1 I0 Y3 Y2 Y1 Y0

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

I1 I0 Y3 Y2 Y1 Y0

0 0 1 1 1 0

0 1 1 1 0 1

1 0 1 0 1 1

1 1 0 1 1 1

B
in

a
ry

D
ec

o
d

erI1

I0

Y3

Y2

Y1

Y0

I1

I0

Y3

Y2

Y1

Y0

B
in

a
ry

D
ec

o
d

erI1

I0

Y3

Y2

Y1

Y0

Uploaded By: anonymousSTUDENTS-HUB.com

Implementation Using Decoders

I2

I1

I0

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

Binary
Decoder

x

y

z

S C

I2

I1

I0

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

Binary
Decoder

x

y

z

S C

Uploaded By: anonymousSTUDENTS-HUB.com

Building Larger Decoders

❖ Larger decoders can be build using smaller ones

❖ A 3-to-8 decoder can be built using:

Two 2-to-4 decoders with Enable and an inverter (1-to-2 decoder)

Inputs Outputs

a2 a1 a0 d0 d1 d2 d3 d4 d5 d6 d7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

Top

2-to-4

Decoder

a1

a0

d0

d1

d2

d3
EN

Bottom

2-to-4

Decoder

a1

a0

d4

d5

d6

d7
EN

a1

a0

a2

1
-t

o
-2

 D
e
c
o
d
e
r

0

1

2

3

0

1

2

3

Uploaded By: anonymousSTUDENTS-HUB.com

Building Larger Decoders

A 4-to-16

decoder with

enable can be

built using five

2-to-4 decoders

with enables

Larger decoders can be built

hierarchically in a similar way

a1

a0

2-to-4

Decoder

0

a1

a0

d0

d1

d2

d3EN

2-to-4

Decoder

1

a1

a0

d4

d5

d6

d7EN

2-to-4

Decoder

2

a1

a0

d8

d9

d10

d11EN

2-to-4

Decoder

3

a1

a0

d12

d13

d14

d15EN

2-to-4

Decoder

a1

a0

ENEN

a3

a2

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

Uploaded By: anonymousSTUDENTS-HUB.com

Encoders

❖ An encoder performs the opposite operation of a decoder

❖ It converts a 2n input to an n-bit output code

❖ The output indicates which input is active (logic 1)

❖ Typically, one input should be 1 and all others must be 0's

❖ The conversion of input to output is called encoding

2n to n

Encoder

n
O

u
tp

u
ts

2
n

In
p

u
ts

A encoder can have less

than 2n inputs if some

input lines are unused

Uploaded By: anonymousSTUDENTS-HUB.com

Example of an 8-to-3 Binary Encoder

❖ 8 inputs, 3 outputs, only one input is 1, all others are 0's

❖ Encoder generates the output binary code for the active input

❖ Output is not specified if more than one input is 1

Inputs Outputs

d7 d6 d5 d4 d3 d2 d1 d0 a2 a1 a0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 0 0 1 1 1

8-to-3

Binary

Encoder 3
 O

u
tp

u
tsa2

a1

a08
 I
n

p
u

ts

d0

d1

d2

d3

d4

d5

d6

d7

0

1

2

3

4

5

6

7

21

20

22

Uploaded By: anonymousSTUDENTS-HUB.com

8-to-3 Binary Encoder Implementation

a2 = d4 + d5 + d6 + d7

a1 = d2 + d3 + d6 + d7

a0 = d1 + d3 + d5 + d7

a2

d4

d5

d6

d7

a1

d2

d3

d6

d7

a0

d1

d3

d5

d7

8-to-3 binary

encoder

implemented

using three

4-input OR gates

Inputs Outputs

d7 d6 d5 d4 d3 d2 d1 d0 a2 a1 a0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 0 0 1 1 1

8-to-3

Binary

Encoder

a2

a1

a0

d0

d1

d2

d3

d4

d5

d6

d7

0

1

2

3

4

5

6

7

21

20

22

Uploaded By: anonymousSTUDENTS-HUB.com

Binary Encoder Limitations

❖ Exactly one input must be 1 at a time (all others must be 0's)

❖ If more than one input is 1 then the output will be incorrect

❖ For example, if d3 = d6 = 1

Then a2 a1 a0 = 111 (incorrect)

❖ Two problems to resolve:

1. If two inputs are 1 at the same time, what should be the output?

2. If all inputs are 0's, what should be the output?

❖ Output a2 a1 a0 = 000 if d0 = 1 or all inputs are 0's

How to resolve this ambiguity?

a2 = d4 + d5 + d6 + d7

a1 = d2 + d3 + d6 + d7

a0 = d1 + d3 + d5 + d7

Uploaded By: anonymousSTUDENTS-HUB.com

Priority Encoder

❖ Eliminates the two problems of the binary encoder

❖ Inputs are ranked from highest priority to lowest priority

❖ If more than one input is active (logic 1) then priority is used

Output encodes the active input with higher priority

❖ If all inputs are zeros then the V (Valid) output is zero

Indicates that all inputs are zeros Inputs Outputs

d3 d2 d1 d0 a1 a0 V

0 0 0 0 X X 0

0 0 0 1 0 0 1

0 0 1 X 0 1 1

0 1 X X 1 0 1

1 X X X 1 1 1

Condensed

Truth Table

All 16 cases

are listed

4-to-2 Priority

Encoder

a1

a0

V

d3

d2

d1

d0

highest priority

lowest priority

21

20

Uploaded By: anonymousSTUDENTS-HUB.com

Implementing a 4-to-2 Priority Encoder

Output Expressions:

𝑎1 = 𝑑3 + 𝑑2

𝑎0 = 𝑑3 + 𝑑1 𝑑2
′

𝑉 = 𝑑3 + 𝑑2 + 𝑑1 + 𝑑0

a1

a0

V

d3

d2

d1

d0

Inputs Outputs

d3 d2 d1 d0 a1 a0 V

0 0 0 0 X X 0

0 0 0 1 0 0 1

0 0 1 X 0 1 1

0 1 X X 1 0 1

1 X X X 1 1 1

00 01 11 10

00

𝑑3𝑑2

𝑑1𝑑0

X

01

11

10

1 1

1 1

1

1

1

1

1 1 11

K-Map of 𝑎1

00 01 11 10

00

𝑑3𝑑2

𝑑1𝑑0

X

01

11

10

1 1

1 1

1

1

1

1

1 1

K-Map of 𝑎0

Uploaded By: anonymousSTUDENTS-HUB.com

Encoder / Decoder Pairs

Y2

Y1

Y0

I7

I6

I5

I4

I3

I2

I1

I0

I2

I1

I0

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

Binary

Encoder

Binary

Decoder

Uploaded By: anonymousSTUDENTS-HUB.com

Multiplexers

❖ Selecting data is an essential function in digital systems

❖ Functional blocks that perform selecting are called multiplexers

❖ A Multiplexer (or Mux) is a combinational circuit that has:

 Multiple data inputs (typically 2n) to select from

 An n-bit select input S used for control

 One output Y

❖ The n-bit select input directs one of the data inputs to the output

M
u
x

d0

d1

d2
.
.
.

Y

2
n

In
p

u
ts

n

S

d2n–1

Uploaded By: anonymousSTUDENTS-HUB.com

Multiplexers

Uploaded By: anonymousSTUDENTS-HUB.com

❖ 2-to-1 Multiplexer

if (S == 0) Y = d0 ;

else Y = d1;

Logic expression:

𝑌 = 𝑑0 𝑆
′ + 𝑑1 𝑆

❖ 4-to-1 Multiplexer

if (S1S0 == 00) Y = d0 ;

else if (S1S0 == 01) Y = d1;

else if (S1S0 == 10) Y = d2;

else Y = d3;

Logic expression:

𝑌 = 𝑑0 𝑆1
′𝑆0

′ + 𝑑1 𝑆1
′𝑆0 + 𝑑2 𝑆1𝑆0

′ + 𝑑3 𝑆1𝑆2

Examples of Multiplexers

Inputs Output

S d0 d1 Y

0 0 X 0 = d0

0 1 X 1 = d0

1 X 0 0 = d1

1 X 1 1 = d1

Inputs Output

S1 S0 d0 d1 d2 d3 Y

0 0 0 X X X 0 = d0

0 0 1 X X X 1 = d0

0 1 X 0 X X 0 = d1

0 1 X 1 X X 1 = d1

1 0 X X 0 X 0 = d2

1 0 X X 1 X 1 = d2

1 1 X X X 0 0 = d3

1 1 X X X 1 1 = d3

M
u
x

d0

d1

Y

S

0

1

M
u
x

Y

2

S1 S0

d0

d1

d2

d3

0

1

2

3

Uploaded By: anonymousSTUDENTS-HUB.com

Enabling
AND Gates

Enabling
AND Gates

Implementing Multiplexers

Y

d0

d1

S

d1

Yd2

S0

d0

d3

S1

M
u
x

d0

d1

S

0

1

𝑌 = 𝑑0 𝑆
′ + 𝑑1 𝑆

M
u
x

2

S1 S0

d0

d1

d2

d3

0

1

2

3

𝑌 = 𝑑0 𝑆1
′𝑆0

′ + 𝑑1 𝑆1
′𝑆0

+ 𝑑2 𝑆1𝑆0
′ + 𝑑3 𝑆1𝑆0

Uploaded By: anonymousSTUDENTS-HUB.com

3-State Gate

❖Logic gates studied so far have two outputs: 0 and 1

❖Three-State gate has three possible outputs: 0, 1, Z

 Z is the Hi-Impedance output

 Z means that the output is disconnected from the input

Gate behaves as an open switch between input and output

❖ Input c connects input to output

 c is the control (enable) input

 If c is 0 then f = Z

 If c is 1 then f = input x

c x f

0 0 Z

0 1 Z

1 0 0

1 1 1

𝑥

𝑐

𝑓

3-state gate

Uploaded By: anonymousSTUDENTS-HUB.com

Variations of the 3-State Gate

❖ Control input c and output f can be inverted

❖ A bubble is inserted at the input c or output f

𝑥

𝑐

𝑓

inverted c

𝑥

𝑐

𝑓

inverted f

𝑥

𝑐

𝑓

inverted c, f

c x f

0 0 0

0 1 1

1 0 Z

1 1 Z

c x f

0 0 Z

0 1 Z

1 0 1

1 1 0

c x f

0 0 1

0 1 0

1 0 Z

1 1 Z
Uploaded By: anonymousSTUDENTS-HUB.com

Wired Output

𝑎
𝑏

𝑓
𝑐
𝑑

This will result in a

short circuit that

will burn the gates

Logic gates with 0 and 1

outputs cannot have their

outputs wired together

𝑥1

𝑐1

𝑥2

𝑐2

𝑓

𝑥3

𝑐3

c1 c2 c3 f

0 0 0 Z

1 0 0 x1

0 1 0 x2

0 0 1 x3

0 1 1 Burn

1 0 1 Burn

1 1 0 Burn

1 1 1 Burn

3-state gates can wire

their outputs together

At most one 3-state gate

can be enabled at a time

Otherwise, conflicting

outputs will burn the circuit

Uploaded By: anonymousSTUDENTS-HUB.com

Implementing Multiplexers with 3-State Gates

3-State
Gates

1-to-2
Decoder

3-State
Gates

Y

d0

d1

S

A Multiplexer can also

be implemented using:

1. A decoder

2. Three-state gates

M
u
x

d0

d1

Y

S

0

1

M
u
x

Y

2

S1 S0

d0

d1

d2

d3

0

1

2

3

S0

S1

Y

d0

d1

d2

d3

2-to-4
Decoder

0 1 2 3

Uploaded By: anonymousSTUDENTS-HUB.com

Building Larger Multiplexers

Larger multiplexers can be built hierarchically using smaller ones

Building 4-to-1

Mux using three

2-to-1 Muxes

Building 8-to-1 Mux

using two 4-to-1 Muxes

and a 2-to-1 Mux

Y

M
u

xd0

d1

S0

M
u

xd2

d3

S0

M
u

x

S1

0

1

0

1

0

1
YM

u
x

S2

M
u
x

d0

d1

2

S1 S0

d2

d3

M
u
x

d4

d5

2

S1 S0

d6

d7

0

1

2

3

0

1

2

3

0

1

8
-t

o
-1

 M
u
x

Y

3

S2 S1 S0

d0

d1

d2

d3

d4

d5

d6

d7

0

1

2

3

4

5

6

7

Uploaded By: anonymousSTUDENTS-HUB.com

Implementing a Function with a Multiplexer

❖ A Multiplexer can be used to implement any logic function

❖ The function must be expressed using its minterms

❖ Example: Implement F(a, b, c) = ∑(1, 2, 6, 7) using a Mux

❖ Solution:
Inputs Output

a b c F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

The inputs are

used as select

lines to a Mux.

An 8-to-1

Mux is used

because there

are 3 variables
a b c

8
-t

o
-1

 M
u

x

F

S2 S1 S0 =

0

1

1

0
0

0

1

1

0

1

2

3

4

5

6

7

Uploaded By: anonymousSTUDENTS-HUB.com

Better Solution with a Smaller Multiplexer

❖ Re-implement F(a, b, c) = ∑(1, 2, 6, 7) using a 4-to-1 Mux

❖We will use the two select lines for variables a and b

❖ Variable c and its complement are used as inputs to the Mux

Inputs Output Comment

a b c F F

0 0 0 0
F = c

0 0 1 1

0 1 0 1
F = c'

0 1 1 0

1 0 0 0
F = 0

1 0 1 0

1 1 0 1
F = 1

1 1 1 1

4
-t

o
-1

 M
u
x

F

S1 S0 = a b

c

c'

0

1

0

1

2

3

Uploaded By: anonymousSTUDENTS-HUB.com

Implementing Functions: Example 2

Implement F(a, b, c, d) = ∑(1,3,4,11,12,13,14,15) using 8-to-1 Mux

Inputs Output Comment

a b c d F F
0 0 0 0 0

F = d
0 0 0 1 1

0 0 1 0 0
F = d

0 0 1 1 1

0 1 0 0 1
F = d'

0 1 0 1 0

0 1 1 0 0
F = 0

0 1 1 1 0

1 0 0 0 0
F = 0

1 0 0 1 0

1 0 1 0 0
F = d

1 0 1 1 1

1 1 0 0 1
F = 1

1 1 0 1 1

1 1 1 0 1
F = 1

1 1 1 1 1
a b c

8
-t

o
-1

 M
u

x

F

S2 S1 S0 =

d

0

1

0

1

2

3

4

5

6

7

Uploaded By: anonymousSTUDENTS-HUB.com

Demultiplexer

❖ Performs the inverse operation of a Multiplexer

❖ A Demultiplexer (or Demux) is a combinational circuit that has:

1. One data input I

2. An n-bit select input S

3. A maximum of 2n data outputs

❖ The Demux directs the data input to one of the outputs

According to the select input S

.

.

.

I

2
n

O
u

tp
u

ts

n

S

d0

d1

d2

d2n–1

D
e
m

u
x

Uploaded By: anonymousSTUDENTS-HUB.com

Demultiplexer

Uploaded By: anonymousSTUDENTS-HUB.com

Examples of Demultiplexers

❖ 1-to-2 Demultiplexer

if (S == 0) { d0 = I ; d1 = 0; }

else { d1 = I ; d0 = 0 ; }

Output expressions:

𝑑0 = 𝐼 𝑆′; 𝑑1 = 𝐼 𝑆

❖ 1-to-4 Demultiplexer

if (S1S0 == 00) { d0 = I ; d1 = d2 = d3 = 0; }

else if (S1S0 == 01) { d1 = I ; d0 = d2 = d3 = 0; }

else if (S1S0 == 10) { d2 = I ; d0 = d1 = d3 = 0; }

else { d3 = I ; d0 = d1 = d2 = 0; }

Output expressions:

𝑑0 = 𝐼 𝑆1
′𝑆0

′ ; 𝑑1 = 𝐼 𝑆1
′𝑆0 ; 𝑑2 = 𝐼 𝑆1 𝑆0

′ ; 𝑑3 = 𝐼 𝑆1 𝑆0

I

4
 O

u
tp

u
ts

2

S1S0

d0

d1

d2

d3

D
e
m

u
x

0

1

2

3

I

2
 O

u
tp

u
ts

S

d0

d1

D
e
m

u
x 0

1

Uploaded By: anonymousSTUDENTS-HUB.com

1-2 Demultiplexer

Uploaded By: anonymousSTUDENTS-HUB.com

Examples of Demultiplexers

1 - 2 1 - 4 1 - 8

Uploaded By: anonymousSTUDENTS-HUB.com

Demultiplexer = Decoder with Enable

❖ A 1-to-4 demux is equivalent to a 2-to-4 decoder with enable

Demux select input S1 is equivalent to Decoder input a1

Demux select input S0 is equivalent to Decoder input a0

Demux Input I is equivalent to Decoder Enable EN

❖ In general, a demux with n select inputs and 2n outputs is

equivalent to a n-to-2n decoder with enable input

Think of a decoder as directing

the Enable signal to one output

I

4
 O

u
tp

u
ts

2

S1S0

d0

d1

d2

d3

D
e
m

u
x

0

1

2

3

2-to-4

Decoder

d0

d1

d2

d3

S1 = a1

S0 = a0

I = EN

21

20

0

1

2

3

Uploaded By: anonymousSTUDENTS-HUB.com

Multiplexer / DeMultiplexer Pairs

Y

I7

I6

I5

I4

I3

I2

I1

I0

I

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

MUX DeMUX

S2 S1 S0 S2 S1 S0

x2 x1 x0 y2 y1 y0

Synchronize

Uploaded By: anonymousSTUDENTS-HUB.com

