42

		Fact	Factor A	
Part of the second		Small	Large	Means
it it	Α	$\overline{x}_{11} = 10$	$\bar{x}_{12} = 10$	$\bar{x}_{_1} = 10$
Factor A	B ₂	$\bar{x}_{21} = 18$	$\bar{x}_{22} = 28$	$\bar{x}_2 = 23$
	С	$\bar{x}_{31} = 14$	$\bar{x}_{32} = 16$	$\overline{x}_3 = 15$
Factor B	Means	$\overline{x}_1 = 14$	$\bar{x}_{.2} = 18$	$\bar{x} = 16$

SST = 544SSA = 344SSB = 48SSAB = 56SSE = 96

Source of variation	Degrees of freedom	Sum of squares	Mean square	F
Factor A	2	344	172	172/16
Factor B	Î	48	48	= 10.75 48/16 = 3.00
Interaction	2	56	28	28/16 = 1.75
Error Total	6	96 544	16	- 1.73

Using F table for Factor A (2 degrees of freedom numerator and 6 denominator), p-value is between 0.01 and 0.025 Actual p-value = 0.0104

Because p-value $\leq \alpha = 0.05$, Factor A is significant; there is a difference due to the type of advertisement design Using F table for Factor B (1 degree of freedom numerator and 6 denominator), p-value is greater than 0.01. Actual p-value = 0.1340

Because *p*-value $> \alpha = 0.05$, Factor B is not significant; there is not a significant difference due to size of

Using F table for Interaction (2 degrees of freedom numerator and 6 denominator), p-value is greater than 0.10 Actual p-value = 0.2519

Because p-value $> \alpha = 0.05$, Interaction is not significant.

$$\bar{x}_L = (1.13 + 1.56 + 2.00)/3 = 1.563$$
 $\bar{x}_2 = (0.48 + 1.68 + 2.86)/3 = 1.673$
 $\bar{x}_J = (1.13 + 0.48)/2 = 0.805$
 $\bar{x}_J = (1.56 + 1.68)/2 = 1.620$
 $\bar{x}_J = (2.00 + 2.86)/2 = 2.43$
 $\bar{x} = 1.618$

SST = 327.50 (given in problem statement)

SSA = 0.4538SSB = 66.0159SSAB = 14.2525

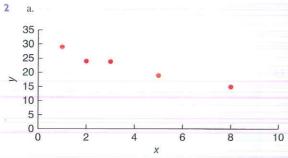
SSE = 246.7778

Degrees of	Sum of	Mean	
freedom	squares	square	F
	0.4538	0.4538	0.2648
2	66.1059	33.0080	19.2608
2	14.2525	7.1263	4.1583
144	246.7778	1.7137	
149	327.5000		
	freedom I 2 2 144	freedom squares 1 0.4538 2 66.1059 2 14.2525 144 246.7778	freedom squares square I 0.4538 0.4538 2 66.1059 33.0080 2 14.2525 7.1263 144 246.7778 1.7137

Factor A: Actual p-value = 0.6076. Because p-value $> \alpha$ = 0.05, Factor A is not significant. Factor B: Actual p-value = 0.0000. Because p-value $\leq \alpha = 0.05$, Factor B is significant. Interaction: Actual p-value = 0.0176. Because p-value $\leq \alpha$ = 0.05, Interaction is significant.

Chapter 14

Solutions



- b. There appears to be a linear relationship between x and y.
- c. Many different straight lines can be drawn to provide a linear approximation of the relationship between x and y; in part d we will determine the equation of a straight line that 'best' represents the relationship according to the least squares criterion.
- d. Summations needed to compute the slope and y-intercept are:

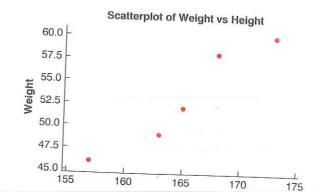
$$\sum x_i = 19 \quad \sum y_i = 116 \quad \sum (x_i - \bar{x})(y_i - \bar{y}) = -57.8$$

$$\sum (x_i - \bar{x})^2 = 30.8$$

$$b_1 \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{57.8}{30.8} = -1.8766$$

 $b_0 = \bar{y} - b_1 \bar{x} = 23.2 - (-1.8766)(3.8) = 30.3311$ $\hat{y} = 30.33 - 1.88x$

e. $\hat{y} = 30.33 - 1.88(6) = 19.05$



4 a.

- Height b. There appears to be a linear relationship between x and y.
- c. Many different straight lines can be drawn to provide a linear approximation of the relationship between x and
- d. Summations needed to compute the slope and y-intercept are:

$$\sum x_i = 826 \quad \sum y_i = 265 \quad \sum (x_i - \bar{x})(y_i - \bar{y})$$

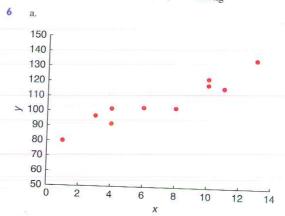
$$= 135 \quad \sum (x_i - \bar{x})^2 = 140.8$$

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{135}{140.8} = 0.9588$$

$$b_0 = \bar{y} - b_1 \bar{x} = 53 - (0.9588)(165.2) = -105.39$$

$$\hat{y} = -105.39 + 0.9588x$$

e.
$$\hat{y} = -105.39 + 0.9588(160) = 48.02 \text{ kg}$$



b. Summations needed to compute the slope and

$$\sum x_i = 70 \qquad \sum y_i = 1080 \qquad \sum (x_i - \bar{x})(y_i - \bar{y}) = 568$$

$$\sum (x_i - \bar{x})^2 = 142$$

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{568}{142} = 4$$

$$b_0 = \bar{y} - b_1 \bar{x} = 108 - (4)(7) = 80$$

$$\hat{y} = 80 + 4x$$

c.
$$\hat{y} = 80 + 4(9) = 116$$

8 a. The estimated regression equation and the mean for the dependent variable are:

$$\hat{y} = 30.33 - 1.88x \quad \bar{y} = 23.2$$

The sum of squares due to error and the total sum of squares are

SSE =
$$\sum (y_i - \hat{y}_i)^2 = 6.33$$

SST = $\sum (y_i - \bar{y})^2 = 114.80$

Thus,
$$SSR = SST - SSE = 114.80 - 6.33 = 108.47$$

b.
$$r^2 = SSR/SST = 108.47/114.80 = 0.945$$

The least squares line provided an excellent fit; 94.5 per cent of the variability in y has been explained by the estimated regression equation.

c.
$$r = \sqrt{0.945} = 0.9721$$

Note: the sign for r is negative because the slope of the estimated regression equation is negative. $(b_1 = -1.88)$

10 a. The estimated regression equation and the mean for the dependent variable are:

$$\hat{y} = -75.586 + 0.115x \quad \overline{y} = 784.215$$

The sum of squares due to error and the total sum of squares are

b.
$$r^2 = SSR/SST = 1471173.13/1481257 = 0.99$$

We see that 99 per cent of the variability in y has been explained by the least squares line.

c.
$$r = \sqrt{0.99} = +0.99$$

12 a. Let
$$x = \text{speed (ppm)}$$
 and $y = \text{price (} \in \text{)}$

The summations needed in this problem are:

$$\Sigma x_i = 188 \qquad \Sigma y_i = 953.97 \qquad \Sigma (x_i - x) (y_i - y)$$

$$= 324.864 \qquad \Sigma (x_i - \bar{x})^2 = 83.6$$

$$b_1 = \frac{\Sigma (x_i - \bar{x}) (y_i - \bar{y})}{\Sigma (x_i - \bar{x})^2} = \frac{324.864}{83.6} = 3.886$$

$$b_0 = \bar{y} - b_1 \bar{x} = 95.397 - (3.886)(18.8) = 22.341$$

$$\hat{y} = 22.341 + 3.886x$$

b. The sum of squares due to error and the total sum of squares are:

$$SSE = 3746.309$$

 $SST = 5008.708$

Thus,
$$SSR = 1262.399$$

$$r^2 = SSR/SST = 1262.399/5008.708 = 0.252$$

Approximately 25 per cent of the variability in price is explained by the speed.

c.
$$r = \sqrt{0.252} = +0.50$$

It reflects a weak linear relationship,

14 a.
$$s^2 = MSE = SSE/(n-2) = 6.33/3 = 2.11$$

b. $s = \sqrt{MSE} = \sqrt{2.11} = 1.452$

b.
$$s = \sqrt{MSE} = \sqrt{2.11} = 1.453$$