
Chapter 18 Recursion

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 1Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Computing Factorial
Mathematic notation:
n! = n * (n-1)!, n > 0
0! = 1

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 2

Function:
factorial(0) = 1;
factorial(n) = n*factorial(n-1); n > 0

ComputeFactorial

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Computing Factorial

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 3

factorial(4)

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Computing Factorial

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 4

factorial(4) = 4 * factorial(3)

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Computing Factorial

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 5

factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Computing Factorial

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 6

factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)
= 4 * 3 * (2 * factorial(1))

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Computing Factorial

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 7

factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)
= 4 * 3 * (2 * factorial(1))
= 4 * 3 * (2 * (1 * factorial(0)))

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Computing Factorial

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 8

factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)
= 4 * 3 * (2 * factorial(1))
= 4 * 3 * (2 * (1 * factorial(0)))
= 4 * 3 * (2 * (1 * 1)))

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Computing Factorial

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 9

factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)
= 4 * 3 * (2 * factorial(1))
= 4 * 3 * (2 * (1 * factorial(0)))
= 4 * 3 * (2 * (1 * 1)))
= 4 * 3 * (2 * 1)

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Computing Factorial

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 10

factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)
= 4 * 3 * (2 * factorial(1))
= 4 * 3 * (2 * (1 * factorial(0)))
= 4 * 3 * (2 * (1 * 1)))
= 4 * 3 * (2 * 1)
= 4 * 3 * 2

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Computing Factorial

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 11

factorial(4) = 4 * factorial(3)
= 4 * (3 * factorial(2))
= 4 * (3 * (2 * factorial(1)))
= 4 * (3 * (2 * (1 * factorial(0))))
= 4 * (3 * (2 * (1 * 1))))
= 4 * (3 * (2 * 1))
= 4 * (3 * 2)
= 4 * (6)

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Computing Factorial

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 12

factorial(4) = 4 * factorial(3)
= 4 * (3 * factorial(2))
= 4 * (3 * (2 * factorial(1)))
= 4 * (3 * (2 * (1 * factorial(0))))
= 4 * (3 * (2 * (1 * 1))))
= 4 * (3 * (2 * 1))
= 4 * (3 * 2)
= 4 * (6)
= 24

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Trace Recursive factorial
animation

Executes factorial(4)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 13Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Trace Recursive factorial
animation

Executes factorial(3)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 14Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Trace Recursive factorial
animation

Executes factorial(2)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 15Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Trace Recursive factorial
animation

Executes factorial(1)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 16Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Trace Recursive factorial
animation

Executes factorial(0)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 17Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Trace Recursive factorial
animation

returns 1

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 18Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Trace Recursive factorial
animation

returns factorial(0)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 19Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Trace Recursive factorial
animation

returns factorial(1)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 20Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Trace Recursive factorial
animation

returns factorial(2)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 21Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Trace Recursive factorial
animation

returns factorial(3)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 22Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Trace Recursive factorial
animation

returns factorial(4)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 23Uploaded By: Jibreel BornatSTUDENTS-HUB.com

factorial(4) Stack Trace

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 24Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Other Examples

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 25

f(0) = 0;

f(n) = n + f(n-1);

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Fibonacci Numbers

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 26

Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89…

indices: 0 1 2 3 4 5 6 7 8 9 10 11

fib(0) = 0;
fib(1) = 1;
fib(index) = fib(index -1) + fib(index -2); index >=2

fib(3) = fib(2) + fib(1) = (fib(1) + fib(0)) + fib(1) = (1 + 0)
+fib(1) = 1 + fib(1) = 1 + 1 = 2

ComputeFibonacci

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Fibonnaci Numbers, cont.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 27Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Problem Solving Using Recursion

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 28

In general, to solve a problem using recursion, you break it

into subproblems. If a subproblem resembles the original

problem, you can apply the same approach to solve the

subproblems recursively. A subproblem is almost the same

as the original problem in nature with a smaller size.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Characteristics of Recursion

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 29

All recursive methods have the following characteristics:

– The method is implemented using a conditional statement that
leads to different cases.

– One or more base cases (the simplest case) are used to stop

recursion.

– Every recursive call reduces the original problem, bringing it
increasingly closer to a base case until it becomes that case.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Problem Solving Using Recursion

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 30

nPrintln(“Welcome”, n);
1.one is to print the message one time and the other is to
print the message for n-1 times.
2.The second problem is the same as the original problem
with a smaller size.
3.The base case for the problem is n==0. You can solve
this problem using recursion as follows:

public static void nPrintln(String message, int n) {
if (n >= 1) {

System.out.println(message);
nPrintln(message, n - 1);

} // The base case is n < 1
}

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Think Recursively

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 31

Many of the problems presented in the early chapters can
be solved using recursion if you think recursively. For
example, the palindrome problem can be solved recursively
as follows:

public static boolean isPalindrome(String s) {
if (s.length() <= 1) // Base case
return true;

else if (s.charAt(0) != s.charAt(s.length() - 1)) // Base case
return false;

else
return isPalindrome(s.substring(1, s.length() - 1));

}
RecursivePalindromeUsingSubstring

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Recursive Helper Methods

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 32

Sometimes you can find a solution by defining a

recursive method to a problem similar to the original

problem. This new method is called a recursive helper

method. The original method can be solved by

invoking the recursive helper method.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Recursive Helper Methods

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 33

The preceding recursive isPalindrome method is not
efficient, because it creates a new string for every recursive
call. To avoid creating new strings, use a helper method:

public static boolean isPalindrome(String s) {
return isPalindrome(s, 0, s.length() - 1);

}
public static boolean isPalindrome(String s, int low, int high) {

if (high <= low) // Base case
return true;

else if (s.charAt(low) != s.charAt(high)) // Base case
return false;

else
return isPalindrome(s, low + 1, high - 1);

}
RecursivePalindrome

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Recursion vs. Iteration

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 34

Recursion is an alternative form of program
control. It is essentially repetition without a loop.

Recursion bears substantial overhead. Each time the
program calls a method, the system must assign
space for all of the method’s local variables and
parameters. This can consume considerable
memory and requires extra time to manage the
additional space.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Advantages of Using Recursion

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All
rights reserved. 35

Recursion is good for solving the problems that are
inherently recursive.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

