
Chapter 18 Recursion

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 
rights reserved. 1Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Computing Factorial
Mathematic notation:
n! = n * (n-1)!, n > 0
0! = 1
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Function:
factorial(0) = 1;
factorial(n) = n*factorial(n-1); n > 0

ComputeFactorial

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Computing Factorial
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factorial(4)

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);
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Computing Factorial
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factorial(4) = 4 * factorial(3)

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);
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Computing Factorial
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factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);
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Computing Factorial
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factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)
= 4 * 3 * (2 * factorial(1))

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);
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Computing Factorial
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factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)
= 4 * 3 * (2 * factorial(1))
= 4 * 3 * ( 2 * (1 * factorial(0)))

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);
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Computing Factorial
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factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)
= 4 * 3 * (2 * factorial(1))
= 4 * 3 * ( 2 * (1 * factorial(0)))
= 4 * 3 * ( 2 * ( 1 * 1)))

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);
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Computing Factorial
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factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)
= 4 * 3 * (2 * factorial(1))
= 4 * 3 * ( 2 * (1 * factorial(0)))
= 4 * 3 * ( 2 * ( 1 * 1)))
= 4 * 3 * ( 2 * 1)

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);
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Computing Factorial

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2017 Pearson Education, Inc. All 
rights reserved. 10

factorial(4) = 4 * factorial(3)
= 4 * 3 * factorial(2)
= 4 * 3 * (2 * factorial(1))
= 4 * 3 * ( 2 * (1 * factorial(0)))
= 4 * 3 * ( 2 * ( 1 * 1)))
= 4 * 3 * ( 2 * 1)
= 4 * 3 * 2

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);
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Computing Factorial
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factorial(4) = 4 * factorial(3)
= 4 * (3 * factorial(2))
= 4 * (3 * (2 * factorial(1)))
= 4 * (3 * ( 2 * (1 * factorial(0))))
= 4 * (3 * ( 2 * ( 1 * 1))))
= 4 * (3 * ( 2 * 1))
= 4 * (3 * 2)
= 4 * (6)

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);
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Computing Factorial
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factorial(4) = 4 * factorial(3)
= 4 * (3 * factorial(2))
= 4 * (3 * (2 * factorial(1)))
= 4 * (3 * ( 2 * (1 * factorial(0))))
= 4 * (3 * ( 2 * ( 1 * 1))))
= 4 * (3 * ( 2 * 1))
= 4 * (3 * 2)
= 4 * (6)
= 24

animation

factorial(0) = 1;
factorial(n) = n*factorial(n-1);
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Trace Recursive factorial
animation

Executes factorial(4)
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Trace Recursive factorial
animation

Executes factorial(3)
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Trace Recursive factorial
animation

Executes factorial(2)
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Trace Recursive factorial
animation

Executes factorial(1)
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Trace Recursive factorial
animation

Executes factorial(0)
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Trace Recursive factorial
animation

returns 1
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Trace Recursive factorial
animation

returns factorial(0)
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Trace Recursive factorial
animation

returns factorial(1)
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Trace Recursive factorial
animation

returns factorial(2)
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Trace Recursive factorial
animation

returns factorial(3)
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Trace Recursive factorial
animation

returns factorial(4)
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factorial(4) Stack Trace
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Other Examples
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f(0) = 0;

f(n) = n + f(n-1);
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Fibonacci Numbers
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Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89…

indices: 0 1 2 3 4 5 6 7 8 9 10 11

fib(0) = 0;
fib(1) = 1;
fib(index) = fib(index -1) + fib(index -2); index >=2

fib(3) = fib(2) + fib(1) = (fib(1) + fib(0)) + fib(1) = (1 + 0)
+fib(1) = 1 + fib(1) = 1 + 1 = 2

ComputeFibonacci
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Fibonnaci Numbers, cont.
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Problem Solving Using Recursion
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In general, to solve a problem using recursion, you break it 

into subproblems. If a subproblem resembles the original 

problem, you can apply the same approach to solve the 

subproblems recursively. A subproblem is almost the same  

as the original problem in nature with a smaller size.
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Characteristics of Recursion
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All recursive methods have the following characteristics:

– The method is implemented using a conditional statement that 
leads to different cases.

– One or more base cases (the simplest case) are used to stop

recursion.

– Every recursive call reduces the original problem, bringing it 
increasingly closer to a base case until it becomes that case.
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Problem Solving Using Recursion
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nPrintln(“Welcome”, n);
1.one is to print the message one time and the other is to 
print the message for n-1 times.
2.The second problem is the same as the original problem 
with a smaller size.
3.The base case for the problem is n==0. You can solve 
this problem using recursion as follows:

public static void nPrintln(String message, int n) { 
if (n >= 1) {

System.out.println(message);  
nPrintln(message, n - 1);

} // The base case is n < 1
}
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Think Recursively
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Many of the problems presented in the early chapters can 
be solved using recursion if you think recursively. For 
example, the palindrome problem can be solved recursively 
as follows:

public static boolean isPalindrome(String s) { 
if (s.length() <= 1) // Base case
return true;

else if (s.charAt(0) != s.charAt(s.length() - 1)) // Base case 
return false;

else
return isPalindrome(s.substring(1, s.length() - 1));

}
RecursivePalindromeUsingSubstring
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Recursive Helper Methods
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Sometimes you can find a solution by defining a 

recursive method to a problem similar to the original 

problem. This new method is called a recursive helper 

method. The original method can be solved by 

invoking the recursive helper method.
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Recursive Helper Methods
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The preceding recursive isPalindrome method is not 
efficient, because it creates a new string for every recursive 
call. To avoid creating new strings, use a helper method:

public static boolean isPalindrome(String s) { 
return isPalindrome(s, 0, s.length() - 1);

}
public static boolean isPalindrome(String s, int low, int high) { 

if (high <= low) // Base case
return true;

else if (s.charAt(low) != s.charAt(high)) // Base case 
return false;

else
return isPalindrome(s, low + 1, high - 1);

}
RecursivePalindrome
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Recursion vs. Iteration
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Recursion is an alternative form of program 
control. It is essentially repetition without a loop.

Recursion bears substantial overhead. Each time the 
program calls a method, the system must assign 
space for all of the method’s local variables and 
parameters. This can consume considerable 
memory and requires extra time to manage the 
additional space.
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Advantages of Using Recursion
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Recursion is good for solving the problems that are 
inherently recursive.
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