Chapter 13

Solution

2 a.
$$\bar{x} = (153 + 169 + 158)/3 = 160$$

SSTR = $\sum_{j=1}^{k} n_j (\bar{x}_j - \bar{x})^2 = 4(153 - 160)^2 + 4(169 - 160)^2 + 4(158 - 160)^2 = 536$

$$MSTR = SSTR/(k - 1) = 536/2 = 268$$

b. SSE =
$$\sum_{j=1}^{k} (n_j - 1)s_j^2 = 3(96.67) + 3(97.33) + 3(82.00) = 828.00$$

$$MSE = SSE/(n_x - k) = 828.00/(12 - 3) = 92.00$$

c. F = MSTR/MSE = 268/92 = 2.91

Using F table (2 degrees of freedom numerator and 9 denominator), p-value is greater than 0.10

Actual p-value = 0.1060

Because *p*-value $> \alpha = 0.05$, we cannot reject the null hypothesis.

d.

Source of variation	Degrees of freedom	Sum of squares	Mean square	F
Treatments	2	536	268	2.91
Error	9	828	92	
Total	11	1364		

4

Source of variation	Degrees of freedom	Sum of squares		F
Treatments	1200	3	400	80
Error	300	60	5	
Total	1500	63		

b. Using F table (3 degrees of freedom numerator and 60 denominator), p-value is less than 0.01
 Because p-value ≤ α = 0.05, we reject the null hypothesis that the means of the four populations are

equal.

	Manufacturer I	Manufacturer 2	Manufacturer 3
Sample	23	28	21
Mean			
Sample	6.67	4.67	3.33
Variance			

$$\bar{x} = (23 + 28 + 21)/3 = 24$$

SSTR =
$$\sum_{j=1}^{k} n_j (\bar{x}_j - \bar{\bar{x}})^2 = 4(23 - 24)^2 + 4(28 - 24)^2 + 4(21 - 24)^2 = 104$$

$$MSTR = SSTR/(k - 1) = 104/2 = 52$$

SSE =
$$\sum_{j=1}^{k} (n_j - 1)s_j^2 = 5(0.8) + 5(0.03)$$

+ 5(0.4) = 7.50

$$MSE = SSE/(n_r - k) = 44.01/(12 - 3) = 4.89$$

 $F = MSTR/MSE = 52/4.89 = 10.63$

Using F table (2 degrees of freedom numerator and 9 denominator), p-value is less than 0.01

Actual p-value = 0.0043

Because p-value $< \alpha = 0.05$, we reject the null hypothesis that the mean time needed to mix a batch of material is the same for each manufacturer.

	Marketing	Marketing	
	managers	research	Advertising
Sample	5	4.5	6
Mean			
Sample	0.8	0.3	0.4
Variance			

$$\overline{x} = (5 + 4.5 + 6)/3 = 5.17$$

$$SSTR = 7.00$$

$$MSTR = SSTR/(k-1) = 7.00/2 = 3.5$$

$$SSE = 7.50$$

MSE = SSE/
$$(n_T - k)$$
 = 7.50/(18 - 3) = 0.5
 $F = MSTR/MSE = 3.5/0.50 = 7.00$

Using *F* table (2 degrees of freedom numerator and 15 denominator), *p*-value is less than 0.01

Actual p-value = 0.0071

Because p-value $\leq \alpha = 0.05$, we reject the null hypothesis that the mean perception score is the same for the three groups of specialists.

10 Because p-value $\leq \alpha = 0.05$, we reject the null hypothesis that the mean service ratings are equal.

One-way ANOVA: small, medium, large

12 a.
$$\bar{x} = 62$$

$$SSTR = 1448$$

$$MSTR = SSTR/(k-1) = 1448/2 = 724$$

$$SSE = 828$$

$$MSE = SSE/(n_r - k) = 828/(12 - 3) = 92$$

$$F = MSTR/MSE = 724/92 = 7.87$$

Using *F* table (2 degrees of freedom numerator and 9 denominator), *p*-value is between 0.01 and 0.025 Actual *p*-value = 0.0106

Because *p*-value $\leq \alpha = 0.05$, we reject the null hypothesis that the means of the three populations are equal.

b

LSD =
$$t_{\alpha/2} \sqrt{\text{MSE}(\frac{1}{n_i} + \frac{1}{n_j})} = t_{0.025} \sqrt{92(\frac{1}{4} + \frac{1}{4})}$$

= $2.262 \sqrt{46} = 15.34$

 $|\bar{x}_1 - \bar{x}_2| = |51 - 77| = 26 > \text{LSD}$; significant difference $|\bar{x}_1 - \bar{x}_3| = |51 - 58| = 7 < \text{LSD}$; no significant difference $|\bar{x}_2 - \bar{x}_3| = |77 - 58| = 19 > \text{LSD}$; significant difference

14
$$\bar{x}_1 - \bar{x}_2 \pm \text{LSD}$$

23 - 28 ± 3.54
- 5 ± 3.54 = -8.54 to - 1.46

16 a

	Machine I	Machine 2	Machine 3	Machine 4
Sample Mean	7.1	9.1	9.9	11.4
Sample Variance	1.21	0.93	0.70	1.02

$$\bar{\bar{x}} = (7.1 + 9.1 + 9.9 + 11.4)/4 = 9.38$$

$$SSTR = \sum_{j=1}^{k} n_j (\bar{x}_j - \bar{x}^2) = 6(7.1 - 9.38)^2 + 6(9.1 - 9.38)^2 + 6(11.4 - 9.38)^2 = 57.77$$

MSTR = SSTR/
$$(k - 1)$$
 = 57.77/3 = 19.26
SSE = $\sum_{j=1}^{k} (n_j - 1) s_j^2$ = 5(1.21) + 5(0.93)
+ 5(0.70) + 5(0.07) + 5(1.02) = 19.30

MSE = SSE/
$$(n_{\tau} - k)$$
 = 19.30/ $(24 - 4)$ = 0.97
 F = MSTR/MSE = 19.26/0.97 = 19.86

Using F table (3 degrees of freedom numerator and 20 denominator), p-value is less than 0.01

Actual p-value = 0.0000 (to 4 decimal places)

Because *p*-value $\leq \alpha = 0.05$, we reject the null hypothesis that the mean time between breakdowns is the same for the four machines.

b. Note:
$$t_{0/2}$$
 is based upon 20 degrees of freedom
$$LSD = t_{\alpha/2} \sqrt{MSE(\frac{1}{n_i} + \frac{1}{n_j})} = t_{0.025} \sqrt{0.97(\frac{1}{6} + \frac{1}{6})}$$

$$= 2.086 \sqrt{0.3233} = 1.19$$

$$|\bar{x}_2 - \bar{x}_4| = |9.1 - 11.4| = 2.3 > LSD;$$

18
$$n_1 = 8, n_2 = 8, n_3 = 8$$

 $t_{\alpha/2}$ is based upon 21 degrees of freedom

LSD =
$$t_{0.025}\sqrt{30.5(\frac{1}{8} + \frac{1}{8})} = 2.080\sqrt{7.6250} = 5.74$$

Comparing Small and Medium

$$92.20 - 89.65 = 2.55 < LSD$$
; no significant difference

Comparing Small and Large

$$92.20 - 84.80 = 7.40 > LSD$$
; significant difference

Comparing Medium and Large 89.65 - 84.80 = 4.85 LSD; no significant difference

20 a.

Source of variation	Degrees of freedom	Sum of squares	Mean square	F
Treatments	2	1488	744	5.50
Error	15	2030	135.3	3.30
Total	17	3518		

$$LSD = t_{\alpha/2} \sqrt{MSE(\frac{1}{n_i} + \frac{1}{n_j})} = 2.131 \sqrt{135.3(\frac{1}{6} + \frac{1}{6})}$$

$$|156 - 142| = 14 < 14.31$$
; no significant difference

$$|156 - 134| = 22 > 14.31$$
; significant difference $|1142 - 134| = 8 < 14.31$; no significant difference

22 a.
$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$

 H_1 : Not all the population means are equal

Using F table (4 degrees of freedom numerator and 30 denominator), p-value is less than 0.01
 Actual p-value = 0.0000

Because p-value $\leq \alpha = 0.05$, we reject H_0

24

Source of variation	Degrees of freedom	Sum of squares	Mean square	F
Treatments	2	1200	600	43.99
Error	44	600	13.64	
Total	46	1800		