COMP2421—DATA STRUCTURES AND ALGORITHMS

Sorting Algorithms

Dr. Radi Jarrar Department of Computer Science Birzeit University

STUDENTS-HUB.com

INSERTION SORT

STUDENTS-HUB.com

Insertion Sort

- One of the simplest sorting algorithms. Consists of n-1 passes over n items.
- For pass p=1 through n-1, it ensures that element in position 0 to p are in sorted order.
- Each pass has k comparisons, where k is pass number. So that 1st pass 1 comparison, the 2nd pass 2 comparisons, ..., to (k-1).

```
Insertion Sort
void InsertionSort( int arr[], int n) {
     int i, key, j;
     for( i=1; i<n; i++) {
          key = arr[i];
          j = i - 1;
          while( j>=0 && arr[j] > key) { //shift elements
               arr[j+1] = arr[j];
               i = i - 1;
          arr[j+1] = key;
    S-HUB.com
                                             Uploaded By: Jibreel Bornat
```

Insertion Sort

- Total number of comparisons is F(n) = 1 + 2 + 3 + ... + (n-2) + (n-1) = n * (n-1) / 2 $= O(n^2)$
- Worst case: elements are not sorted \rightarrow O(n²)
- Average case: O(n²)
- Best case: elements are sorted O(n)
 - Because the inner loop won't enter
- Other O(n²) sorting algorithms include Bubble sort and Selection Sort.

STUDENTS-HUB.com

SELECTION SORT

STUDENTS-HUB.com

Selection Sort

• Sorts an array by repeatedly finding the minimum element (ascending in this case) from unsorted part & putting it at the beginning.

```
Selection Sort
void SelectionSort(int arr[], int n)
{
    int i, j, temp;
    for (i = 0; i < n-1; i++)
     {
         for (j = i+1; j < n; j++)
              if (arr[j] < arr[i]) {</pre>
                   temp = arr[i];
                   arr[i] = arr[j];
                   arr[j] = temp;
```

STUDENTS-HUB.con

Selection Sort

- Notice that the time complexity is $O(n^2)$ always.
- Good for small arrays (small data size).
- Inefficient for large data.
- Performs all comparisons on sorted data.

RADIX SORT

STUDENTS-HUB.com

Radix Sort

- Linear non-comparative sorting algorithm
- •O(k.n) time complexity
- Usage
 - Very fast
 - Easy to understand and implement
- Not to use
 - If you are not sure about the data (e.g., if all integers, then ok. If there might be some float of character values, then don't use it).
 - Requires additional space.

STUDENTS-HUB.com

MERGE SORT

STUDENTS-HUB.com

Merge Sort

- Average time complexity O(n log n).
- Divide and conquer technique.
- Recursively sort each half of the array.
- Merge 2-halves.
- Code (the merge routine is too large to fit in slides!): https://www.geeksforgeeks.org/merge-sort/

```
Merge Sort
void MergeSort(int arr[], int p, int q)
{
    if (p < q)
    {
        /* Same as (p+q)/2, but avoids overflow for
           large p and h */
        int m = p + (q-p) / 2;
        // Sort first and second halves
        mergeSort(arr, p, m);
        mergeSort(arr, m+1, q);
        merge(arr, p, m, q);
    }
```

STUDENTS-HUB.com

Merge Sort

- Suitable for very large lists.
- Fast recursive algorithm.
- Useful for both internal and external sort.

SHELL SORT

STUDENTS-HUB.com

Shell Sort

- It works by comparing elements that are distant.
- The comparison of elements decreases as the algorithm runs until the last phase, in which adjacent elements are compared.
- Motivation: since insertion sort runs fast on nearly sorted data, then do several passes of insertion sort on different subsequence of elements.

Shell Sort - Example

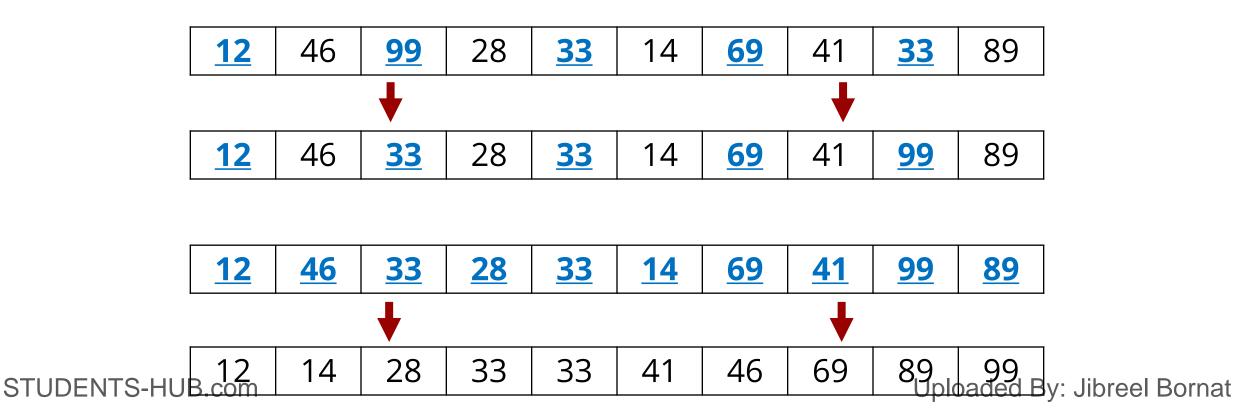
- Step 1: set up increment gap variable.
- Step 2: mark each element that comes in inc. gap. E.g., if we have 10 elements, set up inc. gap to 3

• Step 3: sort marked elements such that the smallest goes to the 1st place.

STUDENTS-HUB.com

Shell Sort - Example

- Step 4: reduce inc. gap by 1.
- Step 5: repeat steps 2, 3, 4 till all elements area sorted.



Shell Sort

```
void shellSort(int arr[], int m) {
    int inc, j, k, temp;
    for (inc = n/2; inc>0; inc /= 2) {
           for (j=inc; j<num; j++) {</pre>
                 for (k=j-inc; k>=0; k-=inc) {
                       if(arr[k+inc] >= arr[k])
                             break;
                       else{
                             temp = arr[k];
                             arr[k] = arr[k + inc];
                             arr[k + inc] = temp;
```

Shell Sort

- The average complexity of Shell sort depends on the gap.
 - Different gap sizes change the complexity of the sort.
 - E.g., using Shell's gap (n/2^k)=O(n²), Hibbard's method (2^k-1)=O(n^{3/2}), k>=0 and < n.
- Average & best case: O(n log n).
- Worst case: O(n^2).
- Not stable.
- Efficient for large lists.
- Requires relatively small amount of memory as it is extension of insertion sort.
- As it has more constraints, it is not very stable sort algorithm.

STUDENTS-HUB.com

QUICK SORT

STUDENTS-HUB.com

Quick Sort

- One of the fastest sorting algorithms on average.
- Divide & conquer technique.
- Consists of the following steps:
 - If the number of elements in the array is 0 or 1, return.
 - Pick an element (pivot) P
 - Re-arrange the elements into 3-sub-blocks:
 - Those less than or equal to P (left-block S1)
 - P (the only element in the middle)
 - Those greater than or equal to P (right-block S2)
 - Return {quicksort(S1), P, quicksort(S2)}

STUDENTS-HUB.com

Quick Sort

• Quick sort does not perform well on small arrays as insertion sort for example.

- Selecting Pivot:
 - Randomly
 - Element at position n/2
 - Take the median of (first, n/2, last)

STUDENTS-HUB.com

Quick Sort - Example

STUDENTS-HUB.com

Quick Sort - Example

4	4	8	0	8	9	7	3	7	6
---	---	---	---	---	---	---	---	---	---

STUDENTS-HUB.com

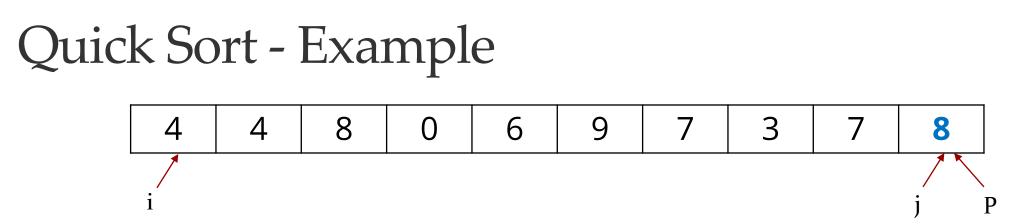
• Step 2: Swap pivot with last element.

STUDENTS-HUB.com

• Step 2: Swap pivot with last element.



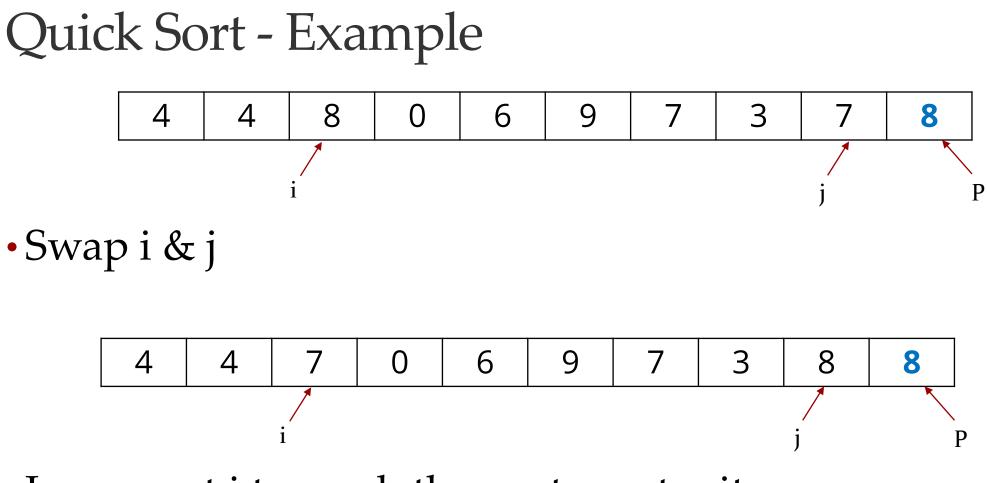
• Increment i to reach the first item greater than or equal to the pivot



• Increment i to reach the first item greater than or equal to the pivot

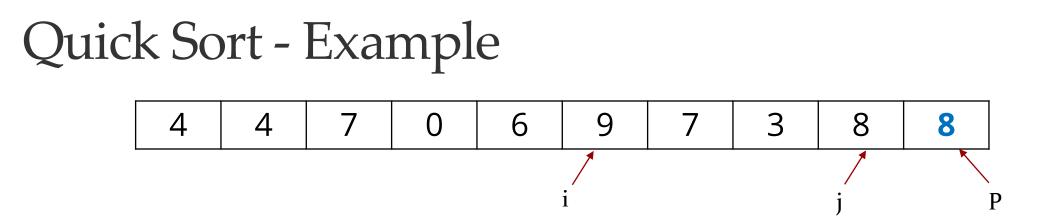
• Decrement j to reach the element that is less than or equal to the pivot.

STUDENTS-HUB.com



• Increment i to reach the next greater item.

STUDENTS-HUB.com



• Decrement j to reach the next element less than the pivot

•Swap i & j

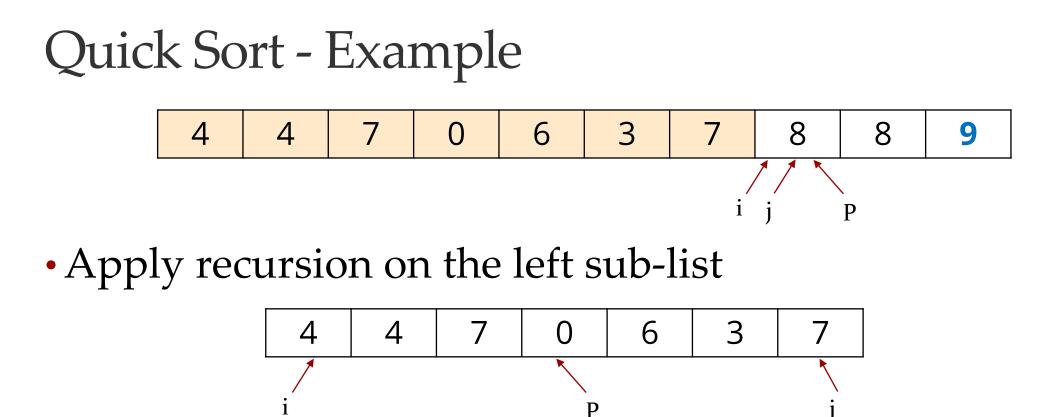
STUDENTS-HUB.com

Quick Sort - Example 4 4 7 0 6 3 7 9 8 8 i i i i P 1 1 P

• Increment i to reach the next element greater than or equal to the pivot

- i & j have crossed.
- Swap with the pivot.

STUDENTS-HUB.com



• Pick pivot and swap with the last element

STUDENTS-HUB.com

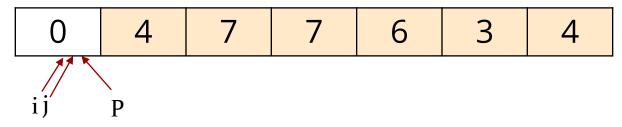
Quick Sort - Example

• Nothing is less than the current pivot. So j is moved all the way to the first item.

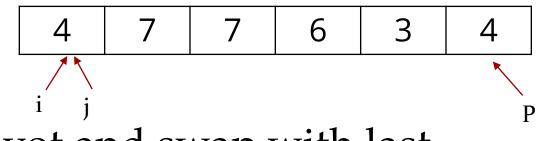
• Swap with the pivot.
$$4$$
 7 7 6 3 0

STUDENTS-HUB.com

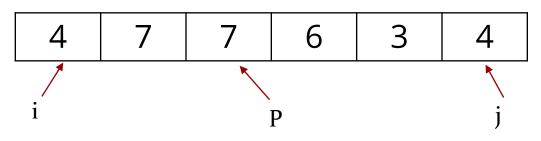
Quick Sort - Example



• Recursion on the right sub-list.

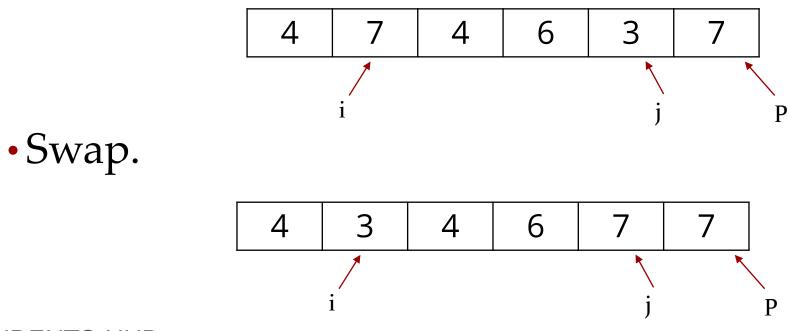


• Select pivot and swap with last.



STUDENTS-HUB.com

• Increment i & decrement j

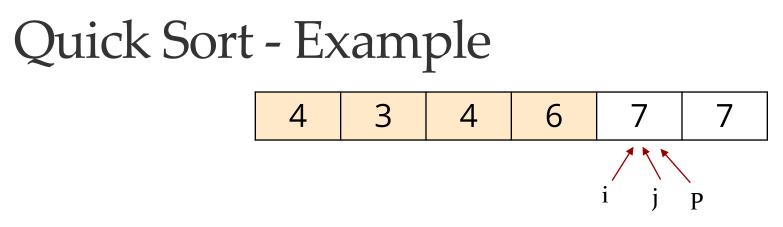


STUDENTS-HUB.com

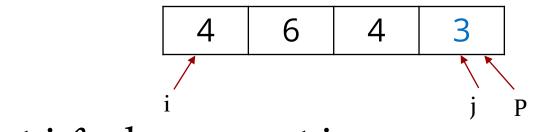
• Increment i & decrement j

• Swap pivot.

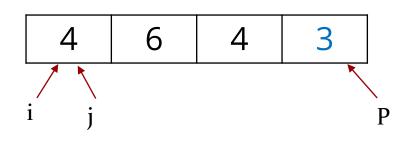
STUDENTS-HUB.com



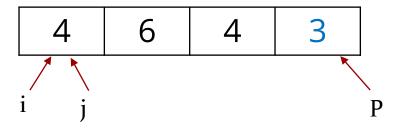
• Recursion. Select pivot and swap with last.



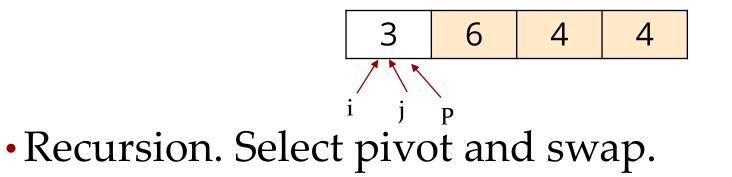
• Increment i & decrement j

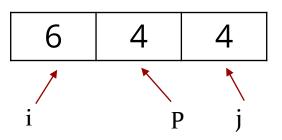


STUDENTS-HUB.com

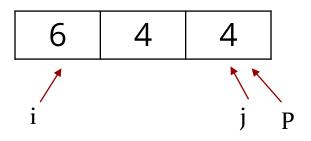


• Swap pivot.

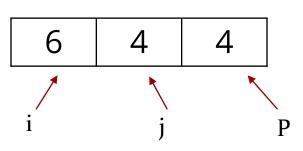




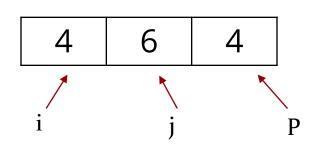
STUDENTS-HUB.com



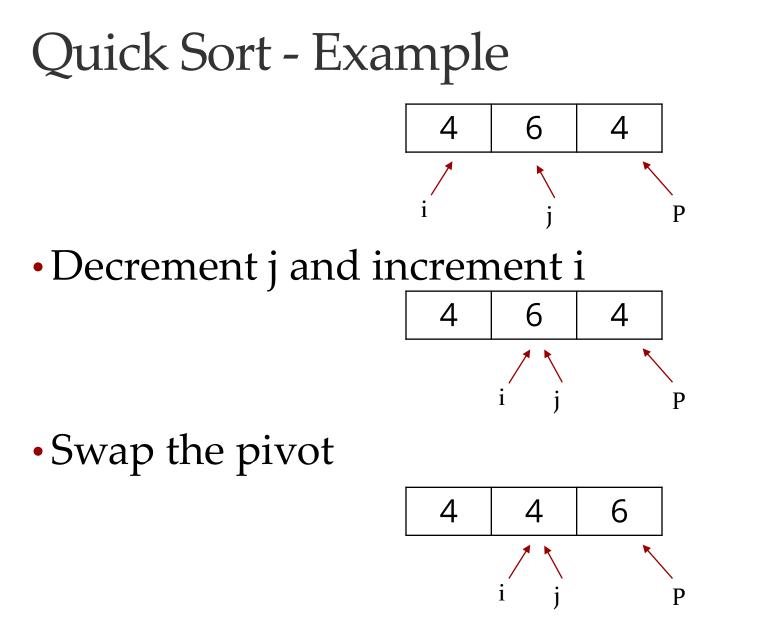
• Decrement j



•Swap i & j

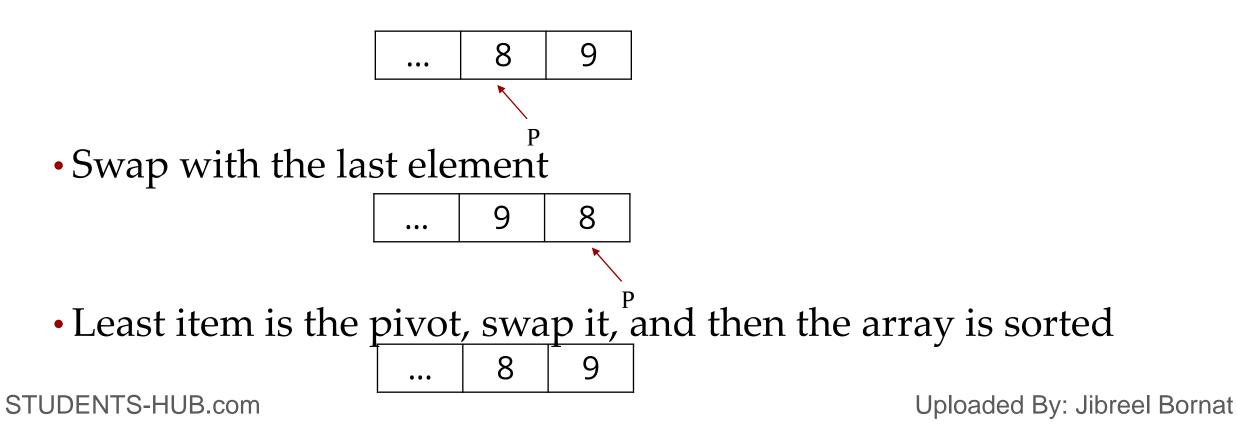


STUDENTS-HUB.com



STUDENTS-HUB.com

- Sorting 4 & 4
- Then return to the right-sublist



- Best-case runtime O(n log n)
- Average-case runtime O(n log n)
- Worst-case runtime O(n^2)
- Fast & efficient for large amount of input data.
- No additional memory is required.

- Worst-case scenario: when the partition sizes are unbalanced. E.g., the pivot always the smallest or largest element in the n-element. Then one partition will contain no elements & the other will contain (n-1) elements.
- So the total partitioning time for all sub-problems of this size is: cn + c(n-1) + c(n-2) + ... + 2c + 0

=
$$c((n+1)(n/2)-1)$$

= $O(n^2)$

STUDENTS-HUB.com

HEAP SORT

STUDENTS-HUB.com

Heap Sort

- •O(n log n) in all cases.
- Even though Quick sort is O(n²) in the worst case, it is still a better choice than Heap sort.
 - More difficult to implement (entire data structure and its operations) and requires to build a tree.
- Uses heaps data structure to sort elements in the array.
- Requires extra array so that memory requirements are doubled.

Heap Sort

- Idea: turn the array of data into heap. DeleteMin and insert it into a sorted array until the heap is empty.
- Each DeleteMin will take O(log n) time, and we will delete all N elements, so O(n log n).

EXTERNAL SORT

STUDENTS-HUB.com

- Is used to sort data that resides on different storage device.
- The basic external sorting algorithm uses the merge routine from Merge Sort.
- Suppose we have four tapes: T_{a1}, T_{a2}, T_{b1}, T_{b2}; which are two input and two output tapes.
- Suppose the data is initially on Ta1. Suppose further that the internal memory can hold (and sort) m records at a time. The first step is to read m records from the input tape, sort them, and write the sorted records alternately to T_{b1} and T_{b2} .

STUDENTS-HUB.com

- Each of the sorted records is called a *run*.
- Suppose m = 3, then the sort will be

T _{a1}	81	94	11	96	12	35	17	99	28	58	41	75	15
T _{a2}													
T _{b1}													
T _{a2} T _{b1} T _{b2}													

• Now T_{b1} & T_{b2} contain groups of runs. We take the first run from each tape & merge them, which runs twice as long onto T_{a1} .

T _{a1}								
T _{a2}								
T _{b1}	11	81	94	17	28	99	15	
T _{b2}	12	35	96	41	58	75		

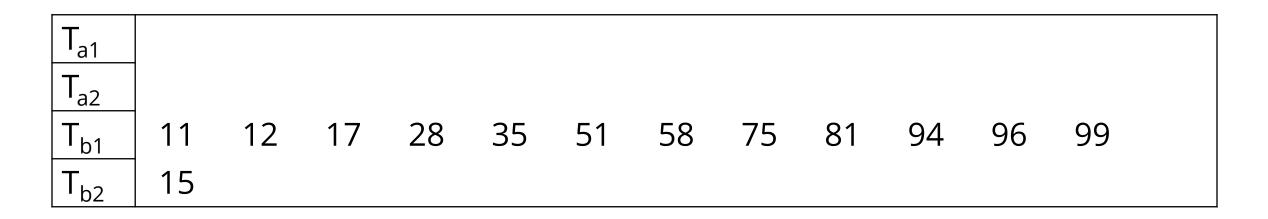
• Now T_{a1} & T_{a2} contain groups of runs. We take the first run from each tape & merge them, which runs twice as long onto T_{a1} .

T _{a1}	11	12	35	81	94	96	15
T _{a2}	17	28	41	58	75	99	
T _{b1}							
T _{b2}							

• Now T_{a1} & T_{a2} contain groups of runs. We take the first run from each tape & merge them, which runs twice as long onto T_{b1}

T _{a1}	11	12	35	81	94	96	15
T _{a2}	17	28	41	58	75	99	
T _{b1}							
T _{b2}							

• Now T_{a1} & T_{a2} contain groups of runs. We take the first run from each tape & merge them, which runs twice as long onto T_{b1} .



STUDENTS-HUB.com

• Now T_{b1} & T_{b2} contain groups of runs. We take the first run from each tape & merge them, which runs twice as long onto $T_{a1.}$

T _{a1}	11	12	15	17	28	35	51	58	75	81	94	96	99
T _{a2}													
T _{b1}													
T _{b2}													

- If we add more tapes it will make the sort faster; instead of 2-way merge it becomes a k-way merge.
- This algorithm will require log(n/m) passes, plus the initial run-constructing pass. For instance, if you have 10M records of 128 bytes each and a 4 megabytes of internal memory, then the first pass will create 320 runs. We will need then 9 more passes to complete the sort. Our example needed log(13/3) = 3 more passes to finish the sort.