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INSERTION SORT
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Insertion Sort

•One of the simplest sorting algorithms. Consists of n-1 
passes over n items.

•For pass p=1 through n-1, it ensures that element in 
position 0 to p are in sorted order.

•Each pass has k comparisons, where k is pass number. So 
that 1st pass 1 comparison, the 2nd pass 2 comparisons, …, 
to (k-1).
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Insertion Sort
void InsertionSort( int arr[], int n) {

int i, key, j;

for( i=1; i<n; i++){

key = arr[i];

j = i-1;

while( j>=0 && arr[j] > key){ //shift elements

arr[j+1] = arr[j];

j = j-1;

}

arr[j+1] = key;

}

}
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Insertion Sort

•Total number of comparisons is 
F(n) = 1 + 2 + 3 + … + (n-2) + (n-1)

= n * (n-1) / 2
= O( n2 )

• Worst case: elements are not sorted  O( n2 )

• Average case: O( n2 )

• Best case: elements are sorted O( n )
• Because the inner loop won’t enter

• Other O( n2 ) sorting algorithms include Bubble sort and Selection 
Sort.
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SELECTION SORT
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Selection Sort

•Sorts an array by repeatedly finding the minimum element 
(ascending in this case) from unsorted part & putting it at 
the beginning.
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Selection Sort
void SelectionSort(int arr[], int n)  

{

int i, j, temp;  

for (i = 0; i < n-1; i++)  

{  

for (j = i+1; j < n; j++)  

if (arr[j] < arr[i]){

temp = arr[i];

arr[i] = arr[j];

arr[j] = temp;

}  

} 
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Selection Sort

•Notice that the time complexity is O( n2 ) always.

•Good for small arrays (small data size).

• Inefficient for large data.

•Performs all comparisons on sorted data.
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RADIX SORT
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Radix Sort

•Linear non-comparative sorting algorithm

•O( k.n ) time complexity

•Usage

• Very fast

• Easy to understand and implement

•Not to use

• If you are not sure about the data (e.g., if all integers, then ok. If 
there might be some float of character values, then don’t use it).

• Requires additional space.
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MERGE SORT
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Merge Sort

•Average time complexity O( n log n).

•Divide and conquer technique.

•Recursively sort each half of the array.

•Merge 2-halves.

•Code (the merge routine is too large to fit in slides!): 
https://www.geeksforgeeks.org/merge-sort/
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Merge Sort
void MergeSort(int arr[], int p, int q) 

{ 

if (p < q) 

{ 

/* Same as (p+q)/2, but avoids overflow for 

large p and h */

int m = p+(q-p)/2; 

// Sort first and second halves 

mergeSort(arr, p, m); 

mergeSort(arr, m+1, q); 

merge(arr, p, m, q); 

} 

} 
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Merge Sort

•Suitable for very large lists.

•Fast recursive algorithm.

•Useful for both internal and external sort.
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SHELL SORT
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Shell Sort

• It works by comparing elements that are distant.

•The comparison of elements decreases as the algorithm 
runs until the last phase, in which adjacent elements are 
compared.

•Motivation: since insertion sort runs fast on nearly sorted 
data, then do several passes of insertion sort on different 
subsequence of elements.
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Shell Sort - Example

• Step 1: set up increment gap variable.

• Step 2: mark each element that comes in inc. gap. E.g., if we have 
10 elements, set up inc. gap to 3

• Step 3: sort marked elements such that the smallest goes to the 1st

place.
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89 46 99 12 33 14 69 41 33 28

12 46 99 28 33 14 69 41 33 89
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Shell Sort - Example

• Step 4: reduce inc. gap by 1.

• Step 5: repeat steps 2, 3, 4 till all elements area sorted.
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12 46 99 28 33 14 69 41 33 89

12 46 33 28 33 14 69 41 99 89

12 46 33 28 33 14 69 41 99 89
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Shell Sort
void shellSort(int arr[], int m) { 

int inc, j, k, temp; 

for(inc = n/2; inc>0; inc /= 2){

for(j=inc; j<num; j++){

for(k=j-inc; k>=0; k-=inc){

if(arr[k+inc] >= arr[k])

break;

else{

temp = arr[k];

arr[k] = arr[k + inc];

arr[k + inc] = temp;

}

}

}

}

} 
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Shell Sort

• The average complexity of Shell sort depends on the gap.
• Different gap sizes change the complexity of the sort.
• E.g., using Shell’s gap (n/2k)=O( n2 ), Hibbard’s method (2k-1)=O( n3/2 ), 

k>=0 and < n.

• Average & best case: O( n log n ).
• Worst case: O( n2 ).
• Not stable.
• Efficient for large lists.
• Requires relatively small amount of memory as it is extension 
of insertion sort.

• As it has more constraints, it is not very stable sort algorithm.
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QUICK SORT
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Quick Sort

•One of the fastest sorting algorithms on average.

•Divide & conquer technique.

•Consists of the following steps:
• If the number of elements in the array is 0 or 1, return.

• Pick an element (pivot) P

• Re-arrange the elements into 3-sub-blocks:
• Those less than or equal to P (left-block S1)

• P (the only element in the middle)

• Those greater than or equal to P (right-block S2)

• Return {quicksort(S1), P, quicksort(S2)}
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Quick Sort

•Quick sort does not perform well on small arrays as 
insertion sort for example.

•Selecting Pivot:

•Randomly

•Element at position n/2

•Take the median of (first, n/2, last)
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Quick Sort - Example

•Step 1: pick the pivot (mid-element)

25

4 4 8 0 8 9 7 3 7 6
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Quick Sort - Example

•Step 1: pick the pivot (mid-element)
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4 4 8 0 8 9 7 3 7 6

4 4 8 0 8 9 7 3 7 6
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Quick Sort - Example

•Step 1: pick the pivot (mid-element)

•Step 2: Swap pivot with last element.
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4 4 8 0 8 9 7 3 7 6

4 4 8 0 8 9 7 3 7 6
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Quick Sort - Example

•Step 1: pick the pivot (mid-element)

•Step 2: Swap pivot with last element.
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4 4 8 0 8 9 7 3 7 6

4 4 8 0 8 9 7 3 7 6

4 4 8 0 6 9 7 3 7 8

i j P
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Quick Sort - Example

• Increment i to reach the first item greater than or equal to 
the pivot
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4 4 8 0 6 9 7 3 7 8

i j P
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Quick Sort - Example

• Increment i to reach the first item greater than or equal to 
the pivot

•Decrement j to reach the element that is less than or equal 
to the pivot.
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4 4 8 0 6 9 7 3 7 8

i j P

4 4 8 0 6 9 7 3 7 8

i j P
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Quick Sort - Example

•Swap i & j

• Increment i to reach the next greater item.
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4 4 8 0 6 9 7 3 7 8

i j P

4 4 7 0 6 9 7 3 8 8

i j P
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Quick Sort - Example

•Decrement j to reach the next element less than the pivot

•Swap i & j
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4 4 7 0 6 9 7 3 8 8

i j P

4 4 7 0 6 3 7 9 8 8

i j P

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort - Example

• Increment i to reach the next element greater than or equal 
to the pivot

• i & j have crossed.

•Swap with the pivot.
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4 4 7 0 6 3 7 9 8 8

i j P

4 4 7 0 6 3 7 9 8 8

i j P
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Quick Sort - Example

•Apply recursion on the left sub-list

•Pick pivot and swap with the last element
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4 4 7 0 6 3 7 8 8 9

i j P

4 4 7 0 6 3 7

i jP

4 4 7 7 6 3 0

i j P
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Quick Sort - Example

•Nothing is less than the current pivot. So j is moved all the 
way to the first item.

•Swap with the pivot.
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4 4 7 7 6 3 0

i j P

4 4 7 7 6 3 0

i j P
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Quick Sort - Example

•Recursion on the right sub-list.

•Select pivot and swap with last.
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4 7 7 6 3 4

i j P

0 4 7 7 6 3 4

i j P

4 7 7 6 3 4

i jP
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Quick Sort - Example

• Increment i & decrement j

•Swap.
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4 7 4 6 3 7

i j P

4 7 4 6 3 7

i j P

4 3 4 6 7 7

i j P
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Quick Sort - Example

• Increment i & decrement j

•Swap pivot.
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4 3 4 6 7 7

i j P

4 3 4 6 7 7

i j P

4 3 4 6 7 7

i j P

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort - Example

•Recursion. Select pivot and swap with last.

• Increment i & decrement j

39

4 6 4 3

i j P

4 3 4 6 7 7

i j P

4 6 4 3

i j P
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Quick Sort - Example

•Swap pivot.

•Recursion. Select pivot and swap.
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3 6 4 4

i j P

6 4 4

i jP

4 6 4 3

i j P
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Quick Sort - Example

•Decrement j

•Swap i & j
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6 4 4

i j P

6 4 4

i j P

4 6 4

i j P
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Quick Sort - Example

•Decrement j and increment i

•Swap the pivot
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4 6 4

i j P

4 6 4

i j P

4 4 6

i j P
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Quick Sort - Example

• Sorting 4 & 4 

• Then return to the right-sublist

• Swap with the last element

• Least item is the pivot, swap it, and then the array is sorted
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… 8 9

P

… 9 8

P

… 8 9
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Quick Sort - Example

•Best-case runtime O( n log n)

•Average-case runtime O( n log n)

•Worst-case runtime O( n2 )

•Fast & efficient for large amount of input data.

•No additional memory is required.
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0 3 4 4 6 7 7 8 8 9
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Quick Sort - Example

•Worst-case scenario: when the partition sizes are 
unbalanced. E.g., the pivot always the smallest or largest 
element in the n-element. Then one partition will contain 
no elements & the other will contain (n-1) elements.

•So the total partitioning time for all sub-problems of this 
size is: cn + c(n-1) + c(n-2) + … + 2c + 0

= c((n+1)(n/2)-1)
= O( n2 )
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HEAP SORT
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Heap Sort

•O( n log n ) in all cases.

•Even though Quick sort is O( n2 ) in the worst case, it is 
still a better choice than Heap sort.

• More difficult to implement (entire data structure and its 
operations) and requires to build a tree.

•Uses heaps data structure to sort elements in the array.

•Requires extra array so that memory requirements are 
doubled.
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Heap Sort

• Idea: turn the array of data into heap. DeleteMin and 
insert it into a sorted array until the heap is empty.

•Each DeleteMin will take O( log n ) time, and we will 
delete all N elements, so O( n log n ).
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EXTERNAL SORT
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External Sort

• Is used to sort data that resides on different storage device.

•The basic external sorting algorithm uses the merge 
routine from Merge Sort.

•Suppose we have four tapes: Ta1, Ta2, Tb1, Tb2; which are 
two input and two output tapes.

•Suppose the data is initially on Ta1. Suppose further that 
the internal memory can hold (and sort) m records at a 
time. The first step is to read m records from the input 
tape, sort them, and write the sorted records alternately to 
Tb1 and Tb2.

50

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Dr. Radi Jarrar – Birzeit University, 2021

External Sort

•Each of the sorted records is called a run. 

•Suppose m = 3, then the sort will be 
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Ta1 81 94 11 96 12 35 17 99 28 58 41 75 15

Ta2
Tb1
Tb2
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External Sort

•Now Tb1 & Tb2 contain groups of runs. We take the first 
run from each tape & merge them, which runs twice as 
long onto Ta1.
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Ta1
Ta2
Tb1 11 81 94 17 28 99 15

Tb2 12 35 96 41 58 75
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External Sort

•Now Ta1 & Ta2 contain groups of runs. We take the first run 
from each tape & merge them, which runs twice as long 
onto Ta1.
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Ta1 11 12 35 81 94 96 15

Ta2 17 28 41 58 75 99

Tb1
Tb2
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External Sort

•Now Ta1 & Ta2 contain groups of runs. We take the first run 
from each tape & merge them, which runs twice as long 
onto Tb1
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Ta1 11 12 35 81 94 96 15

Ta2 17 28 41 58 75 99

Tb1
Tb2
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External Sort

•Now Ta1 & Ta2 contain groups of runs. We take the first run 
from each tape & merge them, which runs twice as long 
onto Tb1.
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Ta1
Ta2
Tb1 11 12 17 28 35 51 58 75 81 94 96 99

Tb2 15
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External Sort

•Now Tb1 & Tb2 contain groups of runs. We take the first 
run from each tape & merge them, which runs twice as 
long onto Ta1.
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Ta1 11 12 15 17 28 35 51 58 75 81 94 96 99

Ta2
Tb1
Tb2
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External Sort

• If we add more tapes it will make the sort faster; instead of 
2-way merge it becomes a k-way merge.

•This algorithm will require log(n/m) passes, plus the initial 
run-constructing pass. For instance, if you have 10M 
records of 128 bytes each and a 4 megabytes of internal 
memory, then the first pass will create 320 runs. We will 
need then 9 more passes to complete the sort. Our example 
needed log(13/3) = 3 more passes to finish the sort.
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