Dr. Radi Jarrar - Birzeit University, 2021 1

COMP2421 —DATA STRUCTURES
AND ALGORITHMS

Sorting Algorithms *
= /-" 2 1 W
- M

Dr. Radi Jarrar BIRZEIT UNIVEFISITY

Department of Computer Science

Birzeit University

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 2

INSERTION SORT

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 3

Insertion Sort

* One of the simplest sorting algorithms. Consists of n-1
passes over n items.

» For pass p=1 through n-1, it ensures that element in
position 0 to p are in sorted order.

» Each pass has k comparisons, where k is pass number. So

that 1%t pass 1 comparison, the 2" pass 2 comparisons, ...,
to (k-1).

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 4

Insertion Sort

vold InsertionSort(int arr[], 1nt n) {
int 1, key, 7;
for(1=1; 1i<n; 1++) {

key = arr[i];

J = 1-1;

while(§>=0 && arr[j] > key){ //shift elements
arr[j+1] = arr[j];
) = -1

}
arr[j+1l] = key;

J

STUE)ENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 5

Insertion Sort

- Total number of comparisons is
F(n)=1+2+3+... +(n-2) + (n-1)
=n*(n-1)/2
- O(?)
- Worst case: elements are not sorted =2 O(n?)
- Average case: O(n?)
- Best case: elements are sorted O(n)

- Because the inner loop won't enter

- Other O(n?) sorting algorithms include Bubble sort and Selection
Sort.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 6

SELECTION SORT

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 7

Selection Sort

- Sorts an array by repeatedly finding the minimum element
(ascending in this case) from unsorted part & putting it at
the beginning.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021

8

Selection Sort

vold SelectionSort(int arr[], 1int n)

{

int 1, 7, temp;

for (1 = 0; 1 < n-1; 1++)

{
for (7 = i+1; J < n; J++)
if (arr([j] < arr[i]) {
temp = arr[i];
arr[i] = arr[j];
arr[j]] = temp;
}

J
STUDENTS-HUB.com

Uploaded BYy: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 9

Selection Sort

- Notice that the time complexity is O(n?) always.
» Good for small arrays (small data size).

» Inetficient for large data.

» Performs all comparisons on sorted data.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 10

RADIX SORT

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 11

Radix Sort

» Linear non-comparative sorting algorithm
*O(k.n) time complexity
- Usage

* Very fast

- Easy to understand and implement

« Not to use

- If you are not sure about the data (e.g., if all integers, then ok. If
there might be some float of character values, then don’t use it).

» Requires additional space.
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 12

MERGE SORT

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 13

Merge Sort

» Average time complexity O(n log n).
» Divide and conquer technique.

* Recursively sort each half of the array.
* Merge 2-halves.

» Code (the merge routine is too large to fit in slides!):
https://www.geeksforgeeks.org/merge-sort/

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

https://www.geeksforgeeks.org/merge-sort/

Dr. Radi Jarrar - Birzeit University, 2021 14

Merge Sort

vold MergeSort(int arr[], 1int p, 1nt q)

{
1f (p < Qq)
{

/* Same as (p+q)/2, but avoids overflow for
large p and h */
int m = p+(g-p)/2;

// Sort first and second halves

mergeSort (arr, p, m);
mergeSort (arr, m+l, q);

merge (arr, p, m, d);

}
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 15

Merge Sort

- Suitable for very large lists.
- Fast recursive algorithm.
- Useful for both internal and external sort.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 16

SHELL SORT

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 17

Shell Sort

- It works by comparing elements that are distant.

» The comparison of elements decreases as the algorithm
runs until the last phase, in which adjacent elements are
compared.

 Motivation: since insertion sort runs fast on nearly sorted
data, then do several passes of insertion sort on different
subsequence of elements.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 18

Shell Sort - Example

- Step 1: set up increment gap variable.

- Step 2: mark each element that comes in inc. gap. E.g., if we have
10 elements, set up inc. gap to 3

89 | 46 | 99 | 12 | 33 | 14 | 69 | 41 | 33 | 28

- Step 3: sort marked elements such that the smallest goes to the 15
place.

12 | 46 | 99 | 28 | 33 | 14 | 69 | 41 | 33 | 89

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021

Shell Sort - Example

- Step 4: reduce inc. gap by 1.

- Step 5: repeat steps 2, 3, 4 till all elements area sorted.

STUDENTS-HU

46 28 14 89
46 3 | 28 14 89
46 | 33 | 28 14 89
14 *28 33 41 .99

y: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021

Shell Sort

vold shellSort(int arr[], 1int m) {
int inc, 3j, k, temp;
for(inc = n/2; inc>0; inc /= 2){
for (J=inc; Jj<num; J++) {
for(k=j-inc; k>=0; k-=1nc) {
if(arr[k+inc] >= arrlk])

break;
else{
temp = arrl[k];
arr[k] = arr[k + inc];
arrlk + inc] = temp;

}
STUIBENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 21

Shell Sort

» The average complexity of Shell sort depends on the gap.

- Different gap sizes change the complexity of the sort.

- E.g., using Shell’s gap (n/2%)=0O(n?), Hibbard’s method (2*-1)=0O(n3%?),
k>=0 and <n.

» Average & best case: O(n logn).
- Worst case: O(n?).

- Not stable.

- Efficient for large lists.

» Requires relatively small amount of memory as it is extension
of insertion sort.

- As it has more constraints, it is not very stable sort algorithm.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 22

QUICK SORT

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 23

Quick Sort

* One of the fastest sorting algorithms on average.
» Divide & conquer technique.

- Consists of the following steps:
- If the number of elements in the array is 0 or 1, return.
* Pick an element (pivot) P

* Re-arrange the elements into 3-sub-blocks:
» Those less than or equal to P (left-block S1)
» P (the only element in the middle)
» Those greater than or equal to P (right-block 5S2)
» Return {quicksort(S1), P, quicksort(S2)}
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 24

Quick Sort

» Quick sort does not perform well on small arrays as
insertion sort for example.

- Selecting Pivot:
* Randomly
» Element at position n/2
- Take the median of (first, n/2, last)

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021

25

Quick Sort - Example

4

4

- Step 1: pick the pivot (mid-element)

STUDENTS-HUB.com

Uploaded BYy: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 26

Quick Sort - Example

4 4 3 0 3 9 7 3 7 6

4 4 3 0 8 9 7 3 7 6

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 27

Quick Sort - Example

4 4 3 0 3 9 7 3 7 6

- Step 1: pick the pivot (mid-element)

4 4 3 0 8 9 7 3 7 6

- Step 2: Swap pivot with last element.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 28

Quick Sort - Example

4 4 3 0 3 9 7 3 7 6

- Step 1: pick the pivot (mid-element)

4 4 3 0 8 9 7 3 7 6

- Step 2: Swap pivot with last element.

4 4 3 0 6 9 7 3 7 8
7 N
1] P

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

29

Dr. Radi Jarrar - Birzeit University, 2021

Quick Sort - Example

4

4

3

0

7

i

8
/N
] P

* Increment i to reach the first item greater than or equal to

the pivot

STUDENTS-HUB.com

Uploaded BYy: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 30

Quick Sort - Example

4 4 3 0 6 9 7/ 3 7 8
/ 7N\
i j P
* Increment i to reach the first item greater than or equal to
the pivot
4 4 8 0 6 9 7 3 7 8
7 7<
i j P
* Decrement j to reach the element that is less than or equal
to the pivot.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 31

Quick Sort - Example

4 4 3 0 6 9 7/ 3 7/ 8
/ /N
i j P
*Swap 1 &
4 4 7 0 6 9 7/ 3 8 8
/ / N
1] P

» Increment 1 to reach the next greater item.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Quick Sort - Example

Dr. Radi Jarrar - Birzeit University, 2021

32

4

4

7

0

9

i

/

j

/

P

* Decrement j to reach the next element less than the pivot

*Swap 1 &

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 33

Quick Sort - Example

4 | 4|7 0|6 |37 |9]|8]s8
/ / A\

i j P

* Increment 1 to reach the next element greater than or equal
to the pivot

4 4 7 0 6 3 7 9 3 8

*1 & j have crossed.
» Swap with the pivot.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 34

Quick Sort - Example

STUDENTS-HUB.com

i

)

4 4 / 0 6 3 / 8 9
VAN
i P
» Apply recursion on the left sub-list
4 4 7/ 0 6 3 /
/ \ \
1 P)
- Pick pivot and swap with the last element
4 4 7/ 7/ 6 3 0
/ /N

P

Uploaded BYy: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 35

Quick Sort - Example

4

4

7

7

0

/

i

/N
) P

 Nothing is less than the current pivot. So j is moved all the
way to the first item.

4

7

0

4
/A
i

» Swap with the pivot.

STUDENTS-HUB.com

\

P

Uploaded BYy: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 36

Quick Sort - Example

4 7 7 6 3 4

0
ii/f \P

» Recursion on the right sub-list.

4 7/ 7/ 6 3 4
VA \
1)

- Select pivot and swap with last.

4 7/ 7/ 6 3 4
/ N \

1 P]
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 37

Quick Sort - Example

4 17| 4|6 |3 |7
/ AN\

1 j P

* Increment 1 & decrement |

4 7/ 4 6 3 7

7 N
i j
* Swap.
4 3 4 6 7/ 7/
/ \ \P
i j

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 38

Quick Sort - Example

4 | 3| 4|6 |77
/ NN

1 j P

* Increment 1 & decrement |

4 3 4 6 7/ 7

» Swap pivot.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

39

Dr. Radi Jarrar - Birzeit University, 2021

Quick Sort - Example

4 3 4 6 7 7

/NN
) P
» Recursion. Select pivot and swap with last.
4 6 4 3
/ AN
1] P

* Increment 1 & decrement j

416 | 4|3
/N A\

1 j P

STUDENTS-HUB.com

Uploaded BYy: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 40

Quick Sort - Example

4 6 4 3

VAR A\
1 j P
* Swap pivot.
3 6 4 4
AN
1) P
* Recursion. Select pivot and swap.
6 4 4
SN
1 P]

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 41

Quick Sort - Example

6 | 4 | 4
/ A\
1) P
* Decrement j
6 4 4
/N N
1 j P
*Swap 1 &
4 6 4
/NN
1 j P

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 42

Quick Sort - Example

4 | 6 | 4
/NN

1 j P

* Decrement j and increment i

4 | 6 | 4
SN
i j P
- Swap the pivot
4 | 4 | 6
NN
i j P

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 43

Quick Sort - Example

- Sorting 4 & 4
» Then return to the right-sublist

8 9
A\
- Swap with the last element
9 8
A\
- Least item is the pivot, swap it, and then the array is sorted
8 9

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 44

Quick Sort - Example

0 3 4 4 6 7 7 3 3 9

» Best-case runtime O(n log n)

» Average-case runtime O(n log n)

- Worst-case runtime O(n?)

- Fast & efficient for large amount of input data.
* No additional memory is required.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 45

Quick Sort - Example

- Worst-case scenario: when the partition sizes are
unbalanced. E.g., the pivot always the smallest or largest
element in the n-element. Then one partition will contain
no elements & the other will contain (n-1) elements.

» So the total partitioning time for all sub-problems of this
sizeis: cn + ¢c(n-1) + c(n-2) +... +2c + 0
= c((n+1)(n/2)-1)
=0O(n?)

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 46

HEAP SORT

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 47

Heap Sort

*O(nlogn)in all cases.

- Even though Quick sort is O(n?) in the worst case, it is
still a better choice than Heap sort.

» More difficult to implement (entire data structure and its
operations) and requires to build a tree.

- Uses heaps data structure to sort elements in the array.
 Requires extra array so that memory requirements are

doubled.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 48

Heap Sort

» Idea: turn the array of data into heap. DeleteMin and
insert it into a sorted array until the heap is empty.

» Each DeleteMin will take O(log n) time, and we will
delete all N elements, so O(n logn).

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 49

EXTERNAL SORT

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 50

External Sort

- Is used to sort data that resides on different storage device.

» The basic external sorting algorithm uses the merge
routine from Merge Sort.

 Suppose we have four tapes: T,;, T,,, T, T},; which are
two input and two output tapes.

» Suppose the data is initially on Tal. Suppose further that
the internal memory can hold (and sort) m records at a
time. The first step is to read m records from the input

tape, sort them, and write the sorted records alternately to
T,,; and Ty,.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 51

External Sort

- Each of the sorted records is called a run.
» Suppose m = 3, then the sort will be

Ta1
Ta2
Tb1

Tb2

81 94 11 9 12 35 17 99 28 58 41 /5 15

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

52

External Sort

Dr. Radi Jarrar - Birzeit University, 2021

*Now T; & T}, contain groups of runs. We take the first
run from each tape & merge them, which runs twice as
long onto T,;.

Ta1
Ta2
Tor | 11
Too | 12

31
35

94
96

17
41

28
58

99
75

15

STUDENTS-HUB.com

Uploaded BYy: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 53

External Sort

*Now T,; & T,, contain groups of runs. We take the first run
from each tape & merge them, which runs twice as long

onto T;.

T, |11 12 35 81 94 96| 15
To | 17 28 41 58 75 99

Tb1

Tb2

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 54

External Sort

*Now T,; & T,, contain groups of runs. We take the first run
from each tape & merge them, which runs twice as long

onto T,

T, |11 12 35 81 94 96 | 15
T, | 17 28 41 58 75 99

Tb1

Tb2

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

55

External Sort

Dr. Radi Jarrar - Birzeit University, 2021

*Now T,; & T,, contain groups of runs. We take the first run
from each tape & merge them, which runs twice as long

onto Ty

Ta1

Ta2

Ty 11 12 17 28 35 51 58 75 81 94 96 99
Ty 15

STUDENTS-HUB.com

Uploaded BYy: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 56

External Sort

*Now T; & T}, contain groups of runs. We take the first
run from each tape & merge them, which runs twice as
long onto T,;

11 12 15 17 28 35 51 58 75 81 94 96 99

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Dr. Radi Jarrar - Birzeit University, 2021 57

External Sort

- If we add more tapes it will make the sort faster; instead of
2-way merge it becomes a k-way merge.

- This algorithm will require log(n/m) passes, plus the initial
run-constructing pass. For instance, if you have 10M
records of 128 bytes each and a 4 megabytes of internal
memory, then the first pass will create 320 runs. We will
need then 9 more passes to complete the sort. Our example
needed log(13/3) = 3 more passes to finish the sort.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

