
Dr. Radi Jarrar – Birzeit University, 2021

COMP2421—DATA STRUCTURES
AND ALGORITHMS
Sorting Algorithms

Dr. Radi Jarrar

Department of Computer Science

Birzeit University

1

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

INSERTION SORT

2

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Insertion Sort

•One of the simplest sorting algorithms. Consists of n-1
passes over n items.

•For pass p=1 through n-1, it ensures that element in
position 0 to p are in sorted order.

•Each pass has k comparisons, where k is pass number. So
that 1st pass 1 comparison, the 2nd pass 2 comparisons, …,
to (k-1).

3

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Insertion Sort
void InsertionSort(int arr[], int n) {

int i, key, j;

for(i=1; i<n; i++){

key = arr[i];

j = i-1;

while(j>=0 && arr[j] > key){ //shift elements

arr[j+1] = arr[j];

j = j-1;

}

arr[j+1] = key;

}

}

4

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Insertion Sort

•Total number of comparisons is
F(n) = 1 + 2 + 3 + … + (n-2) + (n-1)

= n * (n-1) / 2
= O(n2)

• Worst case: elements are not sorted O(n2)

• Average case: O(n2)

• Best case: elements are sorted O(n)
• Because the inner loop won’t enter

• Other O(n2) sorting algorithms include Bubble sort and Selection
Sort.

5

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

SELECTION SORT

6

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Selection Sort

•Sorts an array by repeatedly finding the minimum element
(ascending in this case) from unsorted part & putting it at
the beginning.

7

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Selection Sort
void SelectionSort(int arr[], int n)

{

int i, j, temp;

for (i = 0; i < n-1; i++)

{

for (j = i+1; j < n; j++)

if (arr[j] < arr[i]){

temp = arr[i];

arr[i] = arr[j];

arr[j] = temp;

}

}

8

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Selection Sort

•Notice that the time complexity is O(n2) always.

•Good for small arrays (small data size).

• Inefficient for large data.

•Performs all comparisons on sorted data.

9

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

RADIX SORT

10

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Radix Sort

•Linear non-comparative sorting algorithm

•O(k.n) time complexity

•Usage

• Very fast

• Easy to understand and implement

•Not to use

• If you are not sure about the data (e.g., if all integers, then ok. If
there might be some float of character values, then don’t use it).

• Requires additional space.

11

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

MERGE SORT

12

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Merge Sort

•Average time complexity O(n log n).

•Divide and conquer technique.

•Recursively sort each half of the array.

•Merge 2-halves.

•Code (the merge routine is too large to fit in slides!):
https://www.geeksforgeeks.org/merge-sort/

13

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

https://www.geeksforgeeks.org/merge-sort/

Dr. Radi Jarrar – Birzeit University, 2021

Merge Sort
void MergeSort(int arr[], int p, int q)

{

if (p < q)

{

/* Same as (p+q)/2, but avoids overflow for

large p and h */

int m = p+(q-p)/2;

// Sort first and second halves

mergeSort(arr, p, m);

mergeSort(arr, m+1, q);

merge(arr, p, m, q);

}

}

14

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Merge Sort

•Suitable for very large lists.

•Fast recursive algorithm.

•Useful for both internal and external sort.

15

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

SHELL SORT

16

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Shell Sort

• It works by comparing elements that are distant.

•The comparison of elements decreases as the algorithm
runs until the last phase, in which adjacent elements are
compared.

•Motivation: since insertion sort runs fast on nearly sorted
data, then do several passes of insertion sort on different
subsequence of elements.

17

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Shell Sort - Example

• Step 1: set up increment gap variable.

• Step 2: mark each element that comes in inc. gap. E.g., if we have
10 elements, set up inc. gap to 3

• Step 3: sort marked elements such that the smallest goes to the 1st

place.

18

89 46 99 12 33 14 69 41 33 28

12 46 99 28 33 14 69 41 33 89

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Shell Sort - Example

• Step 4: reduce inc. gap by 1.

• Step 5: repeat steps 2, 3, 4 till all elements area sorted.

19

12 46 99 28 33 14 69 41 33 89

12 46 33 28 33 14 69 41 99 89

12 46 33 28 33 14 69 41 99 89

12 14 28 33 33 41 46 69 89 99Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Shell Sort
void shellSort(int arr[], int m) {

int inc, j, k, temp;

for(inc = n/2; inc>0; inc /= 2){

for(j=inc; j<num; j++){

for(k=j-inc; k>=0; k-=inc){

if(arr[k+inc] >= arr[k])

break;

else{

temp = arr[k];

arr[k] = arr[k + inc];

arr[k + inc] = temp;

}

}

}

}

}

20

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Shell Sort

• The average complexity of Shell sort depends on the gap.
• Different gap sizes change the complexity of the sort.
• E.g., using Shell’s gap (n/2k)=O(n2), Hibbard’s method (2k-1)=O(n3/2),

k>=0 and < n.

• Average & best case: O(n log n).
• Worst case: O(n2).
• Not stable.
• Efficient for large lists.
• Requires relatively small amount of memory as it is extension
of insertion sort.

• As it has more constraints, it is not very stable sort algorithm.

21

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

QUICK SORT

22

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort

•One of the fastest sorting algorithms on average.

•Divide & conquer technique.

•Consists of the following steps:
• If the number of elements in the array is 0 or 1, return.

• Pick an element (pivot) P

• Re-arrange the elements into 3-sub-blocks:
• Those less than or equal to P (left-block S1)

• P (the only element in the middle)

• Those greater than or equal to P (right-block S2)

• Return {quicksort(S1), P, quicksort(S2)}

23

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort

•Quick sort does not perform well on small arrays as
insertion sort for example.

•Selecting Pivot:

•Randomly

•Element at position n/2

•Take the median of (first, n/2, last)

24

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort - Example

•Step 1: pick the pivot (mid-element)

25

4 4 8 0 8 9 7 3 7 6

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort - Example

•Step 1: pick the pivot (mid-element)

26

4 4 8 0 8 9 7 3 7 6

4 4 8 0 8 9 7 3 7 6

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort - Example

•Step 1: pick the pivot (mid-element)

•Step 2: Swap pivot with last element.

27

4 4 8 0 8 9 7 3 7 6

4 4 8 0 8 9 7 3 7 6

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort - Example

•Step 1: pick the pivot (mid-element)

•Step 2: Swap pivot with last element.

28

4 4 8 0 8 9 7 3 7 6

4 4 8 0 8 9 7 3 7 6

4 4 8 0 6 9 7 3 7 8

i j P
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort - Example

• Increment i to reach the first item greater than or equal to
the pivot

29

4 4 8 0 6 9 7 3 7 8

i j P

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort - Example

• Increment i to reach the first item greater than or equal to
the pivot

•Decrement j to reach the element that is less than or equal
to the pivot.

30

4 4 8 0 6 9 7 3 7 8

i j P

4 4 8 0 6 9 7 3 7 8

i j P

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort - Example

•Swap i & j

• Increment i to reach the next greater item.

31

4 4 8 0 6 9 7 3 7 8

i j P

4 4 7 0 6 9 7 3 8 8

i j P

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort - Example

•Decrement j to reach the next element less than the pivot

•Swap i & j

32

4 4 7 0 6 9 7 3 8 8

i j P

4 4 7 0 6 3 7 9 8 8

i j P

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort - Example

• Increment i to reach the next element greater than or equal
to the pivot

• i & j have crossed.

•Swap with the pivot.

33

4 4 7 0 6 3 7 9 8 8

i j P

4 4 7 0 6 3 7 9 8 8

i j P

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort - Example

•Apply recursion on the left sub-list

•Pick pivot and swap with the last element

34

4 4 7 0 6 3 7 8 8 9

i j P

4 4 7 0 6 3 7

i jP

4 4 7 7 6 3 0

i j P

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort - Example

•Nothing is less than the current pivot. So j is moved all the
way to the first item.

•Swap with the pivot.

35

4 4 7 7 6 3 0

i j P

4 4 7 7 6 3 0

i j P

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort - Example

•Recursion on the right sub-list.

•Select pivot and swap with last.

36

4 7 7 6 3 4

i j P

0 4 7 7 6 3 4

i j P

4 7 7 6 3 4

i jP

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort - Example

• Increment i & decrement j

•Swap.

37

4 7 4 6 3 7

i j P

4 7 4 6 3 7

i j P

4 3 4 6 7 7

i j P

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort - Example

• Increment i & decrement j

•Swap pivot.

38

4 3 4 6 7 7

i j P

4 3 4 6 7 7

i j P

4 3 4 6 7 7

i j P

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort - Example

•Recursion. Select pivot and swap with last.

• Increment i & decrement j

39

4 6 4 3

i j P

4 3 4 6 7 7

i j P

4 6 4 3

i j P
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort - Example

•Swap pivot.

•Recursion. Select pivot and swap.

40

3 6 4 4

i j P

6 4 4

i jP

4 6 4 3

i j P

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort - Example

•Decrement j

•Swap i & j

41

6 4 4

i j P

6 4 4

i j P

4 6 4

i j P

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort - Example

•Decrement j and increment i

•Swap the pivot

42

4 6 4

i j P

4 6 4

i j P

4 4 6

i j P

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort - Example

• Sorting 4 & 4

• Then return to the right-sublist

• Swap with the last element

• Least item is the pivot, swap it, and then the array is sorted

43

… 8 9

P

… 9 8

P

… 8 9
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort - Example

•Best-case runtime O(n log n)

•Average-case runtime O(n log n)

•Worst-case runtime O(n2)

•Fast & efficient for large amount of input data.

•No additional memory is required.

44

0 3 4 4 6 7 7 8 8 9

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Quick Sort - Example

•Worst-case scenario: when the partition sizes are
unbalanced. E.g., the pivot always the smallest or largest
element in the n-element. Then one partition will contain
no elements & the other will contain (n-1) elements.

•So the total partitioning time for all sub-problems of this
size is: cn + c(n-1) + c(n-2) + … + 2c + 0

= c((n+1)(n/2)-1)
= O(n2)

45

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

HEAP SORT

46

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Heap Sort

•O(n log n) in all cases.

•Even though Quick sort is O(n2) in the worst case, it is
still a better choice than Heap sort.

• More difficult to implement (entire data structure and its
operations) and requires to build a tree.

•Uses heaps data structure to sort elements in the array.

•Requires extra array so that memory requirements are
doubled.

47

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

Heap Sort

• Idea: turn the array of data into heap. DeleteMin and
insert it into a sorted array until the heap is empty.

•Each DeleteMin will take O(log n) time, and we will
delete all N elements, so O(n log n).

48

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

EXTERNAL SORT

49

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

External Sort

• Is used to sort data that resides on different storage device.

•The basic external sorting algorithm uses the merge
routine from Merge Sort.

•Suppose we have four tapes: Ta1, Ta2, Tb1, Tb2; which are
two input and two output tapes.

•Suppose the data is initially on Ta1. Suppose further that
the internal memory can hold (and sort) m records at a
time. The first step is to read m records from the input
tape, sort them, and write the sorted records alternately to
Tb1 and Tb2.

50

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

External Sort

•Each of the sorted records is called a run.

•Suppose m = 3, then the sort will be

51

Ta1 81 94 11 96 12 35 17 99 28 58 41 75 15

Ta2
Tb1
Tb2

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

External Sort

•Now Tb1 & Tb2 contain groups of runs. We take the first
run from each tape & merge them, which runs twice as
long onto Ta1.

52

Ta1
Ta2
Tb1 11 81 94 17 28 99 15

Tb2 12 35 96 41 58 75

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

External Sort

•Now Ta1 & Ta2 contain groups of runs. We take the first run
from each tape & merge them, which runs twice as long
onto Ta1.

53

Ta1 11 12 35 81 94 96 15

Ta2 17 28 41 58 75 99

Tb1
Tb2

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

External Sort

•Now Ta1 & Ta2 contain groups of runs. We take the first run
from each tape & merge them, which runs twice as long
onto Tb1

54

Ta1 11 12 35 81 94 96 15

Ta2 17 28 41 58 75 99

Tb1
Tb2

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

External Sort

•Now Ta1 & Ta2 contain groups of runs. We take the first run
from each tape & merge them, which runs twice as long
onto Tb1.

55

Ta1
Ta2
Tb1 11 12 17 28 35 51 58 75 81 94 96 99

Tb2 15

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

External Sort

•Now Tb1 & Tb2 contain groups of runs. We take the first
run from each tape & merge them, which runs twice as
long onto Ta1.

56

Ta1 11 12 15 17 28 35 51 58 75 81 94 96 99

Ta2
Tb1
Tb2

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dr. Radi Jarrar – Birzeit University, 2021

External Sort

• If we add more tapes it will make the sort faster; instead of
2-way merge it becomes a k-way merge.

•This algorithm will require log(n/m) passes, plus the initial
run-constructing pass. For instance, if you have 10M
records of 128 bytes each and a 4 megabytes of internal
memory, then the first pass will create 320 runs. We will
need then 9 more passes to complete the sort. Our example
needed log(13/3) = 3 more passes to finish the sort.

57

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

