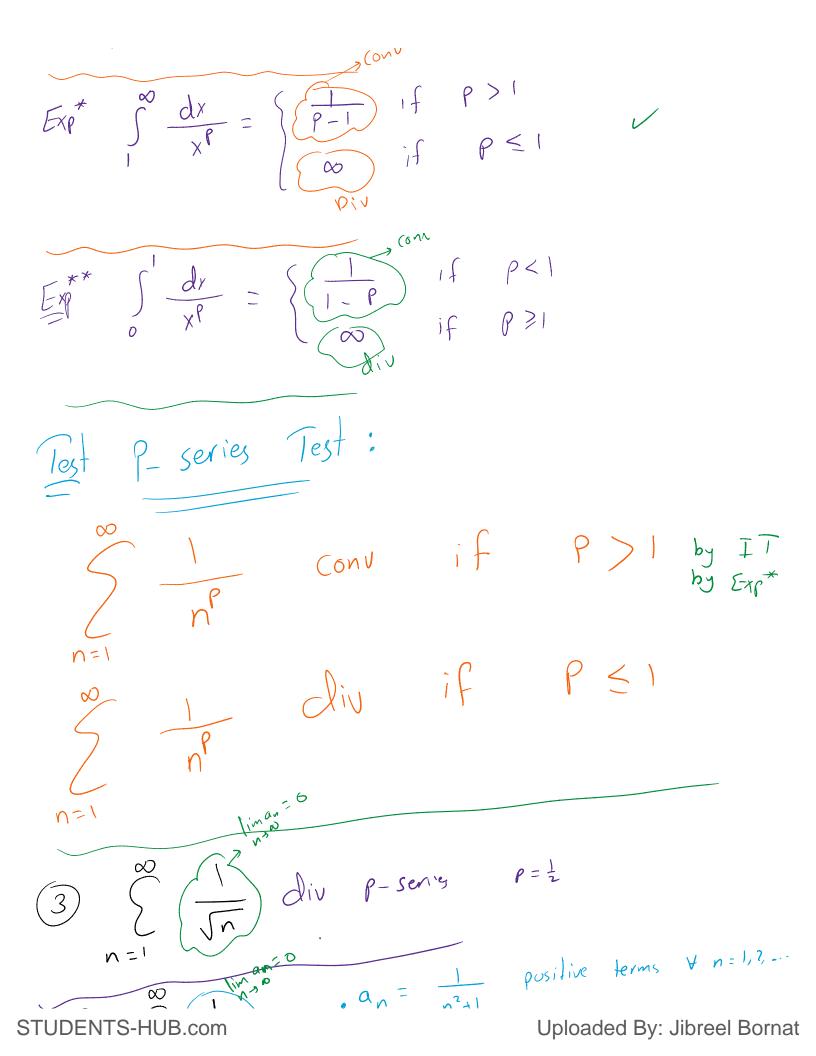
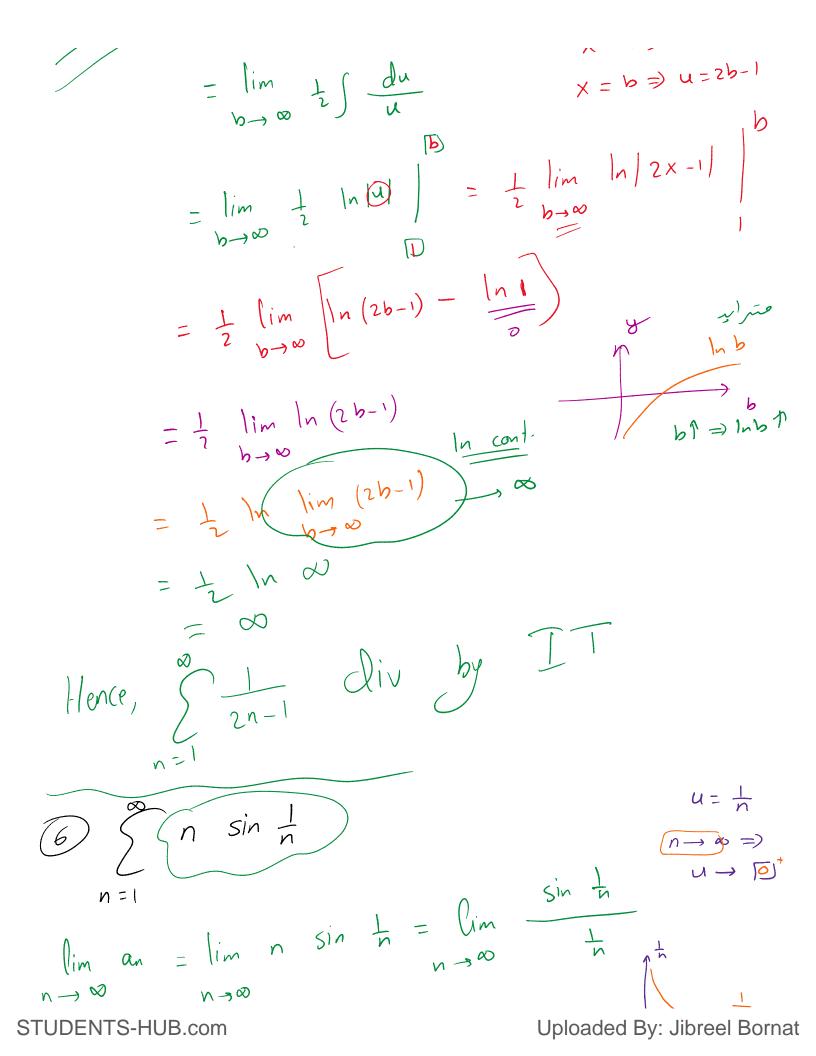
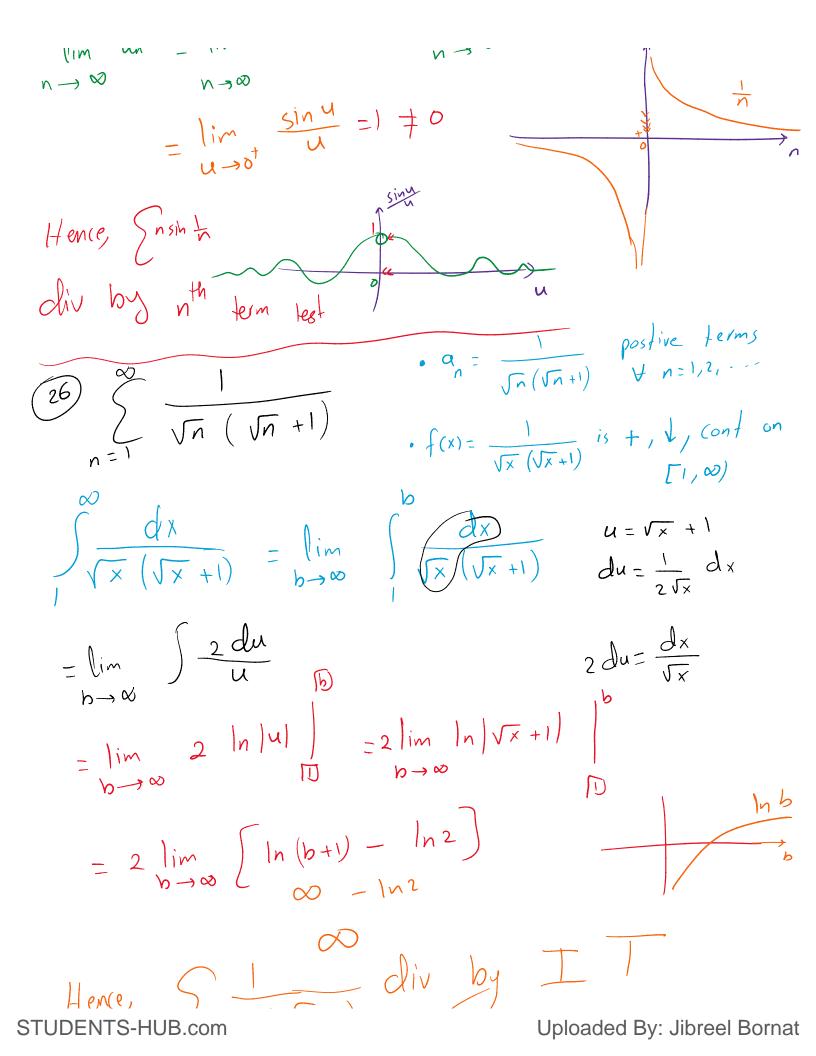
The sum into the following series conv. / Div) ID
$$\begin{pmatrix} a_{n} \\ a_{n} \\ a_{n-1} \end{pmatrix}$$

Consider $\begin{pmatrix} a_{n} \\ a_{n} \end{pmatrix}$, where $\begin{pmatrix} a_{n-1} \\ a_{n-1} \end{pmatrix}$
 $\therefore a_{n} = f(n)$ is cont. $f(x) + f(x) = \frac{1}{n^{2}}$ on $E(x) = \infty$
Then $\sum_{n=K}^{\infty} a_{n}$ and $\int_{x}^{\infty} f(x) dx$ both $(a_{n} v)$. or b_{n-K} $\int_{x}^{\infty} b_{n-1} dx$
 $= \frac{1}{n^{2}} positive term \forall n = 1,7,1...$
 $(1) \sum_{n=1}^{\infty} \frac{1}{n^{2}} = \frac{1}{n^{2}} = \frac{1}{n} = 1$ Have $\sum_{n=1}^{\infty} \frac{1}{n^{2}} c_{n}(t_{n})$
 $\int_{x}^{\infty} \frac{1}{y^{2}} dx = \frac{1}{n^{2}} = \frac{1}{1} = 1$ Have $\sum_{n=1}^{\infty} \frac{1}{n^{2}} c_{n}(t_{n})$
 $(2) \sum_{n=1}^{\infty} \frac{1}{n^{3}} c_{n-1} b_{2} \prod$
STUDENTS-HUB.com $(2 - 1)$ $(2 - 1$







Hence, SI (Vin+1) div by I 1 n tan In Apply not term Test 34/ tan (1 n=1 an I Flimnt im an tanu 0 0 Rim <u>Sec</u> 4 = $\sec^2 \circ = \frac{1}{2}$ -2 = 1 Sn tan in div by nth term test. Hen() 122 IT to check Conv/Div Use an = In n° postive term Inn $f(x) = \frac{\ln x^2}{X}$ possibile on $[z, \omega)$ X conf. on $[z, \omega)$ $f(x) = \frac{x(2\frac{1}{x}) - \ln x^2}{2} - \frac{2 - \ln x^2}{x^2}$

Hence
$$\sum_{n=2}^{\infty} \frac{\ln n^2}{n} = \ln 2 + \sum_{n=3}^{\infty} \frac{\ln n^2}{n} \frac{\ln 2}{\ln n}$$

 $= \ln 2 \pm \infty$