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CHAPTER 13 ANALYSIS OF VARIANCE AND EXPERIMENTAL DESIGN

Learning objectives

After reading this chapter and doing the exercises, you should be able to:

Understand how the analysis of variance procedure

can be used to determine if the means of more
than two populations are equal.

Know the assumptions necessary to use the
analysis of variance procedure,

Understand the use of the F distribution in
performing the analysis of variance procedure.

Know how to set up an ANOVA table and
interpret the entries in the table.

Use output from computer software packages to
solve analysis of variance problems.

Know how to use Fisher's least significant
difference (LSD) procedure and Fisher’s LSD
with the Bonferroni adjustment to conduct

statistical comparisons between pairs of
population means.

Understand the difference between a completely
randomized design, a randomized block design and
factorial experiments.

Know the definition of the following terms:

comparisonwise Type | error rate
experimentwise Type | error rate
factor

level

treatment

partitioning

blocking

main effect

interaction

replication

In this chapter we introduce a statistical procedure called analysis of variance (ANOVA).

statistics in Practice

AN INTRODUCTION TO ANALYSIS OF VARIANCE

Product customization and manufacturing trade-offs

e analysis of variance technique was used recently
-I-::I a study to investigate trade-offs between product
customization and other manufacturing priorities. A total of
|02 UK manufacturers from eight industrial sectors were
involved in the research. Three levels of customization were

Interior of a car manufacturing plant. © Gearge Clerk.

considered: full customization where customer input was
incorporated at the product design or fabrication stages;
partial customization with customer input incorporated into
product assembly or delivery stages and standard products
which did not incorporate any customer input at all.

The impact of customization was considered against
four competitive imperatives — cost, quality, delivery and
volume flexibility.

It was found that customization had a significant effect
on delivery (bath in terms of speed and lead times); also

© on manufacturer's costs (though not design, component,

delivery and servicing costs).

The findings suggest that customization is not cost-
free and that the advent of mass customization is unlikely
to see the end of trade-offs with other key priorities.

Source: Squire, B., Brown, S, Readman, |. and Bessant |. (2005) The impact of mass
customization on manufacturing trade-offs. Production and Operations Management
Journal 15(1) 1021

13.1 An introduction to analysis of variance

First, we show how ANOVA can be used to test for the equality of three or more
population means using data obtained from an observational study. Then, we discuss the
use of ANOVA for analyzing data obtained from three types of experimental studies: a
completely randomized design, a randomized block design and a factorial experiment. In
the following chapters we will see that ANOVA plays a key role in analyzing the resulis
of regression analysis involving both experimental and observational data.

-

National Computer Products (NCP) manufactures printers and fax machines at plants
located in Ayr, Dusseldorf and Stockholm. To measure how much employees at these plants
know about total quality management, a random sample of six employees was selected from
each plant and given a quality awareness examination. The examination scores obtained for
these 18 employees are listed in Table 13.1. The sample means, sample variances and sam-
ple standard deviations for each group are also provided. Managers want to use these data to
test the hypothesis that the mean examination score is the same for all three plants.

We will define population 1 as all employees at the Ayr plant, population 2 as all employ-
ees at the Dusseldorf plant, and population 3 as all employees at the Stockholm plant. Let

4, = mean examination score for population 1

4, = mean examination score for population 2
U, = mean examination score for population 3
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Although we will never know the actual values of u, (4, and f,, we want to use the sam-
ple results to test the following hypotheses.

Hy = = 1,
H : Not all population means are equal

As we will demonstrate shortly, analysis of variance is a statistical procedure that can be

used to determine whether the observed differences in the three sample means are large
enough to reject H.

Examination scores for 18 employees

Observation . Plant | Ayr Plant 2 Dusseldorf Plant 3 Stockholm
\ 85 71 59

2 75 5 64

3 82 i3 62

4 76 74 69

5 71 69 78

6 85 82 67

Sample mean i 74 66

Sample variance 34 20 32

Sample standard deviation 5.83 447 5.66
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CHAPTER 13 ANALYSIS OF VARIANCE AND EXPERIMENTAL DESIGN

In the introduction to this chapter we stated that analysis of variance can be used tq
analyse data obtained from both an observational study and an experimental study.

To provide a common set of terminology for discussing the use of analysis of variance
in both types of studies, we introduce the concepts of a response variable, a factor ang
a treatment.

The two variables in the NCP example are plant location and score on the quality
awareness examination. Because the objective is to determine whether the mean exami-
nation score is the same for plants located in Ayr, Dusseldorf and Stockholm, examina-
tion score is referred to as the dependent or response variable and plant location as the
independent variable or factor. In general, the values of a factor selected for investigation
are referred to as levels of the factor or trearments. Thus, in the NCP example the three
treatments are Ayr, Dusseldorf and Stockholm. These three treatments define the popu-
lations of interest in the NCP example. For each treatment or population, the response
variable is the examination score.

Assumptions for analysis of variance
Three assumptions are required to use analysis of variance.

I For each population, the response variable is normally distributed.
Implication: In the NCP example, the examination scores (response variable) must
be normally distributed at each plant.

2 The variance of the response variable, denoted ¢?, is the same for all of the
populations. Implication: In the NCP example, the variance of examination scores
must be the same for all three plants.

3 The observations must be independent. Implication: In the NCP example, the
examination score for each employee must be independent of the examination
score for any other employee.

A conceptual overview

If the means for the three populations are equal, we would expect the three sample
means to be close together. In fact, the closer the three sample means are to one another,
the more evidence we have for the conclusion that the population means are equal.
Alternatively, the more the sample means differ, the more evidence we have for the con-
clusion that the population means are not equal. In other words, if the variability among
the sample means is ‘small’, it supports H_; if the variability among the sample means is
‘large’, it supports H. .

If the null hypothesis, H: pt, = u, = p, is true, we can use the variability among the
sample means to develop an estimate of o2, First, note that if the assumptions for analysis
of variance are satisfied, each sample will have come from the same normal distribution
with mean g and variance o2 Recall from Chapter 7 that the sampling distribution of
the sample mean for a simple random sample of size n from a normal population will
be normally distributed with mean g and variance ¢”/n. Figure 13.1 illustrates such a
sampling distribution.

Therefore, if the null hypothesis is true, we can think of each of the three sample
means, X, = 79, X, = 74, and x, = 66, from Table 13.1 as values drawn at random
from the sampling distribution shown in Figure 13.1. In this case, the mean and vari-
ance of the three values can be used to estimate the mean and variance of the sam-
pling distribution. When the sample sizes are equal, as in the NCP example, the best
estimate of the mean of the sampling distribution of X is the mean or average of the
sample means. Thus, in the NCP example, an estimate of the mean of the sampling
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Sample means are ‘close
together’ because there is only
one sampling distribution
when H, is true

. ]

distribution of X is (79 + 74 + 66)/3 = 73. We refer to this estimate as the overall
sample mean. An estimate of the variance of the sampling distribution of X, o? is
provided by the variance of the three sample means.

_ (79 — T3P + (74 — T3) + (66 — T3)* _ 36

52 = 5
§—1] 2

X

=43

Because 02 = ¢/ n, solving for o~ gives
0* = no?
Hence,
Estimate of o? = n (Estimate of ¢3) = ns2 = 6(43) = 258

The result, nsz = 258, is referred to as the between-treatments estimate of o~.

The between-treatments estimate of ¢ is based on the assumption that the null
hypothesis is true. In this case, each sample comes from the same population, and
there is only one sampling distribution of X. To illustrate what happens when H,is
false, suppose the population means all differ. Note that because the three samples
are from normal populations with different means, they will result in three different
sampling distributions. Figure 13.2 shows that in this case, the sample means are not
as close together as they were when H, was true. Thus, s2 will be larger, causing the
between-treatments estimate of ¢ to be larger. In general, when the population means
are not equal, the between-treatments estimate will overestimate the population vari-
ance o

The variation within each of the samples also has an effect on the conclusion we reach
in analysis of variance. When a simple random sample is selected from each population,
each of the sample variances provides an unbiased estimate of o°. Hence, we can com-
bine or pool the individual estimates of ¢ into one overall estimate. The estimate of ¢*
obtained in this way is called the pooled or within-treatments estimate of o> Because
each sample variance provides an estimate of o based only on the variation within each
sample, the within-treatments estimate of ¢ is not affected by whether the population
means are equal.
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X3 1“3 Hz  Xo Xy M

Sample means come from
different sampling distributions
and are not as close together when
H, is false

|

When the sample sizes are equal, the within-treatments estimate of 6” can be obtained by
computing the average of the individual sample variances. For the NCP example we obtain

In the NCP example, the between-treatments estimate of ¢ (258) is much larger than
the within-treatments estimate of o (28.67). In fact, the ratio of these two estimates is
258/28.67 = 9.00. Recall, however, that the between-treatments approach provides a good
estimate of ¢ only if the null hypothesis is true; if the null hypothesis is false, the between
treatments approach overestimates ¢”. The within-treatments approach provides a good esti-
mate of 07 in either case. Thus, if the null hypothesis is true, the two estimates will be similar
and their ratio will be close to 1. If the null hypothesis is false, the between-treatments esti-
mate will be larger than the within-treatments estimate, and their ratio will be large. In the
next section we will show how large this ratio must be to reject H,.

In summary, the logic behind ANOVA is based on the development of two independ-
ent estimates of the common population variance o2 One estimate of ¢? is based on the
variability among the sample means themselves, and the other estimate of ¢ is based on
the variability of the data within each sample. By comparing these two estimates of o2,
we will be able to determine whether the population means are equal.

13.2 Analysis of variance: testing for the equality of

population means

Analysis of variance can be used to test for the equality of k population means. The gen-
eral form of the hypotheses tested is

HU:'U'I=#2:"':#J¢
H : Not all population means are equal

where

M; = mean of the jth population
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We assume that a simple random sample of size 1, has been selected from each of the
k populations or treatments. For the resulting sample data, let

x, = value of observation i for treatment j

n. = number of observations for treatment j
X = sample mean for treatment j

s, = sample variance for treatment j

s, = sample standard deviation for treatment j

s

(S5

The formulae for the sample mean and sample variance for treatment j are as
follows.

Testing for the Equality of k Population means sample mean for Treatment j

n
bz
i
=

= (13.1)

1

Sample Variance for Treatment j

2.0, = %7

i=1

GF e (13.2)
i n = |

The overall sample mean, denoted X, is the sum of all the observations divided by the total
number of observations. That is,

Overall Sample Mean

(13.3)
where

(13.4)

If the size of each sample is n, n, = kn; in this case equation (13.3) reduces to

k HJ. k ”j k
3. L 3um S
gt el _f:E‘;:‘l __J.:‘l

i = = : 13.5
* T X k (12:5)

In other words, whenever the sample sizes are the same, the overall sample mean is just
the average of the k sample means.

Because each sample in the NCP example consists of n = 6 observations, the overall
sample mean can be computed by using equation (13.5). For the data in Table 13.1 we
obtained the following result.

= _ 79+ 74+ 66 _

3
x 3 7

Uploaded By: anonymous




I CHAPTER 13 ANALYSIS OF VARIANCE AND EXPERIMENTAL DESIGN

If the null hypothesis is true (1, = w, = y, = ), the overall sample mean of 73 is the
best estimate of the population mean /&

Between-treatments estimate of population variance

In the preceding section, we introduced the concept of a between-treatments estimate of
o? and showed how to compute it when the sample sizes were equal. This estimate of g2
is called the mean square due to treatments and is denoted MSTR. The general formula
for computing MSTR 1is

k
2o, —
MSTR =" 13,
S P (13.6)

The numerator in equation (13.6) is called the sum of squares due to treatments and is
denoted SSTR. The denominator, k — 1, represents the degrees of freedom associated
with SSTR. Hence, the mean square due to treatments can be computed by the following
formula.

Mean square due to treatments

SSTR
MSTR = T (13.7)

where

SSTR:Z@@—W (13.8)

If H, is true, MSTR provides an unbiased estimate of o?. However, if the means of the k&
populations are not equal, MSTR is not an unbiased estimate of ¢?; in fact, in that case,
MSTR should overestimate 2.

For the NCP data in Table 13.1, we obtain the following results.

k

SSTR = z n, (X, — X)) = 6(79 — 73)* + 6(74 — 73)* + 6(66 — 73)* = 516 °

i=1

MSTR = —— = — = 258

Within-treatments estimate of population variance .

Earlier, we introduced the concept of a within-treatments estimate of ¢ and showed how
to compute it when the sample sizes were equal. This estimate of o is called the mean
square due to error and is denoted MSE. The general formula for computing MSE is

k
2 - s
p=il

MSE = ———— 13.9
—— (13.9)

T
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The numerator in equation (13.9) is called the sum of squares due to error and is denoted
SSE. The denominator of MSE is referred to as the degrees of freedom associated with
SSE. Hence, the formula for MSE can also be stated as follows.

Mean square due to error

SSE
MSE=—— (13.10)

where

SSE = 2. (0, — 1)5? (13.11)
ji=1

Note that MSE is based on the variation within each of the treatments; it is not influenced
by whether the null hypothesis is true. Thus, MSE always provides an unbiased estimate
of o

For the NCP data in Table 13.1 we obtain the following results.

k
SSE = Z (n,— s} = (6 —1)34 + (6 — 1)20 + (6 — 1)32 = 430
i=1 ‘

SSE _ 430 _ 430 _ ¢ -

n—k 18—-3 15

T

MSE =

Comparing the variance estimates: the F test

If the null hypothesis is true, MSTR and MSE provide two independent, unbiased
estimates of o?. Based on the material covered in Chapter 11 we know that for normal
populations, the sampling distribution of the ratio of two independent estimates of ¢ fol-
lows an £ distribution. Hence, if the null hypothesis is true and the ANOV A assumptions
are valid, the sampling distribution of MSTR/MSE is an F distribution with numerator
degrees of freedom equal to & — 1 and denominator degrees of freedom equal to n,, — k.
In other words, if the null hypothesis is true, the value of MSTR/MSE should appear to
have been selected from this /' distribution.

However, if the null hypothesis is false the value of MSTR/MSE will be inflated
because MSTR overestimates ¢°. Hence, we will reject H, if the resulting value of
MSTR/MSE appears to be too large to have been selected from an F distribution with
k — 1 numerator degrees of freedom and n, — k denominator degrees of freedom.

Because the decision to reject H is based on the value of MSTR/MSE, the test statistic
used to test for the equality of k population means is as follows.

Test statistic for the equality of k population means
- HSTR
~ MSE

The test statistic follows an F distribution with k — | degrees of freedom in the numerator and
n, — k degrees of freedom in the depominator.

(13.12)
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Returning to the National Computer Products example we use a level of significance
o = 0.05 to conduct the hypothesis test. The value of the test statistic is

_MSTR _ 258 _
MSE 28.67

F

The numerator degrees of freedom is k — 1 =3 — 1 = 2 and the denominator degrees of
freedomis n, — k = 18 — 3 = 15. Because we will only reject the null hypothesis for large
values of the test statistic, the p-value is the upper tail area of the F distribution to the right of
the test statistic F* = 9. Figure 13.3 shows the sampling distribution of F = MSTR/MSE, the
value of the test statistic, and the upper tail area that is the p-value for the hypothesis test.

From Table 4 of Appendix B we find the following areas in the upper tail of an F distribu-
tion with two numerator degrees of freedom and 15 denominator degrees of freedom.

Area in upper tail 0.10 0.05 0.025 0.0l

Fvalue (df, = 2, df, = I5) 270 3.68 AT 6.36

Because F' = 9 is greater than 6.36, the area in the upper tail at F = 9 is less than 0.01.
Thus, the p-value is less than 0.01. With a p-value = a = 0.05, H, is rejected. The test
provides sufficient evidence to conclude that the means of the three populations are not
equal. In other words, analysis of variance supports the conclusion that the population
mean examination scores at the three NCP plants are not equal.

Because the F table only provides values for upper tail areas of 0.10, 0.05, 0.025 and
0.01, we cannot determine the exact p-value directly from the table. MINITAB, EXCEL
or PASW provide the p-value as part of the standard ANOVA output. The software
section at the end of the chapter shows the procedures that can be used. For the NCP
example, the exact p-value corresponding to the test statistic F = 9 is (0.003.

As with other hypothesis testing procedures, the critical value approach may also be
used. With & = 0.05, the critical F value occurs with an area of 0.05 in the upper tail of
an F distribution with 2 and 15 degrees of freedom. From the F distribution table, we find
F,,s = 3.68. Hence, the appropriate upper tail rejection rule for the NCP example is

Reject H if F = 3.68

Sampling distribution
of MSTR/MSE

p-value

F=900 MSTR/MSE }

STUDENTS-HUB.com

ANALYSIS OF VARIANCE: TESTING FOR THE EQUALITY OF k POPULATION MEANS

With F = 9, we reject H and conclude that the means of the three populations are not
equal. A summary of the overall procedure for testing for the equality of k population
means follows.

Test for the equality of k population means
Hith =ty =...=fh

H,: Not all population means are equal
Test statistic
_ MSTR
MSE

Rejection rule

p-value approach: Reject H, if p-value = o

Critical value approach: Reject H, if F = F_
where the value of F_is based on an F distribution with k — | numerater degrees of freedom and
n, — k denominator degrees of freedom

ANOVA table

The results of the preceding calculations can be displayed conveniently in a table referred to
as the analysis of variance or ANOVA table. Table 13.2 is the analysis of variance table for
the National Computer Products example. The sum of squares associated with the source of
variation referred to as ‘total’ is called the total sum of squares (SST). Note that the results
for the NCP example suggest that SST = SSTR + SSE, and that the degrees of freedom
associated with this total sum of squares is the sum of the degrees of freedom associated with
the between-treatments estimate of ¢ and the within-treatments estimate of o”.

We point out that SST divided by its degrees of freedom n, — I is nothing more
than the overall sample variance that would be obtained if we treated the entire set of
18 observations as one data set. With the entire data set as one sample, the formula for
computing the total sum of squares, SST, is

Total sum of squares

3]

gy Z,(xﬁ—;?)l (13.13)

It can be shown that the results we observed for the analysis of variance table for the
NCP example also apply to other problems. That is,

Partitioning of sum of squares

SST = SSTR + SSE (13.14)
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CHAPTER 13 ANALYSIS OF VARIANCE AND EXPERIMENTAL DESIGN

Source of variation Degrees of freedom Sum of squares Mean square
Treatments 2 516 258.00
Error [5 430 28.67
Total |7 946

In other words, SST can be partitioned into two sums of squares: the sum of squares dye
to treatments and the sum of squares due to error. Note also that the degrees of freedom
corresponding to SST, n, — 1, can be partitioned into the degrees of freedom correspond-
ing to SSTR, k — 1, and the degrees of freedom corresponding to SSE, n, — k. The analy-
sis of variance can be viewed as the process of partitioning the total sum of squares and
the degrees of freedom into their corresponding sources: treatments and error. Dividing
the sum of squares by the appropriate degrees of freedom provides the variance estimates
and the F value used to test the hypothesis of equal population means.

Computer results for analysis of variance

Because of the widespread availability of statistical computer packages, analysis of
variance computations with large sample sizes or a large number of populations can be
performed easily. In Figure 13.4 we show output for the NCP example obtained from the
MINITAB computer package. The first part of the computer output contains the familiar
ANOVA table format. Comparing Figure 13.4 with Table 13.2, we see that the same
information is available, although some of the headings are slightly different. The head-
ing Source is used for the source of variation column, and Factor identifies the treatments
row. A p-value is provided for the F test. Thus, at the & = 0.05 level of significance, we
reject H, because the p value = 0.003 < o = 0.05.

One-way ANOVA: Ayr, Dusseldorf, Stockholm

DF 55 M3 F P
Z 516.0 258.0 9.00 0.003
15 430.0  28.7 .
17 946.0 N

5.354 R-3g = 54.55% R-Sqladi) = 43.48% '

Individual 95% CIs For Mean Based on
Pooled 3tDew ‘

Level N Mean Sthev ---————- Fomm e m— o e +- :

Lyr 6 79.000 5,831 A e ) J

Dusseldorf 6 74.000 4,472 — . P et M | \
Gtockholm 6 66.000 5,657 ([--————- [ ]

———————— e Tttt S |

6.0 F2.0 75.0 gd.0 I

Fooled 5tDev = 5,354
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Note that following the ANOVA table the computer output contains the respective sample
sizes, the sample means, and the standard deviations. In addition, MINITAB provides a figure
that shows individual 95 per cent confidence interval estimates of each population mean.

In developing these confidence interval estimates, MINITAB uses MSE as the estimate
of ¢° Thus, the square root of MSE provides the best estimate of the population standard
deviation . This estimate of ¢ on the computer output is Pooled StDev: it is equal to 5.354.
To provide an illustration of how these interval estimates are developed, we will compute a
95 per cent confidence interval estimate of the population mean for the Ayr plant.

From our study of interval estimation in Chapter 8, we know that the general form of
an interval estimate of a population mean is

s
r.w’2 ﬁ

X ot

(13.15)

where s is the estimate of the population standard deviation o. In the analysis of vari-
ance the best estimate of o is provided by the square root of MSE or the Pooled StDev,
therefore we use a value of 5.354 for s in expression (13.15). The degrees of freedom for
the 7 value is 15, the degrees of freedom associated with the within-treatments estimate
of 0. Hence, with #, ,. = 2.131 we obtain

5.354
79 £ 2131 == =79 * 4.66
V6

Therefore, the individual 95 per cent confidence interval for the Ayr plant goes from
79 — 4.66 = 74.34 to 79 + 4.66 = 83.66. Because the sample sizes are equal for the
NCP example, the individual confidence intervals for the Dusseldorf and Stockholm
plants are also constructed by adding and subtracting 4.66 from each sample mean.
Thus, in the figure provided by MINITAB we see that the widths of the confidence
intervals are the same.

Exercises

Methods

I Five observations were selected from each of three populations. The data obtained follow.

Observation Sample | Sample 2 Sample 3
I 32 44 : 33
2 30 43 36
3 30 4 35
4 26 46 36
5 32 48 40
Sample mean 30 45 36
Sample variance 6.00 4.00 6.50

a. Compute the between-treatments estimate of o,
b. Compute the within-treatments estimate of g,
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c. Atthe &= 0.05 level of significance, can we reject the null hypothesis that the means of
the three populations are equal?
d. Set up the ANOVA table for this problem.

Four observations were selected from each of three populations. The data obtained
follow.

Observation Sample | Sample 2 Sample 3
I |65 |74 169

7l 149 |64 B4

3 156 180 161

4 142 158 148
Sample mean 153 |69 158
Sample variance 96.67 97.33 82.00

a. Compute the between-treatments estimate of o

b. Compute the within-treatments estimate of o

c. Atthe a = 0.05 level of significance, can we reject the null hypothesis that the three
population means are equal? Explain.

d. Set up the ANOVA table for this problem.

Samples were selected from three populations. The data obtained follow.

Sample | Sample 2 Sample 3
93 77 88
98 87 Vs
107 84 73
102 95 84
85 o 82
%, 100 85 79
s? 3533 3560 43.50

a. Compute the between-treatments estimate of o2

b. Compute the within-treatments estimate of o2

c. Atthe o= 0.05 level of significance, can we reject the null hypothesis that the three
population means are equal? Explain.

d. Set up the ANOVA table for this problem.

-

A random sample of |6 observations was selected from each of four populations. A portion
of the ANOVA table follows.

Source of Degrees of Sumof Mean
variation freedom squares square F
Treatments 400

Error

Total 1500
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a. Provide the missing entries for the ANOVA table.
b. Atthe e = 0.05 level of significance, can we reject the null hypothesis that the means of
the four populations are equal?

Random samples of 25 observations were selected from each of three populations. For these
data, SSTR = 120 and SSE = 216.

a. Set up the ANOVA table for this problem.
b, Atthe a = 0,05 level of significance, can we reject the null hypothesis that the three
population means are equal?

Applications

To test whether the mean time needed to mix a batch of material is the same for machines
produced by three manufacturers, the Jacobs Chemical Company obtained the following
data on the time (in minutes) needed to mix the material. Use these data to test whether
the population mean times for mixing a batch of material differ for the three manufacturers,
Use a¢ = 0.05.

Manufacturer

I 2 3
20 28 20
26 26 |2
24 3 23
2 S

Managers at all levels of an organization need adequate information to perform their
respective tasks. One study investigated the effect the source has on the dissemination of
information. In this particular study the sources of information were a superior, a peer and

a subordinate. In each case, a measure of dissemination was obtained, with higher values
indicating greater dissernination of information. Use e = 0.05 and the following data to test
whether the source of information significantly affects dissemination. What is your conclusion,
and what does it suggest about the use and dissemination of information?

Superior  Peer  Subordinate

8 6 6

won =~ Oy O b
O~ oA W N o
o~ bW M~ LN

A study investigated the perception of corporate ethical values among individuals specializing
in marketing. Use e = 0.05 and the following data (higher scores indicate higher ethical
values) to test for significant differences in perception among the three groups.
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Marketing Marketing 5 Small ships Medium ships Large ships
managers research Advertising Name Rating Name Rating Name Rating
g 5 ? Hanseactic 90.5 Amsterdam 9.1 Century 892
: Z . Mississippi 782 Crystal 289 Disney 902
; ) : Queen Symphony Wonder
y : " Philae 923 Maasdam 94.2 Enchantment
: : . of the Seas 859
Royal Clipper 95.7 Noordam 843 Grand Princess 842
Seabourn 4 Royal 84.8 Infinity 902
STHESS 9 A study reported in the Journal of Small Business Management concluded that self-employed Pride Princess
individuals experience higher job stress than individuals who are not self-employed. In this Seabourn [00.0 Ryndam 89.2 Legend of the 80.6
study job stress was assessed with a | 5-item scale designed to measure various aspects of Spirit Seas
ambiguity and rolg conflict. Ratings for each of the |5 items Were.made using a scale with Silver Cloud 9|8 Statendam 86.4 Paradise 758
|-5 response options ranging from strong agreement to strong disagreement. The sum of il i 950 v & :
the ratings for the |5 itemns for each individual surveyed is between |5 and 75, with higher L ' eendam 883 Sun Princess 82.3
valules mdicating' a higher degree OfJ'C_‘b stress. Suppose that a simi]ar. approach, u;ing o Use & = 0.05 to test for any significant difference in the mean service ratings among the
20-item scale with |5 response options, was used to measure the job stress of individuals three sizes of cruise ships.
for 15 randomly selected property agents, |5 architects and |5 stockbrokers. The results
obtained follow.
Property agent Architect Stockbroker
8| 43 65 13.3 Multiple comparison procedures
48 63 48
68 60 57 . .
% - o When we use analysis of variance to test whether the means of & populations are equal,
o - 70 rejection of the null hypothesis allows us to conclude only that the population means
A - &7 are not all equal. In some cases we will want to go a step further and determine where
- 68 83 the differences among means occur. The purpose of this section is to introduce two
- o7 75 multiple comparison procedures that can be used to conduct statistical comparisons
5 ‘ 5 between pairs of population means.
65 80 71
64 50 54
69 37 72 Fisher’s LSD
83 73 65 : '
- a4 cg Suppose that analysis of variance provides statistical evidence to reject the null
< 53 5g hypothesis of equal population means. In this case, Fisher’'s least significant dif-

ference (LSD) procedure can be used to determine where the differences occur. To
illustrate the use of Fisher’s LSD procedure in making pairwise comparisons of popu-
Use & = 0.05 to test for any significant difference in job stress ameng the three professions. lation means, recall the NCP example introduced in Section 13.1. Using analysis of
variance, we concluded that the population mean examination scores are not the same
at the three plants. In this case, the follow-up question is: We believe the plants dif-
fer, but where do the differences occur? That is, do the means of populations 1 and 2
differ? Or those of populations 1 and 37 Or those of populations 2 and 37
In Chapter 10 we presented a statistical procedure for testing the hypothesis that
the means of two populations are equal. With a slight modification in how we esti-
mate the population variance, Fisher’s LSD procedure is based on the 7 test statistic
presented for the two-population case. The following table summarizes Fisher’s LSD
procedure.

10 Condé Nast Traveler conducts an annual survey in which readers rate their favourite cruise
ships. Ratings are provided for small ships (carrying up to 500 passengers), medium ships
(carrying 500 to |500 passengers) and large ships (carrying a minimum of 1500 passengers).
The following data show the service ratings for eight randomly selected small ships, eight
randomly selected medium ships and eight randomly selected large ships. All ships are
rated on a | 00-paint scale, with higher values indicating better service (Condé Nast Traveler,
February 2003).

STUDENTS-HUB.com Uploaded By: anonymous




l CHAPTER 13 ANALYSIS OF VARIANCE AND EXPERIMENTAL DESIGN

Fisher’s LSD Procedure

Hobh = i
Him =+ M

Test statistic for Fisher’s LSD procedure

=%
i i

fm— (13.16)

e A
MSE( 5+ 77

Rejection rule

p-value approach: Reject H, if p-value = a
Critical value approach: Reject H, ift =< —t ort=t_,
where the value of t_ is based on a t distribution with n. — k degrees of freedom.

Let us now apply this procedure to determine whether there is a significant difference
between the means of population 1 (Ayr) and population 2 (Dusseldorf) at the & = 0.05
level of significance. Table 13.1 shows that the sample mean is 79 for the Ayr plant and
74 for the Dusseldorf plant. Table 13.2 shows that the value of MSE is 28.67; it is the
estimate of ¢? and is based on 15 degrees of freedom. For the NCP data the value of the
test statistic is

1,1
28.67—+ —
8 (6 6)

The ¢ distribution table (Table 2 in Appendix B) shows that with 15 degrees of free-
dom 7 = 1.341 for an area of 0.10 in the upper tail and ¢+ = 1.753 for an area of 0.05
in the upper tail. Because the test statistic 1 = 1.62 is between 1.341 and 1.753, we
know that the area in the upper tail must be between 0.05 and 0.10. Because this test is
a two-tailed test, we double these values to conclude that the p-value is between (.10
and 0.20. MINITAB or EXCEL can be used to show that the p-value corresponding to
= 1.621is 0.1261. Because the p-value is greater than o = 0.03, we cannot reject the null
hypothesis. Hence, we cannot conclude that the population mean score at the Ayr plant
is different from the population mean score at the Dusseldorf plant.
Many practitioners find it easier to determine how large the difference between the
sample means must be to reject A In this case the test statistic is X, — X, and the test is
conducted by the following procedure.

Fisher’s LSD procedure based on the test statistic X, — X,

Hy b — 1
He b # 1,

Test statistic
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Rejection rule at a level of significance o
Reject Hy if [x — X| > LSD

where
I I

feEiet Msg(Hi " E) (13.17)

For the NCP example the value of LSD is

LSD = 2.131 28.67(% + %) =6.59

Note that when the sample sizes are equal, only one value for LSD is computed. In such
cases we can simply compare the magnitude of the difference between any two sample
means with the value of LSD. For example, the difference between the sample means for
population 1 (Ayr) and population 3 (Stockholm) is 79 — 66 = 13. This difference is greater
than 6.59, which means we can reject the null hypothesis that the population mean examina-
tion score for the Ayr plant is equal to the population mean score for the Stockholm plant.

Similarly, with the difference between the sample means for populations 2 and 3 of
74 — 66 = 8 > 6.59, we can also reject the hypothesis that the population mean exami-
nation score for the Dusseldorf plant is equal to the population mean examination score
for the Stockholm plant. In effect, our conclusion is that the Ayr and Dusseldorf plants
both differ from the Stockholm plant.

Fisher’s LSD can also be used to develop a confidence interval estimate of the differ-
ence between the means of two populations. The general procedure follows.

Confidence interval estimate of the difference between two Population means using
Fisher’s LSD procedure

X, — X * LSD (13.18)
where
LSD = £, MSE[- + 1 (13.19)
i J
andt , is based on a 7 distribution with n, — k degrees of freedom. If the confidence inter-

val in expression (13.18) includes the value zero, we cannot reject the hypothesis that the
two population means are equal. However, if the confidence interval does not include the
value zero, we conclude that there is a difference between the population means. For the
NCP example, recall that LSD = 6.59 (corresponding to 7, .. = 2.131). Thus, a 95 per
cent confidence interval estimate of the difference between the means of populations 1
and 2is 79 — 74 + 6.59 = 5 £ 6.59 = — 1.59 to 11.59; because this interval includes
zero, we cannot reject the hypothesis that the two population means are equal.

Type | error rates

We began the discussion of Fisher’s LSD procedure with the premise that analysis of
variance gave us statistical evidence to reject the null hypothesis of equal population
means.
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We showed how Fisher’s LSD procedure can be used in such cases to determine where the
differences occur. Technically, it is referred to as a protected or restricted LSD test becauge
itis employed only if we first find a significant F value by using analysis of variance,

To see why this distinction is important in multiple comparison tests, we need to
explain the difference between a comparisonwise Type 1 error rate and an experimen;.
wise Type I error rate.

In the NCP example we used Fisher’s LSD procedure to make three pairwise
comparisons.

Test | Test 2 Test 3

Fos =, Hip=p  Him=p
Heg#4  Hem#p  Hep#

In each case, we used a level of significance of oz = 0.05. Therefore, for each test, if the
null hypothesis is true, the probability that we will make a Type I error is & = 0.05; hence,
the probability that we will not make a Type I error on each test is 1 — 0.05 = 0.95. In
discussing multiple comparison procedures we refer to this probability of a Type I error
(o= 0.05) as the comparisonwise Type I error rate; comparisonwise Type I error rateg
indicate the level of significance associated with a single pairwise comparison.

Let us now consider a slightly different question. What is the probability that in
making three pairwise comparisons, we will commit a Type I error on at least one of
the three tests? To answer this question, note that the probability that we will not make
a Type I error on any of the three tests is (0.95)(0.95)(0.95) = 0.8574.* Therefore, the
probability of making at least one Type I error is 1 — 0.8574 = 0.1426. Thus, when we
use Fisher’s LSD procedure to make all three pairwise comparisons, the Type I error rate
associated with this approach is not 0.05, but actually 0.1426; we refer to this error rate
as the overall or experimentwise Type I error rate. To avoid confusion, we denote the
experimentwise Type [ error rate as o,

The experimentwise Type I error rate gets larger for problems with more popula-
tions. For example, a problem with five populations has ten possible pairwise com-
parisons. If we tested all possible pairwise comparisons by using Fisher’s LSD with a
comparisonwise error rate of & = 0.05, the experimentwise Type I error rate would be
I = (1 —0.05)"° = 0.40. In such cases, practitioners look to alternatives that provide
better control over the experimentwise error rate.

One alternative for controlling the overall experimentwise error rate, referred to as the
Bonferroni adjustment, involves using a smaller comparisonwise error rate for each test, For
example, if we want to test C pairwise comparisons and want the maximum probability of
making a Type I error for the overall experiment to be ., we simply use a comparisonwise
error rate equal to ¢, /C. In the NCP example, if we want to use Fisher’s LSD procedure
to test all three pairwise comparisons with a maximum experimentwise error rate of By =
0.05, we set the comparisonwise error rate to be & = 0.05/3 = 0.017. For a problem with
five populations and ten possible pairwise comparisons, the Bonferroni adjustment would
suggest a comparisonwise error rate of 0.05/10 = 0.005. Recall from our discussion of
hypothesis testing in Chapter 9 that for a fixed sample size, any decrease in the probability
of making a Type I error will result in an increase in the probability of making a Type II
error, which corresponds to accepting the hypothesis that the two population means are

*The assumption is that the three tests are independent, and hence the joint probability of the three events
can be obtained by simply multiplying the individual probabilities. In fact, the three tests are not independ-
ent because MSE is used in each test; therefore, the error involved is even greater than that shown.
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equal when in fact they are not equal. As a result, many practitioners are reluctant to perform
individual tests with a low comparisonwise Type I error rate because of the increased risk
of making a Type II error.

Several other procedures, such as Tukey’s procedure and Duncan’s multiple range
test, have been developed to help in such situations. However, there is considerable con-
troversy in the statistical community as to which procedure is ‘best’. The truth is that no
one procedure is best for all types of problems.

Methods

Il Inexercise |, five observations were selected from each of three populations. For these data,
X, = 30,x, = 45 X, = 36 and MSE = 55. At the & = 005 level of significance, the null
hypothesis of equal population means was rejected. In the following calculations, use &t = 0.05.
a. Use Fisher's LSD procedure to test whether there is a significant difference between the
means of populations | and 2, populations | and 3, and populations 2 and 3.
b. Use Fisher's LSD procedure to develop a 95 per cent confidence interval estimate of the
difference between the means of populations | and 2.

12 Four observations were selected from each of three populations. The data obtained are
shown. In the following calculations, use ¢t = 0.05.

Sample | Sample 2 Sample 3

63 82 69

47 72 S

54 88 6l

40 66 48

X, 51 77 58
s? 96.67 ST 81.99

a. Use analysis of variance to test for a significant difference among the means of the three
populations.
b. Use Fisher's LSD procedure to see which means are different.

Applications

13 Refer to exercise 6. At the @ = 0.05 level of significance, use Fisher's LSD procedure to test
for the equality of the means for manufacturers | and 3. What conclusion can you draw after
carrying out this test?

14 Refer to exercise |3. Use Fisher's LSD procedure to develop a 95 per cent confidence
interval estimate of the difference between the means of population | and population 2.

15 Refer to exercise 8. At the ¢ = 0.05 level of significance, we can conclude that there are
differences in the perceptions for marketing managers, marketing research specialists and
advertizing specialists. Use the procedures in this section to determine where the differences
occur. Use o = 0.05.
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13.4 An introduction to experimental design

16 To test for any significant difference in the number of hours between breakdowns for four
machines, the following data were obtained,

Machine | Machine 2 Machine 3 Machine 4
64 8.7 [ 1.1 59
7.8 7.4 10.3 2.8
53 9.4 g7 2]
74 10,1 10,3 0.8
84 87 92 Il
73 9.8 8.8 hil5

a. Atthe ar = 0.05 level of significance, what is the difference, if any, in the population mean
times among the four machines?

b, Use Fisher's LSD procedure to test for the equality of the means for machines 2 and 4.
Use a 0.05 level of significance.

I7 Referto exercise 6. Use the Bonferroni adjustment to test for a significant difference between
all pairs of means. Assume that a maximum overall experimentwise error rate of 0.05 is desired,

18 Referto exercise |0. At the 0.05 level of significance, we can condude that there are
differences between the mean service ratings of small ships, medium ships, and large ships. Use
the procedures in this section to determine where the differences occur. Use o = 0.05,

Statistical studies can be classified as being either experimental or observational. In an
experimental study, variables of interest are identified. Then, one or more factors in the
study are controlled so that data can be obtained about how the factors influence the vari-
ables. In observational or non-experimental studies, no attempt is made to control the fac-
tors. A survey (see Chapter 22) is perhaps the most common type of observational study.

The NCP example that we used to introduce analysis of variance is an illustration of
an observational statistical study. To measure how much NCP employees knew about
total quality management, a random sample of six employees was selected from each of
NCP’s three plants and given a quality-awareness examination. The examination scores
for these employees were then analyzed by analysis of variance to test the hypothesis that
the population mean examination scores were equal for the three plants.

As an example of an experimental statistical study, let us consider the problem facing
the Chemietech company. Chemietech developed a new filtration system for municipal
water supplies.

The components for the new filtration system will be purchased from several suppliers,
and Chemietech will assemble the components at its plant in North Saxony. The industrial
engineering group is responsible for determining the best assembly method for the new
filtration system. After considering a variety of possible approaches, the £roup narrows
the alternatives to three: method A, method B and method C. These methods differ in the
sequence of steps used to assemble the product. Managers at Chemietech want to determine
which assembly method can produce the greatest number of filtration systems per week.

In the Chemietech experiment, assembly method is the independent variable
or factor. Because three assembly methods correspond to this factor, we say that
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three treatments are associated with this experiment; each treatment corresponds
to each of the three assembly methods. The Chemietech problem is an example of a
single-factor experiment involving a qualitative factor (method of assemply).. Other
experiments may consist of multiple factors; some factors may be qualitative and
some may be quantitative. '

The three assembly methods or treatments define the three populations of interest
for the Chemietech experiment. One population is all Chemietech employees who use
assembly method A, another is those who use method B and the third is those who
use method C. Note that for each population the dependent or response variable is the
number of filtration systems assembled per week, and the primary statistical objective of
the experiment is to determine whether the mean number of units produced per week is
the same for all three populations.

Suppose a random sample of three employees is selected from all assembly workers
at the Chemietech production facility. In experimental design temlinology., the three
randomly selected workers are the experimental units. The experimental design that we
will use for the Chemietech problem is called a completely randomized design. This
type of design requires that each of the three assembly methods or treatments be as_signed
randomly to one of the experimental units or workers. For example, method A might be
randomly assigned to the second worker, method B to the first worker and me[h?d C
to the third worker. The concept of randomization, as illustrated in this example, is an
important principle of all experimental designs. _

Note that this experiment would result in only one measurement or number of units
assembled for each treatment. To obtain additional data for each assembly method, we must
repeat or replicate the basic experimental process. Suppose, for example, that inste?td of
selecting just three workers at random we selected 15 workers and then randomly asmgngd
each of the three treatments to five of the workers. Because each method of assembly is
assigned to five workers, we say that five replicates have been obtained. The process of
replication is another important principle of experimental design. Figure 13.5 shows the
completely randomized design for the Chemietech experiment.

" Figure 13.5

Employees at the plant in
North Saxony

|

‘| Random sample of 15 employees
is selected for the experiment

I

Each of the three assembly methods
is randomly assigned to five employees

Method A Method B Method C
ny=5 n,=35 ny=5
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Data collection

Once we are satisfied with the experimental design, we proceed by collecting and &ﬂalysing
the data. In the Chemietech case, the employees would be instructed in how to perform e
assembly method assigned to them and then would begin assembling the new filtration 5Ys-
tems using that method. After this assignment and training, the number of units assembleq
by each employee during one week is as shown in Table 13.3. The sample mean number of
units produced with each of the three assembly methods is reported in the following table,

Assembly method Mean number produced
A : 62
B 66
(G 57

From these data, method B appears to result in higher production rates than either of the
other methods.

The real issue is whether the three sample means observed are different enough for us to
conclude that the means of the populations corresponding to the three methods of assembly
are different. To write this question in statistical terms, we introduce the following notation,

M, = mean number of units produced per week for method A
4, = mean number of units produced per week for method B
M, = mean number of units produced per week for method C

Although we will never know the actual values of M, M, and fi,, we want to use the sam-
ple means to test the following hypotheses.

Hep =1, = u,
H : Not all population means are equal

The problem we face in analysing data from a completely randomized experimental .

design is the same problem we faced when we first introduced analysis of variance as a
method for testing whether the means of more than two populations are equal. In the next
section we will show how analysis of variance is applied in problem situations such as
the Chemietech assembly method experiment.

Method

Observation A B €

| 58 58 48

2 64 69 57

3 55 71 59

4 66 64 47

5 67 68 49
Sample mean 62 66 52
Sample variance 275 265 31.0
Sample standard deviation 524 5.15 557
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13.5 Completely randomized designs

The hypotheses we want to test when analysing the data from a completely randomized
design are exactly the same as the general form of the hypotheses we presented in
Section 13.2.

By p = =ae = 1
H : Not all means are equal

Hence, to test for the equality of means in situations where the data are collected in a
completely randomized experimental design, we can use analysis of variance as intro-
duced in Sections 13.1 and 13.2. Recall that analysis of variance requires the calculation
of two independent estimates of the population variance o2,

Between-treatments estimate of population variance

The between-treatments estimate of o? is referred to as the mean square due to treat-
ments and is denoted MSTR. The formula for computing MSTR follows:

Completely randomized designs
Mean square due to treatments

PSR (13.20)

The numerator in equation (13.20) is called the sum of squares between or sum of squares
due to treatments and is denoted SSTR. The denominator k — 1 represents the degrees of
freedom associated with SSTR.
For the Chemietech data in Table 13.3, we obtain the following results (note: x = 60).
k
SSTR = Z n (%, — X’ = 5(62 — 60)* + 5(66 — 60)* + 5(52 — 60)* = 520
i=1

_SSTR _ 520

Within-treatments estimate of population variance

The within-treatments estimate of ¢ is referred to as the mean square due to error and
is denoted MSE. The formula for computing MSE follows.

Mean square due to error

MSE =~ (13.21)
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The numerator in equation (13.21) is called the sum of squares within or sum of squareg
due to error and is denoted SSE. The denominator of MSE is referred to as the degreeg
of freedom associated with SSE.

For the Chemietech data in Table 13.3, we obtain the following results.

k
SSE= 2, (n,— 1)s? = 4(27.5) + 4(26.5) + 4(31) = 340
i=t
SSE _ 340
n—k 15=3

T

MSE = = 28.33

Comparing the variance estimates: the F test

If the null hypothesis is true and the ANOVA assumptions are valid, the sampling
distribution of MSTR/MSE is an F distribution with numerator degrees of freedom
equal to £ — 1 and denominator degrees of freedom equal ton, — k. Recall also that
if the means of the k populations are not equal, the value of MSTR/MSE will be
inflated because MSTR overestimates o> Hence we will reject H if the resulting
value of MSTR/MSE appears to be too large to have been selected at random from
an F distribution with degrees of freedom k — 1 in the numerator and n, — k in the
denominator.

Let us return to the Chemietech problem and use a level of significance a = 0.05 to
conduct the hypothesis test. The value of the test statistic is

The numerator degrees of freedom is k — 1 — 3 — 1 = 2 and the denominator degrees

of freedom is n. — k = 15 — 3 = 12. Because we will only reject the null hypothesis

for large values of the test statistic, the p-value is the area under the F distribution to

the right of F = 9.18. From Table 4 of Appendix B we find that the F value with an '

area of 0.01 in the upper tail is 6.93. Because the area in the upper tail for an F' value
of 9.18 must be less than 0.01, the p-value for the Chemietech hypothesis test is less
than 0.01. Alternatively, we can use MINITAB, PASW or EXCEL to show that the
exact p-value corresponding to F = 9.18 is 0.0038. With p-value = o = 0.05, H, is
rejected. The test gives us sufficient evidence to conclude that not all the population
means are equal. .

ANOVA table

We can now write the result that shows how the total sum of squares, SST, is partitioned.
SST = SSTR + SSE (13.22)

This result also holds true for the degrees of freedom associated with each of these sums
of squares; that is, the total degrees of freedom is the sum of the degrees of freedom
associated with SSTR and SSE. The general form of the ANOVA table for a completely
randomized design is shown in Table 13.4; Table 13.5 is the corresponding ANOVA
table for the Chemietech problem.
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Source of Degrees of Sum of
variation freedom squares Mean square F
SSTR MSTR

Treatments k—1 SSTR =

ISR =4 MSE
Error A=k SSE MSE = o

n.—k

Total =l SST
Source of Degrees of
variation freedom Sum of squares Mean square F
Treatments 2 520 260.00 9.18
Error 12 340 2833
Total 14 860

Pairwise comparisons

We can use Fisher’s LSD procedure to test all possible pairwise comparisons for the
Chemietech problem. At the 5 per cent level of significance, the ¢ distribution table shows
that with n, — k = 15 — 3 = 12 degrees of freedom, 7, ,,. = 2.179. Using MSE = 28.33
in equation (13.17), we obtain Fisher’s least significant difference.

= L, 1) _ 1 1) _
LSD =1, MSE(}I - E) =2.179 28.33(g - g) =17.34

i i

If the magnitude of the difference between any two sample means exceeds 7.34, we
can reject the hypothesis that the corresponding population means are equal. For the
Chemietech data in Table 13.3, we obtain the following results.

Sample differences significant?

Method A — Method B = 62 — 66 = —4 No
Method A — Method C = 62 — 52 = |0 Yes
Method B — Method C = 66 — 52 = |4 Yes

Thus, the difference in the population means is attributable to the difference between
the means for method A and method C and the difference between the means for
method B and method C. Methods A and B therefore are preferred to method C.
However, more testing should be done to compare method A with method B. The
current study does not provide sufficient evidence to conclude that these two methods
differ.
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Exercises

Methods

19 The following data are from a completely randomized design.

Treatment
Observation A B @
| |62 |42 126
Ji 142 |56 |22
3 |65 124 [38
St [45 142 [40
5 148 36 |50
6 |74 [52 |28
X, |56 |42 134
sf |64.4 131.2 1104

Compute the sum of squares between treatments.
Compute the mean square between treatments.
Compute the sum of squares due to error.
Compute the mean square due to error,

At the & = 0.05 level of significance, test whether the means for the three treatments
are equal,

e an g

20 Refer to exercise 9.

a. Set up the ANOVA table.
b. Atthe e = 0.05 level of significance, use Fisher's least significant difference procedure to

test all possible pairwise comparisons. What conclusion can you draw after carrying out
this procedure?

21 In a completely randomized experimental design, seven experimental units were used for
each of the five levels of the factor. Complete the following ANOVA table.

Source of Degrees of Sum of Mean
variation freedom squares square F
Treatments 300

Error

Total 460

22 Referto exercise 21.

a. What hypotheses are implied in this problem?

b. At the o = 0.05 level of significance, can we reject the null hypothesis in part (a)?
Explain.

23 In an experiment designed to test the output levels of three different treatments, the
following results were obtained: SST = 400, SSTR = |50, n_= 19. Set up the ANOVA

table and test for any significant difference between the mean output levels of the three
treatments. Use o = 0.05.
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24 In a completely randomized experimental design, |2 experimental units were used for the
first treatment, |15 for the second treatment and 20 for the third treatment. Complete the
following analysis of variance. At a 0.05 level of significance, Is there a significant difference
between the treatments?

Source of Degrees of Sum of Mean
variation freedom squares square F
Treatments 1200

Error

Total 1800

25 Develop the analysis of variance computations for the following experimental design. At
a = 005, is there a significant difference between the treatment means!

Treatment

A B C

|36 |07 1]

120 |14 82

113 |25 85

|07 |04 101

131 |07 89

[ilf=h |09 [l

|29 97 |10

102 | 14 120

|04 98

89 |06

X |19 |07 00
5;2 146.86 9644 |73.78

Applications

26 Three different methods for assembling a product were proposed by an industrial
engineer. To investigate the number of units assembled correctly with each method,
30 employees were randomly selected and randomly assigned to the three proposed .
methods in such a way that each method was used by ten workers. The number of units
assembled correctly was recorded, and the analysis of variance procedure was applied to
the resulting data set. _
The following results were obtained: SST = 10 800; SSTR = 4560Q.
a. Set up the ANOVA table for this prablem.
b. Use & = 005 to test for any significant difference in the means for the three assembly
methods.

27 In an experiment designed to test the breaking strength of four types of cables, the
following results were obtained: SST = 85.05, SSTR = 61.64, n, = 24. Set up the ANOVA
table and test for any significant difference in the mean breaking strength of the four

cables. Use a = 0.05.
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AUDJUDG

28 To study the effect of temperature on yield in a chemical process, five batches were
produced at each of three temperature levels. The results follow. Construct an analysis of
variance table. Use a 0.05 level of significance to test whether the temperature level has an
effect on the mean yield of the process.

Temperature

50°C 60°C 70°C

34 30 23
24 3 28
36 34 28
39 93 30
32 J7 2

29 Auditors must make judgments about various aspects of an audit on the basis of their
own direct experience, indirect experience, or a combination of the two. In a study,
auditors were asked to make judgments about the frequency of errors to be found in
an audit, The judgments by the auditors were then compared with the actual results.

Suppose the following data were obtained from a similar study; lower scores indicate
better judgments.

Direct Indirect Combination
7.0 6.6 252
18.5 2.2 24.0
158 205 21.5
8.2 183 268
202 240 7S
[60 19.8 258
38 212 24.2

Use or = 0.05 to test to see whether the basis for the judgment affects the quality of the
judgment. What is your conclusion?

30 Four different paints are advertised as having the same drying time. To check the
manufacturer's claims, five samples were tested for each of the paints. The time in minutes

until the paint was dry enough for a second coat to be applied was recorded. The following
data were obtained.

Paint | Paint 2 Paint 3 Paint 4
|28 |44 133 150
37 133 143 142
135 142 |37 135
24 146 |36 [40
|41 130 (31 153

Atthe o= 0.05 level of significance, test to see whether the mean drying time is the same
for each type of paint.

STUDENTS-HUB.com

RANDOMIZED BLOCK DES|

31 Detals of independent random samples of average hourly output for three manufacturing

plants are as follows:

Plant
I 2 3
83 T 8.6
86 82 83
79 872 83.6
798 80.6 88
8l.6 8| 85
83.6 80
798

Analyze these data appropriately. Do average outputs differ significantly by plant and

if so how!

32 Refer to Exercise 29. Use Fisher's least significant difference procedure to test all possible

i i [ ure!
pairwise comparisons. What conclusion can you draw after carrying out this proced

Use o = 0.05.

33 Refer to the NCP data in Table 13.1. Use Fisher's least significant difference procedure

irwi i ion can
allowing for the Bonferroni adjustment to test all pairwise comparisons. What conclusion

you draw after carrying out this procedure? Use o = 0.05.

13.6 Randomized block design

imental design. Recall

; ized exper
Thus far we have considered the completely randomized exp 1 om F value by ising

that to test for a difference among treatment means, we compute
the ratio

F Test Statistic

= (13.23)
~ MSE

A problem can arise whenever differences due to extraneous factors (ones not consid-
: he MSE term in this ratio to become large. In such cases,

in the experiment) cause t : ; ‘ .
t;,I’tl?;dl*"u\lfalue:inpequa’Ltion (13.23) can become small, signalling no difference among treat

i difference exists. -
ment means when in fact such a f ' . N
In this section we present an experimental designknown as a randomized block desig

Its purpose is to control some of the extraneous sources of variation b}’ remm;m}% s;il;
varfatirgn from the MSE term. This design tends to provide a t?etter estimate 0 1;'1‘?{ ©
error variance and leads to a more powerful hypothesis test in terms of the ability
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detect differences among treatment means. To illustrate, let us consider a stress study for
air traffic controllers.

Air traffic controller stress test

A study measuring the fatigue and stress of air traffic controllers resulted in proposals for
modification and redesign of the controller’s work station. After consideration of severa]
designs for the work station, three specific alternatives are selected as having the begg
potential for reducing controller stress. The key question is: to what extent do the three
alternatives differ in terms of their effect on controller stress? To answer this question,
we need to design an experiment that will provide measurements of air traffic controller
stress under each alternative.

In a completely randomized design, a random sample of controllers would be assigned
to each work station alternative. However, controllers are believed to differ substantially
in their ability to handle stressful situations. What is high stress to one controller might
be only moderate or even low stress to another. Hence, when considering the within-
group source of variation (MSE), we must realize that this variation includes both ran-
dom error and error due to individual controller differences. In fact, managers expected
controller variability to be a major contributor to the MSE term.

One way to separate the effect of the individual differences is to use a randomized
block design. Such a design will identify the variability stemming from individual con-
troller differences and remove it from the MSE term. The randomized block design calls
for a single sample of controllers. Each controller in the sample is tested with each of
the three work station alternatives. In experimental design terminology, the work sta-
tion is the factor of interest and the controllers are the blocks. The three treatments or
populations associated with the work station factor correspond to the three work station
alternatives. For simplicity, we refer to the work station alternatives as system A, system
B and system C.

The randomized aspect of the randomized block design is the random order in which
the treatments (systems) are assigned to the controllers. If every controller were to test
the three systems in the same order, any observed difference in systems might be due to
the order of the test rather than to true differences in the systems. '

To provide the necessary data, the three work station alternatives were installed at the
Berlin control centre. Six controllers were selected at random and assigned to operate
each of the systems. A follow-up interview and a medical examination of each controller

participating in the study provided a measure of the stress for each controller on each
system. The data are reported in Table 13.6.

Treatments
System A System B System C
Controller | |5 15 18
Controller 2 |4 | 4 |4
Blocks Controller 3 10 Il |5
Controller 4 13 |2 [
Controller 5 |6 3 |6
Controller 6 I3 13 I3
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Treatments

Row or block

SetermiA System B System C totals Block means
X, =48/3 = 160
Controller | 15 I5 ‘8 - X =3 = 140
Controller 2 14 4 ': = %, = 3613 = 120
Blocks Controller 3 |0 |l ‘ 0 % =423 = 140
Controller 4 13 12 17 o ;4' =45/3 = |50
Controller 5 16 13 18 39 ;(‘5' =39/3 = 130
Controller 6 13 13 3 .
=_ 2 _
s ¢ Touls 8| 78 923 52 RS
Treatment 1o i b - b 943_
Treatment Means %5 T 37T T8

Table 13.7 is a summary of the stress data collected. In this table we include column

t will be
totals (treatments) and row totals (blocks) as \_Ne]l as som;;%n\g}f ﬁr\sggcsl UtIT S
helpful in making the sum of squares computations for the Y fa‘pl)our e B with
lower stress values are viewed as better, the sample d-ata seem e el
its mean stress rating of 13. However, the usual question remains:

iffer?
justify the conclusion that the population mean stress levels for the three systems differ’

igni i i utation
That is, are the differences statistically significant? An analysis of variance comp

i i 0 answer
similar to the one performed for the completely randomized design can be used
this statistical question.

ANOVA procedure

The ANOVA procedure for the randomized block design requires us to partiti?cn ti:;;;:srrcll Si
squares total (SST) into three groups: sum of squares due to tr.eatmeln.ts, §umfsu Z?y :
tg blocks and sum of squares due to error. The formula for this partiioning :

SST = SSTR + SSBL + SSE (13.24)

mmarized in the ANOVA table for the randomized

i ares partition is su : |
ko , 8. The notation used in the table 1s

block design as shown in Table 13.

k = the number of treatments
p = the number of blocks
n, = the total sample size (n, = kb)

Note that the ANOVA table also shows how the n, — 1 total gegrfesoofof}rﬁﬁgl?? aa;g
ts,b—1g -
iti such that k — 1 degrees of freedom go to treatments, ;
E’;IEU{J)I(IZd—“ ulC) go to the error term. The mean square column shows the sum of squares
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~ ANOVAtable for the r

 with k treatments
and b blocks ' 1
Source of Sum of
variation Degrees of freedom squares Mean square F
Treatments k— | SSTR MSTR = TR @
o= | MSE
Blocks b= | SSBL MSBL = L
=
Error (e== =) 58E MSE= 2t
Total (=] SST feslifa= )

d.wu_ied by the degrees of freedom, and # = MSTR/MSE is the F ratio used to test for
s1gm-ﬁcant difference among the treatment means. The primary contribution of the rana—l
d_omlzed block design is that, by including blocks, we remove the individual controller
Fhfferences from the MSE term and obtain a more powerful test for the stress differences
in the three work station alternatives.

Computations and conclusions

To compute the £ statistic needed to test for a difference among treatment means with a
randomized block design, we need to compute MSTR and MSE. To calculate these two
mean squares, we must first compute SSTR and SSE; in doing so, we will also compute
SSBL -a.nd SST. To simplify the presentation, we perform the calculations in four steps
In addition to k, b and n, as previously defined, the following notation is used. .

X, = value of the observation corresponding to treatment j in block i
X, = sample mean of the jth treatment

X = sample mean for the ith block

% = overall sample mean

Step | Compute the total sum of squares (SST).

-

b (3
ssT=2, 3, (e, — X2 (13.25)

i=1 j=

Step 2 Compute the sum of squares due to treatments (SSTR).

S5TRI = bZ x — %7 (13.26)

=l

Step 3 Compute the sum of squares due to blocks (SSBL).
b
SSBL = k X, (%, — %)? (13.27)
=1

Step 4 Compute the sum of squares due to error (SSE).

SSE = SST — SSTR — SSBL (13.28)
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For the air traffic controller data in Table 13.7, these steps lead to the following sums of
squares.

Step | SST = (15— 1472 + (15— 142+ (18 — 147 + ...+ (13— 147 =70
Step 2 SSTR = 6[(135 — 14)2 + (130 — 142 + (155 — 14/ = 2|

Step 3 SSBL = 3[(16 — 1472 + (14 — 14 + (12 = 147 + (14 — 147 + (I5 = 14y
+ (13— 14)7 =30

Step4 SSE=70—-21 —30=19

These sums of squares divided by their degrees of freedom provide the corresponding
mean square values shown in Table 13.9.

Let us use a level of significance @ = 0.05 to conduct the hypothesis test. The value
of the test statistic is

MSTR _ 10.5
=== 5.53
# MSE 1.9

The numerator degrees of freedomisk —1=3—1=2 and the denominator degrees of
freedomis(k— D — 1 =@ - 16— 1= 10. Because we will only reject the null
hypothesis for large values of the test statistic, the p-value is the area under the F distribu-
tion to the right of F = 5.53. From Table 4 of Appendix B we find that with the degrees
of freedom 2 and 10, F = 5.53 is between F .. = 546and F = 7.56. As a result, the
area in the upper tail, or the p-value, is between 0.01 and 0.025. Alternatively, we can
use MINITAB, PASW or EXCEL to show that the exact p-value for F = 5.53is 0.0241.
With p-value = ¢ = 0.05, we reject the null hypothesis H: i, = 1, = H, and conclude
that the population mean stress levels differ for the three work station alternatives.

Some general comments can be made about the randomized block design. The experi-
mental design described in this section is a complete block design; the word ‘complete’
indicates that each block is subjected to all k treatments. That is, all controllers (blocks)
were tested with all three systems (treatments). Experimental designs in which some but
not all treatments are applied to each block are referred to as incomplete block designs.
A discussion of incomplete block designs is beyond the scope of this text.

Because each controller in the air traffic controller stress test was required to use
all three systems, this approach guarantees a complete block design. In some cases,
however, blocking is carried out with ‘similar’ experimental units in each block. For
example, assume that in a pretest of air traffic controllers, the population of controllers
was divided into groups ranging from extremely high-stress individuals to extremely
low-stress individuals.

 ANOVA table for the air traff

Source of Degrees of
F variation freedom Sum of squares Mean square
10.5/1.9 = 553 Treatments 2 21 10.5
Blocks 5 30 60
Error 10 |G )5
Total 17 70
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The blocking could still be accomplished by having three controllers from each of
the stress classifications participate in the study. Each block would then consist of three
controllers in the same stress group. The randomized aspect of the block design would pe
the random assignment of the three controllers in each block to the three systems.

Finally, note that the ANOVA table shown in Table 13.8 provides an F value to (eg
for treatment effects but not for blocks. The reason is that the experiment was designed t,
test a single factor — work station design. The blocking based on individual stress differ.
ences was conducted to remove such variation from the MSE term. However, the study
was not designed to test specifically for individual differences in stress.

Some analysts compute F = MSB/MSE and use that statistic to test for significance
of the blocks. Then they use the result as a guide to whether the same type of blocking
would be desired in future experiments. However, if individual stress difference is to be 5
factor in the study, a different experimental design should be used. A test of significance
on blocks should not be performed as a basis for a conclusion about a second factor.

Methods

34 Consider the experimental results for the following randomized block design. Make the
calculations necessary to set up the analysis of variance table.

Treatments
Blocks A B @
| 0 ) 8
2 2 6 5
3 8 |5 |4
4 0 |8 |18
5 8 i 8

Use o = 0.05 to test for any significant differences.

35 The following data were obtained for a randomized block design involving five treatments
and three blocks: SST = 430, SSTR = 310, SSB = 85. Set up the ANOVA table and test for
any significant differences. Use @ = 0.05.

-

36 An experiment has been conducted for four treatments with eight blocks. Complete the
following analysis of variance table.

Source of Degrees of Sum of Mean
variation freedom squares Square F
Treatments 900

Blocks 400

Error

Total 1800

Use o = 0.05 to test for any significant differences.
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Applications

37 A car dealer conducted a test to determine if the time in minutes needed to complete a minor
engine tune-up depends on whether a computerized engine analyzer or an electronic analyzer
is used. Because tune-up time varies among compact, intermediate and full-sized cars, the three
types of cars were used as blocks in the experiment. The data obtained follow.

Analyzer
Car Computerized Electronic
Compact 50 42
Intermediate 55 4
Full-sized 63 46

Use o = 0.05 to test for any significant differences.

38 A textile mill produces a silicone proofed fabric for making into rainwear. The chemist in
charge thinks that a silicone solution of about 12 per cent strength should yield a fabric
with maximum waterproofing-index. He also suspected there may be some batch to batch
variation because of slight differences in the cloth. To allow for this possibility five different
strengths of solution were used on each of the three different batches of fabric. The
following values of water-proofing index were obtained:

[Strength of silicone solution (%)]

6 9 12 15 18
| 208 206 220 226 20.9
Fabric 2 9.4 27 218 759 224
3 [9:9 21 22.7 22T 22.1

Using o = 0.05, carry out an appropriate test of these data and comment on the chemist's
original beliefs.

39 Animportant factor in selecting software for word-processing and database management
systems is the time required to leam how to use the system. To evaluate three file
management systems, a firm designed a test involving five word-processing operators.
Because operator variability was believed to be a significant factor, each of the five operators
was trained on each of the three file management systems. The data obtained follow.

System
Operator A B o
| 6 ['6 " =24
2 9 17 22
3 4 1 I9
4 3 12 18
5 8 |7 22

Use @ = 0,05 to test for any difference in the mean training time (in hours) for the three

systems.
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13.7 Factorial experiments

The experimental designs we considered thus far enable us to draw statistical concly.
sions about one factor. However, in some experiments we want to draw conclusiopg
about more than one variable or factor. Factorial experiments and their corresponding
ANOVA computations are valuable designs when simultaneous conclusions about tyq,
or more factors are required. The term factorial is used because the experimental congj.
tions include all possible combinations of the factors. For example, for a levels of facioy
A and b levels of factor B, the experiment will involve collecting data on ab treatmentg.
In this section we will show the analysis for a two-factor factorial experiment. The basic
approach can be extended to experiments involving more than two factors.

As an illustration of a two-factor factorial experiment, we will consider a study
involving the Graduate Management Admissions Test (GMAT), a standardized test useq
by graduate schools of business to evaluate an applicant’s ability to pursue a graduate
programme in that field. Scores on the GMAT range from 200 to 800, with higher scoreg
implying higher aptitude.

In an attempt to improve students’ performance on the GMAT exam, a major Spanish
university is considering offering the following three GMAT preparation programmes.

| A three-hour review session covering the types of questions generally asked on
the GMAT.

2 A one-day programme covering relevant exam material, along with the taking and
grading of a sample exam.

3 Anintensive ten-week course involving the identification of each student’s weak-
nesses and the setting up of individualized programmes for improvement.

Therefore, one factor in this study is the GMAT preparation programme, which has three
levels: three-hour review, one-day programme and ten-week course. Before selecting the
preparation programme to adopt, further study will be conducted to determine how the
proposed programmes affect GMAT scores.

The GMAT is usually taken by students from three colleges: the College of Business, the
College of Engineering and the College of Arts and Sciences. Therefore, a second factor of
interest in the experiment is whether a student’s undergraduate college affects the GMAT
score. This second factor, undergraduate college, also has three levels: business, engineering
and arts and sciences. The factorial design for this experiment with three levels correspond-
ing to factor A, the preparation programme, and three levels corresponding to factor B, the
undergraduate college, will give rise to a total of 3 x 3 = 9 treatments. These treatments or
combinations of factor levels are summarized in Table 13.10. :

Assume that a sample of two students will be selected corresponding to each of the
nine treatments shown in Table 13.10: two business students will take the three-hour

~ Nine treatments for the two-factor GMAT experiment

Factor B: College

Business Engineering Arts and sciences
Factor A: Three-hour review \ 2 3
Preparation One-day programme 4 5 6
Programme Ten-week course 7 8 g
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review, two will take the one-day programme and two will take the ten-week course. In
addition, two engineering students and two arts and sciences students will take each of
the three preparation programmes. In experimental design terminology, the sample size
of two for each treatment indicates that we have two replications. Additional replica-
tions and a larger sample size could easily be used, but we elect to minimize the compu-
tational aspects for this illustration.

This experimental design requires that six students who plan to attend graduate school
be randomly selected from each of the three undergraduate colleges. Then two students
from each college should be assigned randomly to each preparation programme, resulting
in a total of 18 students being used in the study.

Let us assume that the randomly selected students participated in the preparation pro-
grammes and then took the GMAT. The scores obtained are reported in Table 13.11.

The analysis of variance computations with the data in Table 13.11 will provide
answers to the following questions.

» Main effect (factor A): Do the preparation programmes differ in terms of effect
on GMAT scores?
Main effect (factor B): Do the undergraduate colleges differ in terms of effect on
GMAT scores?
Interaction effect (factors A and B): Do students in some colleges do better on
one type of preparation programme whereas others do better on a different type
of preparation programme?

The term interaction refers to a new effect that we can now study because we used
a factorial experiment. If the interaction effect has a significant impact on the GMAT
scores, we can conclude that the effect of the type of preparation programme depends on
the undergraduate college.

ANOVA procedure

The ANOVA procedure for the two-factor factorial experiment is similar to the completely
randomized experiment and the randomized block experiment in that we again partition the
sum of squares and the degrees of freedom into their respective sources. The formula for
partitioning the sum of squares for the two-factor factorial experiments follows.

SST = SSA + SSB + SSAB + SSE (13.29)

GMAT scores for the two-factor experiment

Factor B: College

Arts and

Business Engineering sciences
Factor A: Three-hour review 500 540 480
Preparation 580 460 400
Programme One-day programme 460 560 420
540 620 480
Ten-week course 560 600 480
600 580 410
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ANOVA table for the two-factor factorial experiment with r

replications I

Source of Degrees of Sum of

variation freedom squares Mean square E

Factor A ey S5A MsA =20 Hog
ol MSE

Factor B b | 558 g =20 i
b= | MSE

Interaction (iey— |9 = 1) SSAB MSAB = TS S M

fa—Db-1 MSE
Error = phinisic
cb(r |) SSE MSE _b—
Total =] SST -

F

The partitio_ning of the sum of squares and degrees of freedom is summarized in Table 13.12
The following notation is used. o

a = number of levels of factor A
b = number of levels of factor B
r = number of replications
n, = total number of observations taken in the experiment; n, = abr

Computations and conclusions

To compute the I statistics needed to test for the significance of factor A, factor B, and
interaction, we need to compute MSA, MSB, MSAB, and MSE. To calculate these,four
mean squares, we must first compute SSA, SSB, SSAB, and SSE; in doing so we will
also compute SST. To simplify the presentation, we perform the calculations in five
steps. In addition to a, b, r and n, as previously defined, the following notation is used.

X, = observation corresponding to the kth replicate taken from treatment i of factor A
and treatment j of factor B

. = sample mean for the observations in treatment i (factor A) .
; = sample mean for the observations in treatment j (factor B)

, = sample mean for the observations corresponding to the combination of treatment i
- (factor A) and treatment j (factor B)
x = overall sample mean of all n, observations

x| X[ x|

Step | Compute the total sum of squares.

ST = 2o 2 by~ 7 (13.30)

=10 = k=1

Step 2 Compute the sum of squares for factor A.

SSA = br;(x‘ — %) (13.31)
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Step 3 Compute the sum of squares for factor B.
b
SSBR = (Jr; = T (13.32)
Step 4 Compute the sum of squares for interaction.
a b
SSAB = rzz =% —X+ %7 (13.33)
= =

Step 5 Compute the sum of squares due to error.

SSE = SST — SSA — SSB — SSAB (13.34)

Table 13.13 reports the data collected in the experiment and the various sums that will help
us with the sum of squares computations. Using equations (13.30) through (13.34), the sums
of squares for the GMAT two-factor factorial experiment can be calculated as follows.

Step | SST = (500 — 515)2 + (580 — 515)2 + (540 — 515)* + ...
+ (410 — 515)* = 82450

Step 2 SSA = (3)(2)[(49333 — 515)2 + (51333 — 515)* + (53833 — 515)7 = 6100
Step 3 SSB = (3)()[(540 — 515)% + (560 — 5I5) + (445 — 515y = 45 300

Step 4 SSAB = 2[(540 — 49333 — 540 — 515) + (500 — 49333 — 560 + 515) + -
+ (445 — 538.33 — 445 + 515)2] = 11200

Step 5 SSE = 82450 — 6100 — 45 300 — |1 200 = |9 850

These sums of squares divided by their corresponding degrees of freedom, as shown to
prepare students from the different colleges for the GMAT in Table 13.14, provide the
appropriate mean square values for testing the two main effects (preparation programme
and undergraduate college) and the interaction effect.

Let us use a level of significance o = 0.05 to conduct the hypothesis tests for the
two-factor GMAT study. Because of the computational effort involved in any modest- to
large-size factorial experiment, the computer usually plays an important role in performing
the analysis of variance computations and in the calculation of the p-values used to make the
hypothesis testing decisions. Figure 13.6 shows the MINITAB output for the analysis of vari-
ance for the GMAT two-factor factorial experiment Because the p-value used to test for signif-
icant differences among the three preparation programmes (factor A) = 0.299 is greater than
o = 0.05, we deduce there is no significant difference in the mean GMAT test scores for the
three preparation programmes. However, for the undergraduate college effect, the p-value =
0.005 is less than o = 0.05; thus, there is a significant difference in the mean GMAT ftest
scores among the three undergraduate colleges. Finally, because the p-value of 0.350 for the
interaction effect is greater than o= 0.0, there is no significant interaction effect. Therefore,
the study provides no reason to believe that the three preparation programmes differ in their
ability to prepare students from the different colleges for the GMAT.

Undergraduate college however was found to be a significant factor. Checking the cal-
culations in Table 13.13, we see that the sample means are: business students X, = 540,
engineering students X, = 560 and arts and sciences students X, = 445. Tests on individual
treatment means can be conducted; yet after reviewing the three sample means, we would
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o 2 i ? 5
g 2 : z &
E ¥ I ke B Source of Degrees of
f o o & I g variation freedom Sum of squares Mean square i=
o Yo Do % @]
= a [=3 ~ |2
g o~ ) o
E I I i Factor A 2 6100 3050 3050/2206 = 1,38
X 1 !x"‘ Factor B 2 45 300 22 650 22 650/2206 = 1027
Interaction 4 [1 200 2800 28002206 = 1.27
Error 9 19 850 2206
E = Total 17 82 450
& I
g R
” = 2 8 ~ MINITAB output for the GMAT two-factor design
g o o) . Two-way ANOVA: Score versus Factor A, Factor B
3 3 2 2 3 ,
g I
@ o olo Il Il
2 2 8|8 ol Siolo oo IR ess Source DF a9 HS F P
e | 2918 g~ FER gl~838 g~ & G Factor A 2 6100 3050.0 1.38 0.299
g I I i 4 Factor B 2 45300 22650.0 10.27 0.005
= s . 5 - Interaction 4 11200 2800.0 1.27 0.350
s o Error 9 19850 2205.6
" Total 17 52450
g 3 = o
i g " 5 = 2 - - . i .
& < I i i A § = 46.96 R-3g = 75.92% R-Sglad)) = 54.52%
- g eolle] I .
& o < 8|S e o olo ()] o 9ol o
:| | B¥E  gl®8E  glg8E g Eg
g . ! I il %
- 5 N ‘ ”d anticipate no difference in preparation for business and engineering graduates. However, the
1 I arts and sciences students appear to be significantly less prepared for the GMAT than stu-
- dents in the other colleges. Perhaps this observation will lead the university to consider other
h u% 2 = options for assisting these students in preparing for graduate management admission tests.
@ I o )
o o olo I I
(=) o olo Il
898 g.9%E g.sEE g g
= - = 5 .
" I ; B Exercises
< |><7 I><7 7
o | 2 . Methods
S| 2
8 ® @ 40 A factorial experiment involving two levels of factor A and three levels of factor B resulted in
= 4 9
5 = 5 AL the following data.
8 @ - = = fas]
§ -g E E g" § § 5 Factor B
'_ 1 _— =4 =
-l Oa = S & Level | Level 2 Level 3
Level | 135 90 75
Factor A |65 66 9%
o Level 2 125 127 120
o
2 S E 95 105 136
c £ &
g2 8B
u_g g_ § Test for any significant main effects and any interaction. Use o = 0.05.
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41 The calculations for a factorial experiment involving four levels of factor A, three levels of
factor B, and three replications resulted in the following data: SST = 280, SSA = 26,
SSB = 23, SSAB = |75. Set up the ANOVA table and test for any significant main effects
and any interaction effect. Use & = 0.05.

Applications

42 A mail-order catalogue firm designed a factorial experiment to test the effect of the size of a

43

magazine advertisement and the advertisement design on the number of catalogue requests
received (data in thousands). Three advertising designs and two different-size advertisements
were considered. The data obtained follow.

Size of advertisement

Small Large
A 8 [2
12 8
Design B 22 26
14 30
C 10 18
18 |4

Use the ANOVA procedure for factorial designs to test for any significant effects due to type
of design, size of advertizement, or interaction. Use e = 0.05.

A factorial experiment involved measurement of average fuel consumption for 36 long
Jjourneys for three different types of vehicle by value and three different types of fuel additive.
The data (km / litre) obtained follow:

Fuel additive
Vehicle type I 2 3
A 7 8 8
7 8 8
7 7 8
8 7 8 8
B 6 8 7
6 8 7
6 8 8
6 8 7
C 6 8 7
6 7 7
6 7 7
6 7 7

Perform an appropriate analysis of these data. Use a = 0.05. What are your conclusions?
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A study reported in The Accounting Review examined the separate and joint effects of twa
levels of time pressure (low and moderate) and three levels of knowledge (naive, declarative
and procedural) on key word selection behaviour in tax research. Subjects were given a

tax case containing a set of facts, a tax issue and a key word index consisting of 1336 key
words. They were asked to select the key words they believed would refer them to a tax
authority relevant to resolving the tax case. Pricr to the experiment, a group of tax experts
determined that the text contained |9 relevant key words. Subjects in the naive group

had little or no declarative or procedural knowledge, subjects in the declarative group had
significant declarative knowledge but little or no procedural knowledge, and subjects in

the procedural group had significant declarative knowledge and procedural knowledge.
Declarative knowledge consists of knowledge of both the applicable tax rules and the
technical terms used to describe such rules. Procedural knowledge is knowledge of the

rules that guide the tax researcher’s search for relevant key words. Subjects in the low time
pressure situation were told they had 25 minutes to complete the problem, an amount of
time which should be 'more than adequate’ to complete the case; subjects in the moderate
time pressure situation were told they would have ‘only’ | | minutes to complete the case.
Suppese 25 subjects were selected for each of the six treatments and the sample means for
each treatment are as follows (standard deviations are in parentheses).

Knowledge
Naive Declarative Procedural
Low [.13 |.56 2.00
Time pressure (1.12) (1.33) {1.54)
Moderate 048 |.68 2.86
(0.80) (1.36) {1.80)

Use the ANOVA procedure to test for any significant differences due to time pressure,
knowledge, and interaction. Use a 0.05 level of significance. Assume that the total sum of
squares for this experiment is 327.5
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l CHAPTER 13 ANALYSIS OF VARIANCE AND EXPERIMENTAL DESIGN

In this chapter we showed how analysis of variance can be used to test for differencae
among means of several populations or treatments. We introduced the completely gy
domized design, the randomized block design and the two-factor factorial eXPerimeﬁt
and confirmed corresponding assumptions. The completely randomized design ang the
randomized block design are used to draw conclusions about differences in the meang
of a single factor. The primary purpose of blocking in the randomized block design jg.
to remove extraneous sources of variation from the error term. Such blocking Provideg
a better estimate of the true error variance and a better test for determining whether the
population or treatment means of the factor differ significantly. Correspondingly factorig)
experiments involve conclusions being drawn about two or more factors including thejp
potential interactions.

We showed that the basis for the statistical tests used in analysis of variance and
experimental design is the development of two independent estimates of the population
variance ¢”. In the single-factor case, one estimator is based on the variation between
the treatments; this estimator provides an unbiased estimate of o2 only if the treatment
means are all equal. A second estimator of o2 is based on the variation of the obserya-
tions within each sample; this estimator will always provide an unbiased estimate of G
By computing the ratio of these two estimators (the F statistic) we developed a rejection
rule for determining whether to reject the null hypothesis that the population or treatment
means are equal. In all the experimental designs considered, the partitioning of the sum
of squares and degrees of freedom into their various sources enabled us to compute the
appropriate values for the analysis of variance calculations and tests. We also showed
how Fisher’s LSD procedure and the Bonferroni adjustment can be used to perform pair-
wise comparisons to determine which means are different.

ANOVA table Interaction

Blocking Multiple comparison procedures
Comparisonwise Type I error rate Partitioning

Completely randomized design Randomized block design

Experimental units Replications -
Experimentwise Type I error rate Single-factor experiment

Factor Treatment
Factorial experiments

Key formulae

Testing for the equality of k population means
Sample mean for treatment j

Exﬁ

= !

&= (13.1)
/
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Sample variance for treatment j

Overall sample mean

Mean square due to treatments
SSTR

MSTR = E——!

Sum of squares due to treatments

e
SSTR = . nix e

I=il

Mean square due to error

SE
MSE =
e

T

Sum of squares due to error

SSE = Z = I)sﬁ

f=1

Test statistic for the equality of k population means
_ MSTR

MSE

Total sum of squares

SST=2, 2 (x, — X

f=l i=1

Partitioning of sum of squares
SCT = S5TR HS5E

Multiple comparison procedures Test statistic for Fisher’s LSD procedure

x|

XJ*J

| |
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Fisher’s LSD

LSD = e MSE(”L 4= nl—}
I J

Completely randomized designs
Mean square due to treatments

ke
o
erg X)

i)
MSTR = o
Mean square due to error
k
2~ 1)
R.— k
F test statistic
_ MSTR
MSE

Randomized block designs
Total sum of squares

SST=2, 2. (¢, — B2

i=1j=
Sum of squares due to treatments

k
SSTR = b2 (%, — %)

=
Sum of squares due to blocks

b
SSBL = k D, (%, — %

i=|

Sum of squares due to error

555 =551 — 551R.—S5B1

Factorial experiments
Total sum of squares

a b r

sT=3 33 -5

i=lj=1k=1

Sum of squares for factor A

SSA = br D (%, — %)

=l
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(13.20)

(13.21)

(13.23)

(13.25)

(13.26)

(13.27)

(13.28)

(13.30)

(13.31)

Sum of squares for factor B

CASE PROBLEM | WENTWORTH MEDICAL

b
SSTR = ar; * — o (13.32)
Sum of squares for interaction
i
SSAB = rzz e =% — X X)? (13.33)
=
Sum of squares for error
SSE = SST — S5A —55B —SSAB (13.34)

s part of a long-term study of individuals 65 years
Aof age or older, sociologists and physicians at the
Wentworth Medical Centre in Britain investigated the
relationship between geographic location and depression.
A sample of 60 individuals, all in reasonably good health,
was selected; 20 individuals were residents of Scotland,
20 were residents of England, and 20 were residents
of Wales. Each of the individuals sampled was given a
standardized test to measure depression. The data
collected follow; higher test scores indicate higher levels
of depression. These data are available on the data disk
in the file Medicall.

MEDICALI Data from Medical |

"Case problem | Wentworth Medical Centre

A second part of the study considered the relationship
between geographic location and depression for
individuals 65 years of age or older who had a chronic
heatth condition such as arthritis, hypertension, and/
or heart ailment. A sample of 60 individuals with such
conditions was identified. Again, 20 were residents of
Scotland, 20 were residents of England and 20 were
residents of Wales. The levels of depression recorded for
this study follow.

These data are available on the CD accompanying the
text in the file named Medical2.

Data from Medical2

Scotland England Wales Scotland England Wales

O 3

MEDICAL2

N O W s~ o~ 0 — @

O

fo B NS RN, TS 5 s o Hio. Bl o o IS R N RN |

Uploaded By: anonymous

0 13 [ 10
7 12 9 12
3 17 15 |5
5) 17 12 |8
| 20 16 12
8 2] L [4
4 6 |8 7
3 [ 14 8
7 I8 I5 I4
8 |7 |7 |6
8 7 20 18




CHAPTER 13 ANALYSIS OF VARIANCE AND EXPERIMENTAL DESIGN CASE PROBLEM 2 PRODUCT DESIGN TESTING

Data from Medicall Data from Medical2 Component lifetimes (000s of hours)

Scotland England Wales Scotland England Wales Temperature(°C)

2 8 i ? i Type ~10 20 50

6 12 3 12 23

S 2 : : 2 : ? | 312 3.70 0.82 096 048 | 68
- . i3 i 4 1.80 432 1.92 .80 197 1.39
- : . |3 : 2 3.60 45| 302 293 0.60 .68
" 7 5 e % 382 302 254 276 139 1.08
- - q I 3 3 33| 264 418 288 2.30 2.50
3 q i L i 403 3.84 360 334 1.97 | 44

Testing the effects of extreme temperatures on products in a laboratory. © Bartee
Inc/Phototake Science.

Managerial Report

I What are the effects of the chosen factors on the life
of the component?

An elderly lady taking part in a depression study. © Mark Papas. Managerlal Report

| Use descriptive statistics to summarize the data

from the two studies. What are your preliminary 2 Do any components have a consistently long life

observations about the depression scores? regardless of temperature?

3 What recommendation would you make to the
engineering manager?

2 Use analysis of variance on both data sets, State the
hypotheses being tested in each case. What are your
conclusions!

3 Use inferences about individual treatment means
where appropriate. What are your conclusions?

4 Discuss extensions of this study or other analyses that
you feel might be helpful,

Case problem 2 Product Design Testing

An engineering manager has been designated the ¥ e The engineering manager arranges
task of evaluating a commercial device subject to for all three components to be tested at
marked variations in temperature. Three different types the temperature levelss —10°C, 20°C,

of component are being considered for the device O and 50°C - as these temperature levels
When the device is manufactured and is shipped to the :

field, the manager has no control over the temperature

are consistent with the product end-use
environment. Four components are tested

extremes that the device will encounter, but knows from
experience that temperature is an important factor in
relation to the component’s life. Notwithstanding this,
temperature can be controlled in the laboratory for the
purposes of the test.

for each combination of type and temperature, and all
36 tests are run in random order. The resulting observed
component life data are presented in Table |.
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Analysis of variance and experimental design using MINITAB
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Software Section
for Chapter 13

Single factor observational studies and
completely randomized designs

In Section 13.2 we showed how analysis of variance could be used to test for the equal-
ity of k population means using data from an observational study. In Section 13.5 we
showed how the same approach could be used to test for the equality of k population
means in situations where the data have been collected in a completely randomized
design. To illustrate how MINITAB can be used to test for the equality of k popula-
tion means for both of these cases, we show how to test whether the mean examination
score is the same at each plant in the National Computer Products example introduced

in Section 13.1. The examination score data are entered into the first three columns of

a MINITAB worksheet; column 1 is labelled Ayr, column 2 is labelled Dusseldorf and
column 3 is labelled Stockholm. The steps involved in producing the output in Figure
13.4 in MINITAB follow.

Step | Stat > ANOVA > One-way (Unstacked) [Main menu bar]

Step 2 Enter C|-C3 in the Responses (in separate columns) box ]
[One-way (Unstacked) panel]
Click OK

Randomized block designs

In Section 13.6 we showed how analysis of variance could be used to test for the
equality of k population means using data from a randomized block design. To illus-
trate how MINITAB can be used for this type of experimental design, we show how
to test whether the mean stress levels for air traffic controllers is the same for three
work stations. The stress level scores shown in Table 13.6 are entered into column 1
of a MINITAB worksheet. Coding the treatments as 1 for System A, 2 for System B

and 3 for System C, the coded values for the treatments are entered into column 2 of

the worksheet. Finally, the corresponding number of each controller (1, 2, 3, 4, 5, 6) 18
entered into column 3. Thus, the values in the first row of the worksheet are 15, 1, L;
the values in row 2 are 15, 2, 1; the values in row 3 are 18, 3, 1; the values in row 4 aré

14, 1, 2 and so on. In particular, the steps involved in producing the MINITAB output

corresponding to the ANOVA table shown in Table 13.9 follow.
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Analysis of variance and experimental design using EXCEL

ANALYSIS OF VARIANCE AND EXPERIMENTAL DESIGN USING EXCEL

Step | Select Stat > ANOVA Two-way [Main menu bar]
Step 2 Enter Cl in the Response box
Enter C2 in the Row factor box
Enter C3 in the Column factor box
Select Fit additive model
Click OK

[ANOVA Two-way pane]]

Factorial experiments

In Section 13.7 we showed how analysis of variance could be used to test for the
equality of k population means using data from a factorial experiment. To illustrate
how MINITAB can be used for this type of experimental design, we show how to
analyse the data for the two-factor GMAT experiment introduced in that section.
The GMAT scores shown in Table 13.11 are entered into column 1 of a MINITAB
worksheet; column 1 is labelled Score, column 2 is labelled Factor A, and column 3
is labelled Factor B. Coding the factor A preparation programmes as 1 for the three-
hour review, 2 for the one-day programme, and 3 for the ten-week course, the coded
values for factor A are entered into column 2 of the worksheet. Coding the factor B
colleges as 1 for Business, 2 for Engineering, and 3 for Arts and Sciences, the coded
values for factor B are entered into column 3. Thus, the values in the first row of the
worksheet are 500, 1, 1; the values in row 2 are 580, 1, 1; the values in row 3 are 540,
1, 2; the values in row 4 are 460, 1, 2 and so on. In particular, the steps involved in
producing the MINITAB output corresponding to the ANOVA table shown in Figure
13.6 follow.

Step | Stat > ANOVA > Two-way [Main menu bar]

Step 2 [ANOVA Two-way panel]
Enter Cl in the Response box
Enter C2 in the Row factor box
Enter C3 in the Column factor box
Click OK

Single-factor observational studies and
completely randomized designs

In Section 13.2 we showed how analysis of variance could be used to test for the equal-
ity of k population means using data from an observational study. In Section 13.5 we
showed how the same approach could be used to test for equality of k population means
in situations where the data are collected in a completely randomized design. To illustrate
how EXCEL can be used to test for the equality of k population means for both of these
cases, we show how to test whether the mean examination score is the same at each plant
in the National Computer Products example introduced in Section 13.1. The examination
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score data are entered into worksheet rows 2 to 7 of columns B, C and D as shown
Figure 13.7. Note that cells A2:A7 are used to identify the observations at each of

plants. The steps involved in using EXCEL to produce the output shown in cells A9:Go3

follow; the ANOVA portion of this output corresponds to the ANOVA table shownp i

Table 13.2.

Step | Select Data > Data Analysis > Anova: Single-Factor [Main meny bar]
Click OK

Step 2 [Anova: Single-Factor Panel]

Enter BI:D7 in Input Range box

Select Columns

Select Labels in First Row

Select Output Range and enter A9 in the box
Click OK

Randomized block designs

In Section 13.6 we showed how analysis of variance could be used to test for the
equality of k population means using data from a randomized block design. Tg
illustrate how EXCEL can be used for this type of experimental design, we show

Figure 13.7 EXCEL solution for the NCP analysis of variance example

A SRR TN N .
1 |Observation | Ayr  Dusseldorf Stockholm 1
21 18 | o | s | | &
3 2 75 | 15 e N B
4| ) 3 &2 13 e | | |
- 4 T8 74 R NN
6 5 71 B9 | 75 I 1]
7 - 6 8 | B 7 | |
& T B B
8 |Anova: Single Factor | - N T -
o, 7;;”_ B N - N
11 |SUMMARY N |
12 Groups Count Sum | Average  Varance 1
138Aye | B 474 79 34
14 |Dusselded | B 444 74 2w
15 |Stackholm 6 3% e 32 B
16| B B ;
17 o O R i N I
18 |ANOVA o . T ] .
19 | Source of Variation | S5 | df . MS F - Pvalue  Font
20 |Between Groups 516/ 2 258 9  0.0027 368
3 witin Groups @ s meew| | |
22| ) N
23 [Total 94_6‘ B Kz | N i
24| B ‘
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how to test whether the mean stress levels for air traffic controllers are the same
for three work stations. The stress level scores shown in Table 13.6 are entered into
worksheet rows 2 to 7 of columns B, C and D as shown in Figure 13.8. The cells in
rows 2 to 7 of column A contain the number of each controller (1, 2, 3, 4, 5, 6). The
steps involved in using EXCEL to produce output corresponding to the ANOVA
table shown in Table 13.9, follow.

Step | Data > Data Analysis > Anova: Two-Factor Without Replication
[Main menu bar]

Click OK

Step 2 Enter AI:D7 in Input Range box
[Anova: Two-Factor Without Replication panel]
Select Labels.
Select Output Range and enter A9 in the box
Click OK

Figure 13.8 EXCEL solution for the air traffic controller stress test

Al e S D S| RS e o [ G ]
1 | Controller | System A System B System C
2 1 15 15 7 18 B
3 2 14 | 14 14
4 3 w = mn 15 N
5 4 13 12 | 17 |
6 -3 16 13 | 16
7 B 13 &g 13
8| I
9 |Anova: Two-Factor Without Replication )
10 . ,
11 | SUMMARY  Count | Sum Average | Variance
2] 1 3 4 16 3
13 2 3 420 14 o
14 3 3 3% 12 7
5 0 4] 3 2 a7
16 5] B 3 45 15 3 -
17 6 3 3 13] o
18] ) ) -
19 |[SystemA | B 81 135 43
20 |SystemB | B .78 13 2
21 |System C B 93 15.5 3.5
220
23
24 |ANOVA
25 lrce of Varial S8 df Ms F . P-value F crit
26 [Rows ; 30 5 B 316 00574 333
27 [Columns | 20 2 105 553 00242 410
28|Emor 19 10 1.9
30 |Total | 70 17
31 I R S 1
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Factorial experiments

In Section 13.7 we showed how analysis of variance could be used to test for the equalj
of k population means using data from a factorial experiment. To illustrate how EXCg £

can be used for this type of experimental design, we show how to analyse the daty fal
the two-factor GMAT experiment introduced in that section. The GMAT scores Sho\:;.

in Table 13.11 are entered into worksheet rows 2 to 7 of columns B, C, and D as ghqy,-
in Figure 13.9. The steps involved in using EXCEL to produce output shown in CEWHH
A10:G45 follows; the ANOVA portion of this output corresponds to the ANOVA tablg
shown in Table 13.14. e

Step | Data > Data Analysis > Anova: Two-Factor With Replication
[Main menu bar]

Click OK

Figure 13.9 EXCEL solution for the two-factor GMAT experiment

A [ i e | D | E | F | Q
1| ~~  Business | Engineering  Arsand Sciences ' ‘
| 2 [3-hour review s0 0 s 40 7 E|
(3| | s | 40 | 400 i
4 |1dayprogram 480 560 4 i
7 . ] 540 s | 0
. 6 |10-week course 880 g0 | 480
[ B00 560 | 40
| 8 | 1 [
2 I - i I
%.%5“9‘@1 Two-Factor With Replication - o
12 |[SUMMARY  Business  Engineering  |Ars and Sciences  Total | T
13 3-hour review ‘ 1
(M4 Count T 2] 2 2 Bl
(15|Swm | qoe0 1000 880 2960
| 16 |Average | 540 500 440 4933333
%\_{a_r_igncg_ ) - 32000 3200 3200 39466867 000
19 1-dlay program - B 1
| 20 |Count 2 2 2 Bl
21 |Sum [ 000 1180 900 3080
| 22 |Average _ 500 880 450 51333333
3431 Variance 3200 1800, 1800 5386.6667
25 10-week course| ] .= _—:
| 26 [Count 2 2 2 6
27 |sum 1160 1180/ 890 3230
| 28 |Average 580 B 590 ) ) 445 53833333 -
gg Variance o 800 200 2450 593BEEET
31 Total | | -

(32 |Coumt B B B -
(33 |sum 340 30 ) 2670
%ﬁve@ge 540 - sB0 445 -

fariance 2720 3200 1510
o R 1510
37 I R
38 |ANOVA
39| Sowrce of Variation S8 df MS F | P-value Fcn’!)‘
| 40 |Sample 6100 2 3080 138 0.2994 4.26
|41 |Colurnns 45300 2l 22650/ 1027 00048 0 426
| 42 |Interaction 11200 4 28000 127 03503 363
_j% Within 19850 9 208556
45 |Total 82450 17 - '
46 ‘ —1
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Step 2 Enter A1:D7 in Input Range box
[Anova: Two-Factor With Replication panel]
Enter 2 in Rows per sample box
Select Labels
Select Output Range and enter A10 in the box
Click OK

nce and experimental design using PASW

Single-factor observational studies and completely
randomized designs

To illustrate how PASW can be used to test for the equality of k population means,
we show how to test whether the mean examination score is the same at each plant
in the National Computer Products example introduced in Section 13.1. First, the
data must be entered in a PASW worksheet. In ‘Data View’ mode, the examination
score data are entered into the leftmost column of a PASW worksheet; the six values
for Ayr, followed by the six for Dusseldorf and then the six for Stockholm. This is
automatically labelled by the system V1. In the adjacent column to the right the code
1 (corresponding to the Ayr plant) is entered six times followed by the code 2 (cor-
responding to the Dusseldorf plant) six times and the code 3 (corresponding to the
Stockhom plant) six times. Thus, the values in the first row of the worksheet are 85,
1; the values in row 2 are 75, 1; the values in row 3 are 82, 1; the values in row 4 are
76, 1; the values in row 5 are 71, 1; the values in row 6 are 85, 1; the values in row
7 are 71, 2 and so on.

The latter variable names can then be changed to score and plant in ‘Variable View’
mode. The codes used for the plant variable can also be relabelled by following the steps
below.

Step | Data > Define Variable Properties [Main menu bar]

Step 2 Select plant [Define Variable Properties panel]
Click on Continue

Select plant

Attach the Value Labels Ayr to code |, Dusseldorf to code 2 and Stockholm to

code 3.
Click OK

The following steps show how PASW generates the ANOVA results shown in
Figure 13.4.

Step | Analyze > Compare Means > One-Way ANOVA [Main menu bar]

Step 2 Enter score in the Dependent List box [One-Way ANOVA panel]
Enter plant in the Factor box

Click on Options

Select Descriptive Statistics

Click Continue

Click OK
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Randomized block designs , Step | [Main menu bar]

) . . Analyze > General Linear Model > Univariate
In Section 13.6 we showed how analysis of variance could be used to test for the eqyg)_

ity of k population means using data from a randomized block design. To illustrate hqy,
PASW can be used for this type of experimental design, we show how (o test whethe, Enter stress in the Dependent Variable box

the mean stress levels for air traffic controllers is the same for three work stations, The Enter system and controller in the Fixed Factors box
stress level scores shown in Table 13.6 are entered into the leftmost column of an PAgyy Click on Model

worksheet. Coding the treatments as 1 for System A, 2 for System B, and 3 for Systep, Click on Full factorial

C, the coded values for the treatments are entered into the adjacent column to the right j, Click on Continue

the worksheet. Finally, the corresponding number of each controller (1, 2, 3, 4, 5, 6) Click OK

is entered into the next adjacent column to the right. The columns are automatically

labelled by the system V1, V2 and V3 but can be relabelled in Variable View mode »4

stress, system and controller respectively. Thus, the values in the first row of the work.

sheet are 15, 1, 1; the values in row 2 are 15, 2, 1; the values in row 3 are 18, 3, [: the

values in row 4 are 14, 1, 2 and so on. The following steps show how PASW generateg

the ANOVA results shown in Table 13.9.

Step 2 [Univariate panel]

AIRTRAF Step | Analyze > General Linear Model > Univariate [Main menu bar]
e Step 2 Enter stress in the Dependent Variable box [Univariate panef]
&,‘Q Enter system and controller in the Fixed Factors box
{\_ Click on Model

Click on Custom

Select system and controller

Select Main Effects in Build Terms box
Click on Continue

Click OK

(Note that the F test provided in the output for the controller (blocking) factor can be
effectively ignored.)

Factorial experiments

In Section 13.7 we showed how analysis of variance could be used to test for the
equality of k£ population means using data from a factorial experiment. To illustrate

ef\‘} how PASW can be used for this type of experimental design, we show how to analyse
(o)

GMAT

the data for the two-factor GMAT experiment introduced in that section. The GMAT
scores shown in Table 13.11 are entered into leftmost column of a PASW worksheet in
Data View mode. Coding the factor A preparation programmes as 1 for the three-hour
review, 2 for the one-day programme, and 3 for the ten-week course, the coded values
for factor A are entered in Data View mode into the next adjacent column to the right
in the worksheet. Coding the factor B colleges as 1 for Business, 2 for Engineering and
3 for Arts and Sciences, the coded values for factor B are entered into the next right-
most column of the worksheet. The columns are automatically labelled by the system,
V1, V2 and V3 but can be relabelled in Variable View mode as score, factorA and
factorB respectively. (Note that variable names in PASW are not allowed to contain
spaces.) Thus, the values in the first row of the worksheet are 500, 1, 1; the values in
row 2 are 580, 1, 1; the values in row 3 are 540, 2, 1; the values in row 4 are 460, 2, 1
and so on. The following steps show how to produce the PASW output corresponding
to the ANOVA table shown in Figure 13.6.
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