

Circuit design involves determining the circuit configuration that will meet certain specifications. The solution is not unique.

Resistors and electric Power

Resistors are passive elements that can only absorb energy

$$P(t) = V(t).i(t)$$

$$V(t) = R.i(t)$$

$$P(t) = \frac{V^{2}(t)}{R}$$

$$P(t) = R.i^{2}(t)$$

3. Inductors

$$V_{L}(t) = L \frac{di_{L}(t)}{dt}$$
$$i_{L}(t) = i_{L}(0^{-}) + \frac{1}{L} \int_{0^{-}}^{t} V_{L}(t) dt \text{ for } t \ge 0$$

L is called the inductance of the coil and is measured in units of the henry (H)

STUDENTS-HUB.com

iL(t)

VI(t)

Independent voltage source characteristics

The "characteristics" of a device typically refers to a graph of I versus V which illustrates the behavior of the device.

The characteristics of an <u>ideal</u> independent 12 V voltage source are shown below.

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat,

13

Two key laws for analyzing circuits:

Kirchhoff's Voltage Law (KVL) Kirchhoff's Current Law (KCL)

Kirchhoff's Voltage Law (KVL)

Definition: "The algebraic sum of the voltages around any closed path equals zero."

Notes:

- Start at any point in a path
- Go around the loop in either direction until you return to the starting point
- Use a consistent sign convention

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

27

41

43

Valid versus invalid circuits

The text makes a point that all circuits must always satisfy KVL and KCL. A circuit that does not satisfy KVL or KCL is invalid and would be impossible to construct (or the circuit or equipment might be damaged). A few initial problems in the text ask is a circuit is valid. To test this, simply check KVL around various paths and KCL at various nodes to insure that no invalid equations occur.

47

Example: An engineer designs a circuit with the values shown below. If the circuit is to be built in lab, what are the minimum power ratings that should be used for resistors R1 and R2?

Demonstration – Pass around other types of resistors and discuss power ratings.

