CHAPTER

6

The Laplace

‘Iransform

STUDENTS-HUB.com Uploaded By: anonymous



6.1 Definition of the Laplace Transform

An improper integral over an unbounded interval is defined as a limit of integrals
over finite intervals; thus

[mf(r)dr_ llmf f()dt, (1)

where A 1s a positive real number. If the integral from a to A exists for each A > a,
and 1if the limit as A — oo exists, then the improper integral is said to converge to
that limiting value. Otherwise the integral 1s said to diverge, or to fail to exist. The
following examples illustrate both possibilities.
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Let f(t) =¢“, t > 0,where ¢ 1s a real nonzero constant. Then

EXAMPLE
00 A EIA
1 [ e dt = limf e df = lim —
) A= ) A= C
0
|
= lim =(¢*' - 1).
A= C

[t follows that the improper integral converges to the value —1/cif ¢ < 0 and divergesif ¢ > (.
[f ¢ = 0, the integrand f(f) 1s the constant function with value 1. In this case

A
lim[ Ldt = lim (A - 0) = ox,
]

A= A=rc

so the integral again diverges.
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Let f(t) = 1/t, t > 1. Then
EXAMPLE

* di Adt
2 ‘[—:hm/—<JMMA
| 1

i A=no [ A=

Since lim InA = oo, the improper integral diverges.

A=mo
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Definition:

f 1s piecewise continuous on o < f < f1if it is continuous there except
for a finite number of jump discontinuities. If f is piecewise continuousono <t < f8
for every f > «, then f 1s said to be piecewise continuous on f > «. An example of a
piecewise continuous function is shown in Figure 6.1.1.

b

| | | | N
2 ty Lo B ¢

FIGURE 6.1.1 A piecewise continuous function yv = f ().

The integral of a piecewise continuous function on a finite interval is just the sum
of the integrals on the subintervals created by the partition points. For instance, for
the function f(¢#) shown in Figure 6.1.1, we have

B t t2 B
f f(t)dt = f () dt + f f(t)dt + f f(t)der. (2)
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Laplace Transform

Definition 1. Let f(1) be a function on [0, % ). The Laplace transform of fis the
function F defined by the integral

The domain of F(s) is all the values of s for which the integral in (1) exists.” The
Laplace transform of fis denoted by both F and £{f}.
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Theorem 6.1.2 Suppose that

1. f 1s piecewise continuous on the interval 0 <t < A for any positive A.
2. |f(t)] < Ke" when t > M. In this inequality, K, a, and M are real constants, K and M
necessarily positive.

Then the Laplace transform £{f(t)} = F(s), defined by Eq. (4), exists for s > a.
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Example 1 Determine the Laplace transform of the constant function f(r) = 1,r=0.
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Solution  Using the definition of the transform, we compute

a0 N
/ e ' 1dt = lim / e dt
0 N== 1o

=N -

| 1 ¢ N

= lim|—-— .
ok

E:{-} N :I:: i.T i.T

F(s)

—e ¥

lim
N_}:I:: i.i

Since ¢ *¥ — 0 when s > 0 is fixed and N — =, we get

When 5 < 0, the integral | : e *'dt diverges. (Why?) Hence F(s) = 1/s, with the domain of
F(s) beingall s >0. #
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Example 2 Determine the Laplace transform of f(1) = e“, where a is a constant.
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Solution Using the definition of the transform,

/E—.wreafdr:fe—{x—ajrd!
() 0

F(s)

N
lim/ e mat gy =
N—= 0

lim [
N—x
|

5§ —d

1
s—a

for

E—{s—a}h’

S —d

s >=a.

lim

N—x®

|

E—l[s—ﬂjf

§—d

N

()

Again, if s = a the integral diverges, and hence the domain of F(s) isall s > a. ¢
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Example 3 Find £{sinbt}, where b is a nonzero constant.
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Solution We need to compute

Ef{sinhr}(s)=/E““Sinb.fdf=

0

lim

N=—»cc

N
/ e “'sinbt dr .
0

Referring to the table of integrals at the back of the book, we see that

F{sinbt} (s)

- =5t N
ﬁ!ﬂ_ﬁi 2 (—s sinbt — b cosbt) J
lim b e (s sinbN + b cosbN) }
N—x=| @+ b2 2+ B
b
S for s>=0

(since for such s we have limy_,,. ¢ *"(s sinbN + b coshbN) = 0
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Example 4 Determine the Laplace transform of

(2. 0<r<s,
flt) =40, 5<t<10,
Ca 10<t.
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Solution  Since f(¢) is defined by a different formula on different intervals, we begin by breaking up the
integral in (1) into three separate parts.” Thus,

F(s) = / e "f(1)dt

5 10 %
= / e e 0dt+ / e o 0dt + / e e dt
0 5 10
5 N
=2 / e 'dt + lim / e gy
0 N=% 10

2 2E—5r E—][]{s—dj E—{s—d]N
F i -
S 5 New s—4 s—4 ]
2 e E—][]{s—dj
=—- + for s>4. ¢

§ § s—4
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AN B Brief Table of Laplace Transforms

£(2) F(s) = 2{f} (s)
1 i, s =0
5
] 1
e , s > a
5 — d
n!
", n=1,2, ER s >0
b
sin bt . s >0
52+ b2
s
bt s s=>0
cos ERpE
n!
fan — . s >dad
et", n 1,2,... (s —a)"!
e sinb b
st (s —a)>+ b’
5 — d
e“ cos bt

(s —a)?*+ b’
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Linearity of the Transform

Theorem 1. Let/, f}, and f; be functions whose Laplace transforms exist for s > a and
let ¢ be a constant. Then, for s > «,

(2) Eihth = {0+ E{A),
(3) E{cf} = cE{f}.

Example 5 Determine £{11 + 5¢* — 6 sin2¢} .
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Solution From the linearity property, we know that the Laplace transform of the sum of any finite num-
ber of functions is the sum of their Laplace transforms. Thus,

P11+ 5¢" — 65sin2t} = L{11} + L{5"} + L{—6sin2¢}
= 11L{1} +5%{e"} — 6% {sin2t} .
In Examples 1, 2, and 3, we determined that

F{1}(s) = %, F{e'}(s) = l i F{sin2t}(s) = 313_22.

Using these results, we find

1 1 2
PL{11 +5¢" —65sin2t}(s) = 11(—|+5 —6
{ ‘ sin2r} (5) (5‘) (5-4) (53+4)

11 5 12
+ - .
5 s—4 s +4

Since £{1},%{e"}, and ¥{sin2t} are all defined for s >4, so is the transform
PL{11 + 5" — 6sin2t}. ¢
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Example 6  Use Table 7.1 to determine £ {5¢%¢ " — ¢'*' cos 8t} .
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Solution From the table,

2! 2

PtPe ) = = fors > —3,
re) [s=(=3)"" (s+3)
and
s—12
F{e'* cos8t} = : —— fors>12.
(s—12)°+38

Therefore, by linearity,

10 s— 12
(s+3)° (s—12)"+64

P{5r°¢ " —e' " cos8t} = fors>12.
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Recall that cosh bt = (¢” 4 e™?")/2 and sinh bt = (¢” — ™) /2. In each of Problems 7 through
10, find the Laplace transform of the given function; @ and b are real constants.

7. f(t) = cosh bt 8. f(t) = sinh bt
9. f(t) = e” cosh bt 10. f(t) = e* sinh bt
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@)=L " {F(s)}
sinh(at)

cosh(at)

e sinh(bt)

e cosh(bt)
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F(s) = LA{f(t)}

i}
SE—[I.E
S
s* — a®
b
(s —a)® — b2
s — a
(s —a)® — b2
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