

# **Algorithm**

**Abdallah Karakra** 

Computer Science Department

Comp 131

### Algorithm & Pseudocode

- An algorithm is a procedure or formula for solving a problem.
- Pseudocode is a kind of structured English for describing algorithms. It allows the designer to focus on the logic of the algorithm without being distracted by details of language syntax.

## Example

 Let's say that you have a friend arriving at the airport, and your friend needs to get from the airport to your house. Here are three different algorithms that you might give your friend for getting to your home:

## Example Cont.

- The taxi algorithm:
  - Go to the taxi stand.
  - Get in a taxi.
  - Give the driver my address.

## Example Cont.

- The call-me algorithm:
  - When your plane arrives, call my cell phone.
  - Meet me outside baggage claim.

### Example Cont.

- The bus algorithm:
  - Outside baggage claim, catch bus number 70.
  - Transfer to bus 14 on Rukab Street.
  - Get off on Jerusalem street.
  - Walk two blocks north to my house.

## Common Action Keywords

- Input: READ, OBTAIN, GET
- Output: PRINT, DISPLAY, SHOW
- Compute: COMPUTE, CALCULATE
- Initialize: SET
- Add one: INCREMENT

# Types of Algorithm operations

**□**Sequential

**□**Conditional

**□**Iterative

□ Computation operations

Example:

Set the value of "variable" to "value" or "arithmetic expression"

Variable

Named storage location that can hold a data value

- Input operations
  - To receive data values from the user.
  - Example

Get a value for r, the radius of the circle

- □ Output operations
  - To send results to the screen for display.
    - Example

Print the value of Area

- Write an algorithm to find and print the sum of two integers ?
- 1. Ask user to enter first integer
- 2. Read the integer and save as integer\_1
- 3. Ask user to enter the second integer
- 4. Read second integer and save as integer\_2
- 5. Add integer\_1 to integer\_2 and save result as sum
- 6. Print sum to screen



- Write an algorithm to find and print the area of rectangle.
- 1. Ask user to enter the height of rectangle.
- 2. Read height and save as rectangle\_height.
- 3. Ask user to enter the width of rectangle.
- 4. Read width and save as rectangle\_width.
- Multiply rectangle\_heigh by rectangle\_width and save the result as area.
- 6. Display area.

- Write an algorithm to reverse any two digits number.
- 1. Ask user to enter two digits number.
- 2. Read number and save as num.
- 3. Divide num by ten and save result as tens.
- 4. Divide num by ten and save remainder as rem.
- 5. Multiply rem by ten and save the result as rev.
- 6. Add tens to rev.
- 7. Print rev.

Suppose num=12 tens=num/10 =12/10→tens=1 rem=num%10=12%10→rem=2 rev=rem\*10=2\*10 $\rightarrow$ rev=20 rev=rev+tens= $20+1 \rightarrow rev=21$ 

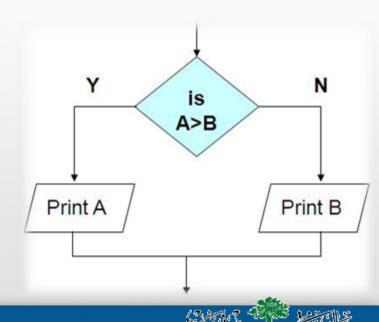




- IF
- Case

□ Ask questions and choose alternative actions based on the answers.

#### Example


if A is greater than B then

print A

else

print B

end if



#### **ELSE** keyword is optional

IF condition THEN Sequence

**END IF** 

IF condition THEN
Sequence 1
ELSE IF condition THEN
Sequence 2
ELSE IF condition THEN
Sequence 3
ELSE

Soguence

Sequence 4

**END IF** 



#### **Logical Operators:**

- AND
- OR

#### **Relational Operators:**

- Greater than
- Greater than or equal
- Less than
- Less than or equal
- Equal
- Not Equal

Write an algorithm to print passed or failed based on the student grade.

- 1. Ask user to enter student grade.
- 2. Read grade and save as student\_grade.
- 3. If student\_grade greater than or equal sixty then print "passed" else

print "failed"

end if

Write an algorithm to find and print the maximum element of a set of 3 integers.

- 1. Ask user to enter the first integer.
- Read the integer and save as first\_integer.
- 3. Ask user to enter the second integer.
- 4. Read the integer and save as second\_integer.
- 5. Ask user to enter third integer.
- Read the integer and save as third\_integer.

- 7. Let max equal to the first\_integer.
- 8. If max less than second\_integer then set max to second\_integer end if
- If max less than third\_integer then set max to third\_integer end if
- 10. Print "the maximum integer is" max

Write an algorithm to find and print the smallest of three given numbers (assume all numbers are different).

| <ol> <li>Ask user to enter first number</li> </ol> | 1. | Ask u | ser to | enter | first | numbe |
|----------------------------------------------------|----|-------|--------|-------|-------|-------|
|----------------------------------------------------|----|-------|--------|-------|-------|-------|

- 2. Read number and save as num1
- 3. Ask user to enter second number
- 4. Read number and save as num2
- 5. Ask user to enter third number
- 6. Read number and save as num3

| Rules for logical And operations |   |   |  |  |  |  |
|----------------------------------|---|---|--|--|--|--|
| Т                                | Т | Т |  |  |  |  |
| Т                                | F | F |  |  |  |  |
| F                                | Т | F |  |  |  |  |
| F                                | F | F |  |  |  |  |

- 7. If num1 smaller than num2 and num1 smaller than num3 then print "num1 is the smallest"
  - else If num2 smaller than num1 and num2 smaller than num3 then print "num2 is the smallest"

else

print "num3 is the smallest"

end if

#### Write an algorithm to read a number x and display its sign.

- Ask user to enter a number
- 2. Read number and save as X
- 3. If x is greater than zero then print x "is positive" else if x is equal zero then print x "is zero" else print x "is negative" end if

Write an algorithm that will input student average. If the average is greater than or equal to 60 and less than or equal to 70, the algorithm should display "Passed". If it is greater than 70 and less than or equal to 80, print "Good". If it is greater than 80 and less than 90, print "Very good". If it is greater than 90, print "Excellent". If it is less than 60 the prints "Fail".

- 1. Ask user to enter student average
- 2. Read average and save as ag
- 3. If ag is greater than or equal to sixty and ag is less than or equal to seventy then print "Pass"
  - else if ag is greater than seventy and ag is less than or equal to eighty then print "Good"
  - else if ag is greater than eighty and ag is less than ninety then print "Very good"
  - else if ag is greater than ninety then print "Excellent"
  - else print "Fail" end if

| Rules for | logical <mark>OR</mark> c | perations |
|-----------|---------------------------|-----------|
| Т         | Т                         | Т         |
| Т         | F                         | Т         |
| F         | Т                         | Т         |
| F         | F                         | F         |

 Perform "looping" behavior; repeating actions until a continuation condition becomes false

(1) WHILE condition sequence **END WHILE** (2)REPEAT sequence **UNTILE** condition

(3)FOR iteration bounds sequenceEND FOR

- 1. Set i equal to two
- 2. While i less than or equal six print i add two to i end while

Output:

FALSE i <= 6? i = i + 2TRUE print i 246 Stop

Start

i = 2

 Write an algorithm to calculate the average of a set of 10 students.

#### Solution 1

- Set counter to zero
- Set total to zero
- 3. While counter is less than ten
  Ask user to enter grade
  Read grade and save as gd
  Add the gd into the total
  increment counter
  end while
- Set the average to the total divided by counter
- 5. Print "the average is " average

#### Solution 2

- 1. Set counter to one
- 2. Set total to zero
- 3. While counter is less than or equal ter Ask user to enter grade Read grade and save as gd Add the gd into the total increment counter end while
- Set the average to the total divided by ten
- 5. Print "the average is " average

Write an algorithm that will count the number of student pass in a class and the amount failed. The pass mark is more than or equal to 65. Suppose the number of students are 30. The algorithm should output the amount fail and passed.

- 1. Set counter to zero
- 2. Set passCounter to zero
- 3. Set failureCounter to zero
- 4. While counter less than thirty

Ask user to enter student average

Read average and save as ag

if ag greater than or equal sixty five then

increment passCounter

else

increment failureCounter

end if

increment counter

end while

Message

Value

6. Print "pass counter = "passCounter" and failure counter = failureCounter

### Extra Exercises

- 1. Write an algorithm that takes n integers and decides and prints the number of integers divisible by 3 and the number of integers not divisible by 3.
- 2. Write an algorithm that will accept the values of the sides of a square and display its area where the formula is : area = side\*side

### Extra Exercises

#### Solutions:

Extra Exercises \_1.txt Extra Exercises \_2.txt

### Extra Exercises

•Write an algorithm to calculate the sum of a set of values (we don't know their count). When 0 is entered this means that algorithm should stop receiving data, and print the sum

Write an algorithm to calculate the sum of a set of values (we don't know their count). When the sum exceeds 25 this means that algorithm should stop receiving data, and print the number of values were entered.